Skip to main content
Log in

Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria: Unique Microorganisms with Special Properties

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Microbial mediated nitrite-dependent anaerobic methane oxidation (N-DAMO), which couples the oxidation of methane to nitrite reduction, is a recently discovered process. The discovery of N-DAMO process makes great contributions to complete the biogeochemical cycles of carbon and nitrogen, and to develop novel economic biotechnology for simultaneous carbon and nitrogen removal. This process is catalysed by the unique bacterium “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which belongs to the candidate phylum NC10, a phylum having no members in pure culture. In recent years, some microbiological properties of M. oxyfera have been unravelled. The most prominent examples are the discoveries of the special ultrastructure (star-like) of the cell shape and the unique chemical composition (10MeC16:1Δ7) of M. oxyfera that have not been found in other bacteria yet. More importantly, a new intra-aerobic pathway was discovered in M. oxyfera. It seems that M. oxyfera produces oxygen intracellularly by the conversion of two nitric oxide molecules to dinitrogen gas and oxygen, and the produced oxygen is then used for methane oxidation and normal respiration. The current paper is a systematic review in the microbiological properties of M. oxyfera, especially for its special properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen J, Zhou ZC, Gu JD (2014) Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol 98:5685–5696

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, Zhou Z, Gu JD (2014) Complex community of nitrite-dependent anaerobic methane oxidation bacteria in coastal sediments of the Mai Po wetland by PCR amplification of both 16S rRNA and pmoA genes. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6051-6

    PubMed Central  Google Scholar 

  3. DeLong EF (2000) Resolving a methane mystery. Nature 407:577–579

    Article  CAS  PubMed  Google Scholar 

  4. Deutzmann JS, Schink B (2011) Anaerobic oxidation of methane in sediments of Lake Constance, an oligotrophic freshwater lake. Appl Environ Microbiol 77:4429–4436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ding ZW, Ding J, Fu L, Zhang F, Zeng RJ (2014) Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5936-8

    Google Scholar 

  6. Dlugokencky EJ, Nisbet EG, Fisher R, Lowry D (2011) Global atmospheric methane: budget, changes and dangers. Philos Trans R Soc A 369:2058–2072

    Article  CAS  Google Scholar 

  7. Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidise methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  8. Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MSM, Strous M (2009) Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl Environ Microbiol 75:3656–3662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  CAS  PubMed  Google Scholar 

  10. Han P, Gu JD (2013) A newly designed degenerate PCR primer based on pmoA gene for detection of nitrite-dependent anaerobic methane-oxidizing bacteria from different ecological niches. Appl Microbiol Biotechnol 97:10155–10162

    Article  CAS  PubMed  Google Scholar 

  11. He ZF, Cai C, Geng S, Lou LP, Xu XH, Zheng P, Hu BL (2013) Modeling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresour Technol 147:315–320

    Article  CAS  PubMed  Google Scholar 

  12. He ZF, Cai C, Shen LD, Lou LP, Zheng P, Xu XH, Hu BL (2014) Effect of inoculum sources on the enrichment of nitrite-dependent anaerobic methane-oxidizing bacteria. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6033-8

    PubMed Central  Google Scholar 

  13. He ZF, Geng S, Shen LD, Lou LP, Zheng P, Xu XH, Hu BL (2014) The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Res. doi:10.1016/j.watres.2014.09.055

    Google Scholar 

  14. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering T (eds) Ocean margin systems. Springer, Heidelberg, pp 457–477

    Chapter  Google Scholar 

  15. Holmes A, Costello A, Lidstrom M, Murrell JC (1996) Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily. FEMS Microbiol Lett 132:203–208

    Article  Google Scholar 

  16. Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF (2014) Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands. Proc Natl Acad Sci USA 111:4495–4500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hu BL, He ZF, Geng S, Cai C, Lou LP, Zheng P, Xu XY (2014) Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-5835-z

    Google Scholar 

  18. Hu S, Zeng RJ, Burow LC, Lant P, Keller J, Yuan ZG (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1:377–384

    Article  CAS  PubMed  Google Scholar 

  19. Juretschko S, Timmermann G, Schmid MC, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl Environ Microbiol 64:3042–3051

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Kampman C, Hendrickx TLG, Luesken FA, van Alen TA, Op den Camp HJM, Jetten MSM, Zeeman G, Buisman CJN, Temmink H (2012) Enrichment of denitrifying methanotrophic bacteria for application after direct low temperature anaerobic sewage treatment. J Hazard Mater 227–228:164–171

    Article  PubMed  Google Scholar 

  21. Kampman C, Temmink H, Hendrickx TL, Zeeman G, Buisman CJ (2014) Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20 °C. J Hazard Mater 274:428–435

    Article  CAS  PubMed  Google Scholar 

  22. Kojima H, Tsutsumi M, Ishikawa K, Iwata T, Mußmann M, Fukui M (2012) Distribution of putative denitrifying methane oxidizing bacteria in sediment of a freshwater lake, Lake Biwa. Syst Appl Microbiol 35:233–238

    Article  CAS  PubMed  Google Scholar 

  23. Kojima H, Tokizawa R, Kogure K, Kobayashi Y, Itoh M, Shiah FK, Okuda N, Fukui M (2014) Community structure of planktonic methane-oxidizing bacteria in a subtropical reservoir characterized by dominance of phylotype closely related to nitrite reducer. Sci Rep 4:5728. doi:10.1038/srep05728

    Article  PubMed Central  PubMed  Google Scholar 

  24. Kool DM, Zhu B, Rijpstra WI, Jetten MSM, Ettwig KF, Damsté JSS (2012) Rare branched fatty acids characterize the lipid composition of the intra-aerobic methane oxidizer “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 78:8650–8656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TLG, Zeeman G, Temmink H, Strous M, Op den Camp HJM, Jetten MSM (2011) Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge. Appl Microbiol Biotechnol 92:845–854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Luesken FA, Zhu B, van Alen TA, Butler MK, Rodriguez Diaz M, Song B, Op den Camp HJM, Jetten MSM, Ettwig KF (2011) pmoA primers for detection of anaerobic methanotrophs. Appl Environ Microbiol 11:3877–3880

    Article  Google Scholar 

  27. Luesken FA, Wu ML, Op den Camp HJ, Keltjens JT, Stunnenberg H, Francoijs KJ, Strous M, Jetten MS (2012) Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environ Microbiol 14:1024–1034

    Article  CAS  PubMed  Google Scholar 

  28. Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19:R812–R822

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Nauhaus K, Boetius A, Kruger M, Widdle F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  CAS  PubMed  Google Scholar 

  30. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  31. Rappé MS, Giovannoni SJ (2003) The uncultured microbial majority. Annu Rev Microbiol 57:369–404

    Article  PubMed  Google Scholar 

  32. Rasigraf O, Kool DM, Jetten MS, Sinninghe Damsté JS, Ettwig KF (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Shen LD, He ZF, Zhu Q, Chen DQ, Lou LP, Xu XY, Zheng P, Hu BL (2012) Microbiology, ecology and application of the nitrite-dependent anaerobic methane oxidation process. Front Microbiol 3:269. doi:10.3389/fmicb.2012.00269

    PubMed Central  PubMed  Google Scholar 

  34. Shen LD, Liu S, Zhu Q, Li XY, Cai C, Cheng DQ, Lou LP, Xu XY, Zheng P, Hu BL (2014) Distribution and diversity of nitrite-dependent anaerobic methane-oxidising bacteria in the sediments of the Qiantang River. Microb Ecol 37:341–349

    Article  Google Scholar 

  35. Shen LD, Zhu Q, Liu S, Du P, Zeng JN, Cheng DQ, Xu XY, Zheng P, Hu BL (2014) Molecular evidence for nitrite-dependent anaerobic methane-oxidising bacteria in the Jiaojiang Estuary of the East Sea (China). Appl Microbiol Biotechnol 98:5029–5038

    Article  CAS  Google Scholar 

  36. Shen LD, Huang Q, He ZF, Lian X, Liu S, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2014) Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6031-x

    Google Scholar 

  37. Shen LD, Liu S, Huang Q, Lian X, He ZF, Geng S, Jin RC, He YF, Lou LP, Xu XY, Zheng P, Hu BL (2014) Evidence for the co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in a flooded paddy field. Appl Environ Microbiol. doi:10.1128/AEM.02379-14

    Google Scholar 

  38. Shen LD, Wu HS, Gao ZQ (2014) Distribution and environmental significance of nitrite-dependent anaerobic methane-oxidising bacteria in natural ecosystems. Appl Microbiol Biotechnol. doi:10.1007/s00253-014-6200-y

    Google Scholar 

  39. Strous M, Kuenen JG, Jetten MSM (1999) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65:3248–3250

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Strous M, Jetten MSM (2004) Anaerobic oxidation of methane and ammonium. Annu Rev Microbiol 58:99–117

    Article  CAS  PubMed  Google Scholar 

  41. Thauer RK, Shima S (2006) Biogeochemistry: methane and microbes. Nature 440:878–879

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Zhu GB, Harhangi HR, Zhu BL, Jetten MSM, Yin CQ, Op den Camp HJ (2012) Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane oxidizing bacteria in a paddy soil. FEMS Microbiol Lett 336:79–88

    Article  CAS  PubMed  Google Scholar 

  43. Wu ML, Ettwig KF, Jetten MSM, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Tran 40:243–248

    Article  Google Scholar 

  44. Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJM, Keltjens JT, Jetten MSM, Strous M (2011) Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph ‘Candidatus Methylomirabilis oxyfera’. Microbiology 157:890–898

    Article  CAS  PubMed  Google Scholar 

  45. Wu ML, van Teeseling MC, Willems MJ, van Donselaar EG, Klingl A, Rachel R, Geerts WJ, Jetten MSM, Strous M, van Niftrik L (2012) Ultrastructure of the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera,” a novel polygon-shaped bacterium. J Bacteriol 194:284–291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wu ML, van Alen TA, van Donselaar EG, Strous M, Jetten MSM, van Niftrik L (2012) Co-localization of particulate methane monooxygenase and cd(1) nitrite reductase in the denitrifying methanotroph ‘Candidatus Methylomirabilis oxyfera’. FEMS Microbiol Lett 334:49–56

    Article  CAS  PubMed  Google Scholar 

  47. Young KD (2003) Bacterial shape. Mol Microbiol 50:571–580

    Google Scholar 

  48. Zhou L, Xia C, Long XE, Guo J, Zhu G (2014) High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile. FEMS Microbiol Lett. doi:10.1111/1574-6968.12567

    Google Scholar 

  49. Zhu BL, van Dijk G, Fritz C, Smolders AJP, Pol A, Jetten MSM, Ettwig KF (2012) Anaerobic oxidization of methane in a minerotrophic peatland: enrichment of nitrite-dependent methane-oxidizing bacteria. Appl Environ Microbiol 78:8657–8665

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long XE, Sun X, Jiang B, Hou Q, Jetten MS, Yin C (2014) Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems. Environ Microbiol Rep. doi:10.1111/1758-2229.12214

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Startup Foundation for Introducing Talent of NUIST (No. S8113112001) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-dong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Ld., He, Zf., Wu, Hs. et al. Nitrite-Dependent Anaerobic Methane-Oxidising Bacteria: Unique Microorganisms with Special Properties. Curr Microbiol 70, 562–570 (2015). https://doi.org/10.1007/s00284-014-0762-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-014-0762-x

Keywords

Navigation