Skip to main content

Advertisement

Log in

A new approach for defining Slope Mass Rating in heterogeneous sedimentary rocks using a combined remote sensing GIS approach

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Engineering rock mass classification is usually the first stage in the analysis and characterization of rock slopes. However, when dealing with sedimentary/heterogeneous rock masses, the use of existing classification methods can be difficult and often misleading, especially when used to define rockfall risk areas and appropriate slope mitigation works. In this research, we describe a novel approach for geomechanical rock slope analysis based on the combined use of remote sensing, geographic information systems (GIS), and the Slope Mass Rating (SMR) classification system. The Montagna dei Fiori area (Italian central Apennines), which is characterized by the sedimentary rocks of the Umbria Marche heterogeneous succession, is used as a case study to demonstrate the application of the proposed approach. Conventional geomechanical scanlines are integrated with photogrammetric techniques to increase the amount of data collected, especially in inaccessible areas. In particular, a new fast and low-cost method of georeferencing 3D photogrammetric models is presented. GIS are used to manage all the data acquired using remote sensing techniques and geomechanical analyses, and a semi-automatic tool developed to allow calculation of the SMR along a major highway, the SP52, which crosses the study area. Finally, a modification of the SMR procedure is proposed to enable definition of the most appropriate mitigation works in folded heterogeneous sedimentary rock masses comprising alternating marls and limestones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abruzzi Regione open data (2018) Available online at: http://opendata.regione.abruzzo.it/opendata/Modello_digitale_del_terreno_risoluzione_10x10_metri

  • Agisoft (2018) PhotoScan (version 1.4). Home page at: http://www.agisoft.com

  • Audisio C, Nigrelli G, Pasculli A, Sciarra N, Turconi L (2017) A GIS spatial analysis model for landslide hazard mapping application in alpine area. Int J Sustain Dev Plan 12(5):883–893

    Article  Google Scholar 

  • Badger TC (2002) Fracturing within anticlines and its kinematic control on slope stability. Environ Eng Geosci 8(1):19–33

    Article  Google Scholar 

  • Bar N, Barton N (2017) The Q-slope method for rock slope engineering. Rock Mech Rock Eng 50(12):3307–3322

    Article  Google Scholar 

  • Barton N, Grimstad E (2014) Tunnel and cavern support selection in Norway, based on rock mass classification with the Q-system. Norw Tunnelling Soc 23:45–77

    Google Scholar 

  • Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–239

    Article  Google Scholar 

  • Basahel H, Mitri H (2017) Application of rock mass classification systems to rock slope stability assessment: a case study. J Rock Mech Geotech Eng 9:993–1009

    Article  Google Scholar 

  • Bieniawski ZT (1973) Engineering classification of jointed rock masses. Trans South Afr Inst Civil Eng 15(12):355–344

    Google Scholar 

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York

    Google Scholar 

  • Bieniawski ZT (1993) Classification of rock masses for engineering: the RMR system and future trends. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice and projects. Volume 3: rock testing and site characterization. Pergamon Press, Oxford, pp 553–573

    Chapter  Google Scholar 

  • Birch JS (2006) Using 3DM Analyst mine mapping suite for rock face characterization. In: Tonon F, Kottenstette J (eds) Laser and Photogrammetric Methods for Rock Face Characterization. ARMA 13-32

  • Budetta P, Nappi M (2011) Heterogeneous rock mass classification by means of the geological strength index: the San Mauro formation (Cilento, Italy). Bull Eng Geol Environ 70:585–593

    Article  Google Scholar 

  • Cai M, Kaiser PK, Uno H, Tasaka Y, Minami M (2004) Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system. Int J Rock Mech Min Sci 41:3–19

    Article  Google Scholar 

  • Calamita F, Pizzi A, Ridolfi M, Rusciadelli G, Scisciani V (1998) Il buttressing delle faglie sinsedimentarie pre-thrusting sulla strutturazione neogenica della catena appenninica; l’esempio della M.gna dei Fiori (Appennino Centrale esterno). Boll Soc Geol Ital 117:725–745

    Google Scholar 

  • Carminati E, Doglioni C (2012) Alps vs. Apennines: the paradigm of a tectonically asymmetric earth. Earth Sci Rev 112:67–96

    Article  Google Scholar 

  • Cencetti C, Conversini P (2003) Slope instability in the Bastardo Basin (Umbria, Central Italy)? The landslide of Barattano. Nat Hazards Earth Syst Sci 3:561–568

    Article  Google Scholar 

  • Chen ZY (1995) Recent developments in slope stability analysis. In: Proceedings of the 8th International Congress on Rock Mechanics, Tokyo, Japan, 25–30 September 1995. ISRM, pp 1041–1048

  • CloudCompare (2018) CloudCompare (version 2.9). Home page at: http://www.cloudcompare.org

  • Day JJ, Diederichs MS, Hutchinson DJ (2014) Component and system deformation properties of complex rockmasses with healed structure. In: Proceedings of the 48th US Rock Mechanics/Geomechanics Symposium, Minneapolis, Minnesota, 1–4 June 2014, 11 pp

  • Day JJ, Diederichs MS, Hutchinson DJ (2016) Validation of composite geological strength index for healed rockmass structure in deep mine access and production tunnels. In: Proceedings of the Tunneling Association of Canada 2016 annual conference, Ottawa, Canada, 16–18 October 2016

  • Dershowitz WS, Herda HH (1992) Interpretation of fracture spacing and intensity. In: 33rd US Symposium on Rock Mechanics, Santa Fe, NM, pp 757–766

  • Di Francesco L, Fabbi S, Santantonio M, Bigi S, Poblet J (2010) Contribution of different kinematic models and a complex Jurassic stratigraphy in the construction of a forward model for the Montagna Dei Fiori fault-related fold (central Apennines, Italy). Geol J 45:489–505

    Article  Google Scholar 

  • Donati D, Stead D, Ghirotti M, Brideau MA (2017) A model-oriented, remote sensing approach for the derivation of numerical modelling input data: Insights from the Hope Slide, Canada. In: Proceedings of the 2017 ISRM International Symposium ‘Rock Mechanics for Africa’ AfriRock 2017, Cape Town, South Africa, 30 September–6 October 2017. SAIMM, 15 pp

  • ESRI (2018) Arcgis desktop (vesrion 10.1). Home page at: https://www.esri.com/en-us/arcgis/about-arcgis/overview

  • Francioni M, Salvini R, Stead D, Giovannini R, Riccucci S, Vanneschi C, Gullì D (2015) An integrated remote sensing-GIS approach for the analysis of an open pit in the Carrara marble district, Italy: slope stability assessment through kinematic and numerical methods. Comput Geotech 67:46–63

    Article  Google Scholar 

  • Francioni M, Coggan J, Eyre M, Stead D (2018a) A combined field/remote sensing approach for characterizing landslide risk in coastal areas. Int J Appl Earth Obs Geoinf 67:79–95

    Article  Google Scholar 

  • Francioni M, Stead D, Clague JJ, Westin A (2018b) Identification and analysis of large paleo-landslides at Mount Burnaby, British Columbia. Environ Eng Geosci 24(2):221–235

    Google Scholar 

  • Francioni M, Salvini R, Stead D, Coggan J (2018c) Improvements in the integration of remote sensing and rock slope modelling. Nat Hazards 90:975–1004

    Article  Google Scholar 

  • Hamidi JK, Shahriar K, Rezai B, Rostami J (2010) Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunn Undergr Space Technol 25:333–345

    Article  Google Scholar 

  • Hoek E (1994) Strength of rock and rock masses. ISRM New J 2(2):4–16

    Google Scholar 

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Article  Google Scholar 

  • Hoek E, Marinos P (2000) Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnel Tunnelling Int 32(11):45–51

    Google Scholar 

  • Hoek E, Kaiser PK, Bawden WF (1995) Support of underground excavations in hard rock. Balkema, Rotterdam, the Netherlands

    Google Scholar 

  • Hoek E, Carter TG, Diederichs MS (2013) Quantification of the geological strength index chart. In: Proceedings of the 47th US Rock Mechanics/Geomechanics Symposium. San Francisco, California, 23–26 June 2013. ARMA 13-672

  • Jaques D, Rezende K, Marques E (2015) Rock mass classification applied to Volta Grande underground mine site in Brazil. J Geol Resour Eng 4:194–202

    Google Scholar 

  • Marinos V (2012) Assessing rock mass behaviour for tunneling. Environ Eng Geosci 18(4):327–341

  • Marinos P, Hoek E (2000) GSI: a geologically friendly tool for rock mass strength estimation. In: Proceedings of GeoEng2000, an International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 19–24 November 2000. Technomic Publishing Company, Lancaster, PA, pp 1422–1446

  • Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ 60:82–92

    Article  Google Scholar 

  • Mattei M (1987) Analisi geologico-strutturale della Montagna dei Fiori (Ascoli Piceno, Italia centrale). Geol Romana 26:327–347

    Google Scholar 

  • McGinnis RN, Ferrill DA, Morris AP, Smart KJ, Lehrmann D (2017) Mechanical stratigraphic controls on natural fracture spacing and penetration. J Struct Geol 95:160–170

    Article  Google Scholar 

  • Norwegian Geotechnical Institute (NGI) (2015) Using the Q-system, handbook. NGI, 56 pp. Available online at: https://www.ngi.no/eng/Publications-and-library/Books/Q-system

  • Pace P, Di Domenica A, Calamita F (2014) Summit low-angle faults in the central Apennines of Italy: younger-on-older thrusts or rotated normal faults? Constraints for defining the tectonic style of thrust belts. Tectonics 33:756–785

    Article  Google Scholar 

  • Pantelidis L (2010) An alternative rock mass classification system for rock slopes. Bull Eng Geol Environ 69(1):29–39

    Article  Google Scholar 

  • Price NJ (1966) Fault and joint development in brittle and semi-brittle rocks. Pergamon Press, Oxford

  • Regione Marche (2002) Comune di Numana. Piano regolatore portuale. R.4—relazione geologica, 27 pp. Available online at: http://www.ambiente.marche.it/Portals/0/Territorio/Porti/numana/7_R_4_relazione_geologica.pdf

  • Riquelme A, Tomás R, Abellán A (2014) SMRTool beta. A calculator for determining Slope Mass Rating (SMR). Universidad de Alicante. Home page at: http://personal.ua.es/es/ariquelme/smrtool.html

  • Riquelme AJ, Tomás R, Abellán A (2016) Characterization of rock slopes through slope mass rating using 3D point clouds. Int J Rock Mech Min Sci 84:165–176

    Article  Google Scholar 

  • Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, Zacatecas, Mexico, 2–4 September 1985, pp 49–53

  • Romana MR (1993) A geomechanical classification for slopes: Slope Mass Rating. In: Hudson JA (ed) Comprehensive rock engineering: principles, practice and projects. Volume 3: rock testing and site characterization

  • Romana MR, Serón JB, Montalar E (2003) SMR Geomechanics classification: application, experience and validation. In: ISRM 2003—Technology Roadmap for Rock Mechanics, proceedings of the 10th Congress of the ISRM, Johannesburg, South Africa, 8–12 September 2003. South African Institute of Mining and Metallurgy

  • Romana MR, Tomas R, Seron JB (2015) Slope Mass Rating (SMR) geomechanics classification: thirty years review. In: Proceedings of the 13th ISRM International Congress on Rock Mechanics, Montréal, Quebec, Canada, 10–13 May 2015, 10 pp

  • Salvini R, Francioni M, Riccucci S, Fantozzi PL, Bonciani F, Mancini S (2011) Stability analysis of “Grotta delle Felci” Cliff (Capri Island, Italy): structural, engineering–geological, photogrammetric surveys and laser scanning. Bull Eng Geol Environ 70:549–557

    Article  Google Scholar 

  • Salvini R, Francioni M, Riccucci S, Bonciani F, Callegari I (2013) Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps. Geomorphology 185:110–122

    Article  Google Scholar 

  • Sciarra N, Marchetti D, D’Amato Avanzi G, Calista M (2015) Rock slope analysis on the complex Livorno coastal cliff (Tuscany, Italy). Geogr Fis Dinam Quat 37(2):113–130

    Google Scholar 

  • Scisciani V, Montefalcone R (2006) Coexistence of thin- and thick-skinned tectonics: an example from the Central Apennines, Italy. In: Mazzoli S Butler RWH (eds) Styles of continental contraction: Geological Society of America Special Paper 414, pp 33–54

  • Scisciani V, Tavarnelli E, Calamita F (2002) The interaction of extensional and contractional deformations in the outer zones of the Central Apennines, Italy. J Struct Geol 24:1647–1658

    Article  Google Scholar 

  • Scisciani V, Agostini S, Calamita F, Pace P, Cilli A, Giori I, Paltrinieri W (2014) Positive inversion tectonics in foreland fold-and-thrust belts: a reappraisal of the Umbria–Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics 637:218–237

    Article  Google Scholar 

  • Spreafico MC, Cervi F, Francioni M, Stead D, Borgatti L (2017) An investigation into the development of toppling at the edge of fractured rock plateaux using a numerical modelling approach. Geomorphology 288:83–98

    Article  Google Scholar 

  • Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23

    Article  Google Scholar 

  • Storti F, Balsamo F, Koopman A (2017) Geological map of the partially dolomitized Jurassic succession exposed in the core of the Montagna Dei Fiori anticline, Central Apennines, Italy. Ital J Geosci 136:125–135

    Article  Google Scholar 

  • Sturzenegger M, Stead D (2009) Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts. Eng Geol 106:163–182

    Article  Google Scholar 

  • Tavarnelli E (1996a) Ancient synsedimentary structural control on thrust ramp development: an example from the Northern Apennines, Italy. Terra Nova 8:65–74

    Article  Google Scholar 

  • Tavarnelli E (1996b) The effects of pre-existing normal faults on thrust ramp development: an example from the Northern Apennines, Italy. Geol Rundsch 85:363–371

    Article  Google Scholar 

  • Tavarnelli E, Peacock DCP (1999) From extension to contraction in syn-orogenic foredeep basins: the Contessa section, Umbria-Marche Apennines, Italy. Terra Nova 11:55–60

    Article  Google Scholar 

  • Tomás R, Delgado J, Serón Gáñez JB (2007) Modification of slope mass rating (SMR) by continuous functions. Int J Rock Mech Min Sci 44:1062–1069

    Article  Google Scholar 

  • Tomás R, Cuenca A, Cano M, García-Barba J (2012) A graphical approach for slope mass rating (SMR). Eng Geol 124:67–76

    Article  Google Scholar 

  • van Westen CJ (1994) GIS in landslide hazard zonation: a review, with examples from the Andes of Colombia. In: Price MF, Heywood DI (eds) Mountain environment and geographic information systems. Taylor & Francis, London, pp 135–165

  • Watkins H, Healy D, Bond CE, Butler RWH (2018) Implications of heterogeneous fracture distribution on reservoir quality: an analogue from the Torridon Group sandstone, Moine Thrust Belt, NW Scotland. J Struct Geol 108:180–197

  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM (2012) ‘Structure-from-Motion’ photogrammetry: a low-cost, effective tool for geoscience. Geomorphology 179:300–314

    Article  Google Scholar 

  • Wolter A, Stead D, Ward BC, Clague JJ, Ghirotti M (2016) Engineering geomorphological characterisation of the Vajont Slide, Italy, and a new interpretation of the chronology and evolution of the landslide. Landslides 5:1067–1081

    Article  Google Scholar 

  • Wu C (2011) VisualSFM: a visual structure from motion system. Home page at: http://www.cs.washington.edu/homes/ccwu/vsfm/

  • Xie M, Esaki T, Qiu C, Wang CX (2006) Geographical information system-based computational implementation and application of spatial three-dimensional slope stability analysis. Comput Geotech 33:260–274

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Yildirim M, Dereli E, Bednarik M (2012) GIS-based kinematic slope instability and slope mass rating (SMR) maps: application to a railway route in Sivas (Turkey). Bull Eng Geol Environ 71(2):351–357

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Mr. Raffaele Di Ceglie and Miss Milena Vitulli (University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy) for their support during the engineering geological survey. Moreover, we would like to express our gratitude to the reviewers, who provided important and constructive suggestions for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Francioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francioni, M., Stead, D., Sciarra, N. et al. A new approach for defining Slope Mass Rating in heterogeneous sedimentary rocks using a combined remote sensing GIS approach. Bull Eng Geol Environ 78, 4253–4274 (2019). https://doi.org/10.1007/s10064-018-1396-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-018-1396-1

Keywords

Navigation