Skip to main content
Log in

Soils of Cryogenic Landforms in the South of the Vitim Plateau: Distribution and Role in the Allocation of Soil Carbon Pools

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The results of the study of cryogenic landforms (heave mounds and thermokarst depressions) and soils developed on them under conditions of the ultracontinental climate of Buryatia and relatively shallow permafrost are discussed. According to the analysis of data of a Tandem X radar and terrain geomorphic surveys, the spatial distribution of local heave mounds and depressions in the Eravna Basin in the south of the Vitim Plateau has been mapped. Heave mounds are mainly allocated to watersheds and foothill fans; soils formed on them are represented by gleyic cryoturbated chernozems (Haplic Chernozems (Stagnic, Turbic) and gleyic dark-humus soils (Stagnic Phaeozems). Thermokarst depressions are allocated to the bottom of the basin and to the wide leveled loamy watersheds. The soil cover here is formed by quasigley chernozems (Gleyic Chernozems) and calcareous quasigley humus soils on stratified lacustrine sediments (Calcaric Gleyic Phaeozems). The soils of heave mounds and thermokarst depressions are characterized by considerable variation in the thickness of horizons and their inversion because of frost heave and cryoturbation processes. They pronouncedly differ in morphology and physical and chemical properties. The distribution of carbon pools in the profiles of these soils differs considerably from that in the background quasi-gley chernozems (Gleyic Chernozems).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Agrochemical Methods of Soil Study (Nauka, Moscow, 1975) [in Russian].

  2. S. A. Blagodatskii, E. V. Blagodatskii, A. Yu. Gorbenko, and N. S. Panikov, “Determination of microbial biomass in soil by rehydratation method,” Pochvovedenie, No. 4, 64–71 (1987).

    Google Scholar 

  3. Yu. K. Vasil’chuk, N. A. Budantseva, A. K. Vasil’chuk, Yu. N. Chizhova, and Yu. V. Stanilovskaya, “Migrational heave mounds in the permafrost zone of Eastern Siberia and the Far East,” Inzh. Geol., No. 1, 40–46 (2014). https://doi.org/10.25296/1993-5056-2014-1-40-64

  4. R. V. Desyatkin, Pedogenesis in Thermokarst Depressions-Alases of the Permafrost Zone (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  5. D. V. Karelin and D. G. Zamolodchikov, Carbon Exchange in Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  6. A. A. Kozlova, V. A. Kuz’min, and E. V. Naprasnikova, “Functioning of soils in the hummocky–hollow ecosystems of the upper Angara region,” Contemp. Probl. Ecol. 3, 284–291 (2010).

    Article  Google Scholar 

  7. A. A. Kozlova, V. A. Kuz’min, and E. P. Zazovskaya, “Soils of paleocryogenic hummocky–hollow landscapes in the southern Baikal region,” Eurasian Soil Sci. 47, 360–370 (2014).

    Article  Google Scholar 

  8. A. I. Kulikov, L. L. Ubugunov, and A. Ts. Mangataev, “Global climate change and its impact on ecosystems,” Arid Ecosyst. 4, 135–141 (2014).

    Article  Google Scholar 

  9. N. L. Mel’nichuk, “Geocryological conditions of the southern part of the Vitim plateau,” in Geocryological Conditions of Transbaikalia and Cis-Baikal Region (Nauka, Moscow, 1967), pp. 71–79.

    Google Scholar 

  10. V. V. Paromov, V. A. Zemtsov, and S. G. Kopysov, “Climate of Western Siberia during slow warming (1986–2015) and forecasting of hydroclimatic resources for 2021–2030,” Izv. Tomsk. Politekh. Univ., Inzh. Georesur. 328 (1), 62–74 (2017).

    Google Scholar 

  11. Field Guide for Identification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  12. Ya. G. Ryskov, S. V. Mergel’, E. A. Arlashina, O. S. Khokhlova, and E. G. Morgun, “Emission and flux of CO2 in soils containing carbonates,” in Soil Respiration (Scientific Center of Biological Research, Russian Academy of Sciences, Pushchino, 1993), pp. 107–124.

    Google Scholar 

  13. Yu. B. Tsybenov, G. D. Chimitdorzhieva, E. O. Chimitdorzhieva, R. A. Egorova, E. Yu. Mil’kheev, T. V. Davydova, and Ts.D.-Ts. Korsunova, “Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal region,” Eurasian Soil Sci. 49, 908–914 (2016). https://doi.org/10.1134/S1064229316080159

    Article  Google Scholar 

  14. G. D. Chimitdorzhieva, Organic Matter of Cold Soils (Ulan-Ude, 2016) [in Russian].

    Google Scholar 

  15. E. O. Chimitdorzhieva, Yu. B. Tsybenov, and G. D. Chimitdorzhieva, “Carbon of humus-containing cryogenic pedofeatures in hydrometamorphized chernozems of Transbaikalia,” Agrokhimiya, No. 9, 14–19 (2015).

    Google Scholar 

  16. G. D. Chimitdorzhieva, E. O. Chimitdorzhieva, Yu. B. Tsybenov, R. A. Egorova, E. Yu. Mil’kheev, A. N. Mukhacheva, and I. A. Yablokova, “Characteristic of soils of thermokarst depressions and heave mounds in the south of the Vitim Plateau,” Agrokhimiya, No. 11, 52–57 (2017). https://doi.org/10.7868/S0002188117110060

    Article  Google Scholar 

  17. D. B. Andreeva, K. Leiber, B. Glaser, U. Hambach, M. Erbajeva, G. D. Chimitdorgieva, V. Tashak, and W. Zech, “Genesis and properties of black soils in Buryatia, southeastern Siberia, Russia,” Quart. Int. 243, 313–326 (2011). https://doi.org/10.1016/j.quaint.2010.12.017

    Article  Google Scholar 

  18. T. N. Chimitdorzhiev, P. N. Dagurov, M. E. Bykov, A. V. Dmitriev, and I. I. Kirbizhekova, “Comparison of Alos Palsar interferometry and field geodetic leveling for marshy soil thaw/freeze monitoring, case study from the Baikal lake region, Russia,” J. Appl. Remote Sens. 10 (1), 016006 (2016).

    Article  Google Scholar 

  19. A. I. Zakharov, M. I. Epov, V. L. Mironov, T. N. Chymitdorzhiev, M. E. Bykov, V. S. Seleznev, A. F. Emanov, and V. A. Cherepenin, “Earth surface subsidence in the Kuznetsk coal basin caused by manmade and natural seismic activity according to Alos Palsar interferometry,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6 (3), 1578–1583 (2013).

    Article  Google Scholar 

  20. E. A. G. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rince, V. E. Romanovsky, et al., “Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle,” BioScience 58, 701–714 (2008). https://doi.org/10.1641/B580807

    Article  Google Scholar 

  21. C. Tarnocai, J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23 (2), GB2023 (2009). https://doi.org/10.1029/2008GB00332722

    Article  Google Scholar 

  22. K. Schaefer, H. Lantuit, V. E. Romanovsky, E. A. G. Schuur, and R. Witt, “The impact of the permafrost carbon feedback on global climate,” Environ. Res. Lett. 9 (085003), 9 (2014). https://doi.org/10.1088/1748-9326/9/8/085003

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Japan Aerospace Exploration Agency for ALOS PALSAR and ALOS-2 PALSAR-2 data provided within the framework of project RA6 (PI 3402) and to the German Aerospace Center for TanDEM-X data provide within the framework of project XTI_HYDR0485.

Funding

Field studies were supported by the state budget research program no. АААА-А 17-117011810038-7. Analytical works were supported by the Russian Foundation for Basic Research, project no. 16-04-01297. Interferometry studies by A.V. Dmitriev and T.N. Chimitdorzhiev were performed within the framework of state contract no. 0336-2019-0005 “Microwave Interferometry and Polarimetry in Remote Sensing of the Earth Surface.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Chimitdorzhieva.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chimitdorzhieva, G.D., Chimitdorzhieva, E.O., Milkheev, E.Y. et al. Soils of Cryogenic Landforms in the South of the Vitim Plateau: Distribution and Role in the Allocation of Soil Carbon Pools. Eurasian Soil Sc. 52, 1019–1027 (2019). https://doi.org/10.1134/S1064229319090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229319090023

Keywords

Navigation