Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-06T15:38:37.765Z Has data issue: false hasContentIssue false

Os-isotope study of platinum-group minerals in chromitites in Alpine-type ultramafic intrusions and the associated placers in Borneo

Published online by Cambridge University Press:  05 July 2018

Keiko Hattori
Affiliation:
Ottawa-Carleton Geoscience Centre and Dept. of Earth Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
Klaus-Peter Burgath
Affiliation:
Bundesanstalt für Geowissenschaften und Rohstoffe, Postfach 510153, D-3000 Hannover 51, Germany
Stanley R. Hart
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A.

Abstract

187Os/186Os ratios were determined for in-situ laurite grains in Alpine-type chromitites and platinumgroup minerals (PGM) in the associated alluvial placers in Borneo, Indonesia/Malaysia. The Osisotope ratios of laurite grains in chromite defne an 187Os/186Os ratio for the 100 Ma mantle source of c. 1.04. Thelow 187Os/186Os ratios in all grains confirm the essential derivation of these platinum-group elements (PGE) from the mantle. A minor variation in 187Os/186Os ratios was detected among PGM from placers, but no variation was found within individual grains, including a grain with chemical inhomogeneity. The values are similar to those for PGM in the associated chromitites. The data are consistent with a detrital origin of PGM in placers: the placer PGM originated in the ultramafic section of ophiolities and the release of these grains from igneous rocks and their deposition in placers was almost entirely by mechanical processes.

Type
Petrology and Geochemistry
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allègre, C. J. and Luck, J. M. (1980) Osmium isotopes as petrogenetic and geological tracers. Earth Planet. Sci. Lett., 48, 148–54.CrossRefGoogle Scholar
Bowles, J. F. W. (1986) The development of platinum-group minerals in laterites. Econ. Geol., 81, 1278–85.CrossRefGoogle Scholar
Bowles, J. F. W. (1988) Further studies of the development of platinum-group minerals in the laterites of the Freetown Layered Complex, Sierra Leone. In Geo-Platinum 87 (H. M. Prichard, P. J. Potts, J. F. W. Bowles, and S. J. Cribb, eds.). Elsevier Applied Science, London, 273-80.CrossRefGoogle Scholar
Burgath, K.-P. (1988) Platinum-group minerals in ophiolitic chromitites and alluvial placer deposits, Meratus-Bobaris area, southeast Kalimantan. Ibid., 383-403.CrossRefGoogle Scholar
Burgath, K.-P. and Mohr, M. (1986) Chromitites and platinum- group minerals in the Meratus Bobaris Ophiolite Zone, Southeast Borneo. In Metallogeny of Basic and Ultrabasic Rocks (M. J. Gallagher, R. A. Ixer, C. R. Neary, and H. M. Prichard, eds.). Inst. Mining and Metallurgy, London, 333-49.Google Scholar
Chou, C.-L., Shaw, D. M., and Crocket, J. H. (1983) Siderophile trace elements in the Earth's oceanic crust and upper mantle. J. Geophys. Res., 88, A507-18.CrossRefGoogle Scholar
Cousins, C. A. (1973) Notes on the geochemistry of the platinum-group elements. Trans. Geol. Soc. South Africa, 76, 7781.Google Scholar
Eckhardt, F. J., Burgath, K. P., and Mohr, M. (1987) Anwendung yon Prospektionsmethoden in Ophio-lithen Siidost-Asiens-Abschlussbericht Indonesien; Abschlussbericht zum BMFT-FiSrderungsvorhaben NTS 3016, 3., Band 1. Bundesanstalt for Geowissen-schaften und Rohstoffe, Hannover, 132pp. (in German).Google Scholar
Ford, R. J. (1981) Platinum-group minerals in Tas-mania. Econ. Geol., 76, 498504.CrossRefGoogle Scholar
Hagen, D., Weiser, Th., and Htay, T. (1990) Platinum-group minerals in Quaternary gold placers in the Upper Chidwin area of Northern Burma. Mineralogy and Petrology, 42, 265–86.CrossRefGoogle Scholar
Harris, D. C. and Cabri, L. J. (1991) Nomenclature of platinum-group-element alloys: Review and revision. Can. Mineral., 29, 231–8.Google Scholar
Hart, S. R. and Kinloch, E. D. (1989) Osmium isotope systematics in Witwatersrand and Bushveld ore deposits. Econ. Geol, 84, 1651–5.CrossRefGoogle Scholar
Hattori, K., Cabri, L. J., and Hart, S. R. (1991) Os-isotope study of PGM nuggets associated with Freetown Layered Complex, Sierra Leone. Contrib. Mineral. Petrol, 109, 1018.CrossRefGoogle Scholar
Hutchison, C. S. (1975) Ophiolite in Southeast Asia. Geol. Soc. Amer. Bull., 86, 797806.2.0.CO;2>CrossRefGoogle Scholar
Lambert, D. D., Morgan, J. W., Walker, R. J., Shirey, S. B., Carlson, R. W., Zientek, M. L., and Koski, M. S. (1989) Rhenium-osmium and samarium-neo-dymium isotopic systematics of the Stillwater complex. Science, 244, 1169–74.CrossRefGoogle Scholar
Leong, K. M. (1974) The Geology and Mineral Resources of the Upper Segama Valley and Darvel Bay Area, Sabah, Malaysia. Geol. Surv. Malaysia Mem., 4 (Revised) 354 pp. Government Printing Office, Kunching, Sarawak.Google Scholar
Luck, J. M. and Allègre, C. J. (1982) The study of molybdenites through the 187Re-186Os chronometer. Earth Planet. Sci. Lett., 61, 291–6.CrossRefGoogle Scholar
Luck, J. M. and Allègre, C. J. (1983) 187Re-187Os systematics in meteorites; Early chronology of the solar system and the age of the galaxy. Nature, 283, 256–9.CrossRefGoogle Scholar
Luck, J. M. and Allègre, C. J. and Turekian, K. K. (1983) Osmium-187/osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary. Science, 222, 613–15.CrossRefGoogle Scholar
Martin, C. E. (1989) Re-Os isotopic investigation of the Stillwater Complex, Montana. Earth Planet. Sci. Lett., 93, 336–44.CrossRefGoogle Scholar
Martin, C. E. (1991) Osmium isotopic characteristics of mantle- derived rocks. Geochim. Cosmochim. Acta, 55, 1421–34.CrossRefGoogle Scholar
Morgan, J. W. and Lovering, J. F. (1967) Rhenium and osmium abundances in some igneous and metamor-phic rocks. Earth Planet. Sci. Lett., 33, 219-24.CrossRefGoogle Scholar
Morgan, J. W. and Lovering, J. F. Wandless, G. A., Petrie, R. K., and Irving, A. J. (1981) Composition of the Earth's upper mantle—-l: Siderophile trace elements in ultramafic nodules. Tectonophysics, 75, 4767.CrossRefGoogle Scholar
Oshin, I. O. and Crocket, J. H. (1982) Noble metals in Thetford Mines ophiolites, Quebec, Canada: Part I; Distribution of gold, iridium, platinum and palladium in the ultramafic and gabbroic rocks. Econ. Geol., 77, 1556-70.CrossRefGoogle Scholar
Raschka, H., Nacario, E., Rammlmair, D., Samonte, C., and Steiner, L. (1985) Geology of the ophiolite of central Palawan Island, Philippines. Ofioliti, 10, 375–90.Google Scholar
Ross, J. R. and Keays, R. R. (1979) Precious metals in volcanic-type nickel sulfide deposits in Western Australia: I; Relationship with the composition of the ores and their host rocks. Can. Mineral., 17, 417-35.Google Scholar
Stumpfl, E. F. and Clark, A. M. (1966) Electron-probe microanalysis of gold platinoid concentrates from southeast Borneo. 1)ans. Inst. Min. Met., 74, 933-46.Google Scholar
Stumpfl, E. F. and Clark, A. M. and Tarkian, M. (1973) Natural osmium-iridium alloys, iron-bearing platinum and a Pd-As mineral from S.E. Borneo. 15th Congr. Geol. Soc. S. Africa, Abstract, 82-3.Google Scholar