Skip to main content
Log in

A car-following model considering the effect of electronic throttle opening angle under connected environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study proposes a new car-following model considering the effect of electronic throttle opening angle to capture the characteristics of connected autonomous vehicular traffic flow. The proposed model incorporates the opening angle of electronic throttle into the full velocity difference (FVD) model by assuming that the information of electronic throttle dynamics is shared by vehicles through vehicle-to-vehicle communications. The stability condition of the proposed car-following model is obtained using the perturbation method. Numerical experiments are constructed on three scenarios, start, stop, and evolution processes, to analyze the vehicular traffic flow characteristics of the proposed model. The results of numerical experiments illustrate that the proposed car-following model has a larger stable region compared with FVD model. Also, it demonstrates that the proposed car-following model can better present the characteristics of connected and autonomous vehicular flow in terms of the smoothness and stability with respect to the space headway, position, velocity, and acceleration/deceleration profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guler, S.I., Menendez, M., Meier, L.: Using connected vehicle technology to improve the efficiency of intersections. Transport. Res. C Emerg. Technol. 46, 121–131 (2014)

    Article  Google Scholar 

  2. Ge, J.I., Orosz, G.: Dynamics of connected vehicle systems with delayed acceleration feedback. Transport. Res. C Emerg. Technol. 46, 46–64 (2014)

    Article  Google Scholar 

  3. Litman, T.: Autonomous vehicle implementation predictions: implications for transport planning. In: Transportation Research Board 94th Annual Meeting (No. 15-3326) (2015)

  4. Yang, H., Jin, W.: A control theoretic formulation ofgreen driving strategies based on inter-vehicle communications. Transport. Res. C Emerg. Technol. 41, 48–60 (2014)

    Article  Google Scholar 

  5. Li, Y., Yang, B., Zheng, T., Li, Y.: Extended state observer based adaptive back-stepping sliding mode control of electronic throttle in transportation cyber-physical-systems. Math. Probl. Eng. 2015, 1–11 (2015)

  6. Li, Y., Yang, B., Zheng, T., Li, Y., Cui, M., Peeta, S.: Extended-state-observer-based double loop integral sliding mode control of electronic throttle valve. IEEE Trans. Intell. Transp. Syst. 16, 2501–2510 (2015)

    Article  Google Scholar 

  7. Hedrick, J.K., McMahon, D., Narendran, V., Swaoop, D.: Longitudinal vehicle controller design for IVHS systems. Proc. Am. Control Conf. 3, 3107–3112 (1991)

    Google Scholar 

  8. Ioannou, P., Xu, Z.: Throttle and brake control system for automatic vehicle following. Intell. Veh. Highway Syst. J. 1, 345–377 (1994)

    Google Scholar 

  9. Li, K., Ioannou, P.: Modeling of traffic flow of automated vehicles. IEEE Trans. Intell. Transp. Syst. 5, 99–113 (2004)

    Article  Google Scholar 

  10. Li, Y., Zhang, L., Zheng, T., Li, Y.: Lattice hydrodynamic model based delay feedback control of vehicular traffic flow considering the effects of density change rate difference. Commun. Nonlinear Sci. Numer. Simul. 29, 224–232 (2015)

    Article  MathSciNet  Google Scholar 

  11. Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow the leader models of traffic flow. Oper. Res. 9, 545–567 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. F Traffic 2, 181–196 (1999)

    Article  Google Scholar 

  13. Wilson, R.E., Ward, J.A.: Car-following models: fifty years of linear stability analysis—a mathematical perspective. Transp. Plan. Technol. 34, 3–18 (2011)

    Article  Google Scholar 

  14. Li, Y., Sun, D.: Microscopic car-following model for the traffic flow: the state of the art. J. Control Theory Appl. 10, 133–143 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gipps, P.G.: A behavioral car-following model for computer simulation. Transp. Res. B Methodol. 15, 105–111 (1981)

    Article  Google Scholar 

  16. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamics model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)

    Article  MATH  Google Scholar 

  17. Helbing, D., Tilch, B.: Generalized force model of traffic dynamics. Phys. Rev. E 58, 133–138 (1998)

    Article  Google Scholar 

  18. Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101–017105 (2001)

    Article  Google Scholar 

  19. Sun, D., Li, Y., Tian, C.: Car-following model based on the information of multiple ahead & velocity difference. Syst. Eng. Theory Pract. 30, 1326–1332 (2010)

    Google Scholar 

  20. Zhao, X., Gao, Z.: A new car-following model: full velocity and acceleration difference model. Eur. Phys. J. B 47, 145–150 (2005)

    Article  Google Scholar 

  21. Wang, T., Gao, Z., Zhao, X.: Multiple velocity difference model and its stability analysis. Acta Phys. Sin. 55, 634–640 (2006)

    Google Scholar 

  22. Li, Y., Sun, D., Liu, W., Zhang, M., Zhao, M., Liao, X., Tang, L.: Modeling and simulation for microscopic traffic flow based on multiple headway, velocity and acceleration difference. Nonlinear Dyn. 66, 15–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tang, T., Wang, Y., Yang, X., Wu, Y.: A new car-following model accounting for varying road condition. Nonlinear Dyn. 70, 1397–1405 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tang, T., Shi, W., Shang, H., Wang, Y.: A new car-following model with consideration of inter-vehicle communication. Nonlinear Dyn. 76, 2017–2023 (2014)

    Article  Google Scholar 

  25. Tang, T., Wang, Y., Yang, X., Huang, H.: A multilane traffic flow model accounting for lane width, lane-changing and the number of lanes. Netw. Spat. Econ. 14, 465–483 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, T., He, J., Yang, S., Shang, H.: A car-following model accounting for the driver’s attribution. Phys. A 413, 583–591 (2014)

    Article  Google Scholar 

  27. Tang, T., Chen, L., Yang, S., Shang, H.: An extended car-following model with consideration of the electric vehicle’s driving range. Phys. A 430, 148–155 (2015)

    Article  Google Scholar 

  28. Peng, G., Cheng, R.: A new car-following model with the consideration of anticipation optimal velocity. Phys. A 392, 3563–3569 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yu, S., Shi, Z.: An improved car-following model considering headway changes with memory. Phys. A 421, 1–14 (2015)

    Article  Google Scholar 

  30. Tian, J., Jia, B., Li, X., Gao, Z.: A new car-following model considering velocity anticipation. Chin. Phys. B. 19(1), 010511–010519 (2010)

    Article  Google Scholar 

  31. Tang, T., Shi, W., Shang, H., Wang, Y.: An extended car-following model with consideration of the reliability of inter-vehicle communication. Measurement 58, 286–293 (2014)

    Article  Google Scholar 

  32. Yu, S., Shi, Z.: The effects of vehicular gap changes with memory on traffic flow in cooperative adaptive cruise control strategy. Phys. A 428, 206–223 (2015)

  33. Yu, S., Shi, Z.: An improved car-following model considering relative velocity fluctuation. Commun. Nonlinear Sci. Numer. Simul. 36, 319–326 (2016)

    Article  Google Scholar 

  34. Wang, T., Gao, Z., Zhao, X.: Multiple velocity difference model and its stability analysis. Acta Phys. Sin. 55, 0634–0640 (2006)

    Google Scholar 

  35. Yu, S., Shi, Z.: Dynamics of connected cruise control systems considering velocity changes with memory feedback. Measurement 64, 34–48 (2015)

    Article  Google Scholar 

  36. Yu, S., Shi, Z.: An extended car-following model at signalized intersections. Phys. A 407, 152–159 (2014)

    Article  MathSciNet  Google Scholar 

  37. Ge, J., Orosz, G.: Dynamics of connected vehicle systems with delayed acceleration feedback. Transp. Res. Part C 46, 46–64 (2014)

    Article  Google Scholar 

  38. Peng, G., Sun, D.: A dynamical model of car-following with the consideration of the multiple information of preceding cars. Phys. Lett. A 374, 1694–1698 (2010)

    Article  MATH  Google Scholar 

  39. Yu, S., Liu, Q., Li, X.: Full velocity difference and acceleration model for a car-following theory. Commun. Nonlinear Sci. Numer. Simul. 18, 1229–1234 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824 (2000)

    Article  MATH  Google Scholar 

  41. Kikuchi, C., Chakroborty, P.: Car following model based on a fuzzy inference system. Transp. Res. Rec. 1365, 82–91 (1992)

    Google Scholar 

  42. Michaels, R.M.: Perceptual factors in car following. In: Proceedings of the Second International Symposium on the Theory of Road Traffic Flow, pp. 44–59. OECD, Paris (1963)

  43. Wolfram, O.: Theory and Application of Cellular Automata. World Scientific, Singapore (1986)

    Google Scholar 

  44. Biham, O., Middleton, A.A., Levine, D.: Self-organization and a dynamical transition in traffic-flow models. Phys. Rev. A 46, 6124–6127 (1992)

    Article  Google Scholar 

  45. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. 2, 2221–2229 (1992)

    Google Scholar 

  46. Jin, S., Wang, D., Tao, P., Li, P.: Non-lane-based full velocity difference car following model. Phys. A 389, 4654–4662 (2010)

    Article  Google Scholar 

  47. Li, Y., Zhang, L., Peeta, S., Pan, H., Zheng, T., Li, Y., He, X.: Non-lane-discipline-based car-following model considering the effects of two-sided lateral gaps. Nonlinear Dyn. 80, 227–238 (2015)

    Article  MATH  Google Scholar 

  48. Li, Y., Zhang, L., Zheng, H., He, X., Peeta, S., Zheng, T., Li, Y.: Evaluating the energy consumption of electric vehicles based on car-following model under non-lane discipline. Nonlinear Dyn. 82, 629–641 (2015)

    Article  Google Scholar 

  49. Li, Y., Zhu, H., Cen, M., Li, Y., Li, R., Sun, D.: On the stability analysis of microscopic traffic car-following model: a case study. Nonlinear Dyn 74, 335–343 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the project by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing (Grant No. cstc2014yykfB40001), “151” Science and Technology Major Project of Chongqing -General Design and Innovative Capability of Full Information based Traffic Guidance and Control System (Grant No. cstc2013jcsf-zdzxqqX0003), the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26), and the US Department of Transportation through the NEXTRANS Center, the USDOT Region 5 University Transportation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, L., Peeta, S. et al. A car-following model considering the effect of electronic throttle opening angle under connected environment. Nonlinear Dyn 85, 2115–2125 (2016). https://doi.org/10.1007/s11071-016-2817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2817-y

Keywords

Navigation