Skip to main content
Log in

Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology

  • New methods and methodologies for the pollutant detection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We demonstrated the use of a new organometallic nanoprobe for competitive surface-enhanced Raman scattering (SERS) immunoassay devoted to the detection of polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (BaP) in seawater. The nanoprobes are gold nanoparticles (GNPs) labeled by a Raman reporter, the 5,5′-dithiobis(succinimidyl-2-nitrobenzoate) (DSNB) and functionalized with monoclonal antibodies anti-BaP. The antibodies are bound with a high specificity to the analyte while the GNPs enhanced the Raman scattering of the DSNB. This type of immunoassay involved the grafting of BaP onto a sensing surface. Thus, NH2-terminated self-assembled monolayer is formed on the surface of gold substrate using cysteamine. Amines finally reacted with 6-formylbenzo[a]pyrene. So, this SERS detection involves four steps: (i) the nanoprobes are incubated with the sample; (ii) a drop of the mixture is then put onto the substrate; (iii) the surface is rinsed; and (iv) the surface is analyzed by Raman spectroscopy. To synthesize the nanoprobes, firstly, we prepared GNPs according to Frens’ method. Then, GNPs were spontaneously labeled by the DSNB Raman reporter, thanks to a strong gold-sulfur interaction. Thereafter, BaP antibodies were cross-linked to the DSNB labeled GNPs by reaction of proteins primary amino groups with N-hydroxyl succinimide (NHS). Before use in SERS detection, their activity was controlled by surface plasmon resonance technique. The present method allows us to detect BaP at trace concentration (2 nmol/L). The results demonstrate that the proposed method has a great potential for application in the monitoring of seawater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217. doi:10.1021/ja00457a071

    Article  CAS  Google Scholar 

  • Bao L, Sheng P, Li J, Wu S, Cai O, Yao S (2012) Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network. Analyst 137:4010–4015. doi:10.1039/C2AN35589B

    Article  CAS  Google Scholar 

  • Cahill CP, Johnson KS, Yee SS (1997) A surface plasmon resonance sensor probe based on retro-reflection. Sensors Actuators B Chem 45:161–166. doi:10.1016/S0925-4005(97)00290-6

    Article  CAS  Google Scholar 

  • Colas F, Crassous MP, Litaker W, Laurent S, Rinnert E, Compère C, Gentien P (2010) New approach for direct detection of domoic acid. Proceedings of the 14th international conference on harmful algae, Hersonissos-Crete, Greece, 1-5 November 2010

  • Dai Q, Xu D, Lim K, Harvey RG (2007) Efficient syntheses of C8-Aryl adducts of adenine and guanine formed by reaction of radical cation Metabolites of carcinogenic polycyclic aromatic hydrocarbons with DNA. J Org Chem 72(13):4856–4863. doi:10.1021/jo070518m

    Article  CAS  Google Scholar 

  • Donata L (2010) Polycylic aromatic hydrocarbons (PAHs) factsheet – 3rd edition JRC 60146 – Joint Research Centre – Institute for Reference Materials and Measurements

  • Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166. doi:10.1016/0009-2614(74)85388-1

    Article  CAS  Google Scholar 

  • Fleischmann M, Hendra PJ, McQuillan AJ, Paul RL, Reide ES (1976) Raman spectroscopy at electrode-electrolyte interfaces. J Raman Spectrosc 4:269–274. doi:10.1002/jrs.1250040308

    Article  CAS  Google Scholar 

  • Frens G (1973) An experiment concerning the dispersion forces between very small metal spheres. Phys Lett A 44(3):208–210. doi:10.1016/0375-9601(73)90885-2

    Article  Google Scholar 

  • Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943. doi:10.1021/ac034356f

    Article  CAS  Google Scholar 

  • Gu X, Tian S, Zhou Q, Adkins J, Gu Z, Li X, Zheng J (2013) SERS detection of polycyclic aromatic hydrocarbons on a bowl-shaped silver cavity substrate. RSC Adv 3(48):25989–25996. doi:10.1039/C3RA43442G

    Article  CAS  Google Scholar 

  • Guillot N, Lamy de la Chapelle M (2012) The electromagnetic effect in surface enhanced Raman scattering: enhancement optimization using precisely controlled nanostructures. J Quant Spectrosc Radiat Transf 113(18):2321–2333. doi:10.1016/j.jqsrt.2012.04.025

    Article  CAS  Google Scholar 

  • Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79(11):4215–4221. doi:10.1021/ac0702084

    Article  CAS  Google Scholar 

  • Jeanmaire DJ, Van Duyne RP (1977) Surface Raman spectroelectrochemistry. J Electroanal Chem 84:1–20. doi:10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  • Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670. doi:10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  • Li DW, Zhai WL, Li YT, Long YT (2014) Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim Acta 181(1–2):23–43. doi:10.1007/s00604-013-1115-3

    Article  CAS  Google Scholar 

  • Lin WH, Lu YH, Hsu YJ (2014) Au nanoplates as robust, recyclable SERS substrates for ultrasensitive chemical sensing. J Colloid Interface Sci 418:87–94. doi:10.1016/j.jcis.2013.11.082

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19(3):409–453. doi:10.1080/01442350050034180

    Article  CAS  Google Scholar 

  • Murphy T, Schmidt H, Kronfeldt HD (1997) Detection of chemicals in seawater using surface-enhanced Raman scattering (SERS). SPIE 3107:281–287. doi:10.1117/12.274727

    CAS  Google Scholar 

  • Murphy T, Schmidt H, Kronfeldt HD (1999) Use of sol-gel techniques in the development of surface-enhanced Raman scattering (SERS) substrates suitable for in situ detection of chemicals in sea-water. Appl Phys B Lasers Opt 69(2):147–150. doi:10.1007/s003400050787

    Article  CAS  Google Scholar 

  • Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106. doi:10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  • Péron O, Rinnert E, Lehaitre M, Colas F, Compère C (2009a) Towards in situ detection of PAH trace in seawater using SERS-active sensors. Proc. SPIE 7312, Advanced Environmental, Chemical, and Biological Sensing Technologies VI, 73120D. doi:10.1117/12.818641

  • Péron O, Rinnert E, Lehaitre M, Crassous P, Compère C (2009b) Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS). Talanta 79:199–204. doi:10.1016/j.talanta.2009.03.043

    Article  Google Scholar 

  • Péron O, Rinnert E, Lehaitre M, Colas F, Compère C (2010) First steps of in situ surface-enhanced Raman scattering during shipboard experiments. Appl Spectrosc 64(10):1086–1093

    Article  Google Scholar 

  • Pfannkuche J, Lubecki L, Schmidt H, Kowalewska G, Kronfeldt HD (2012) The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea). Mar Pollut Bull 64(3):614–626. doi:10.1016/j.marpolbul.2011.12.008

    Article  CAS  Google Scholar 

  • Pluchery O, Carriere M (2011) Nanoparticules d’or. Dossiers Techniques de l’Ingénieur NM900, TI-WEKA, Paris

  • Scharnweber T, Fisher M, Suchànek M, Knopp D, Niessner R (2001) Monoclonal antibody to polycyclic aromatic hydrocarbons based on a new benzo[a]pyrene immunogen. Fresenius J Anal Chem 371(5):578–585. doi:10.1007/s002160101012

    Article  CAS  Google Scholar 

  • Schmidt H, Bich Ha N, Pfannkuche J, Amann H, Kronfeldt HD, Kowalewska G (2004) Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS). Mar Pollut Bull 49(3):229–234. doi:10.1016/j.marpolbul.2004.02.011

    Article  CAS  Google Scholar 

  • Xu SP, Ji XH, Xu WQ, Zhao B, Dou XM, Bai YB, Ozak Y (2005) Surface-enhanced Raman scattering studies on immunoassay. J Biomed Opt 10(3):031112. doi:10.1117/1.1915487

    Article  Google Scholar 

Download references

Acknowledgments

This project was financing by ANR, the French Research Agency thanks to the Ifremer-Edrome Carnot Institute Grants and thanks to the ECOTECH 2011 program, through the ANR-11-ECOT-010-REMANTAS project. Many thanks to Morgan Tardivel for the proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Rinnert.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dribek, M., Rinnert, E., Colas, F. et al. Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology. Environ Sci Pollut Res 24, 27070–27076 (2017). https://doi.org/10.1007/s11356-014-3384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3384-8

Keywords

Navigation