Skip to main content
Log in

Ultratrace Analysis of Dopamine Using a Combination of Imprinted Polymer-Brush-Coated SPME and Imprinted Polymer Sensor Techniques

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A combination approach in solid-phase microextraction, based on a molecularly imprinted polymer-brush coating on an optical fiber coupled with a complementary molecularly imprinted polymer sensor, has been adopted for isolation, preconcentration, and analysis of dopamine at ultratrace levels in highly dilute aqueous samples. This combination enabled enhanced (up to 8.5-fold) preconcentration of the analyte, which is appropriate for achieving a stringent detection limit in clinical diagnosis of several neurodegenerative diseases. The detection limit of dopamine in biological samples was 0.018 ng mL−1 with a relative standard deviation less than 2.1% and without any non-specific contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Engelborghs S, Marescau B, De Deyn PP (2003) Neurochem Res 28:1145–1150. doi:10.1023/A:1024255208563

    Article  CAS  Google Scholar 

  2. Thiagarajan S, Chen SM (2007) Talanta 74:212–222. doi:10.1016/j.talanta.2007.05.049

    Article  CAS  Google Scholar 

  3. da Silva RP, Lima AWO, Serrano SHP (2008) Anal Chim Acta 612:89–98. doi:10.1016/j.aca.2008.02.017

    Article  CAS  Google Scholar 

  4. Nikolajsen RPH, Hansen AM (2001) Anal Chim Acta 449:1–15. doi:10.1016/S0003-2670(01)01358-7

    Article  CAS  Google Scholar 

  5. Tsunoda M (2006) Anal Bioanal Chem 386:506–514. doi:10.1007/s00216-006-0675-z

    Article  CAS  Google Scholar 

  6. Qing W, Liu X, Lu H, Liang J, Liu K (2008) Mikrochim Acta 160:227–231. doi:10.1007/s00604-007-0826-8

    CAS  Google Scholar 

  7. Kartsova LA, Sidorova AA, Ivanova AS (2007) J Anal Chem 62:960–964. doi:10.1134/S1061934807100115

    Article  CAS  Google Scholar 

  8. Chen FN, Zhang YX, Zhang ZJ (2007) Chin J Chem 25:942–946. doi:10.1002/cjoc.200790183

    Article  CAS  Google Scholar 

  9. Wang HY, Iao YX, Han J, Chang XS (2005) Anal Sci 21:1281–1285. doi:10.2116/analsci.21.1281

    Article  CAS  Google Scholar 

  10. Nalewajko E, Wiszowata A, Kojlo A (2007) J Pharm Biomed Anal 43:1673–1681. doi:10.1016/j.jpba.2006.12.021

    Article  CAS  Google Scholar 

  11. Lee J, Huang BX, Yuan Z, Kim HY (2007) Anal Chem 79:9166–9173. doi:10.1021/ac0715827

    Article  CAS  Google Scholar 

  12. Khuhawar MY, Zardari LA, Laghari AJ (2008) Chromatographia 67:847–851. doi:10.1365/s10337-008-0574-x

    Article  CAS  Google Scholar 

  13. Kalita J, Kumar S, Vijaykumar K, Palit G, Misra UK (2007) J Neurol Sci 252:62–66. doi:10.1016/j.jns.2006.10.010

    Article  CAS  Google Scholar 

  14. Rao PS, Rujikaran N, Luber JM, Tyrus DH (1989) Chromatographia 28:307–310. doi:10.1007/BF02260781

    Article  CAS  Google Scholar 

  15. Kumar AM, Fernandez JB, Gonzalez L, Kumar M (2006) J Liquid Chromatogr Relat Technol 29:777–799. doi:10.1080/10826070500530245

    Article  CAS  Google Scholar 

  16. Lulinski P, Maciejewska D, Bamburowicz-Klimkowska M, Szutowski M (2005) 9th International Electronic Conference on Synthetic Organic Chemistry. Procceedings of ECSOC-9 pp 1–30

  17. Suedee R, Seechamnanturakit V, Canyuk B, Ovatlarnporn C, Martin GP (2006) J Chromatogr A 1114:239–249. doi:10.1016/j.chroma.2006.02.033

    Article  CAS  Google Scholar 

  18. Lulinski P, Maciejewska D, Bamburowicz-Klimkowska M, Szutowski M (2007) Molecules 12:2434–2449. doi:10.3390/12112434

    Article  CAS  Google Scholar 

  19. Ling TR, Syu YZ, Tasi YC, Chou TC, Liu CC (2005) Biosens Bioelectron 21:901–907. doi:10.1016/j.bios.2005.02.009

    Article  CAS  Google Scholar 

  20. Can X, Zhao Y, Geng Z, Wang Z, Zhu JJ (2008) J Phys Chem C 112:4849–4854. doi:10.1021/jp801954s

    Article  Google Scholar 

  21. Auger J, Boulay R, Jaillais B, Delion-Vancassel S (2000) J Chromatogr A 870:395–403. doi:10.1016/S0021-9673(99)01077-8

    Article  CAS  Google Scholar 

  22. Djozan D, Amir-Zehni M (2005) Chromatographia 62:127–132. doi:10.1365/s10337-005-0587-7

    Article  CAS  Google Scholar 

  23. Shin M, Hohman MM, Brenner MP, Rutledge GC (2001) Appl Phys Lett 78:1149–1151. doi:10.1063/1.1345798

    Article  CAS  Google Scholar 

  24. Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Phys Fluids 13:2201–2220. doi:10.1063/1.1383791

    Article  CAS  Google Scholar 

  25. Senaratne W, Andruzzi L, Ober CK (2005) Biomacromolecules 6:2427–2448. doi:10.1021/bm050180a

    Article  CAS  Google Scholar 

  26. Szeleofer I, Carigano MA (1996) Adv Chem Phys 94:165–259. doi:10.1002/9780470141533.ch3

    Article  Google Scholar 

  27. Kumar A, Malik AK, Tewary DK, Singh B (2008) Anal Chim Acta 610:1–14. doi:10.1016/j.aca.2008.01.028

    Article  CAS  Google Scholar 

  28. Krutz LJ, Senseman SA, Sciumbato AS (2003) J Chromatogr A 999:103–121. doi:10.1016/S0021-9673(02)01841-1

    Article  CAS  Google Scholar 

  29. Koster EHM, Crescenzi C, den Hoedt W, Ensing K, de Jong GJ (2001) Anal Chem 73:3140–3145. doi:10.1021/ac001331x

    Article  CAS  Google Scholar 

  30. Turiel E, Tadeo JL, Martin-Esteban A (2007) Anal Chem 79:3099–3104. doi:10.1021/ac062387f

    Article  CAS  Google Scholar 

  31. Djozan D, Ebrahimi B (2008) Anal Chim Acta 616:152–159. doi:10.1016/j.aca.2008.04.037

    Article  CAS  Google Scholar 

  32. Prasad BB, Tiwari K, Singh M, Sharma PS, Patel AK, Srivastava S (2008) J Chromatogr A 1198–1199:59–66. doi:10.1016/j.chroma.2008.05.059

    Article  Google Scholar 

  33. Xu C, Wu T, Mei Y, Drain CM, Batteas JD, Beers KL (2005) Langmuir 21:11136–11140. doi:10.1021/la051853d

    Article  CAS  Google Scholar 

  34. Ball P (1994) Nature 371:202–203. doi:10.1038/371202a0

    Article  Google Scholar 

  35. Ostaci RV, Damiron D, Capponi S, Vignaud G, Leger L, Grohens Y, Drockenmuller E (2008) Langmuir 24:2732–2739. doi:10.1021/la703086x

    Article  CAS  Google Scholar 

  36. Auroy P, Auvray L, Leger L (1991) Macromolecules 24:5158–5166. doi:10.1021/ma00018a021

    Article  CAS  Google Scholar 

  37. Skoog DA, Holler FT, Nieman TA (1998) Principles of instrumental analysis, 5th edn. Harcourt Brace College Publishers, Florida, pp 13–14

  38. Wen Z, Wei Z, Haihong X, Fangli W, Jing GU, Jingen H, Litong J (2005) Sci Chin Ser B Chem (Kyoto) 48:368–375

    Article  Google Scholar 

  39. Rozet E, Morello R, Lecomte F, Martin GB, Chiap P, Crommen J, Boos KS, Hubert P (2006) J. Chromatrogr B 844:251–260. doi:10.1016/j.jchromb.2006.07.060

    Article  CAS  Google Scholar 

  40. Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Biomacromolecules 9:1357–1361. doi:10.1021/bm701301s

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Support of this work by the Department of Science and Technology, New Delhi, through project SR/S1/IC-18/2006, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Bali Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, B.B., Tiwari, K., Singh, M. et al. Ultratrace Analysis of Dopamine Using a Combination of Imprinted Polymer-Brush-Coated SPME and Imprinted Polymer Sensor Techniques. Chroma 69, 949–957 (2009). https://doi.org/10.1365/s10337-009-1039-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1039-6

Keywords

Navigation