Skip to main content
Log in

Littoral macrophyte–periphyton complexes in two Hungarian shallow waters

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Periphyton developing on the surfaces of emergent and submerged aquatic plants has a significant influence on water quality. The periphyton types that form on various plant species can be characterized by their mass values, the proportion of the present organic and inorganic fractions, as well as their chlorophyll-a contents. Studies on periphyton complexes constituting integrated biomonitoring systems are useful to gain essential long-term information about the performance of shallow water bodies. The filtering and settling effect of Phragmites and other aquatic plants, as well as their periphyton was examined and clearly observable in the water areas and non-flooded aquatic habitats belonging to the second phase of Kis-Balaton Protection System, as it was indicated by the mass values and ash contents. The periphyton forming on the aquatic vegetation that annually develops in Kisköre Reservoir and yields a considerable biomass has a critical part in influencing water quality. The only difference (p<0.05) was found in the ash content of the periphyton, being lower in Kis-Balaton (48.64 ± 2.29 S.E., %) and higher in Kisköre Reservoir (57.42 ± 2.54 S.E., %). This paper presents the dry mass of the periphyton, as well as its ash and chlorophyll-a content, and the results obtained on the composition of the alga species of the periphyton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ács É., K. Buczkó & G. Lakatos, 1994. Changes in the mosaic like water surfaces of the Lake Velence as reflected by reed periphyton studies. Studia Botanica Hungarica 25: 5–19.

    Google Scholar 

  • Ács, É, A. K. Borsodi, J. Makk, P. Molnár, A. Mózes, A. Rusnyák, M. N. Reskóné & K. T. Kiss, 2003. Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary. Hydrobiologia 506–509: 549–557.

    Google Scholar 

  • Albay, M. & R. Akcaalan, 2003. Comparative study of periphyton colonisation on common reed (Phragmites australis) and artifi-cial substrate in a shallow lake, Manyas, Turkey. Hydrobiologia 506–509: 531–540.

    Google Scholar 

  • Behning, A. L., 1924. Zur forschung der am Flussboden der Wolga lebenden Organismen. Monografija Volszkoj Biologicseszkoj Stancii Saratow 1: 1–398.

    Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submerged macrophytes on ecosytem processes. Aquat. Bot. 26: 341–370.

    Google Scholar 

  • Cattaneo, A., 1987. Periphyton in lakes of different trophy. Can. J. Fish. Aquat. Sci. 44: 296–303.

    Google Scholar 

  • Dussart, B., 1966. Limnologie L'étude des eaux continentals. Ed. Gauthier-Villars, Paris: 1–677.

  • Haines, D. W., K. H. Rodger & F. E. J Rogers, 1987. Loose and firmly attached epiphyton: their relative contributions to algal and bacterial carbon productivity in a Phragmites marsh. Aquat. Bot. 29: 169–176.

    Google Scholar 

  • Hillebrand, H. & U. Sommer, 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquat. Bot. 67: 221–236.

    Google Scholar 

  • King, L., R. I. Jones & P. A. Barker, 2000. Periphyton response to nutrient manipulation in an oligotrophic lake (Wastewater, English Lake District). Verh. int. Ver. theor. angew. Limnol. 27: 3154–3158.

    Google Scholar 

  • Kiss, M. K., G. Lakatos, P. KeresztÚri, G. Borics & E. K. Szilágyi 2000. Investigation of macrophyte-periphyton complex in Tisza Reservoir. In Gallé, L. & L. Körmöczi (eds), Ecology of River Valleys, TISCIA Monograph series: 125–128.

  • Kiss, K. T., É. Ács, K. Barkács, G. Borics, B. Böddi, L. Ector, G. K. Solymos, K. Szabó, A. Varga & I. Varga, 2002. Qualitative short-term effects of cyanide and heavy metal pollution on phytoplankton and periphyton in the Rivers Tisza and Szamos (Hungary). Arch. Hydrobiol. Suppl. 141/1-2: 47–72.

    Google Scholar 

  • Kowalczewski, A., 1975. Periphyton primary production in the zone of submerged vegetation of Mikolajskie Lake. Ekologia Polska 23: 509–543.

    Google Scholar 

  • Lakatos, G., 1976. A terminological system of the biotecton (periphyton). Acta Biologica Debrecina 13: 193–198.

    Google Scholar 

  • Lakatos, G. & Zs. Bartha, 1989. Plankton-und Biotektonuntersuchungen im Velencei-See (Ungarn). Acta Biologica Debrecina 21: 37–66.

    Google Scholar 

  • Lakatos, G., I. Grigorszky & P. Bíró, 1998. Reed-periphyton complex in the littoral of shallow lakes. Verh. int. Ver. theor. angew. Limnol. 26: 1852–1856.

    Google Scholar 

  • Lakatos, G., M. Kiss & I. Mészáros, 1999. Heavy metal content of common reed (Phragmites australis Cav. Trin. ex Steudel) and its periphyton in Hungarian shallow standing waters. Hydrobiologia 415: 47–53.

    Google Scholar 

  • Lalende, S. & J. A. Downing, 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Can. J. Fish. Aquat. Sci. 48: 2285–2291.

    Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Google Scholar 

  • Marker, A. F. H., G. A. Nusch, H. Rai & B. Riemann, 1980. The measurement of photosynthetic pigments in fresh-waters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 14: 91–106.

    Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1998. Periphyton as a tool for ecological assessment and management in the Florida Everglades. J. Phycol. 34: 726–733.

    Google Scholar 

  • Mészáros, I., S. Veres, M. Dinka & G. Lakatos, 2003. Variations in leaf pigments content and photosynthetic activity of Phragmites australis in healthy and die-back reed stands of Lake Fert?o/Niesiedlersee. Hydrobiologia 506–509: 681–686.

    Google Scholar 

  • Mickle, A. M. & R. G. Wetzel, 1978. Effectiveness of submerged angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. I. Inorganic nutrients. Aquat. Bot. 4: 303–316.

    Google Scholar 

  • Mickle, A. M. & R. G. Wetzel, 1979. Effectiveness of submerged angiosperm-epiphyte complexes on exchange of nutrients and organic carbon in littoral systems. III. Refractory organic carbon. Aquat. Bot. 6: 339–355.

    Google Scholar 

  • Padisák, J., 1982. The periphyton of Lake Fert?o: species composition and chlorophyll-a content. BFB Bericht 43: 95–105.

    Google Scholar 

  • Partrige, J. W., 2001. Persicaria amphibia (L.) Gray (Polygonum amphibium L.). J. Ecol. 89: 487–501.

    Google Scholar 

  • Patrick, R., 1973. Use of algae especially diatoms, in assessment of water quality. In Cairns, J. Jr. K. L Dickson (eds), Biological Methods for the Assessment of Water Quality, vol. ASTM STP 528. American Society for Testing and Materials, Philadelphia, PA: 76–95.

    Google Scholar 

  • Pillsbury, R. W. & R. L. Lowe, 1999. The response of benthic algae to manipulations of light in four acidic lakes in northern Michigan. Hydrobiologia 394: 69–81.

    Google Scholar 

  • Pomogyi, P., 1993. Nutrient retention by the Kis-Balaton Water Protection System. Hydrobiologia 251: 309–320.

    Google Scholar 

  • Roberts, E., J. Kroker, S. Körner & A. Nicklisch, 2003. The role of periphyton during the recolonization of a shallow lake with submerged macrophytes. Hydrobiologia 506–509: 525–530.

    Google Scholar 

  • Round, F. E., 1991. Diatoms in river-monitoring studies. J. Appl. Physiol. 3: 129–145.

    Google Scholar 

  • Sabater, S., 1999. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. J. Appl. Phycol. 11: 1–12.

    Google Scholar 

  • Shannon, C. E. & W. Weaver, 1963. The Theory of Communication. University of Illinois Press, Urbana, 125.

    Google Scholar 

  • Szczepanska, W., 1987. Allelopathy in helophytes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 27: 173–179.

    Google Scholar 

  • Wetzel R. G., 1964. A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Int. Rev. Gesamt. Hydrobiol. 49: 1–61.

    Google Scholar 

  • Zsuga, K., 1998. Spatial heterogenity and mosaic-like structure of zooplankton in Kisköre Reservoir. Int. Rev. Gesamt. Hydrobiol. 38: 199–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, M.K., Lakatos, G., Borics, G. et al. Littoral macrophyte–periphyton complexes in two Hungarian shallow waters. Hydrobiologia 506, 541–548 (2003). https://doi.org/10.1023/B:HYDR.0000008594.48184.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000008594.48184.ca

Navigation