Skip to main content
Log in

A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin, northwest China

Une approche pluridisciplinaire pour quantifier les interactions eau superficielle - eau souterraine dans le bassin semi-aride de la rivière Hailiutu, Nord-Ouest de la Chine

Un enfoque multi método para cuantificar las interacciones entre el agua superficial y el agua subterránea en la cuenca semiárida del Río Hailiutu, noroeste de China

多方法定量评价中国西北半干旱地区海流图流域地表水和地下水交互关系

Uma abordagem multi-metodológica para a quantificação das interações da água subterrânea com a água superficial na bacia semiárida do rio Hailiutu, noroeste da China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Identification and quantification of groundwater and surface-water interactions provide important scientific insights for managing groundwater and surface-water conjunctively. This is especially relevant in semi-arid areas where groundwater is often the main source to feed river discharge and to maintain groundwater dependent ecosystems. Multiple field measurements were taken in the semi-arid Bulang sub-catchment, part of the Hailiutu River basin in northwest China, to identify and quantify groundwater and surface-water interactions. Measurements of groundwater levels and stream stages for a 1-year investigation period indicate continuous groundwater discharge to the river. Temperature measurements of stream water, streambed deposits at different depths, and groundwater confirm the upward flow of groundwater to the stream during all seasons. Results of a tracer-based hydrograph separation exercise reveal that, even during heavy rainfall events, groundwater contributes much more to the increased stream discharge than direct surface runoff. Spatially distributed groundwater seepage along the stream was estimated using mass balance equations with electrical conductivity measurements during a constant salt injection experiment. Calculated groundwater seepage rates showed surprisingly large spatial variations for a relatively homogeneous sandy aquifer.

Résumé

L’identification et la quantification des interactions eau souterraine - eau superficielle permettent une bonne compréhension scientifique, importante pour la gestion conjointe des eaux de nappe et de surface. Ceci est particulièrement vrai dans les zones semi-arides ou l’eau souterraine est souvent la principale source d’alimentation de la rivière et le facteur de maintien des écosystèmes dépendants. De multiples mesures de terrain ont été faites dans le Bulang semi-aride, sous bassin versant de la Rivière Hailiutu dans le Nord-Ouest de la Chine, pour identifier et quantifier les interactions eau profonde souterraine - eau superficielle. Les mesures du niveau de la nappe et de la hauteur de cours d’eau durant une période d’investigation de un an indiquent une décharge continue de la nappe dans la rivière. Les mesures des températures des cours d’eau, des sédiments du lit des cours d’eau à différentes profondeurs et de la nappe, confirment le mouvement ascendant de l’eau de l’aquifère vers la rivière durant toutes les saisons. Les résultats d’un essai d’individualisation des écoulements par traçage révèlent que, même durant des évènements pluvieux majeurs, la nappe contribue beaucoup plus à l’augmentation du débit de décharge que l’écoulement superficiel direct. La distribution spatiale des émergences le long du cours d’eau a été déterminée en utilisant les équations de balance massique, grâce à des mesures de la conductivité électrique durant un test d’injection constante d’eau salée. La distribution des émergences calculée montre de larges variations spatiales, surprenantes dans un aquifère sableux relativement homogène.

Resumen

La identificación y cuantificación de las interacciones entre el agua subterránea y el agua superficial proporciona importantes conocimientos científicos para manejar conjuntamente el agua superficial y el agua subterránea. Esto es especialmente relevante en áreas semiáridas donde el agua subterránea es a menudo la fuente principal para alimentar la descarga de los ríos y mantener los ecosistemas dependientes del agua subterránea. Se realizaron múltiples mediciones de campo en la cuenca semiárida de Bulang, parte de la cuenca del río Hailiutu en el noreste de China, para identificar y cuantificar las interacciones entre el agua superficial y el agua subterránea. Las medidas de los niveles de agua subterránea y de los estados de la corriente durante un período de investigación de un año indican una descarga continua de agua subterránea al río. Las medidas de la temperatura del agua de la corriente, de los depósitos en el cauce a diferentes profundidades, y del agua subterránea confirman el flujo ascendente del agua subterránea hacia la corriente durante todas las estaciones. Los resultados del ejercicio de separación de los hidrogramas basado en trazadores reveló que, aún durante eventos de fuertes lluvias, el agua subterránea contribuye mucho más al incremento de la descarga en la corriente que el escurrimiento superficial directo. La distribución espacial de la filtración del agua subterránea a lo largo de la corriente fue estimada usando ecuaciones de balance de masa con medidas de la conductividad eléctrica durante un experimento de inyección constante de sal. La tasa calculada de filtración de agua subterránea mostró variaciones espaciales sorprendentemente grandes para un acuífero arenoso relativamente homogéneo.

摘要

定量分析地表水和地下水的交互作用关系能为科学管理地表水和地下水资源提供依据,在主要由地下水补给地表水、维持依存于地下水的生态系统的半干旱地区尤为重要。本文在中国西北半干旱地区海流图流域的补浪河子流域采用多种方法定量分析地下水和地表水交互作用关系:地下水位和河水水位观测表明地下水持续排泄至河流;分析河水、河床不同深度的温度得出地下水持续排泄至河流;水化学和同位素基流分割结果也显示即使在降雨期间河水也是主要来源于地下水排泄。在溶解法测流试验期间进一步通过测量河水沿程电导率的方法估算了某一河段沿程地下水排泄量的变化,在相对均一的砂岩含水层,地下水沿河流的排泄量也表现出较大的空间分布差异。

Resumo

A identificação e a quantificação das interações entre a água subterrânea e a água superficial fornecem importantes conhecimentos para a gestão conjunta da água subterrânea e da água superficial. Isto é especialmente relevante em áreas semiáridas onde a água subterrânea é com frequência a principal origem para alimentação de caudais fluviais e para a manutenção de ecossistemas dependentes da água subterrânea. Foram efetuadas diversas medidas de campo na sub-bacia semiárida de Bulang, parcela da bacia do rio Hailiutu, no noroeste da China, para identificar e quantificar as interações entre a água subterrânea e a superficial. As medidas de níveis de água subterrânea e de escalas limnimétricas no rio, efetuadas durante um período de investigação de um ano, indicam uma descarga contínua de água subterrânea ao rio. As medidas da temperatura da água do rio, os depósitos fluviais a diferentes profundidades e a água subterrânea confirmam o fluxo ascensional da água subterrânea em direção ao rio durante todas as estações. Os resultados de um exercício de separação de componentes de um hidrograma baseado em traçadores revelam que, mesmo durante eventos fortemente pluviosos, a água subterrânea contribui muito mais para o aumento do caudal de descarga fluvial que o escoamento superficial direto. Foi estimada a drenagem difusa da água subterrânea ao longo do rio utilizando equações de balanço de massa com medidas da condutividade elétrica durante uma experiência de injeção constante de sal. As taxas de drenagem da água subterrânea que foram calculadas mostraram variações espaciais grandes, inesperadas para um aquífero arenoso relativamente homogéneo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • Anderson JK, Wondzell SM, Gooseff MN, Haggerty R (2005) Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the HJ Andrews Experimental Forest, Oregon, USA. Hydrol Process 19:2931–2949

    Article  Google Scholar 

  • Ayenew T, Kebede S, Alemyahu T (2008) Environmental isotopes and hydrochemical study applied to surface water and groundwater interaction in the Awash River basin. Hydrol Process 22:1548–1563

    Article  Google Scholar 

  • Becker M, Georgian T, Ambrose H, Siniscalchi J, Fredrick K (2004) Estimating flow and flux of ground water discharge using water temperature and velocity. J Hydrol 296:221–233

    Article  Google Scholar 

  • Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An overview of tools for assessing groundwater-surface water connectivity. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Buttle J (1994) Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Prog Phys Geogr 18:16–41

    Article  Google Scholar 

  • Cey EE, Rudolph DL, Parkin GW, Aravena R (1998) Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J Hydrol 210:21–37

    Article  Google Scholar 

  • Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42:243–257

    Article  Google Scholar 

  • Constantz J (1998) Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resour Res 34:1609–1615

    Article  Google Scholar 

  • Constantz J (2008) Heat as a tracer to determine streambed water exchanges. Water Resour Res 44, W00D10. doi:10.1029/2008WR006996

  • Constantz J, Stonestorm DA (2003) Heat as a tracer of water movement near streams. US Geol Surv Circ 1260, 96 pp

  • Didszun J, Uhlenbrook S (2008) Scaling of dominant runoff generation processes: nested catchments approach using multiple tracers. Water Resour Res 44, W02410

  • Ge Y, Boufadel MC (2006) Solute transport in multiple-reach experiments: evaluation of parameters and reliability of prediction. J Hydrol 323:106–119

    Article  Google Scholar 

  • Hatch CE, Fischer AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389:276–288

    Article  Google Scholar 

  • Hongve D (1987) A revised procedure for discharge measurement by means of the salt dilution method. Hydrol Process 1:267–270

    Article  Google Scholar 

  • Hou GC, Liang YP, Su XX, Zhao ZH, Tao ZP, Yin LH, Yang YC, Wang XY (2008) Groundwater systems and resources in the Ordos Basin, China. Acta Geol Sin 82:1061–1069

    Google Scholar 

  • Hu LT, Chen CX, Jiao JJ, Wang ZJ (2007) Simulated groundwater interaction with rivers and springs in the Heihe River basin. Hydrol Process 21:2794–2806

    Article  Google Scholar 

  • Hu LT, Wang ZJ, Tian W, Zhao JS (2009) Coupled surface water–groundwater model and its application in the Arid Shiyang River basin, China. Hydrol Process 23:2033–2044

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  • Kirchner JW (2003) A double paradox in catchment hydrology and geochemistry. Hydrol Process 17:871–874

    Article  Google Scholar 

  • Krein A, De Sutter R (2001) Use of artificial flood events to demonstrate the invalidity of simple mixing models [Utilisation de crues artificielles pour prouver l’invalidité des modèles de mélange simple]. Hydrol Sci J 46:611–622

    Article  Google Scholar 

  • Landon MK, Rus DL, Harvey FE (2001) Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 39:870–885

    Article  Google Scholar 

  • Langhoff JH, Rasmussen KR, Christensen S (2006) Quantification and regionalization of groundwater–surface water interaction along an alluvial stream. J Hydrol 320:342–358

    Article  Google Scholar 

  • Lewandowski J, Angermann L, Nützmann G, Fleckenstein JH (2011) A heat pulse technique for the determination of small‐scale flow directions and flow velocities in the streambed of sand‐bed streams. Hydrol Process 25:3244–3255

    Article  Google Scholar 

  • Lowry CS, Walker JF, Hunt RJ, Anderson MP (2007) Identifying spatial variability of groundwater discharge in a wetland stream using a distributed temperature sensor. Water Resour Res 43(10), W10408

  • Marimuthu S, Reynolds D, La Salle C (2005) A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. J Hydrol 315:93–116

    Article  Google Scholar 

  • McDonnell J, Bonell M, Stewart M, Pearce A (1990) Deuterium variations in storm rainfall: implications for stream hydrograph separation. Water Resour Res 26:455–458

    Article  Google Scholar 

  • Moore R (2004) Introduction to salt dilution gauging for streamflow measurement, part 2: constant-rate injection. Streamline Watershed Manag Bull 8:11–15

    Google Scholar 

  • Nie Z, Chen Z, Cheng X, Hao M, Zhang G (2005) The chemical information of the interaction of unconfined groundwater and surface water along the Heihe River, northwestern China. J Jilin Univ (Earth Sci Ed) 35:48–53

    Google Scholar 

  • Okkonen J, Kløve B (2012) Assessment of temporal and spatial variation in chemical composition of groundwater in an unconfined esker aquifer in the cold temperate climate of northern Finland. Cold Reg Sci Technol 71:118–128

    Article  Google Scholar 

  • Oxtobee J, Novakowski K (2002) A field investigation of groundwater/surface water interaction in a fractured bedrock environment. J Hydrol 269:169–193

    Article  Google Scholar 

  • Paulsen RJ, Smith CF, O’Rourke D, Wong TF (2001) Development and evaluation of an ultrasonic ground water seepage meter. Ground Water 39:904–911

    Article  Google Scholar 

  • Payn R, Gooseff M, McGlynn B, Bencala K, Wondzell S (2009) Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. Water Resour Res 45, W11427

  • Rautio A, Korkka-Niemi K (2011) Characterization of groundwater-lake water interactions at Pyhajarvi, a lake in SW Finland. Boreal Environ Res 16:363–380

    Google Scholar 

  • Rodgers P, Soulsby C, Petry J, Malcolm I, Gibbins C, Dunn S (2004) Groundwater–surface‐water interactions in a braided river: a tracer‐based assessment. Hydrol Process 18:1315–1332

    Article  Google Scholar 

  • Rosenberry DO, LaBaugh JW (2008) Field techniques for estimating water fluxes between surface water and ground water. US Geol Surv Techniques and Methods 4-D2, 128 pp

  • Rosenberry DO, Morin RH (2004) Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage. Ground Water 42:68–77

    Article  Google Scholar 

  • Rosenberry DO, Pitlick J (2009) Local-scale spatial and temporal variability of seepage in a shallow gravel-bed river. Hydrol Process 23:3306–3318

    Article  Google Scholar 

  • Ruehl C, Fisher A, Hatch C, Huertos ML, Stemler G, Shennan C (2006) Differential gauging and tracer tests resolve seepage fluxes in a strongly-losing stream. J Hydrol 330:235–248

    Article  Google Scholar 

  • Schmidt C, Bayer-Raich M, Schirmer M (2006) Characterization of spatial heterogeneity of groundwater-stream water interactions using multiple depth streambed temperature measurements at the reach scale. Hydrol Earth Syst Sci 10:849–859

    Article  Google Scholar 

  • Schmidt C, Conant B Jr, Bayer-Raich M, Schirmer M (2007) Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mapped streambed temperatures. J Hydrol 347:292–307

    Article  Google Scholar 

  • Selker JS, Thévenaz L, Huwald H, Mallet A, Luxemburg W, Van de Giesen N, Stejskal M, Zeman J, Westhoff M, Parlange MB (2006) Distributed fiber‐optic temperature sensing for hydrologic systems. Water Resour Res 42, W12202

  • Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J Hydrol 167:99–119

    Article  Google Scholar 

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43:45–65

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Uhlenbrook S, Hoeg S (2003) Quantifying uncertainties in tracer‐based hydrograph separations: a case study for two‐, three‐and five‐component hydrograph separations in a mountainous catchment. Hydrol Process 17:431–453

    Article  Google Scholar 

  • Uhlenbrook S, Frey M, Leibundgut C, Maloszewski P (2002) Hydrograph separations in a mesoscale mountainous basin at event and seasonal timescales. Water Resour Res 38(6):1–14

    Article  Google Scholar 

  • Vogt T, Schneider P, Hahn-Woernle L, Cirpka OA (2010) Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J Hydrol 380:154–164

    Article  Google Scholar 

  • Wagner BJ, Harvey JW (2001) Analysing the capabilities and limitations of tracer tests in stream-aquifer systems. Impact of human activity on groundwater dynamics: Proceedings of an International Symposium (Symposium S3) Held during the Sixth Scientific Assembly of the International Association of Hydrological Sciences (IAHS) at Maastricht, The Netherlands, July 2001, 191 pp

  • Wang Y, Ma T, Luo Z (2001) Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: a case study in the Liulin karst system, northwestern China. J Hydrol 246:223–234

    Article  Google Scholar 

  • Wang L, Ni GH, Hu HP (2006) Simulation of interactions between surface water and groundwater in Qin River basin. J Tsinghua Univ (Sci Technol) 46:1979–1986

    Google Scholar 

  • Wang N, Zhang S, He J, Pu J, Wu X, Jiang X (2009) Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique. Chin Sci Bull 54:2751–2757

    Article  Google Scholar 

  • Wels C, Cornett RJ, Lazerte BD (1991) Hydrograph separation: a comparison of geochemical and isotopic tracers. J Hydrol 122:253–274

    Article  Google Scholar 

  • Wenninger J, Uhlenbrook S, Lorentz S, Leibundgut C (2008) Identification of runoff generation processes using combined hydrometric, tracer and geophysical methods in a headwater catchment in South Africa [Identification des processus de formation du débit en combinat la méthodes hydrométrique, traceur et géophysiques dans un bassin versant sud-africain]. Hydrol Sci J 53:65–80

    Article  Google Scholar 

  • Westhoff M, Savenije H, Luxemburg W, Stelling G, Van de Giesen N, Selker J, Pfister L, Uhlenbrook S (2007) A distributed stream temperature model using high resolution temperature observations. Hydrol Earth Syst Sci 11:1469–1480

    Google Scholar 

  • Winter TC (1995) Recent advances in understanding the interaction of groundwater and surface water. Rev Geophys 33:985–994

    Article  Google Scholar 

  • Winter TC (1999) Ground water and surface water: a single resource. Diane, Darby, PA

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38:423–429

    Article  Google Scholar 

  • Xiao CL, Zhang LC, Fang Z, Jia T (2006) Research on Transform Relationship Between Surface Water and Groundwater in Taoer River Fan. J Jilin Univ (Earth Sci Ed) 36:234–239

    Google Scholar 

  • Yang Z, Zhou Y, Wenninger J, Uhlenbrook S (2012) The causes of flow regime shifts in the semi-arid Hailiutu River, Northwest China. Hydrol Earth Syst Sci 16:87–103

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Asia Facility for China project “Partnership for research and education in water and ecosystem interactions”, the Honor Power Foundation (China) and UNESCO-IHE and its donors (Delft, The Netherlands), the Groundwater Circulation and Rational Development in the Ordos Plateau (GCRDOP) project (Project Code: 1212010634204), and the National Natural Science Foundation of China (Grant 41002084). Assistance in the field by Xi’an Center of Geological Survey is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Zhou, Y., Wenninger, J. et al. A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin, northwest China. Hydrogeol J 22, 527–541 (2014). https://doi.org/10.1007/s10040-013-1091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1091-z

Keywords

Navigation