Skip to main content
Log in

Is fish able to regulate filamentous blue-green dominated phytoplankton?

  • EUROPEAN LARGE LAKES IV
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Efficient zooplankton grazing is a prerequisite for establishing a cascading food web control over phytoplankton in a lake. We studied if the top-down impact of fish could reach phytoplankton in a lake where the grazing pressure of small-sized zooplankton on filamentous phytoplankton is considered weak. We analysed >30 years of data on plankton, fish catches, hydrochemistry, hydrology, and meteorology from Võrtsjärv, a large and shallow eutrophic lake in Estonia with intensive commercial fisheries. The lake’s unregulated water level has been considered the strongest factor affecting the ecosystem through modifying sediment resuspension, internal loading of nutrients, and underwater light conditions and spawning conditions for fish. We found a negative relationship between phytoplankton biomass and pikeperch biomass indicating a potential top-down cascading effect in the food web. Top-down control of phytoplankton by zooplankton was reflected in a negative relationship between phyto- and zooplankton biomasses. A decrease of the individual weight of crustacean zooplankton with increasing biomass of small fish suggested top-down control of zooplankton by planktivorous fish. In contrast, we could not demonstrate a direct linkage between piscivorous fish and small fish. The top-down food web impact of piscivores, however, was manifested at zooplankton level in a positive correlation of pikeperch biomass with the biomass of dominating cladoceran species Bosmina coregoni and the individual weight of copepods. At high biomasses of small fish, ciliate domination over metazooplankton increased and thus enhanced the strength of the microbial food web. According to our results, fishery management measures that increase small plankti- and benthivorous fish biomass have to be avoided as they have a cascading negative effect on the ecosystem health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agasild, H., P. Zingel, K. Karus, K. Kangro & T. Nõges, 2013. Does metazooplankton regulate the ciliate community in a shallow eutrophic lake? Freshwater Biology 58: 183–191.

    Article  Google Scholar 

  • Balushkina, E. B. & G. G. Vinberg, 1979. Зaвиcимocть мeждy мaccoй и длннoй тeлa y плaнктoнныx живoтныx. Г. Г. Bинбepг (peд), Oбщиe ocнoвы изyчeния вoдныx экocиcтeм. Лeнингpaд: 169–172.

  • Foissner, W. & H. Berger, 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35: 375–482.

    Google Scholar 

  • Foissner, W., H. Berger & J. Schaumburg, 1999. Identification and ecology of limnetic plankton ciliates. Informationsberichte des Bayerischen Landesamtes für Wasserwirtschaft 3(99): 1–793.

    Google Scholar 

  • Grasshoff, K. E. & M. K. Kremling, 1983. Methods of seawater analysis. Verlag Chemie, Weinheim.

    Google Scholar 

  • Haberman, J., 1998. Zooplankton of Lake Võrtsjärv. Limnologica 28: 49–65.

    Google Scholar 

  • Haberman, J. & M. Haldna, 2014. Indices of zooplankton community has valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. Journal of Limnology 73(2): 61–71.

    Article  Google Scholar 

  • Järvalt, A., 1998. Estimation of fishing mortality and abundance of pikeperch Stizostedion lucioperca (L.) in Lake Võrtsjärv, Estonia, by Virtual Population Analysis. Limnologica 28(1): 109–113.

    Google Scholar 

  • Järvalt, A., A. Kangur, K. Kangur, P. Kangur & E. Pihu, 2004. Fishes and fisheries management. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 281–295.

    Google Scholar 

  • Jeppesen, E., M. Sųndergaard, T. L. Lauridsen, T. A. Davidson, Z. Liu, N. Mazzeo, C. Trochine, K. Özkan, H. S. Jensen, D. Trolle, F. Starling, X. Lazzaro, L. S. Johansson, R. Bjerring, L. Liboriussen, S. E. Larsen, F. Landkildehus & M. Meerhoff, 2012. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Advances in Ecological Research 47: 411–487.

    Article  Google Scholar 

  • Laugaste, R., J. Haberman, T. Krause & J. Salujõe, 2007. Significant changes in phyto- and zooplankton in L. Peipsi in recent years: what is the underlying reason? Proceedings of Estonian Academy of Sciences. Biology and Ecology 56: 106–123.

    Google Scholar 

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408(409): 277–283.

    Article  Google Scholar 

  • Nõges, P. & T. Nõges, 2012. Võrtsjärv Lake in Estonia. In Bengtsson, L., R. W. Herschy & R. W. Fairbridge (eds), Encyclopedia of Lakes and Reservoirs. Springer, New York: 850–861.

    Google Scholar 

  • Nõges, P. & L. Tuvikene, 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Estonian Journal of Ecology 61: 227–246.

    Article  Google Scholar 

  • Nõges, P., R. Laugaste & T. Nõges, 2004a. Phytoplankton. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn: 217–231.

    Google Scholar 

  • Nõges, T., J. Haberman, A. Kangur, K. Kangur, P. Kangur, H. Künnap, H. Timm, P. Zingel & P. Nõges, 2004b. Food webs in Lake Võrtsjärv. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 335–345.

    Google Scholar 

  • Nõges, P., T. Nõges & A. Laas, 2010a. Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv. Estonia. Aquatic Ecosystem Health & Management 13(2): 154–163.

    Article  Google Scholar 

  • Nõges, P., U. Mischke, R. Laugaste & A. G. Solimini, 2010b. Analysis of changes over 44 years in the phytoplankton of Lake Võrtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia 646: 33–48.

    Article  Google Scholar 

  • Pihu, E. & A. Mäemets, 1982. The management of fisheries in Lake Võrtsjärv. Hydrobiologia 86: 207–210.

    Article  Google Scholar 

  • Post, J. R., 2012. Resilient recreational fisheries or prone to collapse? A decade of research on the science and management of recreational fisheries. Fisheries Management and Ecology 20(2–3): 99–110.

    Google Scholar 

  • Ruttner-Kolishko, A., 1977. Suggestions for biomass calculation of planktonic rotifers. Archiv für Hydrobiologie 8: 71–76.

    Google Scholar 

  • Schaffner, W. R., N. G. Hairston & R. W. Howarth, 1994. Feeding rates and filament clipping by crustacean zooplankton consuming cyanobacteria. Internationale Vereinigung für Theoretische und Angewandte Limnologie Verhandlungen 25(4): 2375–2381.

    Google Scholar 

  • Scheffer, M., S. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: an ecosystem approach to lake restoration. Proceedings of a Symposium on Water Quality and Management through Biological Control, Gainesville: 85–96.

  • Studenikina, E. I. & M. M. Tserepahina, 1969. Cpeдний вec ocнoвныx зooплaнктoнa Aзoвcкoгo мopя. Гидpoбиoлoгичecкий жypнaл 5: 89–91.

    Google Scholar 

  • Tarvainen, M., A.-M. Ventelä, H. Helminen & J. Sarvala, 2005. Nutrient release and resuspension generated by ruffe (Gymnocephalus cernuus) and chironomids. Freshwater Biology 50: 447–458.

    Article  Google Scholar 

  • Tõnno, I., H. Agasild, T. Kõiv, R. Freiberg, P. Nõges & T. Nõges, 2016. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake. PloS One 11(4): e0154526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Urrutia-Cordero, P., M. K. Ekvall & L.-A. Hansson, 2015. Response of cyanobacteria to herbivorous zooplankton across predator regimes: who mows the bloom? Freshwater Biology 60: 960–972.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vďačný, P. & W. Foissner, 2012. Monograph of the dileptids (Protista, Ciliophora, Rhynchostomatia). Land Oberösterreich, Biologiezentrum/Oberösterreichische Landesmuseen.

    Google Scholar 

  • Virro, T., 1989. The comparison of sampling methods of planktonic rotifers (Rotatoria) on the example of Lake Peipsi. Proceedings of Academy of Sciences of Estonian SSR, Biology 38: 119–122. (in Russian).

    Google Scholar 

  • Zingel, P., 1999. Pelagic ciliated protozoa in a shallow eutrophic lake: community structure and seasonal dynamics. Archiv für Hydrobiolgie 146: 495–511.

    Article  Google Scholar 

  • Zingel, P. & T. Nõges, 2010. Seasonal and annual population dynamics of ciliates in a shallow eutrophic lake. Fundamental and Applied Limnology 176: 133–143.

    Article  Google Scholar 

  • Zingel, P. H., K. Agasild, K. Karus, H. Kangro, I. Tammert, T. Feldmann Tõnno & T. Nõges, 2016. The influence of zooplankton enrichment on the microbial loop in a shallow, eutrophic lake. European Journal of Protistology 52: 22–35.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by institutional research funding IUT 21-02 of the Estonian Ministry of Education and Research, Estonian Science Foundation grant 9102, MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded by the European Union under the 7th Framework Programme, Theme 6 (Environment including Climate Change), contract no. 603378. We are very thankful to the two anonymous reviewers and to the handling editor of Hydrobiologia for their exceptionally helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Nõges.

Additional information

Guest editors: Paula Kankaala, Tiina Nõges, Martti Rask, Dietmar Straile & Arkady Yu. Terzhevik / European Large Lakes IV. Ecosystem Services and Management in a Changing World

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nõges, T., Järvalt, A., Haberman, J. et al. Is fish able to regulate filamentous blue-green dominated phytoplankton?. Hydrobiologia 780, 59–69 (2016). https://doi.org/10.1007/s10750-016-2849-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2849-9

Keywords

Navigation