Skip to main content
Log in

Investigation of the structure and properties of quartz in the α-β transition range by neutron diffraction and mechanical spectroscopy

  • Crystal Structure and Lattice Dynamics
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The paper reports on the results of complex investigations into the physical properties of synthetic quartz single crystals and quartz powders in the temperature range of the α-β transition with the use of neutron diffraction and mechanical spectroscopy. The crystal structure of quartz powders with different average sizes of grains is determined in the temperature range up to 620°C and in the α-β transition temperature range. The temperature dependences of the internal friction and the resonant frequency for quartz samples in the vicinity of the phase transition temperature are obtained upon excitation of vibrations in the planes parallel and perpendicular to the Z axis of the quartz crystal. The temperatures at the maxima of the internal friction in the range 560–620°C are determined. The assumptions regarding the possible reasons for the shift of the phase transition temperature are made. It is revealed that the internal friction is characterized by a maximum that is observed in the vicinity of 350°C and is not related to the structural transformations in quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. Jay, Proc. R. Soc. London, Ser. A 142, 237 (1933).

    ADS  Google Scholar 

  2. V. G. Zubov, Dokl. Akad. Nauk SSSR 107(3), 392 (1956).

    Google Scholar 

  3. V. G. Zubov and M. M. Firsova, Dokl. Akad. Nauk SSSR 109(3), 493 (1956).

    Google Scholar 

  4. A. N. Nikitin, R. N. Vasin, A. M. Balagurov, et al., Pis’ma Zh. Fiz. Élem. Chastits At. Yadra 3(1), 76 (2006) [Phys. Part. Nucl. Lett. 3 (1), 46 (2006)].

    Google Scholar 

  5. A. F. Wright and S. Lehmann, J. Solid State Chem. 36, 371 (1981).

    Article  Google Scholar 

  6. H. Boysen, B. Dorner, F. Frey, and H. Grimm, J. Phys. C: Solid State Phys. 13, 6127 (1980).

    Article  ADS  Google Scholar 

  7. G. Dolino, J. P. Bachheimer, and C. M. E. Zeyen, Solid State Commun. 45(3), 295 (1983).

    Article  Google Scholar 

  8. G. Dolino, J. P. Bachheimer, B. Berge, and C. M. E. Zeyen, J. Phys. (Paris) 45, 361 (1984).

    Google Scholar 

  9. B. Berge, G. Dolino, M. Vallade, et al., J. Phys. (Paris) 45, 715 (1984).

    Google Scholar 

  10. G. Dolino, J. P. Bachheimer, B. Berge, et al., J. Phys. (Paris) 45, 901 (1984).

    Google Scholar 

  11. A. N. Nikitin and T. I. Ivankina, Fiz. Élem. Chastits At. Yadra 35(2), 348 (2004) [Phys. Part. Nucl. 35 (2), 193 (2004)].

    Google Scholar 

  12. V. A. Kalinin, M. V. Rodkin, and I. S. Tomashevskaya, Geodynamic Effects of Physicochemical Solid-State Transformations (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  13. A. G. Smagin and M. Ya. Yaroslavskiĭ, Piezoelectricity of Quartz and Quartz Resonators (Énergiya, Moscow, 1970) [in Russian].

    Google Scholar 

  14. V. G. Zubov and M. M. Firsova, Kristallografiya 7(3), 469 (1962) [Sov. Phys. Crystallogr. 7 (3), 374 (1962)].

    Google Scholar 

  15. T. I. Ivankina, et al., Fiz. Zemli, No. 6, 95 (1993).

  16. T. D. Shermergor and V. B. Yakovlev, Fiz. Zemli, No. 2, 81 (1998) [Izv. Acad. Sci., Phys. Solid Earth 34 (2), 145 (1998)].

  17. A. N. Nikitin and I. K. Arkhipov, Fiz. Zemli, No. 12, 29 (1992).

  18. G. M. Mironova, in Abstracts of Papers of the Second International Seminar on Neutron Scattering at High Pressure (NSHP-II), Dubna, Moscow oblast, Russia, September, 1999 (Dubna, 1999), p. 82 [in Russian].

  19. G. A. Sobolev, A. V. Ponomarev, A. N. Nikitin, et al., Fiz. Zemli, No. 10, 5 (2004) [Izv. Acad. Sci., Phys. Solid Earth 40 (10), 788 (2004)].

  20. T. I. Ivankina, H. M. Kern, and A. N. Nikitin, Tectonophysics 407, 25 (2005).

    Article  Google Scholar 

  21. T. I. Ivankina et al., Sb. Nauchn. Tr. Inst. Fiz. Zemli Akad. Nauk, Geofiz. Issled., No. 1, 88 (2005).

  22. A. M. Balagurov, Neutron News 16, 8 (2005).

    Article  Google Scholar 

  23. V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).

    Article  Google Scholar 

  24. K. Kihara, Eur. J. Mineral. 2, 63 (1990).

    Google Scholar 

  25. S. A. Golovin, A. Pushkar, and D. M. Levin, Elastic and Damping Properties of Structural Metallic Materials (Metallurgiya, Moscow, 1987) [in Russian].

    Google Scholar 

  26. S. Ishibashi, K. Abe, M. Suzuki, et al., Physica B (Amsterdam) 219–220, 593 (1996).

    Google Scholar 

  27. H. Kern, Phys. Chem. Miner. 4, 161 (1979).

    Article  Google Scholar 

  28. É. I. Éstrin, Stability of Lattices and Martensitic Transformations: Martensitic Transformations (Naukova Dumka, Kiev, 1978), p. 29 [in Russian].

    Google Scholar 

  29. B. S. Lunin and S. N. Torbin, Vestn. Mosk. Univ., Ser. 2: Khim. 41(5), 286 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Nikitin, G.V. Markova, A.M. Balagurov, R.N. Vasin, O.V. Alekseeva, 2007, published in Kristallografiya, 2007, Vol. 52, No. 3, pp. 450–457.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikitin, A.N., Markova, G.V., Balagurov, A.M. et al. Investigation of the structure and properties of quartz in the α-β transition range by neutron diffraction and mechanical spectroscopy. Crystallogr. Rep. 52, 428–435 (2007). https://doi.org/10.1134/S1063774507030145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507030145

PACS numbers

Navigation