Skip to main content
Log in

Hierarchically porous materials: Synthesis strategies and emerging applications

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Great interests have arisen over the last decade in the development of hierarchically porous materials. The hierarchical structure enables materials to have maximum structural functions owing to enhanced accessibility and mass transport properties, leading to improved performances in various applications. Hierarchical porous materials are in high demand for applications in catalysis, adsorption, separation, energy and biochemistry. In the present review, recent advances in synthesis routes to hierarchically porous materials are reviewed together with their catalytic contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baerlocher C, Meier W, Olson D. Atlas of Zeolite Framework Types. Elsevier, 2007, 10–45

    Google Scholar 

  2. Kresge C T, Leonowicz M E, Roth W J, Vrtuli J C, Beck J S. Ordered mesoporous molecular sieves synthesized by a liquidcrystal template mechanism. Nature, 1992, 359(6397): 710–712

    Article  CAS  Google Scholar 

  3. Zhao D, Feng J, Huo Q, Melosh W, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552

    Article  CAS  Google Scholar 

  4. Holland B, Blanford C, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science, 1998, 281(5376): 538–540

    Article  CAS  Google Scholar 

  5. Sing K, Everett D, Haul R, Moscou L, Pierotti R, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas solid system. Pure and Applied Chemistry, 1985, 57: 603–619

    Article  CAS  Google Scholar 

  6. Su B L, Sanchez C, Yang X Y. Hierarchically structured porous materials: From nanoscience to catalysis, separation, optics, energy, and life science. Germany: Wiley-VCH, 2012, 15–45

    Google Scholar 

  7. Yang P, Tao D, Zhao D, Feng P, Pine D, Chmelka B, Whitesides G, Stucky G. Hierarchically ordered oxides. Science, 1998, 282(5397): 2244–2246

    Article  CAS  Google Scholar 

  8. Yuan Z, Su B L. Insights into hierarchically meso-macroporous structured material. Journal of Materials Chemsitry A, 2006, 16(7): 663–677

    Article  CAS  Google Scholar 

  9. Pérez Ramirez J, Christensen C, Egeblad K, Christensen H, Groen J. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37: 2530–2542

    Article  CAS  Google Scholar 

  10. Yang X Y, Li Y, Lemaire A, Yu J, Su B L. Hierarchically structured functional materials: Synthesis strategies for multimodal porous networks. Pure and Applied Chemistry, 2009, 81(12): 2265–2307

    Article  CAS  Google Scholar 

  11. Yang X Y, Alexandre L, Arnaud L, Tian G, Su B L. Self-formation phenomenon to hierarchically structured porous materials: Design, synthesis, formation mechanism and applications, Chemical Communications, 2011, 47(10): 2763–2786

    Article  CAS  Google Scholar 

  12. Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117

    Article  CAS  Google Scholar 

  13. Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418

    Article  CAS  Google Scholar 

  14. Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112

    Article  CAS  Google Scholar 

  15. Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of Materials Chemsitry A, 2011, 133: 12390–12393

    CAS  Google Scholar 

  16. Kustova M, Egeblad K, Zhu K, Christensen C H. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites. Chemistry of Materials, 2007, 19(12): 2915–2917

    Article  CAS  Google Scholar 

  17. Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: Synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763

    Article  CAS  Google Scholar 

  18. Wang X D, Yang W L, Tang Y, Wang Y J, Fu S K, Gao Z. Fabrication of hollow zeolite spheres. Chemical Communications, 2000, 21: 2161–2162

    Article  Google Scholar 

  19. Valtchev V. Core-shell polystyrene/zeolite A microbeads. Chemistry of Materials, 2002, 14(3): 956–958

    Article  CAS  Google Scholar 

  20. Petkovich N D, Stein A. Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society reviews, 2013, 42: 3721–3739

    Article  CAS  Google Scholar 

  21. Huang L, Wang Z, Sun J, Miao L, Li Q, Yan Y, Zhao D. Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. Journal of the American Chemical Society, 2000, 122(14): 3530–3531

    Article  CAS  Google Scholar 

  22. Zhu G, Qiu S, Gao F, Li D, Li Y, Wang R, Terasaki O. Templateassisted self-assembly of macro-micro bifunctional porous materials. Journal of Materials Chemistry, 2001, 11(6): 1687–1693

    Article  CAS  Google Scholar 

  23. Sanchez C, Arribart H, Guille M M G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 2005, 4: 277–288

    Article  CAS  Google Scholar 

  24. Dong A, Wang Y, Tang Y, Zhang Y, Hong A, Ren N, Gao Z. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres. Advanced Materials, 2002, 14(20): 1506–1510

    Article  CAS  Google Scholar 

  25. Justin Thomas K R, Lin J T, Velusamy M, Tao Y T, Chuen C H. Color tuning in benzo [1, 2, 5] thiadiazole-based small molecules by amino conjugation/deconjugation: Bright red-light-emitting diode. Advanced Functional Materials, 2004, 14(1): 83–90

    Article  CAS  Google Scholar 

  26. Song W, Kanthasamy R, Grassian V H, Larsen S C. Hexagonal, hollow, aluminium-containing ZSM-5 tubes prepared from mesoporous silica templates. Chemical Communications, 2004, 17: 1920–1921

    Article  CAS  Google Scholar 

  27. Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. Heck coupling in zeolitic microcapsular reactor: A test for encaged quasihomogeneous catalysis. Journal of Catalysis, 2007, 246(1): 215–222

    Article  CAS  Google Scholar 

  28. Machoke A G, Beltrán A M, Inayat A, Winter B, Weissenberger T, Kruse N, Güttel R, Spiecker E, Schwieger W. Micro/macroporous system: MFI-type zeolite crystals with embedded macropores. Advanced Materials, 2015, 27(6): 1066–1070

    Article  CAS  Google Scholar 

  29. Zhang X, Yan W, Yang H, Liu B, Li H. Gaseous infiltration method for preparation of three-dimensionally ordered macroporous polyethylene. Polymer, 2008, 49(25): 5446–5451

    Article  CAS  Google Scholar 

  30. Lodge T P, Rasdal A, Li Z, Hillmyer M A. Simultaneous, segregated storage of two agents in a multicompartment micelle. Journal of the American Chemical Society, 2005, 127(50): 17608–17609

    Article  CAS  Google Scholar 

  31. Sun J H, Shan Z, Maschmeyer T, Coppens M O. Synthesis of bimodal nanostructured silicas with independently controlled small and large mesopore sizes. Langmuir, 2003, 19(20): 8395–8402

    Article  CAS  Google Scholar 

  32. Antonietti M, Berton B, Göltner C, Hentze H P. Synthesis of mesoporous silica with large pores and bimodal pore size distribution by templating of polymer latices. Advanced Materials, 1998, 10(2): 154–159

    Article  CAS  Google Scholar 

  33. Groenewolt M, Antonietti M, Polarz S. Mixed micellar phases of nonmiscible surfactants: Mesoporous silica with bimodal pore size distribution via the nanocasting process. Langmuir, 2004, 20(18): 7811–7819

    Article  CAS  Google Scholar 

  34. Avera S, Boissiere C, Grosso D, Asakawa T, Sanchez C, Linden M. One-pot aerosol synthesis of ordered hierarchical mesoporous core-shell silica nanoparticles. Chemical Communications, 2004, 10(14): 1630–1631

    Google Scholar 

  35. Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure. Chemical Communications, 2003, 20(20): 2564–2565

    Article  CAS  Google Scholar 

  36. Kuang D, Brezesinski T, Smarsly B. Hierarchical porous silica materials with a trimodal pore system using surfactant templates. Journal of the American Chemical Society, 2004, 126(34): 10534–10535

    Article  CAS  Google Scholar 

  37. Liu J, Yang T Y, Wang DW, Lu G Q, Zhao D Y, Qiao S Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4: 2798

    Google Scholar 

  38. Cao S, Gody G, Zhao W, Perrier S, Peng X Y, Ducati C, Zhao D Y, Cheetham A K. Hierarchical bicontinuous porosity in metalorganic frameworks templated from functional block co-oligomer micelles. Chemical Science (Cambridge), 2013, 4(9): 3573–3577

    Article  CAS  Google Scholar 

  39. Martins L, Rosa M M A, Pulcinelli S H, Santilli C V. Preparation of hierarchically structured porous aluminas by a dual soft template method. Microporous and Mesoporous Materials, 2010, 132(1-2): 268–275

    Article  CAS  Google Scholar 

  40. Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

    Article  CAS  Google Scholar 

  41. Cho K, Cho H S, de Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673

    Article  CAS  Google Scholar 

  42. Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606

    Article  CAS  Google Scholar 

  43. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

    Article  CAS  Google Scholar 

  44. Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177

    Article  CAS  Google Scholar 

  45. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332

    Article  CAS  Google Scholar 

  46. Xiao F S, Wang L, Yin C, Lin K, Di Y, Li J, Xu R, Su D S, Schlögl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie, 2006, 118(19): 3162–3165

    Article  Google Scholar 

  47. Song J, Ren L, Yin C, Ji Y, Wu Z, Li J, Xiao F S. Stable, porous, and bulky particles with high external surface and large pore volume from self-assembly of zeolite nanocrystals with cationic polymer. Journal of Physical Chemistry C, 2008, 112(23): 8609–8613

    Article  CAS  Google Scholar 

  48. Zhong L S, Hu J S, Liang H P, Cao AM, Song WG, Wan L J. Self- Assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Advanced Materials, 2006, 18(18): 2426–2431

    Article  CAS  Google Scholar 

  49. Xu L, Sithambaram S, Zhang Y, Chen C H, Jin L, Joesten R, Suib S L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chemistry of Materials, 2009, 21(7): 1253–1259

    Article  CAS  Google Scholar 

  50. Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks. Journal of the American Chemical Society, 1999, 121(17): 4308–4309

    Article  CAS  Google Scholar 

  51. Bian S W, Ma Z, Zhang L S, Niu F, Song W G. Silica nanotubes with mesoporous walls and various internal morphologies using hard/soft dual templates. Chemical Communications, 2009, 10(10): 1261–1263

    Article  CAS  Google Scholar 

  52. Stein A, Rudisill S G, Petkovich N D. Perspective on the influence of interactions between hard and soft templates and precursors on morphology of hierarchically structured porous materials. Chemistry of Materials, 2014, 26(1): 259–276

    Article  CAS  Google Scholar 

  53. Yang R C, Ma F Y, Tang D X. Template synthesis to fabrication of 3D ordered hierarchical materials. Advanced Materials Research, 2013, 602: 1355–1358

    Google Scholar 

  54. Zhao Q L, Wang X Y, Liu J, Wang H, Zhang Y W, Gao J, Lu Q, Zhou H Y. Design and synthesis of three-dimensional hierarchical ordered porous carbons for supercapacitors. Electrochimica Acta, 2015, 154: 110–118

    Article  CAS  Google Scholar 

  55. Gundiah G. Macroporous silica-alumina composites with mesoporous walls. Bulletin of Materials Science, 2001, 24(2): 211–214

    Article  CAS  Google Scholar 

  56. Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G J D A. One-pot synthesis of hierarchically structured ceramic monoliths with adjustable porosity. Chemistry of Materials, 2010, 22(15): 4379–4385

    Article  CAS  Google Scholar 

  57. Mandlmeier B, Szeifert J M, Fattakhova-Rohlfing D, Amenitsch H, Bein T. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal. Journal of the American Chemical Society, 2011, 133(43): 17274–17282

    Article  CAS  Google Scholar 

  58. Petkovich N D, Stein A. Controlling macro-and mesostructures with hierarchical porosity through combined hard and soft templating. Chemical Society Reviews, 2013, 42(9): 3721–3739

    Article  CAS  Google Scholar 

  59. Danumah C, Vaudreuil S, Bonneviot L, Bousmina M, Giasson S, Kaliaguine S. Synthesis of macrostructured MCM-48 molecular sieves. Microporous and Mesoporous Materials, 2001, 44: 241–247

    Article  Google Scholar 

  60. Oh C G, Baek Y, Ihm S K. Synthesis of skeletal-structured biporous silicate powders through microcolloidal crystal templating. Advanced Materials, 2005, 17(3): 270–273

    Article  CAS  Google Scholar 

  61. Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley P A, Wang H, Zhao D. Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chemistry of Materials, 2007, 19(13): 3271–3277

    Article  CAS  Google Scholar 

  62. Zhang S, Chen L, Zhou S, Zhao D, Wu L. Facile synthesis of hierarchically ordered porous carbon via in situ self-assembly of colloidal polymer and silica spheres and its use as a catalyst support. Chemistry of Materials, 2010, 22(11): 3433–3440

    Article  CAS  Google Scholar 

  63. Zhang F, Wang K X, Li G D, Chen J S. Hierarchical porous carbon derived from rice straw for lithium ion batteries with high-rate performance. Electrochemistry Communications, 2009, 11(1): 130–133

    Article  CAS  Google Scholar 

  64. Huang W T, Zhang H, Huang Y Q, Wang W K, Wei S H. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon, 2011, 49(3): 838–843

    Article  CAS  Google Scholar 

  65. Smith C J, Field M, Coakley C J, Awschalom D D. Organizing nanometer-scale magnets with bacterial threads. IEEE Transactions on Magnetics, 1998, 34(4): 988–990

    Article  CAS  Google Scholar 

  66. Zhi L, Zhang L, Schalchi A B, Tan X H, Xu Z W, Wang H L, Olsen B C, Holt C M B, David M. Carbonized Chicken Eggshell Membranes with 3D Architectures as High-Performance Electrode Materials for Supercapacitors. Advanced Energy Materials, 2012, 2(4): 431–437

    Article  CAS  Google Scholar 

  67. Song N, Jiang H, Cui T, Chang L, Wang X. Synthesis and enhanced gas-sensing properties of mesoporous hierarchical a- Fe2O3 architectures from an eggshell membrane. Micro & Nano Letters, 2012, 7(9): 943–946

    Article  CAS  Google Scholar 

  68. Zhang W, Zhang D, Fan T J, Gu J J, Ding J, Wang H, Guo Q X, Ogawa H. Novel photoanode structure templated from butterfly wing scales. Chemistry of Materials, 2009, 21(1): 33–40

    Article  CAS  Google Scholar 

  69. Zhu W J, Huang H, Zhang W K, Tao X Y, Gan Y P, Xia Y, Yang H, Guo X Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochimica Acta, 2015, 152(10): 286–293

    Article  CAS  Google Scholar 

  70. Kim H, Kim H J, Huh H K, Hwang H J, Lee S J. Structural design of a double-layered porous hydrogel for effective mass transport. Biomicrofluidics, 2015, 9(2): 18–24

    Google Scholar 

  71. Wang L Q, Shin Y, Samuels WD, Exarhos G J, Moudrakovski I L, Terskikh V V, Ripmeester J A. Magnetic resonance studies of hierarchically ordered replicas of wood cellular structures prepared by surfactant-mediated mineralization. Journal of Physical Chemistry B, 2003, 107(50): 13793–13802

    Article  CAS  Google Scholar 

  72. You J, Cao G. Synthesis and characterization of hierarchical biomorphic mesoporous TiO2 nanosheets using caltrop-stem as biotemplate. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23(6): 1417–1424

    Article  CAS  Google Scholar 

  73. Yang X Y, Li Z Q, Liu B, Klein-Hofmann A, Tian G, Feng Y F, Ding Y, Su D S, Xiao F S. “Fish-in-Net” encapsulation of enzymes in macroporous cages for stable, reusable, and active heterogeneous biocatalysts. Advanced Materials, 2006, 18(4): 410–414

    Article  CAS  Google Scholar 

  74. Huang L, Wang H, Hayashi C Y, Tian B, Zhao D, Yan Y. Singlestrand spider silk templating for the formation of hierarchically ordered hollow mesoporous silica fibers. Journal of Materials Chemistry, 2003, 13(4): 666–668

    Article  CAS  Google Scholar 

  75. Zhu S, Zhang D, Chen Z, Zhou G, Jiang H, Li J. Sonochemical fabrication of morpho-genetic TiO2 with hierarchical structures for photocatalyst. Journal of Nanoparticle Research, 2010, 12(7): 2445–2456

    Article  CAS  Google Scholar 

  76. Ogasawara W, Shenton W, Davis S A, Mann S. Template mineralization of ordered macroporous chitin-silica composites using a cuttlebone-derived organic matrix. Chemistry of Materials, 2000, 12(10): 2835–2837

    Article  CAS  Google Scholar 

  77. Pedroni V, Schulz P C, Gschaider de Ferreira M E, Morini M A. A chitosan-templated monolithic siliceous mesoporous-macroporous material. Colloid & Polymer Science, 2000, 278(10): 964–971

    Article  CAS  Google Scholar 

  78. Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nature Materials, 2003, 2(6): 386–390

    Article  CAS  Google Scholar 

  79. Caruso R A, Antonietti M. Silica films with bimodal pore structure prepared by using membranes as templates and amphiphiles as porogens. Advanced Functional Materials, 2002, 12(4): 307–312

    Article  CAS  Google Scholar 

  80. Giunta P R, Washington R P, Campbell T D, Steinbock O, Stiegman A E. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-fieldoriented hydrogels. Angewandte Chemie International Edition, 2004, 43(12): 1505–1507

    Article  CAS  Google Scholar 

  81. Zhao D, Yang P, Chmelka B, Stucky G. Multiphase assembly of mesoporous-macroporous membranes. Chemistry of Materials, 1999, 11(5): 1174–1178

    Article  CAS  Google Scholar 

  82. Stubenrauch C, Tessendorf R, Strey R, Lynch I, Dawson K A. Gelled polymerizable microemulsions phase behavior. Langmuir, 2007, 23(14): 7730–7737

    Article  CAS  Google Scholar 

  83. Li X, Sun G, Li Y, Yu J C, Wu J, Ma G H, Ngai T. Porous TiO2 materials through pickering high-internal phase emulsion templating. Langmuir, 2014, 30(10): 2676–2683

    Article  CAS  Google Scholar 

  84. Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R, Capadona J R, Shanmuganathan K, Tyler D J, Rowan S J, Weder C. General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Journal of the American Chemical Society, 2014, 14(9): 1370–1374

    Google Scholar 

  85. Sen T, Tiddy G J T, Casci J L, Anderson M W. Macro-cellular silica foams: Synthesis during the natural creaming process of an oil-in-water emulsion. Chemical Communications, 2003, 17: 2182–2183

    Article  CAS  Google Scholar 

  86. Zhang H F, Hardy G C, Rosseinsky M J, Cooper A I. Uniform emulsion-templated silica beads with high pore volume and hierarchical porosity. Advanced Materials, 2003, 15(1): 78–81

    Article  CAS  Google Scholar 

  87. Carn F, Colin A, Achard M F, Deleuze H, Sellier E, Birot M, Backov R. Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates. Journal of Materials Chemistry, 2004, 14(9): 1370–1376

    Article  CAS  Google Scholar 

  88. Li H, Jin J, Wu W, Chen C, Li L, Li Y, Zhao W, Gu J, Chen G, Shi J. Synthesis of a hierarchically macro-/mesoporous zeolite based on a micro-emulsion mechanism. Journal of Materials Chemistry, 2011, 21(48): 19395–19401

    Article  CAS  Google Scholar 

  89. Hu X F, Cheng F Y, Han X P, Zhang T R, Chen J. Oxygen bubbletemplated hierarchical porous e-MnO2 as a superior catalyst for rechargeable Li-O2 batteries. Small, 2015, 11(7): 809–813

    Article  CAS  Google Scholar 

  90. Bagshaw S A. Morphosynthesis of macrocellular mesoporous silicate foams. Chemical Communications, 1999, 9(9): 767–768

    Article  Google Scholar 

  91. Carn F, Colin A, Achard M F, Deleuze H, Saadi Z, Backov R. Rational design of macrocellular silica scaffolds obtained by a tunable sol-gel foaming process. Advanced Materials, 2004, 16(2): 140–144

    Article  CAS  Google Scholar 

  92. Carn F, Colin A, Achard M F, Deleuze H, Sanchez C, Backov R. Anatase and rutile TiO2 macrocellular foams: Air-liquid foaming sol-gel process towards controlling cell sizes, morphologies, and topologies. Advanced Materials, 2005, 17(1): 62–66

    Article  CAS  Google Scholar 

  93. Suzuki K, Ikari K, Imai H. Synthesis of mesoporous silica foams with hierarchical trimodal pore structures. Journal of Materials Chemistry, 2003, 13(7): 1812–1816

    Article  CAS  Google Scholar 

  94. Wang J G, Li F, Zhou H J, Sun P C, Ding D T, Chen T H. Silica hollow spheres with ordered and radially oriented aminofunctionalized mesochannels. Chemistry of Materials, 2009, 21(4): 612–620

    Article  CAS  Google Scholar 

  95. Li Y, Shi J. Hollow-structured mesoporous materials: Chemical synthesis, functionalization and applications. Advanced Materials, 2014, 26(20): 3176–3205

    Article  CAS  Google Scholar 

  96. Miyamoto M, Kamei T, Nishiyama N, Egashira Y, Ueyama K. Single crystals of ZSM-5/silicalite composites. Advanced Materials, 2005, 17(16): 1985–1988

    Article  CAS  Google Scholar 

  97. Porcher F, Dusausoy Y, Souhassou M, Lecomte C. Epitaxial growth of zeolite X on zeolite A and twinning in zeolite A: Structural and topological analysis. Mineralogical Magazine, 2000, 64(1): 1–8

    Article  CAS  Google Scholar 

  98. Thomas J M, Millward G R. Direct, real-space determination of intergrowths in ZSM-5/ZSM-11 catalysts. Journal of the Chemical Society. Chemical Communications, 1982, (24): 1380–1383

    Article  Google Scholar 

  99. Goossens A M, Wouters B H, Buschmann V, Martens J A. Oriented FAU zeolite films on micrometer-sized EMT crystals. Advanced Materials, 1999, 11(7): 561–564

    Article  CAS  Google Scholar 

  100. Lillerud K P, Raeder J H. On the synthesis of erionite-offretite intergrowth zeolites. Zeolites, 1986, 6(6): 474–483

    Article  CAS  Google Scholar 

  101. Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite. Microporous and Mesoporous Materials, 2006, 91(1-3): 70–77

    Article  CAS  Google Scholar 

  102. Yonkeu A L, Miehe G, Fuess H, Goossens A M, Martens J A. A new overgrowth of mazzite on faujasite zeolite crystal investigated by X-ray diffraction and electron microscopy. Microporous and Mesoporous Materials, 2006, 96(1-3): 396–404

    Article  CAS  Google Scholar 

  103. Wakihara T, Yamakita S, Iezumi K, Okubo T. Heteroepitaxial growth of a zeolite film with a patterned surface-texture. Journal of Americal Chemistry Society, 2003, 125(41): 12388–12389

    Article  CAS  Google Scholar 

  104. Bouizi Y, Diaz I, Rouleau L, Valtchev V P. Core-shell zeolite microcomposites. Advanced Functional Materials, 2005, 15(12): 1955–1960

    Article  CAS  Google Scholar 

  105. Zheng J J, Zeng Q H, Ma J H, Zhang X W, Sun W F, Li R F. Synthesis of hollow zeolite composite spheres by using. BETA zeolite crystal as template. Chemistry Letters, 2010, 39(4): 330–331

    CAS  Google Scholar 

  106. Tsang C, Dai P, Petty R H. Upgrading and catalytic cracking catalyst. US Patent 5888921, 1999-03-30

  107. Lei Q, Zhao T B, Li F, Wang Y Y, Zheng M F. Fabrication of hierarchically structured monolithic silicalite-1 through steamassisted conversion of macroporous silica gel. Chemistry Letters, 2006, 35(5): 490–491

    Article  CAS  Google Scholar 

  108. Lei Q, Zhao T L F, Li Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications, 2006, 16: 1769–1771

    Article  CAS  Google Scholar 

  109. Lei Q, Zhao T, Li F, Wang Y F, Hou L. Zeolite beta monoliths with hierarchical porosity by the transformation of bimodal pore silica gel. Journal of Porous Materials, 2008, 15(6): 643–646

    Article  CAS  Google Scholar 

  110. Sachse A, Galarneau A, Di Renzo F, Fajula F, Coq B. Synthesis of zeolite monoliths for flow continuous processes: The case of sodalite as a basic catalyst. Chemistry of Materials, 2010, 22(14): 4123–4125

    Article  CAS  Google Scholar 

  111. Yang X Y, Tian G, Chen L H, Li Y, Rooke J C, Wei Y X, Liu Z M, Deng Z, Van Tendeloo G, Su B L. Well organized zeolite nanocrystal aggregates with interconnected hierarchically micromeso- macropore systems showing enhanced catalytic performance. Chemistry European Journal A, 2011, 17(52): 14987–14995

    Article  CAS  Google Scholar 

  112. SUN MH, Huang S Z, Chen L H, Li Y, Yang X Y, Yuan Z Y, Su B L. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical Society reviews, 2016, 45: 3479–3563

    Article  CAS  Google Scholar 

  113. Li X Y, Chen L H, Li Y, Rooke J C, Deng Z, Hu Z Y, Liu J, Krief A, Yang X Y, Su B L. Tuning the structure of a hierarchically porous ZrO2 for dye molecule depollution. Microporous and Mesoporous Materials, 2012, 152: 110–121

    Article  CAS  Google Scholar 

  114. Li X Y, Chen L H, Li Y, Rooke J C, Wang C, Lu Y, Krief A, Yang X Y, Su B L. Self-generated hierarchically porous titania with high surface area: Photocatalytic activity enhancement by macrochannel structure. Journal of Colloid and Interface Science, 2012, 368(1): 128–138

    Article  CAS  Google Scholar 

  115. Chen L H, Li X Y, Tian G, Li Y, Tan H Y, Van Tendeloo G, Zhu G S, Qiu S L, Yang X Y, Su B L. Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure. Chem- SusChem, 2011, 4(10): 1452–1456

    CAS  Google Scholar 

  116. Chen L H, Li X Y, Tian G, Li Y, Rooke J C, Zhu G S, Qiu S L, Yang X Y, Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161

    Article  CAS  Google Scholar 

  117. Chen L H, Xu S T, Li X Y, Tian G, Li Y, Rooke J C, Su B L. Multimodal Zr-Silicalite-1 zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macroporous architecture and enhanced mass transport property. Journal of Colloid and Interface Science, 2012, 377(1): 368–374

    Article  CAS  Google Scholar 

  118. Blin J L, Leonard A, Yuan Z Y, Gigot L, Vantomme A, Cheetham A K, Su B L. Hierarchically mesoporous/macroporous metal oxides templated from polyethylene oxide surfactant assemblies. Angewand Chemie International Edit ion, 2003, 42: 2872–2875

    Article  CAS  Google Scholar 

  119. Li Y, Yang X Y, Tian G, Vantomme A, Yu J, Van T G, Su B L. Chemistry of trimethyl aluminum: A spontaneous route to thermally stable 3D crystalline macroporous alumina foams with a hierarchy of pore sizes. Chemistry of Materials, 2010, 22(10): 3251–3258

    Article  CAS  Google Scholar 

  120. Yuan Z Y, Vantomme A, Léonard A, Su B L. Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, 9(13): 1558–1559

    Article  Google Scholar 

  121. Deng W, Toepke M W, Shanks B H. Surfactant-assisted synthesis of alumina with hierarchical nanopores. Advanced Functional Materials, 2003, 13(1): 61–65

    Article  CAS  Google Scholar 

  122. Collins A, Carriazo D, Davis S A, Mann S. Spontaneous templatefree assembly of ordered macroporous titania. Chemical Communications, 2004, 5(5): 568–569

    Article  CAS  Google Scholar 

  123. Léonard A, Blin J L, Su B L. One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemistry Communications, 2003: 2568–2569

    Google Scholar 

  124. Ren T Z, Yuan Z Y, Su B L. Microwave-assisted preparation of hierarchical mesoporous-macroporous boehmite AlOOH and g- Al2O3. Langmuir, 2004, 20(4): 1531–1534

    Article  CAS  Google Scholar 

  125. Ren T Z, Yuan Z Y, Su B L. A novel macroporous structure of mesoporous titanias: Synthesis and characterisation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241 (1-3): 67–73

    Article  CAS  Google Scholar 

  126. Deng W, Shanks B H. Synthesis of hierarchically structured aluminas under controlled hydrodynamic conditions. Chemistry of Materials, 2005, 17(12): 3092–3100

    Article  CAS  Google Scholar 

  127. Su B L, Léonard A, Yuan Z Y. Highly ordered mesoporous CMI-n materials and hierarchically structured meso-macroporous compositions. Comptes Rendus. Chimie, 2005, 8(3-4): 713–726

    Article  CAS  Google Scholar 

  128. Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105(105): 647–654

    Article  CAS  Google Scholar 

  129. Lemaire A, Wang Q Y, Wei Y X, Liu Z M, Su B L. Hierarchically structured meso-macroporous aluminosilicates with high tetrahedral aluminium content in acid catalysed esterification of fatty acids. Journal of Colloid & Interface Science, 2011, 363: 511–520

    Article  CAS  Google Scholar 

  130. Vantomme A, Léonard A, Yuan Z Y, Su B L. Hierarchically nanostructured porous functional ceramics key. Engineering Materials, 2007, 336: 1933–1938

    Google Scholar 

  131. Lemaire A, Su B L. Tailoring the porous hierarchy and the tetrahedral aluminum content by using carboxylate ligands: hierarchically structured macro-mesoporous aluminosilicates from a single molecular source. Langmuir, 2010, 26(22): 17603–17616

    Article  CAS  Google Scholar 

  132. Lemaire A, Rooke J C, Chen L H, Su B L. Direct observation of macrostructure formation of hierarchically structured mesomacroporous aluminosilicates with 3D interconnectivity by optical microscope. Langmuir, 2011, 27(6): 3030–3043

    Article  CAS  Google Scholar 

  133. Zhang K B, Fu Z Y, Nakayama T, Suzuki T, Suematsu H, Niihara K. One-pot synthesis of hierarchically macro/mesoporous Al2O3 monoliths from a facile sol–gel process. Materials Research Bulletin, 2011, 46(11): 2155–2162

    Article  CAS  Google Scholar 

  134. Yang X Y, Li Y, Van T G, Xiao F, Su B L. One-pot synthesis of catalytically stable and active nanoreactors: Encapsulation of sizecontrolled nanoparticles within a hierarchically macroporous core@ ordered mesoporous shell system. Advanced Materials, 2009, 21(13): 1368–1372

    Article  CAS  Google Scholar 

  135. Kloestra K R, van Bekkum H, Jansen J C. Mesoporous material containing framework tectosilicate by pore-wall recrystallization. Chemical Communications, 1997, 23(23): 2281–2282

    Article  Google Scholar 

  136. Hu M C, Zielke J T, Byers C H, Lin J S, Harris M T. Probing the early-stage/rapid processes in hydrolysis and condensation of metal alkoxides. Journal of Materials Science, 2000, 35(8): 1957–1971

    Article  CAS  Google Scholar 

  137. Su B L, Vantomme A, Surahy L, Pirard R, Pirard J P. Hierarchical multimodal mesoporous carbon materials with parallel macrochannels. Chemistry of Materials, 2007, 19(13): 3325–3333

    Article  CAS  Google Scholar 

  138. Vantomme A, Yuan Z Y, Su B L. One-pot synthesis of a highsurface-area zirconium oxide material with hierarchically threelength-scaled pore structure. New Journal of Chemistry, 2004, 28(9): 1083–1085

    Article  CAS  Google Scholar 

  139. Léonard A, Su B L. Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 300(1-2): 129–135

    Article  CAS  Google Scholar 

  140. Hakim S H, Shanks B H. A comparative study of macroporous metal oxides synthesized via a unified approach. Chemistry of Materials, 2009, 21(10): 2027–2038

    Article  CAS  Google Scholar 

  141. Léonard A, Vantomme A, Bouvy C, Moniotte N, Mariaulle P, Su B L. Highly ordered mesoporous and hierarchically nanostructured meso-macroporous materials for nanotechnology, biotechnology, information technology and medical applications. Nanopages, 2006, 1(1): 1–44

    Article  Google Scholar 

  142. Yuan Z Y, Ren T Z, Su B L. Hierarchically mesostructured titania materials with an unusual interior macroporous structure. Advanced Materials, 2003, 15(17): 1462–1465

    Article  CAS  Google Scholar 

  143. Ren T Z, Yuan Z Y, Su B L. Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science & Catalysis, 2007, 165: 287–290

    Article  CAS  Google Scholar 

  144. Yuan Z Y, Ren T Z, Vantomme A, Su B L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chemistry of Materials, 2004, 16(24): 5096–5106

    Article  CAS  Google Scholar 

  145. Ren T Z, Yuan Z Y, Su B L. Thermally stable macroporous zirconium phosphates with supermicroporous walls: A selfformation phenomenon of hierarchy. Chemical Communications, 2004, (23): 2730–2731

    Article  CAS  Google Scholar 

  146. Ren T Z, Yuan Z Y, Azioun A, Pireaux J J, Su B L. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006, 22(8): 3886–3894

    Article  CAS  Google Scholar 

  147. Yuan Z Y, Ren T Z, Azioune A, Pireaux J J, Su B L. Self-assembly of hierarchically mesoporous-macroporous phosphated nanocrystalline aluminum (oxyhydr) oxide materials. Chemistry of Materials, 2006, 18(7): 1753–1767

    Article  CAS  Google Scholar 

  148. Wan Y, Zhao D. On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 2007, 107(7): 2821–2860

    Article  CAS  Google Scholar 

  149. Zhao D, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036

    Article  CAS  Google Scholar 

  150. Ryoo R, Ko C H, Kruk M, Antochshuk V, Jaroniec M. Blockcopolymer- templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network. Journal of Physical Chemistry B, 2000, 104(48): 11465–11471

    Article  CAS  Google Scholar 

  151. Imperor-Clerc M, Davidson P, Davidson A. Existence of a microporous corona around the mesopores of silica-based SBA- 15 materials templated by triblock copolymers. Journal of the American Chemical Society, 2000, 122(48): 11925–11933

    Article  CAS  Google Scholar 

  152. Wang J, Feng S, Song Y, Li W, Gao W, Elzatahry A A, Aldhayan D, Xia Y, Zhao D. Zhao A A. Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. Catalysis Today, 2015, 243: 199–208

    Article  CAS  Google Scholar 

  153. Haskouri E I, de Zárate J, Guillem D O, Latorre C, Caldés J, Beltrán M, Beltrán A, Descalzo D, Rodríguez-López A B, Gertrudis Martínez-Máñez R. Silica-based powders and monoliths with bimodal pore systems. Chemical Communications, 2002, 4(4): 330–331

    Article  CAS  Google Scholar 

  154. Kim J H, Fang B, Song MY, Yu J S. Topological transformation of thioether-bridged organosilicas into nanostructured functional materials. Chemistry of Materials, 2012, 24(12): 2256–2264

    Article  CAS  Google Scholar 

  155. Wu D, Fu R, Dresselhaus M S, Dresselhaus G. Nano-structure control of carbon aerogels via a microemulsion-templated sol-gel polymerization method. Carbon, 2006, 44(4): 675–681

    Article  CAS  Google Scholar 

  156. Fu R, Zheng B, Liu J, Dresselhaus M S, Dresselhaus G, Satcher J H, Baumann T F. The fabrication and characterization of carbon aerogels by gelation and supercritical drying in isopropanol. Advanced Functional Materials, 2003, 13(7): 558–562

    Article  CAS  Google Scholar 

  157. Nakanishi K, Soga N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). Journal of the American Ceramic Society, 1991, 74(10): 2518–2530

    Article  CAS  Google Scholar 

  158. Sun Y. Porous zirconium phosphates prepared by surfactantassistedprecipitation. Journal of Materials Chemistry, 2000, 10(10): 2320–2324

    Article  CAS  Google Scholar 

  159. Unger K K, Tanaka N, Machtejevas E. Monolithic silicas in separation science: Concepts, syntheses, characterization, modeling and applications. Germany: Wiley-VCH, 2010, 125–161

    Google Scholar 

  160. Inagaki S, Guan S, Fukushima Y, Ohsuna T, Terasaki O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999, 121(41): 9611–9614

    Article  CAS  Google Scholar 

  161. Sun X H, Zheng C M, Qiao M Q, Yan J L, Wang X P, Guan N J. Bioinspired synthesis of hierarchical macro-mesoporous titania with tunable macroporous morphology using cell-assemblies as macrotemplates. Chemical Communications, 2009: 4750–4752

    Google Scholar 

  162. Konishi J, Fujit K, Nakanishi K, Hirao K. Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chemistry of Materials, 2006, 18(25): 6069–6074

    Article  CAS  Google Scholar 

  163. Smått J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials, 2003, 15(12): 2354–2361

    Article  CAS  Google Scholar 

  164. Takahashi R, Sato S, Sodesawa T, Suzuki K, Tafu M, Nakanishi K, Soga N. Phase separation in sol-gel process of alkoxide-derived silica-zirconia in the presence of polyethylene oxide. Journal of the American Ceramic Society, 2001, 84(9): 1968–1976

    Article  CAS  Google Scholar 

  165. Murai S, Fujita K, Nakanishi K, Hirao K. Morphology control of phase-separation-induced alumina-silica macroporous gels for rare-earth-doped scattering media. Journal of Physical Chemistry B, 2004, 108(43): 16670–16676

    Article  CAS  Google Scholar 

  166. Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T. Spontaneous formation of hierarchical macro-mesoporous ethanesilica monolith. Chemistry of Materials, 2004, 16(19): 3652–3658

    Article  CAS  Google Scholar 

  167. Amatani T, Nakanishi K, Hirao K, Kodaira T. Monolithic periodic mesoporous silica with well-defined macropores. Chemistry of Materials, 2005, 17(8): 2114–2119

    Article  CAS  Google Scholar 

  168. Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N. Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chemistry of Materials, 2005, 17(16): 4262–4271

    Article  CAS  Google Scholar 

  169. Konishi J, Fujita K, Nakanishi K, Hirao K, Komarneni S, Parker J C. Macroporous Morphology Induced by Phase Separation in Sol- Gel Systems Derived from Titania Colloid, MRS Proceedings. Cambridge: Cambridge University Press, 2003, 788: 8–11

    Google Scholar 

  170. Huesing N, Raab C, Torma V, Roig A, Peterlik H. Periodically mesostructured silica monoliths from diol-modified silanes. Chemistry of Materials, 2003, 15(14): 2690–2692

    Article  CAS  Google Scholar 

  171. Wu Q L, Subramanian N, Rankin S E. Hierarchically porous titania thin film prepared by controlled phase separation and surfactant templating. Langmuir, 2011, 27(15): 9557–9566

    Article  CAS  Google Scholar 

  172. François B, Pitois O, François J. Polymer films with a selforganized honeycomb morphology. Advanced Materials, 1995, 7(12): 1041–1044

    Article  Google Scholar 

  173. Saito Y, Shimomura M, Yabu H. Dispersion of Al2O3 nanoparticles stabilized with mussel-inspired amphiphilic copolymers in organic solvents and formation of hierarchical porous films by the breath figure technique. Chemical Communications, 2013, 49(54): 6081–6083

    Article  CAS  Google Scholar 

  174. Kon K, Brauer C N, Hidaka K, Löhmannsröben H G, Karthaus O. Preparation of patterned zinc oxide films by breath figure templating. Langmuir, 2010, 26(14): 12173–12176

    Article  CAS  Google Scholar 

  175. Peng J, Han Y, Yang Y, Li B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45(2): 447–452

    Article  CAS  Google Scholar 

  176. Sel O, Laberty-Robert C, Azais T, Sanchez C. Designing meso-and macropore architectures in hybrid organic-inorganic membranes by combining surfactant and breath figure templating (BFT). Physical Chemistry Chemical Physics, 2009, 11(19): 3733–3741

    Article  CAS  Google Scholar 

  177. Böker A, Lin Y, Chiapperini K, Horowitz R, Thompson M, Carreon V, Xu T, Abetz C, Skaff H, Dinsmore A D, Emrick T, RussellT P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nature Materials, 2004, 3(5): 302–306

    Article  CAS  Google Scholar 

  178. Srinivasarao M, Collings D, Philips A, Patel S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292(5514): 79–83

    Article  CAS  Google Scholar 

  179. Gao Y, Hou Y, Beaujuge P M. Arrays of hollow silica halfnanospheres via the breath figure approach. Advanced Materials Interfaces, 2015, 2(9): 1500078

    Article  Google Scholar 

  180. Deville S. Freeze-casting of porous ceramics: A review of current achievements and issues. Advanced Engineering Materials, 2008, 10(3): 155–169

    Article  CAS  Google Scholar 

  181. Chatterji S. Aspects of the freezing process in a porous material–water system: Part 1. Feezing and the properties of water and ice. Cement and Concrete Research, 1999, 29(4): 627–630

    Article  CAS  Google Scholar 

  182. De Simone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science, 1992, 257(5072): 945–947

    Article  Google Scholar 

  183. Ho M H, Kuo P Y, Hsieh H J, Hsien T Y, Hou L T, Lai J Y, Wang D M. Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials, 2004, 25(1): 129–138

    Article  CAS  Google Scholar 

  184. Kang H W, Tabata Y, Ikada Y. Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999, 20(14): 1339–1344

    Article  CAS  Google Scholar 

  185. Hsieh C Y, Tsai S P, Ho M H, Wang D M, Liu C E, Hsieh C H, Hsieh H J. Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007, 67(1): 124–132

    Article  CAS  Google Scholar 

  186. Daamen WF, van Moerkerk H T B, Hafmans T, Buttafoco L, Poot A A, Veerkamp J H, van Kuppevelt T H. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials, 2003, 24(22): 4001–4009

    Article  CAS  Google Scholar 

  187. Yannas I V, Burke J F, Gordon P L, Huang C, Rubenstein R H. Design of an artificial skin. II. Control of chemical composition. Journal of Biomedical Materials Research, 1980, 14(2): 107–132

    CAS  Google Scholar 

  188. Shalaby W S W, Peck G E, Park K. Release of dextromethorphan hydrobromide from freeze-dried enzyme-degradable hydrogels. Journal of Controlled Release, 1991, 16(3): 355–363

    Article  CAS  Google Scholar 

  189. Mukai S R, Nishihara H, Tamon H. Formation of monolithic silica gel microhoneycombs (SMHs) using pseudosteady state growth of microstructural ice crystals. Chemical Communications, 2004, 7(7): 874–875

    Article  CAS  Google Scholar 

  190. Nishihara H, Mukai S R, Yamashita D, Tamon H. Ordered macroporous silica by ice templating. Chemistry of Materials, 2005, 17(3): 683–689

    Article  CAS  Google Scholar 

  191. Mahler W, Bechtold M F. Freeze-formed silica fibres. Nature, 1980, 285(5759): 27–28

    Article  CAS  Google Scholar 

  192. Fukasawa T, Ando M, Ohji T, Kanzaki S. Synthesis of porous ceramics with complex pore structure by freeze-dry processing. Journal of the American Ceramic Society, 2001, 84(1): 230–232

    Article  CAS  Google Scholar 

  193. Sofie S W, Dogan F. Freeze casting of aqueous alumina slurries with glycerol. Journal of the American Ceramic Society, 2001, 84(7): 1459–1464

    Article  CAS  Google Scholar 

  194. Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F A. Biocompatible bottom-up route for the preparation of hierarchical biohybrid materials. Advanced Materials, 2006, 18(9): 1137–1140

    Article  CAS  Google Scholar 

  195. Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005, 4(10): 787–793

    Article  CAS  Google Scholar 

  196. Perriman A W, Brogan A P, Cölfen H, Tsoureas N, Owen G R, Mann S. Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2(8): 622–626

    Article  CAS  Google Scholar 

  197. Eckert C A, Knutson B L, Debenedetti P G. Supercritical fluids as solvents for chemical and materials processing. Nature, 1996, 383(6598): 313–318

    Article  CAS  Google Scholar 

  198. Cooper A I. Porous materials and supercritical fluids. Advanced Materials, 2003, 15(13): 1049–1059

    Article  CAS  Google Scholar 

  199. De Simone J M, Maury E E, Menceloglu Y Z, McClain J B, Romack T J, Combes J R. Dispersion polymerizations in supercritical carbon dioxide. Science, 1994, 265(5170): 356–359

    Article  Google Scholar 

  200. Kendall J L, Canelas D A, Young J L, De Simone J M. Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999, 99(2): 543–564

    Article  CAS  Google Scholar 

  201. De Simone J M. Practical approaches to green solvents. Science, 2002, 297(5582): 799–803

    Article  Google Scholar 

  202. Partap S, Rehman I, Jones J R, Darr J A. Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels. Advanced Materials, 2006, 18(4): 501–504

    Article  CAS  Google Scholar 

  203. Palocci C, Barbetta A, La Grotta A, Dentini M. Porous biomaterials obtained using supercritical CO2-water emulsions. Langmuir, 2007, 23(15): 8243–8251

    Article  Google Scholar 

  204. Butler R, Hopkinson I, Cooper A I. Synthesis of porous emulsiontemplated polymers using high internal phase CO2-in-water emulsions. Journal of the American Chemical Society, 2003, 125(47): 14473–14481

    Article  CAS  Google Scholar 

  205. Langer R, Vacanti J. Tissue engineering. Science, 1993, 260(5110): 920–926

    Article  CAS  Google Scholar 

  206. Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews, 2012, 112(6): 3057–3082

    Article  CAS  Google Scholar 

  207. Xu S, Yang H, Wang K, Wang B, Xu Q. Effect of supercritical CO2 on fabrication of free-standing hierarchical graphene oxide/carbon nanofiber/polypyrrole film and its electrochemical property. Physical Chemistry Chemical Physics, 2014, 16(16): 7350–7357

    Article  CAS  Google Scholar 

  208. Wang M, Zhao B, Xu S, Lin L, Liu S, He D. Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chemical Communications, 2014, 50(8): 930–932

    Article  CAS  Google Scholar 

  209. Nugroho A, Kim S J, Chang W, Chung K Y, Kim J. Design and fabrication of hierarchically porous carbon with a template-free method. Scientific Reports, 2014, 4: 6349

    Article  CAS  Google Scholar 

  210. Wang L, Zhuo L, Zhang C, Zhao F. Supercritical carbon dioxide assisted deposition of Fe3O4 nanoparticles on hierarchical porous carbon and their lithium-storage performance. Chemistry (Weinheim an der Bergstrasse, Germany), 2014, 20(15): 4308–4315

    CAS  Google Scholar 

  211. Nugroho A, Yoon D, Joo O S, Chung K Y, Kim J. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chemical Engineering Journal, 2014, 258: 357–366

    Article  CAS  Google Scholar 

  212. Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature, 1997, 385(6615): 420–423

    Article  CAS  Google Scholar 

  213. Meldrum F C, Seshadri R. Porous gold structures through templating by echinoidskeletal plates. Chemical Communications, 2000, 1(1): 29–30

    Article  Google Scholar 

  214. Qi L, Li J, Ma J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of surfactants and double-hydrophilic block copolymers. Advanced Materials, 2002, 14(4): 300–303

    Article  CAS  Google Scholar 

  215. Cook G, Timms P L, Göltner Spickermann C. Exact replication of biological structures by chemical vapor deposition of silica. Angewandte Chemie International Edition, 2003, 42(5): 557–559

    Article  CAS  Google Scholar 

  216. Hall S R, Bolger H, Mann S. Morphosynthesis of complex inorganic forms using pollen grain templates. Chemical Communications, 2003, 22(22): 2784–2785

    Article  CAS  Google Scholar 

  217. Valtchev V P, Smaihi M, Faust A C, Vidal L. Biomineral-silicainduced zeolitzation of equisetum arvense. Angewandte Chemie International Edition, 2003, 42(24): 2782–2785

    Article  CAS  Google Scholar 

  218. Sim K, Youn H J. Preparation of porous sheets with high mechanical strength by the addition of cellulose nanofibrils. Cellulose, 2016, 23(2): 1383–1392

    Article  CAS  Google Scholar 

  219. Farin D, Peleg S, Yavin D, Avnir D. Applications and limitations of boundary-line fractal analysis of irregular surfaces: Proteins, aggregates, and porous materials. Langmuir, 1985, 1(4): 399–407

    Article  CAS  Google Scholar 

  220. Shim I K, Jung M R, Kim K H, Seol Y J B, Park Y J D, Park W H, Lee S J. Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 150–160

    Article  CAS  Google Scholar 

  221. Jia Y, Han W, Xiong G, Yang W. Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. Journal of Colloid and Interface Science, 2008, 323(2): 326–331

    Article  CAS  Google Scholar 

  222. Zampieri A, Mabande G T P, Selvam T, Schwieger W, Rudolph A, Hermann R, Sieber H, Greil P. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors. Materials Science and Engineering, 2006, 26(1): 130–135

    Article  CAS  Google Scholar 

  223. Holmes S M, Graniel-Garcia B E, Foran P, Hill P, Roberts E P L, Sakakini B H, Newton J M. A novel porous carbon based on diatomaceous earth. Chemical Communications, 2006, 25(25): 2662–2663

    Article  CAS  Google Scholar 

  224. Vrieling E G, Beelen T P M, van Santen R A, Gieskes W W. Mesophases of (bio) polymer-silica particles inspire a model for silica biomineralization in diatoms. Angewandte Chemie International Edition, 2002, 41(9): 1543–1546

    Article  CAS  Google Scholar 

  225. Wang Y, Tang Y, Dong A, Wang X, Ren N, Gao Z. Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process. Journal of Materials Chemistry, 2002, 12(6): 1812–1818

    Article  CAS  Google Scholar 

  226. Yang H, Zhao D. Synthesis of replica mesostructures by the nanocasting strategy. Journal of Materials Chemistry, 2005, 15: 1217–1231

    CAS  Google Scholar 

  227. Polarz S, Antonietti M. Porous materials via nanocasting procedures: Innovative materials and learning about soft-matter organization. Chemical Communications, 2002, 22(22): 2593–2604

    Article  CAS  Google Scholar 

  228. Kyotani T, Nagai T, Inoue S, Tomita A. Formation of new type of porous carbon by carbonization in zeolite nanochannels. Chemistry of Materials, 1997, 9(2): 609–615

    Article  CAS  Google Scholar 

  229. Lu A, Schmidt W, Spliethoff B, Schüth F. Synthesis and characterization of nanocast silica NCS-1 with CMK-3 as a template. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 6085–6092

    CAS  Google Scholar 

  230. Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999, 103(37): 7743–7746

    Article  CAS  Google Scholar 

  231. Schüth F. Endo- und exotemplate zur erzeugung von anorganischen materialien mit großer spezifischer oberfläChe. Angewandte Chemie, 2003, 115(31): 3730–3750

    Article  Google Scholar 

  232. Velev O D, Jede T A, Lobo R F, Lenhoff A M. Porous silica via colloidal crystallization. Nature, 1997, 389(6650): 447–448

    Article  CAS  Google Scholar 

  233. Lu A H, Schüth F. Nanocasting: A versatile strategy for creating nanostructured porous materials. Advanced Materials, 2006, 18(14): 1793–1805

    Article  CAS  Google Scholar 

  234. Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713

    Article  CAS  Google Scholar 

  235. Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons. Advanced Materials, 2001, 13(9): 677–681

    Article  CAS  Google Scholar 

  236. Kang M, Kim D, Yi S H, Han J U, Yie J E, Kim JM. Preparation of stable mesoporous inorganic oxides via nano-replication technique. Catalysis Today, 2004, 93-95: 695–699

    Article  CAS  Google Scholar 

  237. Marsh H, Heintz E A, Rodriguez R F. Introduction to Carbon Technologies. Spain: University of Alicante, Secretariado de Publicaciones, 1997, 151–167

    Google Scholar 

  238. Lee J, Kim J, Hyeon T. A facile synthesis of bimodal mesoporous silica and its replication for bimodal mesoporous carbon. Chemical Communications, 2003, 10(10): 1138–1139

    Article  CAS  Google Scholar 

  239. Taguchi A, Smått J H, Lindén M. Carbon monoliths possessing a hierarchical, fully interconnected porosity. Advanced Materials, 2003, 15(14): 1209–1211

    Article  CAS  Google Scholar 

  240. Lu A H, Smått J H, Lindén M. Combined surface and volume templating of highly porous nanocast carbon monoliths. Advanced Functional Materials, 2005, 15(5): 865–871

    Article  CAS  Google Scholar 

  241. Chai G S, Shin I S, Yu J S. Synthesis of ordered, uniform, macroporous carbons with mesoporous walls templated by aggregates of polystyrene spheres and silica particles for use as catalyst supports in direct methanol fuel cells. Advanced Materials, 2004, 16(22): 2057–2061

    Article  CAS  Google Scholar 

  242. Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S, Hyeon T. Fabrication of carbon capsules with hollow macroporous core/ mesoporous shell structures. Advanced Materials, 2002, 14(1): 19–21

    Article  CAS  Google Scholar 

  243. Kim M, Sohn K, Na H B, Hyeon T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Letters, 2002, 2(12): 1383–1387

    Article  CAS  Google Scholar 

  244. Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Single-step fabrication of nickel films with arrayed macropores and nanostructured skeletons. Advanced Materials, 2006, 18(14): 1905–1909

    Article  CAS  Google Scholar 

  245. Martin C R, Che G, Lakshmi B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production. Nature, 1998, 393(6683): 346–349

    Article  CAS  Google Scholar 

  246. Chen X, Steinhart M, Hess C, Gösele U. Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Advanced Materials, 2006, 18(16): 2153–2156

    Article  CAS  Google Scholar 

  247. Panda M, Seshadri R, Gopalakrishnan J. Preparation of PbZrO3/ AsO4 composites (A = Ca, Sr, Ba) and PbZrO3 by metathetic reactions in the solid state: Metathetic exchange of divalent species. Chemistry of Materials, 2003, 15(7): 1554–1559

    Article  CAS  Google Scholar 

  248. Panda M, Rajamathi M, Seshadri R. A template-free, combustionchemical route to macroporous nickel monoliths displaying a hierarchy of pore sizes. Chemistry of Materials, 2002, 14(11): 4762–4767

    Article  CAS  Google Scholar 

  249. Toberer E S, Schladt T D, Seshadri R. Macroporous manganese oxides with regenerative mesopores. Journal of the American Chemical Society, 2006, 128(5): 1462–1463

    Article  CAS  Google Scholar 

  250. Muir DM. A review of the selective leaching of gold from oxidised copper-gold ores with ammonia-cyanide and new insights for plant control and operation. Minerals Engineering, 2011, 24(6): 576–582

    Article  CAS  Google Scholar 

  251. Zhang L, Wu H B, Liu B, Lou X W D. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage. Energy & Environmental Science, 2014, 7(3): 1013–1017

    Article  Google Scholar 

  252. Yuan Z Y, Blin J L, Su B L. Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, 5(5): 504–505

    Article  CAS  Google Scholar 

  253. Sun Z, Liu Y, Li B,Wei J, Wang M, Yue Q, Deng Y, Kaliaguine S, Zhao D. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals. ACS Nano, 2013, 7(10): 8706–8714

    Article  CAS  Google Scholar 

  254. Tao Y, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910

    Article  CAS  Google Scholar 

  255. van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319

    Article  CAS  Google Scholar 

  256. Mei C, Liu Z, Wen P, Xie Z, Hua W, Gao Z. Regular HZSM-5 microboxes prepared via a mild alkaline treatment. Journal of Materials Chemistry, 2008, 18(29): 3496–3500

    Article  CAS  Google Scholar 

  257. Zhou J, Hua Z, Shi J, He Q, Guo L, Ruan M. Synthesis of a hierarchical micro/mesoporous structure by steam-assisted postcrystallization. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(47): 12949–12954

    CAS  Google Scholar 

  258. Groen J C, Bach T, Ziese U, Paulaime- van Donk A M, de Jong K P, Moulijn J A, Pérez-Ramírez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793

    Article  CAS  Google Scholar 

  259. Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928

    Article  CAS  Google Scholar 

  260. Dähne L, Leporatti S, Donath E, Möhwald H. Fabrication of micro reaction cages with tailored properties. Journal of the American Chemical Society, 2001, 123(23): 5431–5436

    Article  CAS  Google Scholar 

  261. Lin K J, Chen L J, Prasad MR, Cheng C Y. Core-shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/ PVP@ MCM-41. Advanced Materials, 2004, 16(20): 1845–1849

    Article  CAS  Google Scholar 

  262. Liu Y, Zhang W, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258

    Article  CAS  Google Scholar 

  263. Xiao F S, Han Y, Yu Y, Meng X, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889

    Article  CAS  Google Scholar 

  264. Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81

    Article  CAS  Google Scholar 

  265. Möller K, Bein T. Mesoporosity—A new dimension for zeolites. Chemical Society Reviews, 2013, 42(9): 3689–3707

    Article  CAS  Google Scholar 

  266. Rolison D R. Catalytic nanoarchitectures—The importance of nothing and the unimportance of periodicity. Science, 2003, 299(5613): 1698–1701

    Article  CAS  Google Scholar 

  267. Wang X, Yu J C, Ho C, Hou Y, Fu X. Photocatalytic activity of a hierarchically macro/mesoporous titania. Langmuir, 2005, 21(6): 2552–2559

    Article  CAS  Google Scholar 

  268. Shi J W, Zong X, Wu X, Cui H J, Xu B, Wang L Z, Fu M L. Carbon-doped titania hollow spheres with tunable hierarchical macroporous channels and enhanced visible light-induced photocatalytic activity. Chemcatchem, 2012, 4(4): 488–491

    Article  CAS  Google Scholar 

  269. Yu J G, Su Y R, Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-mesoporous titania. Advanced Functional Materials, 2007, 17(12): 1984–1990

    Article  CAS  Google Scholar 

  270. Zhou H, Ding L, Fan T, Ding J, Zhang D, Guo Q. Leaf-inspired hierarchical porous CdS/Au/N-TiO2 heterostructures for visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2014, 147: 221–228

    Article  CAS  Google Scholar 

  271. Schnepp Z, Yang W, Antonietti M, Giordano C. Biotemplating of metal carbide microstructures: The magnetic leaf. Angewandte Chemie International Edition, 2010, 49(37): 6564–6566

    Article  CAS  Google Scholar 

  272. Zhu J, Zhu Y, Zhu L, Rigutto M, van der Made A, Yang C, Pan S, Wang L, Zhu L, Jin Y, Sun Q, Wu Q, Meng X, Zhang D, Han Y, Li J, Chu Y, Zheng A, Qiu S, Zheng X, Xiao F S, van der Made A, Yang C, Pan S X, Xiao F S. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510

    Article  CAS  Google Scholar 

  273. Corma A, Diaz-Cabanas M J, Martínez- Triguero J, Rey F, Rius J. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst. Nature, 2002, 418(6897): 514–517

    Article  CAS  Google Scholar 

  274. Tang T, Yin C, Wang L, Ji Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115

    Article  CAS  Google Scholar 

  275. Serrano D P, Sanz R, Pizarro P, Moreno I, Medina S. Hierarchical TS-1 zeolite as an efficient catalyst for oxidative desulphurization of hydrocarbon fractions. Applied Catalysis B: Environmental, 2014, 146: 35–42

    Article  CAS  Google Scholar 

  276. Zhang S, Xu W, Zeng M, Li J, Li J, Xu J, Wang X. Superior adsorption capacity of hierarchical iron oxide @ magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(38): 11691–11697

    Article  CAS  Google Scholar 

  277. Ma T Y, Zhang X J, Yuan Z Y. Hierarchical meso-/macroporous aluminum phosphonate hybrid materials as multifunctional adsorbents. Journal of Physical Chemistry C, 2009, 113(29): 12854–12862

    Article  CAS  Google Scholar 

  278. Xiao H, Ai Z, Zhang L. Nonaqueous sol-gel synthesized hierarchical CeO2 nanocrystal microspheres as novel adsorbents for wastewater treatment. Journal of Physical Chemistry C, 2009, 113(38): 16625–16630

    Article  CAS  Google Scholar 

  279. Han S, Sohn K, Hyeon T. Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chemistry of Materials, 2000, 12(11): 3337–3341

    Article  CAS  Google Scholar 

  280. Ayad M, Zaghlol S. Nanostructured crosslinked polyaniline with high surface area: Synthesis, characterization and adsorption for organic dye. Chemical Engineering Journal, 2012, 79: 204–206

    Google Scholar 

  281. Iwasaki M, Miwa S, Ikegami T, Tomita M, Tanaka N, Ishihama Y. One-dimensional capillary liquid chromatographic separation coupled with tandem mass spectrometry unveils the Escherichia coli proteome on a microarray scale. Analytical Chemistry, 2010, 82(7): 2616–2620

    Article  CAS  Google Scholar 

  282. Miyamoto K, Hara T, Kobayashi H, Morisaka H, Tokuda D, Horie K, Koduki K, Makino S, Núñez O, Yang C, Kawabe T, Ikegami T, Takubo H, Ishihama Y, TanakaN. High-efficiency liquid chromatographic separation utilizing long monolithic silica capillary columns. Analytical Chemistry, 2008, 80(22): 8741–8750

    Article  CAS  Google Scholar 

  283. Meunier C F, Rooke J C, Léonard A, van Cutsem P, Su B L. Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20(5): 929–936

    Article  CAS  Google Scholar 

  284. Léonard A, Rooke J C, Meunier C F, Sarmento H, Descy J P, Su B L. Cyanobacteria immobilised in porous silica gels: Exploring biocompatible synthesis routes for the development of photobioreactors. Energy & Environmental Science, 2010, 3(3): 370–377

    Article  CAS  Google Scholar 

  285. Meunier C F, Rooke J C, Léonard A, Xie H, Su B L. Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46(22): 3843–3859

    Article  CAS  Google Scholar 

  286. Rooke J C, Léonard A, Meunier C F, Sarmento H, Descy J P, Su B L. Hybrid photosynthetic materials derived from microalgae cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344(2): 348–352

    Article  CAS  Google Scholar 

  287. Rooke J C, Meunier C, Léonard A, Su B L. Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80(11): 2345–2376

    Article  CAS  Google Scholar 

  288. Xiong J, Das S N, Shin B, Kar J P, Choi J H, Myoung J M. Biomimetic hierarchical ZnO structure with superhydrophobic and antireflective properties. Journal of Colloid and Interface Science, 2010, 350(1): 344–347

    Article  CAS  Google Scholar 

  289. Hajdu K, Gergely C, Martin M, Cloitre T, Zimányi L, Tenger K, Khoroshyy P, Palestino G, Agarwal V, Hernádi K, Németh Z, Nagy L, HernAdi K, Nemeth Z. Porous silicon/photosynthetic reaction center hybrid nanostructure. Langmuir, 2012, 28(32): 11866–11873

    Article  CAS  Google Scholar 

  290. Léonard A, Dandoy P, Danloy E, Leroux G, Meunier C F, Rooke J C, Su B L. Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40(2): 860–885

    Article  CAS  Google Scholar 

  291. Rooke J C, Léonard A, Meunier C F, Su B L. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation. ChemSusChem, 2011, 4(9): 1249–1257

    Article  CAS  Google Scholar 

  292. Zhou H, Li P, Guo J, Yan R, Fan T, Zhang D, Ye J. Artificial photosynthesis on tree trunk derived alkaline tantalates with hierarchical anatomy: Towards CO2 photo-fixation into CO and CH4. Nanoscale, 2015, 7(1): 113–120

    Article  CAS  Google Scholar 

  293. Steele B C H, Heinze A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

    Article  CAS  Google Scholar 

  294. Winter M, Brodd R J. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2004, 104(10): 4245–4270

    Article  CAS  Google Scholar 

  295. Bang J H, Han K, Skrabalak S E, Kim H, Suslick K S. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. Journal of Physical Chemistry C, 2007, 111(29): 10959–10964

    Article  CAS  Google Scholar 

  296. Chai G S, Yoon S B, Yu J S, Choi J H, Sung Y E. Ordered porous carbons with tunable pore sizes as catalyst supports in direct methanol fuel cell. Physical of Chemistry B, 2004, 108(22): 7074–7079

    Article  CAS  Google Scholar 

  297. Walcarius A. Mesoporous materials and electrochemistry. Chemical Society Reviews, 2013, 42(9): 4098–4140

    Article  CAS  Google Scholar 

  298. Jin J, Huang S Z, Li Y, Tian H, Wang H E, Yu Y, Chen L H, Hasan T, Su B L. Hierarchical nanosheet-constructed yolk-shell TiO2 porous microspheres for lithium batteries with high capacity, superior rate and long cycle capability. Nanoscale, 2015, 7(30): 12979–12989

    Article  CAS  Google Scholar 

  299. Huang S Z, Cai Y, Jin J, Liu J, Li Y, Yu Y, Wang H E, Chen L H, Su B L. Hierarchical mesoporous urchin-like Mn3O4/carbon microspheres with highly enhanced lithium battery performance by in-situ carbonization of new lamellar manganese alkoxide (Mn- DEG). Nano Energy, 2015, 12: 833–844

    Article  CAS  Google Scholar 

  300. Jin J, Huang S Z, Liu J, Li Y, Chen L H, Yu Y, Wang H E, Grey C P, Su B L. Phases hybriding and hierarchical structuring of mesoporous TiO2 nanowire bundles for high rate and high capacity lithium batteries. Advancement of Science, 2015, 2: 1500070

    Google Scholar 

  301. Huang S Z, Cai Y, Jin J, Li Y, Zheng X F, Wang H E, Wu M, Chen L H, Su B L. Annealed vanadium oxide nanowires and nanotubes as high performance cathode materials for lithium ion battery. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(34): 14099–14108

    Article  CAS  Google Scholar 

  302. Jin J, Huang S Z, Liu J, Li Y, Chen D S, Wang H E, Yu Y, Chen L H, Su B L. Design of new anode material structure on the basis of hierarchically three dimensionally ordered macro-mesoporous TiO2 for high performance lithium ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(25): 9699–9708

    Article  CAS  Google Scholar 

  303. Huang S Z, Jin J, Cai Y, Li Y, Tan H Y, Wang H E, van Tendeloo G, Su B L. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries. Nanoscale, 2014, 6(12): 6819–6827

    Article  CAS  Google Scholar 

  304. Zheng X F, Shen G F, Li Y, Duan H N, Yang X Y, Huang S Z, Wang H E, Wang C, Deng Z, Su B L. Self-templated synthesis of microporous CoO nanoparticles with highly enhanced performance for both photocatalysis and lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(4): 1394–1400

    Article  CAS  Google Scholar 

  305. Wang H E, Chen D S, Cai Y, Zhang R L, Xu J M, Deng Z, Zheng X F, Li Y, Bello I, Su B L. Facile synthesis of hierarchical and porous V2O5 microspheres as cathode materials for lithium ion batteries. Journal of Colloid and Interface Science, 2014, 418: 74–80

    Article  CAS  Google Scholar 

  306. Wang H E, Jin J, Cai Y, Xu J M, Chen D S, Zheng X F, Deng Z, Li Y, Bello I, Su B L. Facile and fast synthesis of porous TiO2 spheres for use in lithium ion batteries. Journal of Colloid and Interface Science, 2014, 417: 144–151

    Article  CAS  Google Scholar 

  307. Cai Y, Wang H E, Huang S Z, Jin J, Wang C, Yu Y, Li Y, Su B L. Hierarchical nanotube-constructed porous TiO2-B spheres for high performance lithium ion batteries. Scientific Reports, 2015, 5: 11557

    Article  CAS  Google Scholar 

  308. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Advanced Materials, 2003, 15(24): 2107–2111

    Article  CAS  Google Scholar 

  309. Wang Z, Li F, Ergang N S, Stein A. Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chemistry of Materials, 2006, 18(23): 5543–5553

    Article  CAS  Google Scholar 

  310. Hu Y S, Adelhelm P, Smarsly B M, Hore S, Antonietti M, Maier J. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Advanced Functional Materials, 2007, 17(12): 1873–1878

    Article  CAS  Google Scholar 

  311. Hao G P, Li WC, Qian D, Wang G H, Zhang WP, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly (benzoxazine-co-resol)- based porous carbon monoliths and their application as highperformance CO2 capture sorbents. Journal of the American Chemical Society, 2011, 133(29): 11378–11388

    Article  CAS  Google Scholar 

  312. Xia Y, Yoshio M, Noguchi H. Improved electrochemical performance of LiFePO4 by increasing its specific surface area. Electrochimica Acta, 2006, 52(1): 240–245

    Article  CAS  Google Scholar 

  313. Doherty C M, Caruso R A, Smarsly B M, Drummond C J. Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(13): 2895–2903

    Article  CAS  Google Scholar 

  314. Doherty C M, Caruso R A, Smarsly B M, Adelhelm P, Drummond C J, Doherty C M, Caruso R A, Smarsly B M. Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries. Chemistry of Materials, 2009, 21(21): 5300–5306

    Article  CAS  Google Scholar 

  315. Sinha N N, Shivakumara C, Munichandraiah N. High rate capability of a dual-porosity LiFePO4/C composite. ACS Applied Materials & Interfaces, 2010, 2(7): 2031–2038

    Article  CAS  Google Scholar 

  316. Liu J, Conry T E, Song X, Doeff M M, Richardson T J. Nanoporous spherical LiFePO4 for high performance cathodes. Energy & Environmental Science, 2011, 4(3): 885–888

    Article  CAS  Google Scholar 

  317. Jiao F, Bao J, Hill A H, Bruce P G. Synthesis of ordered mesoporous Li-Mn-O spinel as a positive electrode for rechargeable lithium batteries. Angewandte Chemie International Edition, 2008, 47(50): 9711–9716

    Article  CAS  Google Scholar 

  318. Luo J, Wang Y, Xiong H, Xia Y. Ordered mesoporous spinel LiMn2O4 by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795

    Article  CAS  Google Scholar 

  319. Xia X H, Tu J P, Wang X L, Gu C D, Zhao X B. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. Journal of Materials Chemistry, 2011, 21(3): 671–679

    Article  CAS  Google Scholar 

  320. Elimelech M, Phillip W A. The future of seawater desalination: Energy, technology, and the environment. Science, 2011, 333(6043): 712–717

    Article  CAS  Google Scholar 

  321. Xia X, Tu J, Xiang J, Huang X, Wang X, Zhao X. Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries. Journal of Power Sources, 2010, 195(7): 2014–2022

    Article  CAS  Google Scholar 

  322. Yuan Y, Xia X, Wu J, Yang J, Chen Y, Guo S. Hierarchically ordered porous nickel oxide array film with enhanced electrochemical properties for lithium ion batteries. Electrochemistry Communications, 2010, 12(7): 890–893

    Article  CAS  Google Scholar 

  323. Jung H G, Oh S W, Ce J, Jayaprakash N, Sun Y K. Mesoporous TiO2 nano networks: Anode for high power lithium battery applications. Electrochemistry Communications, 2009, 11(4): 756–759

    Article  CAS  Google Scholar 

  324. Yan H, Sokolov S, Lytle J C, Stein A, Zhang F, Smyrl W H. Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries. Journal of the Electrochemical Society, 2003, 150(8): A1102–A1107

    Article  CAS  Google Scholar 

  325. Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angewandte Chemie International Edition, 2005, 44(40): 6550–6553

    Article  CAS  Google Scholar 

  326. Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M, Fan L Z, Hu Y S, Maier J. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support. Advanced Functional Materials, 2007, 17(16): 3083–3087

    Article  CAS  Google Scholar 

  327. Song H K, Jung Y H, Lee K H, Dao L H. Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochimica Acta, 1999, 44(20): 3513–3519

    Article  CAS  Google Scholar 

  328. Rose M, Korenblit Y, Kockrick E, Borchardt L, Oschatz M, Kaskel S, Yushin G. Hierarchical micro-and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors. Small, 2011, 7(8): 1108–1117

    Article  CAS  Google Scholar 

  329. Xia K, Gao Q, Jiang J, Hu J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon, 2008, 46(13): 1718–1726

    Article  CAS  Google Scholar 

  330. Eliaz N. Degradation of implant materials. Springer Science Business Media, 2012, 151–173

    Google Scholar 

  331. Xu M, Li H, Zhai D, Chang J, Chen S, Wu C. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2015, 3(18): 3799–3809

    Article  CAS  Google Scholar 

  332. Fu Q, Saiz E, RahamanMN, Tomsia A P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and Engineering C, 2011, 31(7): 1245–1256

    Article  CAS  Google Scholar 

  333. Manzano M, Vallet-Regí M. Revisiting bioceramics: Bone regenerative and local drug delivery systems. Progress in Solid State Chemistry, 2012, 40(3): 17–30

    Article  CAS  Google Scholar 

  334. Saiz E, Zimmermann E A, Lee J S, Wegst U G, Tomsia A P. Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 2013, 29(1): 103–115

    Article  CAS  Google Scholar 

  335. Porter J R, Ruckh T T, Popat K C. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnology Progress, 2009, 25(6): 1539–1560

    CAS  Google Scholar 

  336. Hollister S J. Porous scaffold design for tissue engineering. Nature Materials, 2005, 4(7): 518–524

    Article  CAS  Google Scholar 

  337. Chen Q Z, Thompson I D, Boccaccini A R. 45S5 Bioglass®- derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials, 2006, 27(11): 2414–2425

    Article  CAS  Google Scholar 

  338. Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: Current trends and forecasts for the future. Journal of Biomedical Materials Research. Part A, 2011, 97(4): 514–535

    Article  CAS  Google Scholar 

  339. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 21(7): 667–681

    Article  CAS  Google Scholar 

  340. Jones J R, Lee P D, Hench L L. Hierarchical porous materials for tissue engineering. Philosophical Transactions of the Royal Society of London A: Mathematical. Physical and Engineering Sciences, 1838, 2006(364): 263–281

    Google Scholar 

  341. Hench L L. Bioceramics: From concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510

    Article  CAS  Google Scholar 

  342. Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. United States: Academic press, 2013, 130–178

    Google Scholar 

  343. Sepulveda P, Jones J R, Hench L L. In vitro dissolution of meltderived 45S5 and sol-gel derived 58S bioactive glasses. Journal of Biomedical Materials Research, 2002, 61(2): 301–311

    Article  CAS  Google Scholar 

  344. Yuan H, de Bruijn J D, Zhang X, Blitterswijk C A, de Groot K. Bone induction by porous glass ceramic made from Bioglassw (45S5). Journal of Biomedical Materials Research, 2001, 58(3): 270–276

    Article  CAS  Google Scholar 

  345. Sepulveda P, Jones J R, Hench L L. Bioactive sol-gel foams for tissue repair. Journal of Biomedical Materials Research, 2002, 59(2): 340–348

    Article  CAS  Google Scholar 

  346. Tian G, Gu Z, Liu X, Zhou L, Yin W, Yan L, Jin S, Ren W, Xing G, Li S, Zhao Y. Facile fabrication of rare-earth-doped Gd2O3 hollow spheres with upconversion luminescence, magnetic resonance, and drug delivery properties. Journal of Physical Chemistry C, 2011, 115(48): 23790–23796

    Article  CAS  Google Scholar 

  347. Xu Z H, Ma P A, Li C X, Hou Z Y, Zhai X F, Huang S S, Lin J. Monodisperse core-shell structured up-conversion Yb (OH) CO3@ YbPO4: Er3+ hollow spheres as drug carriers. Biomaterials, 2011, 32(17): 4161–4173

    Article  CAS  Google Scholar 

  348. Allen T M, Cullis P R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665): 1818–1822

    Article  CAS  Google Scholar 

  349. Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomaterialia, 2010, 6(6): 2212–2218

    Article  CAS  Google Scholar 

  350. Zhang H, Sun J, Ma D, Bao X, Klein-Hoffmann A, Weinberg G, Su D, Schlögl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis. Journal of the American Chemical Society, 2004, 126(24): 7440–7441

    Article  CAS  Google Scholar 

  351. Liu J, Hartono S B, Jin Y G, Li Z, Lu G Q M, Qiao S Z. A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres. Journal of Materials Chemistry, 2010, 20(22): 4595–4601

    Article  CAS  Google Scholar 

  352. Piao Y, Kim J, Na H B, Kim D, Baek J S, Ko M K, Lee J H, Shokouhimehr M, Hyeon T. Wrap-bake-peel proceßs for nanostructural transformation from β-FeOOH nanorods to biocompatible iron oxide nanocapsules. Nature Materials, 2008, 7(3): 242–247

    Article  CAS  Google Scholar 

  353. Son J S, Appleford M, Ong J L, Wenke J C, Kim JM, Choi S H, Oh D S. Porous hydroxyapatite scaffold with three-dimensional localized drug delivery system using biodegradable microspheres. Journal of Controlled Release, 2011, 153(2): 133–140

    Article  CAS  Google Scholar 

  354. Giger E V, Puigmarti L J, Schlatter R, Castagner B, Dittrich P S, Leroux J C. Gene delivery with bisphosphonate-stabilized calcium phosphate nanoparticles. Journal of Controlled Release, 2011, 150(1): 87–93

    Article  CAS  Google Scholar 

  355. Yang H, Hao L, Zhao N, Du C, Wang Y. Hierarchical porous hydroxyapatite microsphere as drug delivery carrier. CrystEng- Comm, 2013, 15(29): 5760–5763

    Article  CAS  Google Scholar 

  356. Zhao W, Chen H, Li Y, Li L, Lang M, Shi J. Uniform rattle-type hollow magnetic mesoporous apheres as drug delivery carriers and their sustained-release property. Advanced Functional Materials, 2008, 18(18): 2780–2788

    Article  CAS  Google Scholar 

  357. Wang T, Chai F, Fu Q, Zhang L, Liu H, Li L, Liao Y, Su Z, Wang C, Duan B, Ren D. Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy. Journal of Materials Chemistry, 2011, 21(14): 5299–5306

    Article  CAS  Google Scholar 

  358. Gai S L, Yang P, Li P, Wang C X, Dai W X, Niu Y L, Lin N. Synthesis of magnetic, up-conversion luminescent, and mesoporous core-shell-structured nanocomposites as drug carriers. Advanced Functional Materials, 2010, 20(7): 1166–1172

    Article  CAS  Google Scholar 

  359. Liu J, Qiao S Z, Chen J S, Lou X W, Xing X, Lu G Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chemical Communications, 2011, 47(47): 12578–12591

    Article  CAS  Google Scholar 

  360. Chen D, Li L, Tang F, Qi S. Facile and scalable synthesis of tailored silica ‘nanorattle’ structures. Advanced Materials, 2009, 21(37): 3804–3807

    Article  CAS  Google Scholar 

  361. Hu S H, Chen Y Y, Liu T C, Tung T H, Liu M D, Chen S Y. Remotely nano-rupturable yolk/shell capsules for magneticallytriggered drug release. Chemical Communications, 2011, 47(6): 1776–1778

    Article  CAS  Google Scholar 

  362. Chen Y, Chen H R, Zhang S J, Chen F, Zhang L X, Zhang J M, Zhu M, Wu H X, Guo L M, Feng J W, Shi J L. Multifunctional mesoporous nanoellipsoids for biological bimodal imaging and magnetically targeted delivery of anticancer drugs. Advanced Functional Materials, 2011, 21(2): 270–278

    Article  CAS  Google Scholar 

  363. Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B A. Hollow-core, magnetic, and mesoporous double-shell nanostructure: In situ decomposition/ reduction synthesis, bioimaging, and drug-delivery properties. Advanced Functional Materials, 2011, 21(10): 1850–1862

    Article  CAS  Google Scholar 

  364. Zhang X F, Clime L, Roberge H, Normandin F, Yahia L H, Sacher E, Veres T. pH-triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. Journal of Physical Chemistry C, 2011, 115(5): 1436–1443

    Article  CAS  Google Scholar 

  365. Lu Y, Zhao Y, Yu L, Dong L, Shi C, Hu M J, Xu Y J, Wen L P, Yu S H. Hydrophilic Co@ Au yolk/shell nanospheres: Synthesis, assembly, and application to gene delivery. Advanced Materials, 2010, 22(12): 1407–1411

    Article  CAS  Google Scholar 

  366. Suh WH, Jang A R, Suh Y H, Suslick K S. Porous hollow, ball-inball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Advanced Materials, 2006, 18(14): 1832–1837

    Article  CAS  Google Scholar 

  367. Li L L, Tang F Q, Li Y H, Liu T L, Hao N J, Chen D, Teng X, He J Q. In vivo delivery of silica nanorattle encapsulated docetaxel for liver cancer therapy with low toxicity and high efficacy. ACS Nano, 2010, 4(11): 6874–6882

    Article  CAS  Google Scholar 

  368. Chen Y, Chen H R, Guo L M, He Q J, Chen F, Zhou J, Feng J W, Shi J L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano, 2010, 4(1): 529–539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Chen or Baolian Su.

Additional information

Baolian Su is a member of the Royal Academy of Belgium, a fellow of the Royal Society of Chemistry and a life member of Clare Hall College, University of Cambridge. He holds “Chaire Francqui au titre Belge”. He joined the faculty at the University of Namur and created the Laboratory of Inorganic Materials Chemistry (CMI) in 1995. He is currently a Director of the Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Belgium. His is an “Expert of the State” in the framework of the Chinese Central Government program of “Thousands Talents” and “Changjiang Professor” appointed by Chinese Ministry of Education. He is “Strategical Scientist” at the Wuhan University of Technology. He has received a series of honours and awards such as the First Prize Invention Award of Sinopec (1992, China), A. Wetrems Prize (2007, Royal Academy of Belgium) and IUPAC Distinguished Award for Novel Materials and their synthesis (2011). His current research fields include the synthesis, the property study and the molecular engineering of organized, hierarchically porous and bio-inspired materials, biomaterials, living materials, leaf-like materials and nanostructures and the immobilisation of living organisms for artificial photosynthesis, nanotechnology, biotechnology, cell therapy and biomedical applications.

Lihua Chen awarded his Ph.D degrees in inorganic chemistry from Jilin University, China (2009) and in inorganic materials chemistry from University of Namur, Belgium (2011). In 2011–2012, he held a project-researcher position at the University of Namur with Professor Bao-Lian Su working on hierarchically porous zeolites. He is currently a full professor working in the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing from the Wuhan University of Technology, China. His research is aimed at new porous materials with designed hierarchically porosity for energy and environmental applications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Chen, C., Chen, L. et al. Hierarchically porous materials: Synthesis strategies and emerging applications. Front. Chem. Sci. Eng. 10, 301–347 (2016). https://doi.org/10.1007/s11705-016-1578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1578-y

Keywords

Navigation