Skip to main content
Log in

Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoniou I, Jørgensen HE, Mikkelsen T, Frandsen S, Barthelmie R, Perstrup C, Hurtig M (2006) Offshore wind profile measurements from remote sensing instruments. In: Proceedings of the European Wind Energy Conference. European Wind Energy Association, Athens. (http://www.ewec2006proceedings.info/allfiles2/267_Ewec2006fullpaper.pdf)

  • Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere. J Geophys Res 67: 3095–3102

    Article  Google Scholar 

  • Busch NE, Panofsky HA (1968) Recent spectra of atmospheric turbulence. Q J Roy Meteorol Soc 94: 361–379

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Carl DM, Tarbell TC, Panofsky HA (1973) Profiles of wind and temperature from towers over homogeneous terrain. J Atmos Sci 30: 788–794

    Article  Google Scholar 

  • Charnock H (1955) Wind stress over a water surface. Q J Roy Meteorol Soc 81: 639–640

    Article  Google Scholar 

  • Christiansen MB, Koch W, Hortsmann J, Hasager CB (2006) Wind resource assessment from C-band SAR. Remote Sens Environ 105: 68–81

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Emeis S, Harris M, Banta RM (2007) Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteorol Z 16(4): 337–347

    Article  Google Scholar 

  • Garratt JR (1977) Review of drag coefficients over oceans and continents. Mon Wea Rev 105: 915–929

    Article  Google Scholar 

  • Grachev AA, Fairall CW (1996) Dependence of the Monin-Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol 36: 406–414

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constraints revisited. Boundary-Layer Meteorol 94: 495–515

    Article  Google Scholar 

  • Gryning S-E, Batchvarova E (2002) Marine boundary layer and turbulent fluxes over the Baltic Sea: measurements and modelling. Boundary-Layer Meteorol 103: 29–47

    Article  Google Scholar 

  • Gryning S-E, Holtslag AAM, Irwin JS, Sivertsen B (1987) Applied dispersion modelling based on meteorological scaling parameters. Atmos Environ 21: 79–89

    Article  Google Scholar 

  • Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H, Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface layer. Boundary-Layer Meteorol 124: 251–268

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Högström U, Smedman A-S, Bergström H (2006) Calculation of wind speed variation with height over the sea. Wind Eng 30: 269–286

    Article  Google Scholar 

  • Høyer JL, She J (2007) Optimal interpolation of sea surface temperature for the North Sea and the Baltic Sea. J Mar Syst 65: 176–189

    Article  Google Scholar 

  • Kaimal JC, Gaynor JE (1991) Another look at sonic thermometry. Boundary-Layer Meteorol 56: 401–410

    Article  Google Scholar 

  • Kindler D, Oldroyd A, MacAskill A, Finch D (2007) An eight month test campaign of the Qinetiq ZephIR system: preliminary results. Meteorol Z 16(5): 479–489

    Article  Google Scholar 

  • Kraus EB (1972) Atmosphere-Ocean interaction. Oxford University Press, London, p 275 pp

    Google Scholar 

  • Lange B, Larsen S, Højstrup J, Barthelmie R (2004) Importance of thermal effects and the sea surface roughness for offshore wind resource assessment. J Wind Eng Ind Aerodyn 92: 959–988

    Article  Google Scholar 

  • Mann J, Dellwik E, Bingöl F, Rathmann O (2007) Laser measurements of flow over a forest. J Phys: Conf Ser 75:012057 (7 pp)

    Google Scholar 

  • Niros A, Vihma T, Launiainen J (2002) Marine meteorological conditions and air-sea exchange processes over Northern Baltic Sea in 1990s. Geophysica 38: 59–88

    Google Scholar 

  • Panofsky HA (1973) Tower micrometeorogy. In: Haugeb DA (ed) Workshop on micrometeorolgy. American Meteorology Society, pp 151–176

  • Peña A, Gryning S-E (2008) Charnock’s roughness length model and non-dimensional wind profiles over the sea. Boundary-Layer Meteorol 128: 191–203

    Article  Google Scholar 

  • Peña A, Hasager CB, Gryning S-E, Courtney M, Antoniou I, Mikkelsen T (2008) Offshore wind profiling using light detection and ranging measurements. Wind Energy. doi:10.1002/we.283

  • Rossby CG, Montgomery RB (1935) The layers of frictional influence in wind and ocean currents. Pap Phys Oceanogr Meteorol 3(3): 101

    Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A, Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027

    Article  Google Scholar 

  • Smith DA, Harris M, Coffey AS, Mikkelsen T, Jørgensen HE, Mann J, Danielian R (2006) Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy 9: 87–93

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht, p 666

    Google Scholar 

  • Tennekes H (1973) The logarithmic wind profile. J Atmos Sci 30: 234–238

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J Roy Meteorol Soc 96: 67–90

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, A., Gryning, SE. & Hasager, C.B. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer. Boundary-Layer Meteorol 129, 479–495 (2008). https://doi.org/10.1007/s10546-008-9323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9323-9

Keywords

Navigation