Skip to main content
Log in

Computer simulation of diffusion in silica liquid under temperature and pressure

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We have studied the diffusion mechanism in silica liquid following a new approach where the diffusion rate is estimated via the rate of SiO x \( \rightarrow\) SiO x±1 and the mean square displacement of Si particles per SiO x \( \rightarrow\) SiO x±1 . Molecular dynamics simulation has been conducted for a model consisting of 1998 particles over a wide range of temperatures (3000-4500K) and pressure (from 0 to 25.75GPa). Our results show that the rate of SiO x \( \rightarrow\) SiO x±1 increases either with increasing the temperature or pressure. Further, we find that SiO x \( \rightarrow\) SiO x±1 is heterogeneously distributed through the network structure of the liquid. In particular, it is concentrated on a small section of Si particles in a low-temperature regime and at ambient pressure. The spatial localisation of SiO x \( \rightarrow\) SiO x±1 originates from the fact that the stable unit in low- and high-pressure regime is SiO4 and SiO6 , respectively. The major change in the diffusion mechanism under pressure or temperature concerns the change in the distribution of SiO x \( \rightarrow\) SiO x±1 through the network structure. It is finally shown that the spatial localisation of SiO x \( \rightarrow\) SiO x±1 is responsible for the dynamics heterogeneity and the diffusion anomaly for silica liquid. This finding supports the concept that as the temperature approaches the glass transition point, SiO x \( \rightarrow\) SiO x±1 spatially localises such that the diffusivity drops and the dynamics are anomalously slow.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.I. Ojovan, Adv. Condens. Matter Phys. 2008, 817829 (2008)

    Google Scholar 

  2. G. Tarjus, Dynamical Heterogeneities in Glasses, Colloids and Granular Media, edited by L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, W.V. Saarloos (Oxford University Press, Oxford, 2011)

  3. Y. Zhao, X. Bian, X. Hou, Physica A 367, 42 (2006)

    Article  ADS  Google Scholar 

  4. J. Badro, P. Gillet, J.-L. Barrat, Europhys. Lett. 42, 643 (1998)

    Article  ADS  Google Scholar 

  5. I. Saika-Voivod, F. Sciortino, P.H. Poole, Philos. Mag. 84, 1437 (2004)

    Article  ADS  Google Scholar 

  6. S. Franz, G. Parisi, F. Ricci-Tersenghi, T. Rizzo, Eur. Phys. J. E 34, 102 (2011)

    Article  Google Scholar 

  7. M. Vogel, S.C. Glotzer, Phys. Rev. Lett. 92, 255901 (2004)

    Article  ADS  Google Scholar 

  8. H. Mizuno, R. Yamamoto, Phys. Rev. E 82, 030501R (2010)

    Article  ADS  Google Scholar 

  9. H. Mizuno, R. Yamamoto, Phys. Rev. E 84, 011506 (2011)

    Article  ADS  Google Scholar 

  10. H.S. Waff, Geophys. Res. Lett. 2, 193 (1975)

    Article  ADS  Google Scholar 

  11. L.V. Woodcock, C.A. Angell, P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)

    Article  ADS  Google Scholar 

  12. I. KuShiro, J. Geophys. Res. 81, 6347 (1976)

    Article  ADS  Google Scholar 

  13. M. Scott Shell, G.D. Pablo, Z.P. Athanassios, Phys. Rev. E 66, 011202 (2002)

    Article  ADS  Google Scholar 

  14. B.T. Poe et al., Science 276, 1245 (1997)

    Article  Google Scholar 

  15. C.A. Angell, P.A. Cheeseman, S. Tamaddon, Science 218, 885 (1982)

    Article  ADS  Google Scholar 

  16. S. Tsuneyuki, Y. Matsui, Phys. Rev. Lett. 74, 3197 (1995)

    Article  ADS  Google Scholar 

  17. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999)

    Article  ADS  Google Scholar 

  18. M. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  ADS  Google Scholar 

  19. Y. Gebremichael, M. Vogel, S.C. Glotzer, J. Chem. Phys. 120, 4415 (2004)

    Article  ADS  Google Scholar 

  20. N. Giovambattista, S.V. Buldyrev, F.W. Starr, H. E. Stanley, Phys. Rev. Lett. 90, 085506 (2003)

    Article  ADS  Google Scholar 

  21. S.P. Das, Rev. Mod. Phys. 76, 786 (2004)

    Article  ADS  Google Scholar 

  22. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  23. A. Saksaengwijit, A. Heuer, Phys. Rev. E 73, 061503 (2006)

    Article  ADS  Google Scholar 

  24. A. Saksaengwijit, A. Heuer, Phys. Rev. E 74, 051502 (2006)

    Article  ADS  Google Scholar 

  25. A. Saksaengwijit, A. Heuer, J. Phys.: Condens. Matter 19, 205143 (2007)

    Article  ADS  Google Scholar 

  26. J. Horbach, J. Phys.: Condens. Matter 20, 244118 (2008)

    Article  ADS  Google Scholar 

  27. B.B. Kaiki, D. Bhattarai, L. Stixrude, Phys. Rev. B 76, 104205 (2007)

    Article  ADS  Google Scholar 

  28. J. Horbach, W. Kob, Phys. Rev. B 60, 3169 (1999)

    Article  ADS  Google Scholar 

  29. W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997)

    Article  ADS  Google Scholar 

  30. V.V. Hoang, Defect Diffusion Forum 77, 242 (2005)

    Google Scholar 

  31. D. Coslovich, G. Pastore, J. Phys.: Condens. Matter 21, 285107 (2009)

    Article  Google Scholar 

  32. A. Tandia et al., J. Non-Cryst. Solids 357, 1780 (2011)

    Article  ADS  Google Scholar 

  33. I. Farnan, J.F. Stebbins, Science 265, 1206 (1994)

    Article  ADS  Google Scholar 

  34. B.W. H van Beest, G.J. Kramer, R.A. van Santen, Phys. Rev. Lett. 64, 1955 (1990)

    Article  ADS  Google Scholar 

  35. P.K. Hung, N.T.T. Ha, N.V. Hong, Phys. Rev. E 86, 041508 (2012)

    Article  ADS  Google Scholar 

  36. P.K. Hung, N.V. Hong, L.T. Vinh, J. Phys: Condens. Matter 19, 466103 (2007)

    Article  ADS  Google Scholar 

  37. J.R. Rustad, D.A. Yuen, F.J. Spera, Phys. Rev. A 42, 2081 (1990)

    Article  ADS  Google Scholar 

  38. T. Morishita, Phys. Rev. E 72, 021201 (2005)

    Article  ADS  Google Scholar 

  39. G. Lois, J. Blawzdziewicz, C.S. O’Hern, Phys. Rev. Lett. 102, 015702 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, P.K., Ha, N.T.T. & Hong, N.V. Computer simulation of diffusion in silica liquid under temperature and pressure. Eur. Phys. J. E 36, 60 (2013). https://doi.org/10.1140/epje/i2013-13060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13060-9

Keywords

Navigation