Skip to main content

Advertisement

Log in

Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The phenomenon of diurnal fluctuation in the groundwater level (GWL) often reflects the water uptake by plants. The rate of evapotranspiration from the groundwater (ETgw) can be calculated from the daily rate of change in GWL, but several factors may influence the vertical groundwater dynamics. The occurrence of diurnal fluctuation and the daily rate of change in GWL were determined in 20 monitoring wells on the Great Hungarian Plain with different vegetation cover (Quercus robur L., Robinia pseudoacacia L., Populus × euramericana and unforested control sites) and with differences in the water table depth (WTD) and in soil and salinity characteristics. ETgw was calculated for eight selected sites. Forest vegetation significantly increased the occurrence of diurnal fluctuation (8 out of 11 cases), and the mean daily change in GWL multiplied by the specific yield (S y) was 2.2 times higher for forest sites than for the unforested control sites. The median daily change in GWL showed a significant negative correlation with S y, where the vegetation effect was manifested as ETgw-induced diurnal fluctuation. A significant correlation was obtained at each monitoring well between the meteorological parameters controlling the evaporative demand and the daily rate of change in GWL. A reduction in groundwater uptake after rainfall events and increasing groundwater consumption during dry periods were also revealed. A significant positive correlation was found at some study sites between the daily change in GWL and WTD, and between ETgw and the leaf area index (LAI). Mean ETgw was 8.2 mm day−1 for oak stand and 0.4 mm day−1 for black locust stand, while it ranged from 1.7 to 6.0 mm day−1 for the four poplar stands, which may reflect the variability in water demand, LAI, groundwater and soil characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akram S, Liaghat H (2010) Performance of biodrainage systems in arid and semiarid areas with salt accumulation in soils. In: 9th international drainage symposium, Quebec City

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements. Irrig Drain Pap 56

  • Armstrong AC, Youngs EG, Arrowsmith R (1991) Modelling water–table movement in drained soils with depth-dependent hydraulic conductivity. Agric Water Manag 20:101–108

    Article  Google Scholar 

  • Benyon RG, Marcar NE, Crawford DF, Nicholson AT (1999) Growth and water use of Eucalyptus camaldulensis and E. occidentalis on a saline discharge site near Wellington, NSW, Australia. Agric Water Manag 39:229–244

    Article  Google Scholar 

  • Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP, Jin W, Billinger MA, Zhan X (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Water Resour Res 43:W02404

    Article  Google Scholar 

  • Calder IR (1998) Water use by forests, limits and controls. Tree Physiol 18:625–631

    Article  Google Scholar 

  • Crosbie RS, Binning P, Kalma JD (2005) A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour Res 41:W01008

    Article  Google Scholar 

  • Crow P (2005) The influence of soils and species on tree rooting depth. Forestry Commission Information Note, November 2005

  • de Ochoa FC, Reinoso JCM (1997) Model of long-term water–table dynamics at Donana National Park. Water Res 31(10):2586–2596

    Article  Google Scholar 

  • Di Gléria J, Klimes-Szmik A, Dvoracsek M (1962) Bodenphysik und Bodenkolloidik. Akadémia Kiadó, Budapest

    Google Scholar 

  • Dövényi Z (ed) (2010) Magyarország kistájainak katasztere [Register of Hungarian regions]. MTA Földrajztudományi Kutatóintézet, Budapest (in Hungarian)

    Google Scholar 

  • Fahle M, Dietrich O (2014) Estimation of evapotranspiration using diurnal groundwater level fluctuations: comparison of different approaches with groundwater lysimeter data. Water Resour Res 50:273–286

    Article  Google Scholar 

  • Fan J, Oestergaard KT, Guyot A, Lockington DA (2014) Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia. J Hydrol 519:1120–1129

    Article  Google Scholar 

  • Forestry Web Map—Magyarországi Erdészeti Webtérkép [Hungarian Forestry Web Map]. http://erdoterkep.mgszh.gov.hu. Accessed 29 Sept 2016

  • Gőbölös A (2002) A “vízhiányos” erdőgazdálkodás kérdései a Duna-Tisza-közi homokháton [Forest management in the case of water shortage in the sand ridge region between the Danube and Tisza Rivers]. Hidrológiai Közlöny 82:324–326 (in Hungarian)

    Google Scholar 

  • Gribovszki Z, Kalicz P, Szilágyi J, Kucsara M (2008) Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. J Hydrol 349:6–17

    Article  Google Scholar 

  • Gribovszki Z, Szilágyi J, Kalicz P (2010) Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation—a review. J Hydrol 385:371–383

    Article  Google Scholar 

  • Gribovszki Z, Kalicz P, Szilágyi J (2013) Does the accuracy of fine-scale water level measurements by vented pressure transducers permit for diurnal evapotranspiration estimation? J Hydrol 488:166–169

    Article  Google Scholar 

  • Gribovszki Z, Kalicz P, Balog K, Szabó A, Tóth T (2014) Comparison of an oak forest and of a pasture groundwater uptake and salt dynamics on the Hungarian Great Plain. Acta Silv Lign Hung 10:103–114

    Google Scholar 

  • Hatton TJ, Wu H-I (1995) Scaling theory to extrapolate individual tree water use to stand water use. Hydrol Process 9:527–540

    Article  Google Scholar 

  • Hungarian Meteorological Service (2015) Weather in recent years. http://www.met.hu/eghajlat/magyarorszag_eghajlata/eghajlati_visszatekinto/elmult_evek_idojarasa/. Accessed 10 Nov 2016

  • Ijjász E (1939) A fatenyészet és az altalajvíz, különös tekintettel a nagyalföldi viszonyokra [Wood production and groundwater on the Great Hungarian Plain]. Erdészeti Kísérletek 42:1–107 (in Hungarian)

    Google Scholar 

  • Juhász J (2000) Hidrogeológia [Hydrogeology]. Akadémiai Kiadó, Budapest (in Hungarian)

    Google Scholar 

  • Káposztás N (2010) A vegetációs időszak hosszának vizsgálata különböző módszerekkel [Assessment of the length of vegetation period with different methods]. B.Sc. thesis, Eötvös Lóránd University (in Hungarian)

  • Kuti L (1981) Az Alföld földtani atlasza: Kecskemét [Geographical map of the Great Hungarian Plain: Kecskemét]. MÁFI, Budapest (in Hungarian)

    Google Scholar 

  • Kuti L (1982) Az Alföld földtani atlasza: Debrecen-Nyírábrány [Geographical map of the Great Hungarian Plain: Debrecen-Nyírábrány]. MÁFI, Budapest (in Hungarian)

    Google Scholar 

  • Kuti L (1984) Az Alföld földtani atlasza: Mátészalka [Geographical map of the Great Hungarian Plain: Mátészalka]. MÁFI, Budapest (in Hungarian)

    Google Scholar 

  • Laborczi A, Szatmári G, Takács K, Pásztor L (2016) Mapping of topsoil texture in Hungary using classification trees. J Maps 12(5):999–1009

    Google Scholar 

  • Lautz LK (2008) Estimating groundwater evapotranspiration rates using diurnal water–table fluctuations in semi-arid riparian zone. Hydrogeol J 16:483–497

    Article  Google Scholar 

  • Loheide SP, Butler JJ, Gorelick SM (2005) Estimation of groundwater consumption by phreatophytes using diurnal water table fluctuations: a saturated-unsaturated flow assessment. Water Resour Res 41:W07030

    Article  Google Scholar 

  • Magyar P (1961) Alföldfásítás II [Afforestation on the Great Hungarian Plain]. Akadémiai Kiadó, Budapest (in Hungarian)

    Google Scholar 

  • Meyboom P (1964) Three observations on streamflow depletion by phreatophytes. J Hydrol 2:248–261

    Article  Google Scholar 

  • Móricz N, Mátyás C, Berki I, Rasztovits E, Vekerdy Z, Gribovszki Z (2012) Comparative water balance study of forest and fallow plots. iForest 5:188–196

    Article  Google Scholar 

  • Móricz N, Tóth T, Balog K, Szabó A, Rasztovits E, Gribovszki Z (2016) Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge. iForest. doi:10.3832/ifor1864-009

    Google Scholar 

  • Nachabe M, Shah N, Ross M, Vomacka J (2005) Evapotranspiration of two vegetation covers in a shallow water table environment. Soil Sci Soc Am J 69:492–499

    Article  Google Scholar 

  • Nosetto MD, Jobbágy EG, Paruelo JM (2005) Land-use change and water losses: the case of grassland afforestation across a soil textural gradient in central Argentina. Glob Chang Biol 11:1101–1117

    Article  Google Scholar 

  • Nosetto MD, Jobbágy EG, Tóth T, Di Bella CM (2007) The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands. Oecologia 152:695–705

    Article  Google Scholar 

  • Pásztor L, Laborczi A, Takács K, Szatmári G, Illés G, Fodor N, Négyesi G, Bakacsi Z, Szabó J (2016) Spatial distribution of selected soil features in Hajdú-Bihar County represented by digital soil maps. Landsc Environ 10(3–4):203–213

    Article  Google Scholar 

  • Salama RB, Bartle GA, Farrington P (1994) Water use of plantation Eucalyptus camaldulensis estimated by groundwater hydrograph separation techniques and heat pulse method. J Hydrol 156:163–180

    Article  Google Scholar 

  • Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569–1578

    Article  Google Scholar 

  • Silberstein RP, Vertessy RA, Morris J, Feikema PM (1999) Modelling the effects of soil moisture and solute conditions on long-term tree growth and water use: a case study from the Shepparton irrigation area, Australia. Agric Water Manag 39:283–315

    Article  Google Scholar 

  • Soylu ME, Lenters JD, Istanbulluoglu E, Loheide SP II (2012) On evapotranspiration and shallow groundwater fluctuations: a Fourier-based improvement to the White method. Water Resour Res 48:W06506

    Article  Google Scholar 

  • Sueki S, Acharya K, Huntington J, Liebert R, Healey J, Jasoni R, Young M (2015) Defoliation effects of Diorhabda carinulata on tamarisk evapotranspiration and groundwater levels. Ecohydrology. doi:10.1002/eco.1604

    Google Scholar 

  • Szodfridt I (1990) Hozzászólás Major Pál és Neppel Ferenc: “A Duna-Tisza-közi talajvízszint süllyedése” című cikkéhez [Comment on “Depression of groundwater level between the River Danube and Tisza” by P Major and F Neppel]. Vízügyi Közlemények 72(3):287–291 (in Hungarian)

    Google Scholar 

  • Szodfridt I (1993) Erdészeti termőhelyismerettan [Forestry production sites]. Mezőgazda Kiadó, Budapest (in Hungarian)

    Google Scholar 

  • Thorburn PJ (1997) Land management impacts on evaporation from shallow, saline water tables. In: Taniguchi M (ed) Sub-surface hydrological responses to land cover and land use changes. Kluwer, Boston, pp 21–34

    Chapter  Google Scholar 

  • Tóth T, Balog K, Szabó A, Pásztor L, Jobbágy EG, Nosetto MD, Gribovszki Z (2014) Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB PLANTS. doi:10.1093/aobpla/plu054

    Google Scholar 

  • Turk LJ (1975) Diurnal fluctuations of water tables induced by atmospheric pressure changes. J Hydrol 26:1–16

    Article  Google Scholar 

  • USDA, United States Department of Agriculture, National Employee Staff, Soil Conservation Service (1987) Soil Mechanics Level I Module 3—USDA Textural Soil Classification—Study Guide, pp 1–53

  • van Beers WFJ (1958) A field measurement of the hydraulic conductivity of soil below the water table. ILRI Publication 1, International Institute for Land Reclamation and Improvement (ILRI), Wageningen

  • Verstraeten LMJ, Livens J (1971) Hygroscopicity as a valuable complement in soil analysis, 1. Characterization of the hygroscopic constant. Geoderma 6:255–262

    Article  Google Scholar 

  • Vincke C, Thiry Y (2008) Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: evidences from continuous evapotranspiration and water table monitoring. Agric For Meteorol 148:1419–1432

    Article  Google Scholar 

  • Wang P, Pozdniakov SP (2014) A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations. Water Resour Res 50:2276–2292

    Article  Google Scholar 

  • Wang Y-L, Liu G-B, Kume T, Otsuki K, Yamanaka N, Du S (2010) Estimating water use of a black locust plantation by the thermal dissipation probe method in the semiarid region of Loess Plateau, China. J For Res 15:241–251

    Article  Google Scholar 

  • Ward RC (1963) The effect of site factors on water–table fluctuations. J Hydrol 1:151–165

    Article  Google Scholar 

  • White WN (1932) Method of estimating groundwater supplies based on discharge by plants and evaporation from soil—results of investigation in Escalante Valley, Utah. US Geological Survey, Water Supply Paper 659-A, 1–105

  • Wuddivira MN, Robinson DA, Lebron I, Brechet L, Atwell M, De Caires S, Oatham M, Jones SB, Abdu H, Verma AK, Tuller M (2012) Estimation of soil clay content from hygroscopic water content measurements. Soil Sci Soc Am J 76(5):1529–1535

    Article  Google Scholar 

  • Zhang Y-K, Schilling KE (2006) Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: a field observation and analysis. J Hydrol 319:328–338

    Article  Google Scholar 

Download references

Acknowledgements

The establishment of the monitoring network and data collection were funded by OTKA NN 79835 (National Scientific Research Programmes, Hungary), EU COST FA0901 and VKSZ_12-1-2013-0034–AGRÁRKLÍMA.2. Péter Csáfordi, Kitti Balog and Tibor Tóth acknowledge funding from the Postdoctoral Research Programme PD-029/2015 of the Hungarian Academy of Sciences and Zoltán Gribovszki from the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of the TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program”. The authors thank Dr. Norbert Móricz for his advice on the calculation of evapotranspiration and Dr. Klára Ádámné Pokovai for her help with LAI calculations. Special thanks are due to the Trans Tisza Water Directorate and the Water Directorate of the Central Tisza Region for the daily precipitation data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Csáfordi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csáfordi, P., Szabó, A., Balog, K. et al. Factors controlling the daily change in groundwater level during the growing season on the Great Hungarian Plain: a statistical approach. Environ Earth Sci 76, 675 (2017). https://doi.org/10.1007/s12665-017-7002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7002-1

Keywords

Navigation