Skip to main content
Log in

Excited-state dynamics in light-harvesting complex of Rhodobacter sphaeroides

  • Articles
  • Optics
  • Published:
Chinese Science Bulletin

Abstract

Photodynamics of peripheral antenna complexes, light-harvesting complex (LH2) of Rhodobacter (Rb) Sphaeroides 601, was studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results reveal dramatic dynamical evolutions within B800 and B850 absorption bands of antenna complexes LH2. At excitation wavelength around 835 nm, a sharp photobleaching signal was observed which was assigned to the contribution of the two-exciton state, which was further confirmed by the power dependence measurement. Rate equations with eight-level scheme were used to calculate the population evolution in LH2 and the transient dynamics under femtosecond pulse excitation. The research results prove that not only the transition from ground state to one-exciton state but also that from one-exciton state to two-exciton state contribute to the photodynamics of B850.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Papiz M Z, Prince S M, Howard T, et al. The structure and thermal motion of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å over-circle resolution and 100 K: New structural features and functionally relevant motions. J Mol Biol, 2003, 326(5): 1523–1538

    Article  PubMed  CAS  Google Scholar 

  2. Walz T, Jamieson S J, Bowers C M, et al. Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides: LH2 at 6 angstrom LH1 and RC-LH1 at 25 angstrom. J Mol Biol, 1998, 282(4): 833–845

    Article  PubMed  CAS  Google Scholar 

  3. Herek J L, Wohlleben W, Cogdell R J, et al. Quantum control of energy flow in light harvesting. Nature, 2002, 417(6888): 533–535

    Article  PubMed  CAS  Google Scholar 

  4. Krueger B P, Scholes G D, Fleming G R. Calculation of couplings and energy-transfer pathways between the pigments of LH2 by the ab initio transition density cube method. J Phys Chem B, 1998, 102(27): 5378–5386

    Article  CAS  Google Scholar 

  5. Trinkunas G, Herek J L, Polivka T, et al. Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2. Phys Rev Lett, 2001, 86(18): 4167–4170

    Article  PubMed  CAS  Google Scholar 

  6. Pullerits T, Hess S, Herek J L, et al. Temperature dependence of excitation transfer in LH2 of Rhodobacter sphaeroides. J Phys Chem B, 1997, 101(49): 10560–10567

    Article  CAS  Google Scholar 

  7. Scholes G D, Harcourt R D, Fleming G R. Electronic interactions in photosynthetic light-harvesting complexes: The role of carotenoids. J Phys Chem B, 1997, 101(37): 7302–7312

    Article  CAS  Google Scholar 

  8. Pullerits T, Chachisvilis M, Jones M R, et al. Exciton dynamics in the light-harvesting complexes of rhodobacter-sphaeroides. Chem Phys Lett, 1994, 224(3–4): 355–365

    Article  CAS  Google Scholar 

  9. Koolhaas M H C, Van Der Zwan G, Frese R N, et al. Red shift of the zero crossing in the CD spectra of the LH2 antenna complex of Rhodopseudomonas acidophila: A structure-based study. J Phys Chem B, 1997, 101(37): 7262–7270

    Article  CAS  Google Scholar 

  10. Ritz T, Hu X C, Damjanovic A, et al. Excitons and excitation transfer in the photosynthetic unit of purple bacteria. J Lumin, 1998, 76: 310–321

    Article  Google Scholar 

  11. Jimenez R, Dikshit S N, Bradforth S E, et al. Electronic excitation transfer in the LH2 complex of Rhodobacter sphaeroides. J Phys Chem, 1996, 100(16): 6825–6834

    Article  CAS  Google Scholar 

  12. Van Grondelle R, Dekker J P, Gillbro T, et al. Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta, 1994, 1187(1): 1–65

    Article  CAS  Google Scholar 

  13. Ma Y Z, Cogdell R J, Gillbro T. Femtosecond energy-transfer dynamics between bacteriochlorophylls in the B800-820 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 7750). J Phys Chem B, 1998, 102(5): 881–887

    Article  CAS  Google Scholar 

  14. Hess S, Feldchtein F, Babin A, et al. Femtosecond energy-transfer within the lh2 peripheral antenna of the photosynthetic purple bacteria rhodobacter-sphaeroides and rhodopseudomonas-palustris II. Chem Phys Lett, 1993, 216(3–6): 247–257

    Article  CAS  Google Scholar 

  15. Shreve A P, Trautamn J K, Frank H A, et al. Femtosecond energy-transfer processes in the b800-850 light-harvesting complex of rhodobacter-sphaeroides-2.4.1. Biochim Biophys Acta, 1991, 1058(2): 280–288

    Article  PubMed  CAS  Google Scholar 

  16. Monshouwer R, Dezarate I O, Van Mourik F R, et al. Low-intensity pump-probe spectroscopy on the b800 to b850 transfer in the light-harvesting 2 complex of rhodobacter-spheroides. Chem Phys Lett, 1995, 246(3): 341–346

    Article  CAS  Google Scholar 

  17. Fowler G J S, Hess S, Pullerits T, et al. The role of beta Arg-10 in the B800 bacteriochlorophyll and carotenoid pigment environment within the light-harvesting LH2 complex of Rhodobacter sphaeroides. Biochemistry, 1997, 36(37): 11282–11291

    Article  PubMed  CAS  Google Scholar 

  18. Leupold D, Stiel H, Ehlert J, et al. Photophysical characterization of the B800-depleted light harvesting complex B850 of Rhodobacter sphaeroides—Implications to the ultrafast energy transfer 800→850 nm. Chem Phys Lett, 1999, 301(5–6): 537–545

    Article  CAS  Google Scholar 

  19. Boonstra A F, Visschers R W, Calkoen F, et al. Structural characterization of the b800-850 and b875 light-harvesting antenna complexes from rhodobacter-sphaeroides by electron-microscopy. Biochim Biophys Acta, 1993, 1142(1–2): 181–188

    CAS  Google Scholar 

  20. De Caro C, Visschers R W, Van Grondelle R, et al. Interband and intraband energy-transfer in lh2-antenna complexes of purple bacteria—a fluorescence line-narrowing and hole-burning study. J Phys Chem, 1994, 98(41): 10584–10590

    Article  Google Scholar 

  21. Matsuzaki S, Zazubovich V, Fraser N J, et al. Energy transfer dynamics in LH2 complexes of Rhodopseudomonas acidophila containing only one B800 molecule. J Phys Chem B, 2001, 105(29): 7049–7056

    Article  CAS  Google Scholar 

  22. Stiel H, Leupold D, Teuchner K, et al. One-and two-exciton bands in the LH2 antenna of Rhodopseudomonas acidophila. Chem Phys Lett, 1997, 276(1–2): 62–69

    Article  CAS  Google Scholar 

  23. Liu W M, Liu Y, Yan Y L, et al. The observation of ultrafast excited-state dynamical evolution in B800-partially or completely released LH2 of Rhodobacter sphaeroides 601 at room temperature. J Biomol Struct Dyn, 2006, 23(5): 529–535

    PubMed  CAS  Google Scholar 

  24. Kühn O, Mukamel S. Probing the two-exciton manifold of light-harvesting antenna complexes using femtosecond four-wave mixing. J Phys Chem B, 1997, 101(5): 809–816

    Article  Google Scholar 

  25. Leupold D, Stiel H, Teuchner K, et al. Size enhancement of transition dipoles to one-and two-exciton bands in a photosynthetic antenna. Phys Rev Lett, 1996, 77(22): 4675–4678

    Article  PubMed  CAS  Google Scholar 

  26. Brüggeman B, May V, Exciton exciton annihilation dynamics in chromophore complexes. II Intensity dependent transient absorption of the LH2 antenna system. J. Chem. Phys, 2004, 120(5): 2325–2336

    Article  Google Scholar 

  27. Ma Y Z, Cogdell R J, Gillbro T. Energy transfer and exciton annihilation in the B800-850 antenna complex of the photosynthetic purple bacterium Rhodopseudomonas acidophila (Strain 10050). A femto-second transient absorption study. J Phys Chem B, 1997, 101(6): 1087–1095

    Article  CAS  Google Scholar 

  28. Knoester J. Nonlinear optical susceptibilities of disordered aggregates—a comparison of schemes to account for intermolecular interactions. Phys Rev A, 1993, 47(3): 2083–2098

    Article  PubMed  CAS  Google Scholar 

  29. Knoester J. Collective nonlinear-optical properties of disordered j-aggregates. Adv Mater, 1995, 7(5): 500–502

    Article  CAS  Google Scholar 

  30. Bakalis L D, Knoester J. Can the exciton delocalization length in molecular aggregates be determined by pump-probe spectroscopy? J Lumin, 1999, 83–84: 115–119

    Article  Google Scholar 

  31. Liu W M, Zhu R Y, Xia C A, et al. Femtosecond dynamics of energy transfer in native B800-B850 and B800-released LH2 complexes of Rhodobacter sphaeroides. Chin Phys Lett, 2003, 20(12): 2148–2151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiXiong Qian.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10674031)

About this article

Cite this article

Liu, K., Liu, W., Yan, Y. et al. Excited-state dynamics in light-harvesting complex of Rhodobacter sphaeroides . Chin. Sci. Bull. 53, 1955–1962 (2008). https://doi.org/10.1007/s11434-008-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0187-7

Keywords

Navigation