Skip to main content

Advertisement

Log in

Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

We studied concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in the eutrophic Temmesjoki River and Estuary in the Liminganlahti Bay in 2003–2004 and evaluated the atmospheric fluxes of the gases based on measured concentrations, wind speeds and water current velocities. The Temmesjoki River was a source of CO2, CH4 and N2O to the atmosphere, whereas the Liminganlahti Bay was a minor source of CH4 and a minor source or a sink of CO2 and N2O. The results show that the fluxes of greenhouse gases in river ecosystems are highly related to the land use in its catchment areas. The most upstream river site, surrounded by forests and drained peatlands, released significant amounts of CO2 and CH4, with average fluxes of 5,400 mg CO2–C m−2 d−1 and 66 mg CH4–C m−2 d−1, and concentrations of 210 μM and 345 nM, respectively, but N2O concentrations, at an average of 17 nM, were close to the atmospheric equilibrium concentration. The downstream river sites surrounded by agricultural soils released significant amounts of N2O (with an average emission of 650 μg N2O–N m−2 d−1 and concentration of 22 nM), whereas the CO2 and CH4 concentrations were low compared to the upstream site (55 μM and 350 nM). In boreal regions, rivers are partly ice-covered in wintertime (approximately 5 months). A large part of the gases, i.e. 58% of CO2, 55% of CH4 and 36% of N2O emissions, were found to be released during wintertime from unfrozen parts of the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DIC:

Dissolved inorganic carbon

ECD:

Electron capture detector

FID:

Flame ionization detector

GC:

Gas chromatograph

GWP:

Global warming potential

k 600 :

Gas transfer velocity normalized to a Schmidt number of 600

pCO2 :

Partial pressure of CO2 in water

TIC:

Total inorganic carbon

TOC:

Total organic carbon

tot-N:

Total nitrogen

tot-P:

Total phosphorus

References

  • Abril G, Borges AV (2005) Carbon dioxide and methane emissions from estuaries. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions—fluxes and processes: hydroelectric reservoirs and natural environments. Springer, Berlin, pp 187–207

    Google Scholar 

  • Abril G, Iversen N (2002) Methane dynamics in a shallow non-tidal estuary (Randers Fjord, Denmark). Mar Ecol Prog Ser 230:171–181. doi:10.3354/meps230171

    Article  Google Scholar 

  • Algesten G, Wikner J, Sobek S, Tranvik LJ, Jansson M (2004) Seasonal variation of CO2 saturation in the Gulf of Bothnian: indications of marine net heterotrophy. Global Biogeochem Cycles 18:GB4021. doi:10.1029/2004GB002232

    Article  Google Scholar 

  • Bange HW (2006) Nitrous oxide and methane in European coastal waters. Estuar Coast Shelf Sci 70:361–374. doi:10.1016/j.ecss.2006.05.042

    Article  Google Scholar 

  • Bange HW, Bartell UH, Rapsomanikis S, Andreae MO (1994) Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem Cycles 8:465–480. doi:10.1029/94GB02181

    Article  Google Scholar 

  • Bange HW, Rapsomanikis S, Andreae MO (1996) Nitrous oxide in coastal waters. Global Biogeochem Cycles 10:197–207. doi:10.1029/95GB03834

    Article  Google Scholar 

  • Barnes J, Owens NJP (1998) Denitrification and nitrous oxide concentrations in the Humber estuary, UK, and adjacent coastal zones. Mar Pollut Bull 37:247–260. doi:10.1016/S0025-326X(99)00079-X

    Article  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi:10.1038/35036572

    Article  Google Scholar 

  • Borges AV (2005) Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean. Estuaries 28:3–27

    Article  Google Scholar 

  • Borges AV, Delille B, Schiettecatte L-S, Gazeau F, Abril G, Frankignoulle M (2004) Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol Oceanogr 49:1630–1641

    Google Scholar 

  • Borges AV, Schiettecatte L-S, Abril G, Delille B, Gazeau F (2006) Carbon dioxide in European coastal waters. Estuar Coast Shelf Sci 70:375–387. doi:10.1016/j.ecss.2006.05.046

    Article  Google Scholar 

  • Buttler JN (1982) Carbon dioxide equilibria and their applications. Addison-Wesley Publishing Company Inc., Menlo Park, CA

    Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrast in anaerobic carbon metabolism. Limnol Oceanogr 33:725–749

    Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327. doi:10.1029/GB002i004p00299

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001a) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110. doi:10.1071/MF00084

    Article  Google Scholar 

  • Cole JJ, Caraco NF (2001b) Emissions of nitrous oxide (N2O) from a tidal, freshwater river, the Hudson River, New York. Environ Sci Technol 35:991–996. doi:10.1021/es0015848

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon cycle. Ecosystems (NY Print) 10:172–185. doi:10.1007/s10021-006-9013-8

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D (2001) Diurnal variations in the carbon chemistry of two acidic peatland streams in north–east Scotland. Freshw Biol 46:1309–1322. doi:10.1046/j.1365-2427.2001.00751.x

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Neal C, Hill S (2002) A comparison of particulate, dissolved and gaseous carbon in two contrasting upland streams in the UK. J Hydrol (Amst) 257:226–246. doi:10.1016/S0022-1694(01)00545-5

    Article  Google Scholar 

  • Dawson JJC, Billett MF, Hope D, Palmer SM, Deacon CM (2004) Sources and sinks of aquatic carbon in a peatland stream consortium. Biogeochemistry 70:71–92. doi:10.1023/B:BIOG.0000049337.66150.f1

    Article  Google Scholar 

  • de Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol Oceanogr 32:716–722

    Article  Google Scholar 

  • de Wilde HPJ, de Bie MJM (2000) Nitrous oxide in the Schelde estuary: production by nitrification and emission to the atmosphere. Mar Chem 69:203–216. doi:10.1016/S0304-4203(99)00106-1

    Article  Google Scholar 

  • Fawcett JK, Scott JE (1960) A rapid and precise method for the determination of urea. J Clin Pathol 13:156–159. doi:10.1136/jcp.13.2.156

    Article  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological basis of NO and N2O production and consumption in soil. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons Ltd, Chichester, New York, Brisbane, Toronto, Singapore, pp 7–21

    Google Scholar 

  • Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, Delille B et al (1998) Carbon dioxide emission from European estuaries. Science 282:434–436. doi:10.1126/science.282.5388.434

    Article  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471

    Google Scholar 

  • Harrison J, Matson P (2003) Patterns and controls of nitrous oxide emissions from waters draining a subtropical agricultural valley. Global Biogeochem Cycles 17:1080. doi:10.1029/2002GB001991

    Article  Google Scholar 

  • Hasegawa K, Hanaki K, Matsuo T, Hidaka S (2000) Nitrous oxide from the agricultural water system contamined with high nitrogen. Chemos Global Change Sci 2:335–345

    Article  Google Scholar 

  • Heyer J, Berger U (2000) Methane emission from the coastal area in the southern Baltic Sea. Estuar Coast Shelf Sci 51:13–30. doi:10.1006/ecss.2000.0616

    Article  Google Scholar 

  • Hiscock KM, Bateman AS, Mühlherr IH, Fukada T, Dennis PF (2003) Indirect emissions of nitrous oxide from regional aquifer in the United Kingdom. Environ Sci Technol 37:3507–3512. doi:10.1021/es020216w

    Article  Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJ (2001) Carbon dioxide and methane evasion from a temperature peatland stream. Limnol Oceanogr 46:847–857

    Google Scholar 

  • Hope D, Palmer SM, Billett MF, Dawson JJ (2004) Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages. Hydrol Process 18:3255–3275. doi:10.1002/hyp.5657

    Article  Google Scholar 

  • Huttunen J, Väisänen TS, Hellsten SK, Heikkinen M, Lindqvist OV, Nenonen OS et al (2002) Fluxes of CH4, CO2 and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Global Biogeochem Cycles 16(1):1003. doi:10.1029/2000GB001316

    Article  Google Scholar 

  • Hyvärinen V (1994) Hydrological yearbook 1994. The Finnish Environment 176. Finnish Environment Institute, Helsinki

    Google Scholar 

  • Jähne BK, Münnich O, Bosinger R, Dutzi A, Huber W, Libner P (1987) On parameters influencing air–water gas exchange. J Geophys Res 92:1937–1949. doi:10.1029/JC092iC02p01937

    Article  Google Scholar 

  • Jones JB, Mulholland PJ (1998a) Influence of drainage basin topography and elevation on carbon dioxide and methane supersaturation of stream water. Biogeochem 40:57–72. doi:10.1023/A:1005914121280

    Article  Google Scholar 

  • Jones JB, Mulholland PJ (1998b) Methane input and evasion in a hardwood forest stream: effects of subsurface flow from shallow and deep pathways. Limnol Oceanogr 43:1243–1250

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as conduits to the atmosphere: implications for tundra carbon budget. Science 251:298–301. doi:10.1126/science.251.4991.298

    Article  Google Scholar 

  • Knowles R (1981) Denitrification. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles, processes, ecosystem strategies and management impacts, Ecol. bull. 33. Swedish Natural Science Research Council, Stockholm, pp 315–329

    Google Scholar 

  • Kortelainen P, Saukkonen S, Mattsson T (1997) Leaching of nitrogen from forested catchments in Finland. Global Biogeochem Cycles 11:627–638. doi:10.1029/97GB01961

    Article  Google Scholar 

  • Kortelainen P, Huttunen JT, Väisänen T, Mattsson T, Karjalainen P, Martikainen PJ (2000) CH4, CO2 and N2O supersaturation in 12 Finnish lakes before and after ice-melt. Verh Int Verein Limnol 27:1410–1414

    Google Scholar 

  • Kremer JN, Nixon SW, Bugkley B, Roques P (2003a) Technical note: conditions for using the floating chamber method to estimate air–water gas exchange. Estuaries 26:985–990

    Article  Google Scholar 

  • Kremer JN, Reischauer A, D’Avanzo C (2003b) Estuary specific variation in the air–water gas-exchange coefficient for oxygen. Estuaries 26:829–836

    Article  Google Scholar 

  • Kronholm M, Albertson J, Laine A (2005) Perämeri Life. Perämeren toimintasuunnitelma. Länstyrelsen i Norrbottens län, raportserie 1/2005

  • LaMontagne MG, Duran R, Valiela I (2003) Nitrous oxide sources and sinks in coastal aquifer and coupled estuarine receiving waters. Sci Total Environ 309:139–149. doi:10.1016/S0048-9697(02)00614-9

    Article  Google Scholar 

  • Lide DR, Fredrikse HPR (1995) CRC handbook of chemistry and physics, 76th edn. CRC, Boca Raton, FL

    Google Scholar 

  • Lilley MD, de Angelis MA, Olson EJ (1996) Methane concentrations and estimated fluxes from Pacific Northwest rivers. Mitt Int Verein Limnol 25:187–196

    Google Scholar 

  • Matthews CJD, St. Louis VL, Hesslein RH (2003) Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces. Environ Sci Technol 37:772–780. doi:10.1021/es0205838

    Article  Google Scholar 

  • Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD et al (2005) Young organic matter as a source of carbon dioxide outgassing from Amazon rivers. Nature 436:538–541. doi:10.1038/nature03880

    Article  Google Scholar 

  • McAuliffe C (1971) GC determination of solutes by multiple phase equilibration. Chem Technol 1:46–51

    Google Scholar 

  • McMahon PB, Dennehy KF (1999) N2O emissions from a nitrogen-enriched river. Environ Sci Technol 33:21–25. doi:10.1021/es980645n

    Article  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde H, Helder W et al (2002) Methane distribution in European tidal estuaries. Biogeochemistry 59:95–119. doi:10.1023/A:1015515130419

    Article  Google Scholar 

  • Neal C, House WA, Jarvie HP, Eatherall A (1998) The significance of dissolved carbon dioxide in major lowland rivers entering the North Sea. Sci Total Environ 210/211:187–203. doi:10.1016/S0048-9697(98)00012-6

    Article  Google Scholar 

  • Nykänen H, Alm J, Lång K, Silvola J, Martikainen PJ (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357. doi:10.2307/2845930

    Article  Google Scholar 

  • O’Connor DJ, Dobbins WE (1958) Mechanism f reaeration in natural streams. Trans Am Soc Civ Eng 123:641–684

    Google Scholar 

  • Raymond PA, Bauer JE (2001) Use of 14C and 13C natural abundance for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: a review and synthesis. Org Geochem 32:469–485. doi:10.1016/S0146-6380(00)00190-X

    Article  Google Scholar 

  • Raymond PA, Cole JJ (2001) Gas exchange in rivers and estuaries: choosing a gas transfer velocity. Estuaries 24:312–317. doi:10.2307/1352954

    Article  Google Scholar 

  • Raymond PA, Caraco NF, Cole JJ (1997) Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20:381–390. doi:10.2307/1352351

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45:1707–1717

    Google Scholar 

  • Reay DS, Smith KA, Edwards AC (2003) Nitrous oxide emission from agricultural drainage waters. Glob Change Biol 9:195–203. doi:10.1046/j.1365-2486.2003.00584.x

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK et al (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620. doi:10.1038/416617a

    Article  Google Scholar 

  • Robinson AD, Nedwell DB, Harrison RM, Ogilvie BG (1998) Hypernutrified estuaries as sources of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK. Mar Ecol Prog Ser 164:59–71. doi:10.3354/meps164059

    Article  Google Scholar 

  • Sansone FJ, Rust TM, Smith SV (1998) Methane distribution and cycling in Tomales Bay, California. Estuaries 21:66–77. doi:10.2307/1352547

    Article  Google Scholar 

  • Sansone FJ, Holmes ME, Popp BN (1999) Methane stable isotopic ratios and concentrations as indicators of methane dynamics in estuaries. Global Biogeochem Cycles 13:463–474. doi:10.1029/1999GB900012

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycles 12:93–113. doi:10.1029/97GB03657

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C, Styles RV (2000) Global distribution of N2O emissions from aquatic systems: natural emissions and anthropogenic effects. Chemos Global Change Sci 2:267–279

    Article  Google Scholar 

  • Semiletov IP (1999) Aquatic sources and sinks of CO2 and CH4 in the polar regions. J Atmos Sci 56:286–306. doi :10.1175/1520-0469(1999)056<0286:ASASOC>2.0.CO;2

    Article  Google Scholar 

  • Smith MS, Zimmerman K (1981) Nitrous oxide production by nondenitrifying soil nitrate reducers. Soil Sci Soc Am 45:865–871

    Google Scholar 

  • Standardization SFS (1976) SFS 3032. Determination of ammonia nitrogen of water. Helsinki, Finland

  • Standardization SFS (1979) SFS 3021. Determination of pH-value of water. Helsinki, Finland

  • Standardization SFS (1986) SFS 3026. Determination of total phosphorus in water. Helsinki, Finland

  • Standardization SFS (1993) SFS-EN 25813. Water quality. Determination of dissolved oxygen. Iodometric method. Helsinki, Finland

  • Standardization SFS (1995) SFS-EN ISO 10304-1. Water Quality. Determination of dissolved fluoride, chloride, nitrite, orthophosphate, bromide, nitrate and sulfate ions, using liquid chromatography of ions. Part 1: method for water with low contamination. Helsinki, Finland

  • Standardization SFS (1997a) SFS-EN 1484. Water analysis. Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Helsinki, Finland

  • Standardization SFS (1997b) SFS-EN ISO 13395. Water quality. Determination of nitrite nitrogen and nitrate nitrogen and the sum of both by flow analysis (CFA and FIA) and spectrometric detection. Helsinki, Finland

  • Standardization SFS (1998) SFS-EN ISO 11905-1. Water quality. Determination of nitrogen. Part 1: method using oxidative digestion with peroxodisulfate. Helsinki, Finland

  • Striegel RG, Michmerhuizen CM (1998) Hydrologic influence on methane and carbon dioxide dynamics at two north-central Minnesota lakes. Limnol Oceanogr 43:1519–1529

    Google Scholar 

  • Syväsalo E, Regina K, Philatie M, Esala M (2004) Emissions of nitrous oxide from boreal agricultural clay and loamy sand soils. Nutr Cycle Agroecosyst 69:155–165. doi:10.1023/B:FRES.0000029675.24465.fc

    Article  Google Scholar 

  • Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP (2000) Methane in the Southern North Sea: low salinity inputs, estuarine removal, and atmospheric flux. Global Biogeochem Cycles 14:1205–1217. doi:10.1029/1999GB001236

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97:7373–7382. doi:10.1029/92JC00188

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology lake and river ecosystems. Academic, Elsevier, San Diego, CA

    Google Scholar 

Download references

Acknowledgments

This study was financed by the Academy of Finland (Baltic Sea Research Programme, decision number 202429, and a postdoctoral research grant, number 203787, for Anu Liikanen). H. S. received funding from the Finnish Cultural Foundation. We are grateful to Tero Väisänen and laboratory personnel of the North Ostrobothnia Regional Environment Centre for assistance during the measurements and for laboratory analyses. We thank Jouni Torssonen, Timo Seppänen, Arvi Hirvelä, Saija Kaikkonen and Anna Karvo for their help in the gas flux measurements and Satu Mustonen for her help in the ion chromatograph analysis. Antti Ollila kindly provided his boat and tools in Liminganlahti Bay. We are grateful to anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Silvennoinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvennoinen, H., Liikanen, A., Rintala, J. et al. Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90, 193–208 (2008). https://doi.org/10.1007/s10533-008-9244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9244-1

Keywords

Navigation