Skip to main content
Log in

Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The phase composition and the microstructure of four ferrous Japanese arrows of the Edo period (17th-19th century) has been determined through two complementary neutron techniques: Position-sensitive wavelength-resolved neutron transmission analysis (PS-WRNTA) and time-of-flight neutron diffraction (ToF-ND). Standard ToF-ND technique has been applied by using the INES diffractometer at the ISIS pulsed neutron source in the UK, while the innovative PS-WRNTA one has been performed at the J-PARC neutron source on the BL-10 NOBORU beam line using the high spatial high time resolution neutron imaging detector. With ToF-ND we were able to reach information about the quantitative distribution of the metal and non-metal phases, the texture level, the strain level and the domain size of each of the samples, which are important parameters to gain knowledge about the technological level of the Japanese weapon. Starting from this base of data, the more complex PS-WRNTA has been applied to the same samples. This experimental technique exploits the presence of the so-called Bragg edges, in the time-of-flight spectrum of neutrons transmitted through crystalline materials, to map the microstructural properties of samples. The two techniques are non-invasive and can be easily applied to archaeometry for an accurate microstructure mapping of metal and ceramic artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Kapp, The Craft of the Japanese Sword (Kodansha International, 1998).

  2. K. Nagayama, The Connoisseurs Book of Japanese Swords (Kodansha International, 1997).

  3. M. Chkashige, Oriental Alchemy (Samuel Weiser Press, 1974).

  4. F. Grazzi, L. Bartoli, F. Civita, M. Zoppi, Anal. Bioanal. Chem. 395, 1961 (2009).

    Article  Google Scholar 

  5. F. Grazzi, F. Civita, A. Williams, A. Scherillo, E. Barzagli, L. Bartoli, D. Edge, M. Zoppi, Anal. Bioanal. Chem. 400, 1493 (2011).

    Article  Google Scholar 

  6. F. Grazzi, L. Bartoli, F. Civita, R. Franci, A. Paradowska, A. Scherillo, M. Zoppi, J. Anal. At. Spectrom. 26, 1030 (2011).

    Article  Google Scholar 

  7. F. Salvemini, F. Grazzi, S. Peetermans, F. Civita, R. Franci, S. Hartmann, E. Lehmann, M. Zoppi, J. Anal. At. Spectrom. 27, 1494 (2012).

    Article  Google Scholar 

  8. F. Grazzi, M. Celli, S. Siano, M. Zoppi, Nuovo Cimento C 30, 59 (2007).

    ADS  Google Scholar 

  9. http://www.isis.stfc.ac.uk/.

  10. A.C. Larson, R.B. Von Dreele General Structure Analysis System (GSAS), Los Alamos National Laboratory Report, LAUR (2004) 86-748.

  11. B.H. Toby, J. Appl. Cryst. 34, 210 (2001).

    Article  Google Scholar 

  12. A. Steuwer, P.J. Withers, J.R. Santisteban, L. Edwards, J. Appl. Phys. 97, 074903 (2005).

    Article  ADS  Google Scholar 

  13. J.R. Santisteban, L. Edwards, M.E. Fizpatrick, A. Steuwer, P.J. Withers, Appl. Phys. A 74, S1433 (2002).

    Article  ADS  Google Scholar 

  14. M. Harada, K. Oikawa, Y. Kasugai, F. Maekawa, Prog. Nucl. Sci. Technol. 1, 94 (2011).

    Google Scholar 

  15. http://j-parc.jp/index-e.html.

  16. A.S. Tremsin, J.B. McPhate, J.V. Vallerga, O.H.W. Siegmund, W.B. Feller, E. Lehmann, M. Dawson, Nucl. Instrum. Methods Phys. Res. A 628, 415 (2011).

    Article  ADS  Google Scholar 

  17. S. Siano, L. Bartoli, J.R. Santisteban, W. Kockelmann, M.R. Daymond, M. Miccio et al., Archaeometry 48, 77 (2006).

    Article  Google Scholar 

  18. E. Barzagli, F. Grazzi, F. Civita, A. Scherillo, A. Pietropaolo, G. Festa, M. Zoppi, Appl. Phys. A 113, 1143 (2013).

    Article  ADS  Google Scholar 

  19. W. Kockelmann, A. Kirfel, Neutron Diffraction Imaging of cultural heritage objects (Archeometriai Muhel, 2006).

  20. G. Artioli, Appl. Phys. A 89, 899 (2007).

    Article  ADS  Google Scholar 

  21. E.H. Lehmann, P. Vontobel, E. Deschler-Erb, M. Soares, Nucl. Instrum. Methods Phys. Res. A 542, 68 (2005).

    Article  ADS  Google Scholar 

  22. F. Grazzi, A. Scherillo, M. Zoppi, Rev. Sci. Instrum. 80, 093704 (2009).

    Article  ADS  Google Scholar 

  23. http://www.mantidproject.org.

  24. D.A. Scott, Metallography and microstructure of ancient andhistoric metals (Getty Conservation Institute, Singapore, 1991).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Barzagli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzagli, E., Grazzi, F., Salvemini, F. et al. Wavelength resolved neutron transmission analysis to identify single crystal particles in historical metallurgy. Eur. Phys. J. Plus 129, 158 (2014). https://doi.org/10.1140/epjp/i2014-14158-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14158-3

Keywords

Navigation