Skip to main content
Log in

Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera)

  • SPONGE RESEARCH DEVELOPMENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Sponges are an important component of the benthic community, especially on coral reefs, but demographic data such as growth, recruitment or mortality are notably limited. This study examined the growth of the elephant ear sponge Ianthella basta, the largest and in some areas one of the dominating sponge species on Guam and other pacific reefs. We measured growth rates of the natural population on Guam over the course of one year and identified intra-individual growth patterns. Initial sponge sizes ranged from 200 to 35,000 cm2. Specific growth rates ranged from 0.08 to 6.08 with a mean specific growth rate of 1.43 ± 1.29 (SD) year−1. Furthermore, specific growth decreased with sponge size. The age estimate for the largest sponge (1.7 m height × 9.5 m circumference) was ~8 years. Intra-individual growth was mostly apical. This study demonstrated high growth rates, which has notable implications for environmental assessments, management and potential biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. & F. Csaki (ed.), Proceedings of the 2nd International Symposium on Information Theory. Akademiai Kiado, Budapest: 267–281.

  • Ayling, A. L., 1983. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biological Bulletin, Marine Biological Laboratory, Woods Hole 165: 343–352.

    Article  Google Scholar 

  • Becerro, M. A., R. W. Thacker, X. Turon, M. J. Uriz & V. J. Paul, 2003. Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia 135: 91–101.

    PubMed  Google Scholar 

  • Bergquist, P. R. & M. Kelly-Borges, 1995. Systematics and biogeography of the genus Ianthella (Demospongiae: Verongida: Ianthellidae) in the South-West Pacific. The Beagle, Records of the Museums and Art Galleries of the Northern Territory 12: 151–176.

    Google Scholar 

  • Beverton, R. J. H. & S. J. Holt, 1957. On the Dynamics of Exploited Fish Populations. Fisheries Investigations of the Ministry of Agriculture and Fisheries, Food in Great Britain, Series 2, Sea Fish, Vol 19. Facsimile reprint 1993. Chapman & Hall, London.

  • Brunner, E., H. Ehrlich, P. Schupp, R. Hedrich, S. Hunoldt, M. Kammer, S. Machill, S. Paasch, V. V. Bazhenov, D. V. Kurek, T. Arnold, S. Brockmann, M. Ruhnow & R. Born, 2009. Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. Journal of Structural Biology 168: 539–547.

    Article  PubMed  CAS  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach. Springer, New York.

    Google Scholar 

  • Dayton, P. K., G. A. Robilliard, R. T. Paine & L. B. Dayton, 1974. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44: 105–128.

    Article  Google Scholar 

  • De Caralt, S., M. J. Uriz & R. H. Wifffels, 2008. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Marine Ecology Progress Series 360: 97–106.

    Article  Google Scholar 

  • Diaz, M. C. & K. Rützler, 2001. Sponges: an essential component of Caribbean coral reefs. Bulletin of Marine Science 69: 535–546.

    Google Scholar 

  • Duckworth, A. R. & C. N. Battershill, 2001. Population dynamics and chemical ecology of New Zealand demospongiae Latrunculia sp nov and Polymastia croceus (Poecilosclerida : Latrunculiidae : Polymastiidae). New Zealand Journal of Marine and Freshwater Research 35: 935–949.

    Article  Google Scholar 

  • Duffy, J. E., 1992. Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Marine Ecology Progress Series 90: 127–138.

    Article  Google Scholar 

  • Ebert, T. A., 1980. Estimating parameters in a flexible growth equation, the Richards function. Canadian Journal of Fisheries and Aquatic Sciences 37: 687–692.

    Article  Google Scholar 

  • Ehrlich, H., M. Krautter, T. Hanke, P. Simon, C. Knieb, S. Heinemann & H. Worch, 2007a. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 308B: 473–483.

    Article  CAS  Google Scholar 

  • Ehrlich, H., M. Maldonado, K. D. Spindler, C. Eckert, T. Hanke, R. Born, C. Goebel, P. Simon, S. Heinemann & H. Worch, 2007b. First evidence of chitin as a component of the skeletal fibers of marine sponges Part I. Verongidae (Demospongia: Porifera). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution 308B: 347–356.

    Article  CAS  Google Scholar 

  • Ehrlich, H., M. Ilan, M. Maldonado, G. Muricy, G. Bavestrello, Z. Kljajic, J. L. Carballo, S. Schiaparelli, A. Ereskovsky, P. Schupp, R. Born, H. Worch, V. V. Bazhenov, D. Kurek, V. Varlamov, D. Vyalikh, K. Kummer, V. V. Sivkov, S. L. Molodtsov, H. Meissner, G. Richter, E. Steck, W. Richter, S. Hunoldt, M. Kammer, S. Paasch, V. Krasokhin, G. Patzke & E. Brunner, 2010a. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. International Journal of Biological Macromolecules 47: 132–140.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, H., E. Steck, M. Ilan, M. Maldonado, G. Muricy, G. Bavestrello, Z. Kljajic, J. L. Carballo, S. Schiaparelli, A. Ereskovsky, P. Schupp, R. Born, H. Worch, V. V. Bazhenov, D. Kurek, V. Varlamov, D. Vyalikh, K. Kummer, V. V. Sivkov, S. L. Molodtsov, H. Meissner, G. Richter, S. Hunoldt, M. Kammer, S. Paasch, V. Krasokhin, G. Patzke, E. Brunner & W. Richter, 2010b. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications. International Journal of Biological Macromolecules 47: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Engel, S. & J. R. Pawlik, 2000. Allelopathic activities of sponge extracts. Marine Ecology-Progress Series 207: 273–281.

    Article  Google Scholar 

  • Faulkner, D. J., M. K. Harper, M. G. Haygood, C. E. Salomon & E. W. Schmidt, 2000. Symbiotic bacteria in sponges: sources of bioactive substances. In Fusetani, N. (ed.), Drugs from the Sea. Karger, Basel: 107–119.

    Chapter  Google Scholar 

  • Garrabou, J. & M. Zabala, 2001. Growth dynamics in four mediterranean demosponges. Estuarine, Coastal and Shelf Science 52: 293–303.

    Article  Google Scholar 

  • Gompertz, B., 1825. On the nature of the function expressive of human mortality, and on a new mode of determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, Series B 115: 513–585.

    Article  Google Scholar 

  • Hadas, E., M. Shpigel & M. Ilan, 2009. Particulate organic matter as a food source for a coral reef sponge. Journal of Experimental Biology 212: 3643–3650.

    Article  PubMed  CAS  Google Scholar 

  • Henkel, T. P. & J. R. Pawlik, 2005. Habitat use by sponge-dwelling brittlestars. Marine Biology 146: 301–313.

    Article  Google Scholar 

  • Hoppe, W. F., 1988. Growth, regeneration and predation in 3 species of large coral reef sponges. Marine Ecology Progress Series 50: 117–125.

    Article  Google Scholar 

  • Hultgren, K. M. & J. E. Duffy, 2010. Sponge host characteristics shape the community structure of their shrimp associates. Marine Ecology Progress Series 407: 1–12.

    Article  Google Scholar 

  • Jayakumar, R., D. Menon, K. Manzoor, S. V. Nair & H. Tamura, 2010. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydrate Polymers 82: 227–232.

    Article  CAS  Google Scholar 

  • Kelly, M., J. N. A. Hooper, V. Paul, G. Paulay, R. W. M. Van Soest & W. de Weerdt, 2003. Taxonomic inventory of the sponges (Porifera) of the Mariana Islands. Micronesica 35–36: 100–120.

    Google Scholar 

  • Koopmans, M. & R. H. Wijffels, 2008. Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida). Marine Biotechnology 10: 502–510.

    Article  PubMed  CAS  Google Scholar 

  • Maeda, Y., R. Jayakumar, H. Nagahama, T. Furuike & H. Tamura, 2008. Synthesis, characterization and bioactivity studies of novel beta-chitin scaffolds for tissue-engineering applications. International Journal of Biological Macromolecules 42: 463–467.

    Article  PubMed  CAS  Google Scholar 

  • McMurray, S. E., J. E. Blum & J. R. Pawlik, 2008. Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology 155: 159–171.

    Article  Google Scholar 

  • McMurray, S. E., T. P. Henkel & J. R. Pawlik, 2010. Demographics of increasing populations of the giant barrel sponge Xestospongia muta in the Florida Keys. Ecology 91: 560–570.

    Article  PubMed  Google Scholar 

  • Munro, M. H. G., J. W. Blunt, R. J. Lake, M. Litaudon, C. N. Battershill & M. J. Page, 1994. From seabed to sickbed: what are the prospects? In Van Soest, R. W. M., T. Van Kempen & J. Braekman (eds), Sponges in Space and Time. AA Balkema, Rotterdam: 395–400.

    Google Scholar 

  • Navy, U.S.D.o.t., 2010. Guam and CNMI Military Relocation: EIS, Vol. 4: Aircraft Carrier Berthing.

  • Paulay, G., L. Kirkendale, G. Lambert & C. Meyer, 2002. Anthropogenic biotic interchange in a coral reef ecosystem: a case study from Guam. Pacific Science 56: 403–422.

    Article  Google Scholar 

  • Pauly, D., 1981. The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Meeresforschung 28: 251–282.

    Google Scholar 

  • Pawlik, J. R., 1998. Coral reef sponges: do predatory fishes affect their distribution? Limnology and Oceanography 43: 1396–1399.

    Article  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reiswig, H. M., 1971. In situ pumping activities of tropical Demospongiae. Marine Biology 9: 38–50.

    Article  Google Scholar 

  • Reiswig, H. M., 1973. Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23: 191–226.

    Google Scholar 

  • Richards, F. J., 1959. A flexible growth function for empirical use. Journal of Experimental Botany 10: 290–300.

    Article  Google Scholar 

  • Riisgard, H. U. & P. S. Larsen, 2010. Particle capture mechanisms in suspension-feeding invertebrates. Marine Ecology Progress Series 418: 255–293.

    Article  Google Scholar 

  • Schmahl, G. P., 1999. Recovery and growth of the giant barrel sponge (Xestospongia muta) following physical injury from a vessel grounding in the Florida Keys. Memoirs of the Queensland Museum 44: 532.

    Google Scholar 

  • Schupp, P. J., C. Kohlert-Schupp, S. Whitefield, A. Engemann, S. Rohde, T. Hemscheidt, J. M. Pezzuto, T. P. Kondratyuk, E. J. Park, L. Marler, B. Rostama & A. D. Wright, 2009. Cancer chemopreventive and anticancer evaluation of extracts and fractions from marine macro- and micro-organisms collected from twilight zone waters around Guam. Natural Product Communications 4: 1717–1728.

    PubMed  CAS  Google Scholar 

  • Smith, L. C. & W. H. Hildemann, 1986. Allograft-rejection, autograft fusion and inflammatory responses to injury in Callyspongia diffusa (Porifera, Demospongia). Proceedings of the Royal Society of London, Series B: Biological Sciences 226: 445–464.

    Article  CAS  Google Scholar 

  • Suchanek, T. H., R. C. Carpenter, J. D. Witman & C. D. Harvell, 1985. Sponges as important space competitors in deep Caribbean coral reef communities. In Reaka, M. L. (ed.), The Ecology of Deep and Shallow Coral Reefs. Symposia Series for Undersea Research. NOAA, Rockville: 55–59.

    Google Scholar 

  • Tanaka, K., 1982. A new growth curve which expresses infinitive increase. Publications of the Amakusa Marine Biology Laboratory Kyushu University 6: 167–177.

    Google Scholar 

  • Tanaka, K., 2002. Growth dynamics and mortality of the intertidal encrusting sponge Halichondria okadai (Demospongiae, Halichondrida). Marine Biology 140: 383–389.

    Article  Google Scholar 

  • Targett, N. M. & G. P. Schmahl, 1984. Chemical Ecology and Ddistribution of Sponges in the Salt River Canyon, St. Croix, U.S.V.I. NOAA Technical Memorandum OAR NURP-1.

  • Turon, X., I. Tarjuelo & M. J. Uriz, 1998. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology 12: 631–639.

    Article  Google Scholar 

  • von Bertalanffy, L., 1938. A quantitative theory of organic growth (inquires on growth laws II). Human Biology 10: 181–213.

    Google Scholar 

  • Winsor, C., 1932. The Gompertz curve as a new growth curve. Proceedings of the National Academy of Science, USA 18: 1–8.

    Article  CAS  Google Scholar 

  • Wulff, J. L., 1985. Patterns and processes of size change in Caribbean demosponges of branching morphology. In Rutzler, K. (ed.), New Perspectives in Sponge Biology. Smithsonian Institution Press, Washington: 425–435.

    Google Scholar 

  • Wulff, J. L., 1997. Parrotfish predation on cryptic sponges of Caribbean coral reefs. Marine Biology 129: 41–52.

    Article  Google Scholar 

Download references

Acknowledgments

We like to thank Gitta Rohde, Ciemon F. V. Caballes and the UOG Marine Lab Techs for assistance in the field. This research was in part supported by NIH MBRS SCORE grant S06-GM-44796 to PJS. Comments of two anonymous reviewers improved the manuscript. SR was supported by a fellowship within the Postdoc-Program of the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Rohde.

Additional information

Guest editors: M. Maldonado, X. Turon, M. A. Becerro & M. J. Uriz / Ancient animals, new challenges: developments in sponge research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohde, S., Schupp, P.J. Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera). Hydrobiologia 687, 219–226 (2012). https://doi.org/10.1007/s10750-011-0774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0774-5

Keywords

Navigation