The 2023 MDPI Annual Report has
been released!
 
14 pages, 11395 KiB  
Article
A New Lead-Free Copper Alloy CuAl8Fe5Ni4Zn4Sn1 for Plain Bearings and Its Strengthening Mechanisms
by Björn Reetz and Tileman Münch
Metals 2024, 14(6), 697; https://doi.org/10.3390/met14060697 (registering DOI) - 12 Jun 2024
Abstract
CuAl8Fe5Ni4Zn4Sn1 (OF 2238) is a new lead-free copper alloy for plain-bearing applications that was first officially presented in a scientific journal in 2020. Soon after its invention, the use of the alloy for connecting rod bushings in heavy-duty internal combustion engines was promoted [...] Read more.
CuAl8Fe5Ni4Zn4Sn1 (OF 2238) is a new lead-free copper alloy for plain-bearing applications that was first officially presented in a scientific journal in 2020. Soon after its invention, the use of the alloy for connecting rod bushings in heavy-duty internal combustion engines was promoted and validated with customers. The aim of this article is to describe the material properties of the new alloy in more detail than previously and explain how the advantageous properties of CuAl8Fe5Ni4Zn4Sn1 are generated. At the beginning of this article, the general development trends in the field of copper alloys for sliding applications are presented, into which the new alloy from this publication can be classified. In the main part of this publication, the authors go through the production chain of CuAl8Fe5Ni4Zn4Sn and show how the entire manufacturing process contributes to obtaining a material with a combination of high strength, ductility and sufficient toughness. This starts with fine microstructures after casting, followed by homogenisation and refinement during hot extrusion and work hardening chiefly during cold drawing. What is most surprising, however, is the finding that a strong hardening effect can be achieved in the new alloy by precipitation of fine κ-phase at temperatures of about 400 °C and air cooling without prior solution treatment. These results make it clear that there is great potential for further material developments to support material efficiency and even to expand the application limits. Full article
(This article belongs to the Special Issue Advanced Performance of Copper Alloys)
Show Figures

Figure 1

18 pages, 5247 KiB  
Article
Sensing Pre- and Post-Ecdysis of Tropical Rock Lobsters, Panulirus ornatus, Using a Low-Cost Novel Spectral Camera
by Charles Sutherland, Alan D. Henderson, Dean R. Giosio, Andrew J. Trotter and Greg G. Smith
J. Mar. Sci. Eng. 2024, 12(6), 987; https://doi.org/10.3390/jmse12060987 (registering DOI) - 12 Jun 2024
Abstract
Tropical rock lobsters (Panulirus ornatus) are a highly cannibalistic species with intermoult animals predominantly attacking animals during ecdysis (moulting). Rapid, positive characterisation of pre-ecdysis lobsters may open a pathway to disrupt cannibalism. Ecdysial suture line development is considered for pre-ecdysis recognition [...] Read more.
Tropical rock lobsters (Panulirus ornatus) are a highly cannibalistic species with intermoult animals predominantly attacking animals during ecdysis (moulting). Rapid, positive characterisation of pre-ecdysis lobsters may open a pathway to disrupt cannibalism. Ecdysial suture line development is considered for pre-ecdysis recognition with suture line definition compared for intermoult and pre-ecdysis lobsters emerged and immerged, using white, near ultraviolet (365 nm), near infrared (850 nm), and specialty SFH 4737 broadband IR LEDs against a reference of intermoult lobsters with no suture line development. Difficulties in acquiring suture line images prompted research into pre-ecdysis characterisation from the lobster’s dorsal carapace, due to its accessibility through a culture vessel’s surface. In this study, a novel low-cost spectral camera was developed by coordinating an IMX219 image sensor, an AS7265x spectral sensor, and four SFH 4737 broadband infrared LEDs through a single-board computer. Images and spectral data from the lobster’s dorsal carapace were acquired from intermoult, pre-ecdysis, and post-ecdysis lobsters. For the first time, suture line definition was found to be enhanced under 850 nm, 365 nm, and SFH 4737 LEDs for immerged lobsters, while the 850 nm LED achieved the best suture line definition of emerged lobsters. Although the spectral camera was unable to characterise pre-ecdysis, its development was validated when a least squares regression for binary classification decision boundary successfully separated 86.7% of post-ecdysis lobsters. Achieving post-ecdysis characterisation is the first time the dorsal carapace surface has been used to characterise a moult stage for palinurid lobsters. Full article
Show Figures

Figure 1

18 pages, 3331 KiB  
Article
Study on an Automatic Classification Method for Determining the Malignancy Grade of Glioma Pathological Sections Based on Hyperspectral Multi-Scale Spatial–Spectral Fusion Features
by Jiaqi Chen, Jin Yang, Jinyu Wang, Zitong Zhao, Mingjia Wang, Ci Sun, Nan Song and Shulong Feng
Sensors 2024, 24(12), 3803; https://doi.org/10.3390/s24123803 (registering DOI) - 12 Jun 2024
Abstract
This study describes a novel method for grading pathological sections of gliomas. Our own integrated hyperspectral imaging system was employed to characterize 270 bands of cancerous tissue samples from microarray slides of gliomas. These samples were then classified according to the guidelines developed [...] Read more.
This study describes a novel method for grading pathological sections of gliomas. Our own integrated hyperspectral imaging system was employed to characterize 270 bands of cancerous tissue samples from microarray slides of gliomas. These samples were then classified according to the guidelines developed by the World Health Organization, which define the subtypes and grades of diffuse gliomas. We explored a hyperspectral feature extraction model called SMLMER-ResNet using microscopic hyperspectral images of brain gliomas of different malignancy grades. The model combines the channel attention mechanism and multi-scale image features to automatically learn the pathological organization of gliomas and obtain hierarchical feature representations, effectively removing the interference of redundant information. It also completes multi-modal, multi-scale spatial–spectral feature extraction to improve the automatic classification of glioma subtypes. The proposed classification method demonstrated high average classification accuracy (>97.3%) and a Kappa coefficient (0.954), indicating its effectiveness in improving the automatic classification of hyperspectral gliomas. The method is readily applicable in a wide range of clinical settings, offering valuable assistance in alleviating the workload of clinical pathologists. Furthermore, the study contributes to the development of more personalized and refined treatment plans, as well as subsequent follow-up and treatment adjustment, by providing physicians with insights into the underlying pathological organization of gliomas. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

12 pages, 661 KiB  
Article
Exploring Prescription Practices: Insights from an Antimicrobial Stewardship Program at a Tertiary Healthcare Facility, Rwanda
by Misbah Gashegu, Noel Gahamanyi, François Xavier Ndayambaje, Jean Bosco Munyemana, Vedaste Ndahindwa, Fredrick Lukwago, Lambert Ingabire, Fiona Gambanga, Pierre Gashema, Albert Tuyishime, Tafadzwa Dzinamarira, Damas Dukundane, Thierry Zawadi Muvunyi and Claude Mambo Muvunyi
Antibiotics 2024, 13(6), 548; https://doi.org/10.3390/antibiotics13060548 (registering DOI) - 12 Jun 2024
Abstract
Antimicrobial resistance (AMR) is a major public health threat linked to increased morbidity and mortality. It has the potential to return us to the pre-antibiotic era. Antimicrobial stewardship (AMS) programs are recognized as a key intervention to improve antimicrobial use and combat AMR. [...] Read more.
Antimicrobial resistance (AMR) is a major public health threat linked to increased morbidity and mortality. It has the potential to return us to the pre-antibiotic era. Antimicrobial stewardship (AMS) programs are recognized as a key intervention to improve antimicrobial use and combat AMR. However, implementation of AMS remains limited in Africa, particularly in Rwanda. This study aimed to assess prescription practices, identify areas for improvement, and promote adherence to AMS principles. Conducted at King Faisal Hospital in Rwanda, this qualitative study used semi-structured interviews with eight participants until saturation was reached. The interviews were recorded, transcribed, and thematically analyzed, revealing four emerging themes. The first theme was on AMS activities that were working well based on availability of microbiology laboratory results and prescription guidelines as factors influencing antibiotic prescription adjustments. The second theme was related to challenges during the implementation of the AMS program, including the prescription of broad-spectrum antibiotics, limited local data on AMR patterns, and stock-outs of essential antibiotics. The third theme was on the importance of adhering to AMR management guidelines at KFH. The last emerged on recommendations from participants centered on regular training for healthcare workers, widespread dissemination of AMR findings across departments, and the enforcement of antibiotic restriction policies. These actions can improve prescription behaviors, upholding the highest standards of patient care, and strengthening the nascent AMS program. Full article
(This article belongs to the Special Issue Surveillance and Optimization of Antibiotics Usage)
Show Figures

Figure 1

22 pages, 8423 KiB  
Article
Artificial and Natural Sweeteners Biased T1R2/T1R3 Taste Receptors Transactivate Glycosylated Receptors on Cancer Cells to Induce Epithelial–Mesenchymal Transition of Metastatic Phenotype
by Elizabeth Skapinker, Rashelle Aldbai, Emilyn Aucoin, Elizabeth Clarke, Mira Clark, Daniella Ghokasian, Haley Kombargi, Merlin J. Abraham, Yunfan Li, David A. Bunsick, Leili Baghaie and Myron R. Szewczuk
Nutrients 2024, 16(12), 1840; https://doi.org/10.3390/nu16121840 (registering DOI) - 12 Jun 2024
Abstract
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states [...] Read more.
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling. Full article
(This article belongs to the Special Issue Effects of Sugars and Sugar Alternatives on Human Health and Disease)
Show Figures

Figure 1

16 pages, 3554 KiB  
Article
A Novel Contact Stiffness Model for Grinding Joint Surface Based on the Generalized Ubiquitiformal Sierpinski Carpet Theory
by Qi An, Yue Liu, Min Huang and Shuangfu Suo
Fractal Fract. 2024, 8(6), 351; https://doi.org/10.3390/fractalfract8060351 (registering DOI) - 12 Jun 2024
Abstract
A novel analytical model based on the generalized ubiquitiformal Sierpinski carpet is proposed which can more accurately obtain the normal contact stiffness of the grinding joint surface. Firstly, the profile and the distribution of asperities on the grinding surface are characterized. Then, based [...] Read more.
A novel analytical model based on the generalized ubiquitiformal Sierpinski carpet is proposed which can more accurately obtain the normal contact stiffness of the grinding joint surface. Firstly, the profile and the distribution of asperities on the grinding surface are characterized. Then, based on the generalized ubiquitiformal Sierpinski carpet, the contact characterization of the grinding joint surface is realized. Secondly, a contact mechanics analysis of the asperities on the grinding surface is carried out. The analytical expressions for contact stiffness in various deformation stages are derived, culminating in the establishment of a comprehensive analytical model for the grinding joint surface. Subsequently, a comparative analysis is conducted between the outcomes of the presented model, the KE model, and experimental data. The findings reveal that, under identical contact pressure conditions, the results obtained from the presented model exhibit a closer alignment with experimental observations compared to the KE model. With an increase in contact pressure, the relative error of the presented model shows a trend of first increasing and then decreasing, while the KE model has a trend of increasing. For the relative error values of the four surfaces under different contact pressures, the maximum relative error of the presented model is 5.44%, while the KE model is 22.99%. The presented model can lay a solid theoretical foundation for the optimization design of high-precision machine tools and provide a scientific theoretical basis for the performance analysis of machine tool systems. Full article
(This article belongs to the Special Issue Fractal Analysis and Fractal Dimension in Materials Chemistry)
Show Figures

Figure 1

22 pages, 1083 KiB  
Article
Home Sweet Home? The Mediating Role of Human Resource Management Practices in the Relationship between Leadership and Quality of Life in Teleworking in the Public Sector
by Tatiane Alves de Melo and Gisela Demo
Sustainability 2024, 16(12), 5006; https://doi.org/10.3390/su16125006 (registering DOI) - 12 Jun 2024
Abstract
Remote work in pandemic times has become a strategic alternative for organizations and has persisted in the post-pandemic context, remaining present in hybrid models of work arrangements, blending in-person work and telework. Thus, this paper proposes a model to identify the relationships between [...] Read more.
Remote work in pandemic times has become a strategic alternative for organizations and has persisted in the post-pandemic context, remaining present in hybrid models of work arrangements, blending in-person work and telework. Thus, this paper proposes a model to identify the relationships between leadership, human resource management (HRM) practices, and quality of life in teleworking (QoLT) for civil servants. For this purpose, a structural model was tested in which HRM practices mediated the relationship between leadership and QoLT. The relationships assumed in the analysis of the tested mediation model were significant, confirming all four hypotheses researched. The novelty of the tested mediation model is the greatest contribution of this work, demonstrating the crucial role that HRM practices play in the relationship between leadership and QoLT. As practical implications, this research has yielded a diagnosis, allowing for a better understanding for public managers of how leadership and HRM practices are related and how they influence quality of life in the challenging context of teleworking. The findings suggest that leadership has a strong impact on HRM practices, highlighting the crucial role of leadership in shaping teleworkers’ perceptions of HRM practices. Additionally, leadership significantly influences the quality of life in telework, amplifying this impact through the perception of HRM practices. Therefore, leaders should be attentive to how relationship-building, training and development, and performance and competency evaluation in HRM practices are implemented and executed, as they profoundly influence the promotion of quality of life, considering the complex and challenging environment of telework, including workload, social distance, and work–family conflict. Full article
Show Figures

Figure 1

20 pages, 1745 KiB  
Article
Anchor Shear Strength Damage under Varying Sand Content, Freeze−Thaw Cycles, and Axial Pressure Conditions
by Jie Dong, Yin-Chen Wang, Zhi-Hui Wu, Feng-Wu Gong, Ya-Dong Zhao and Hong-Feng Zhang
Buildings 2024, 14(6), 1772; https://doi.org/10.3390/buildings14061772 (registering DOI) - 12 Jun 2024
Abstract
Sandy soil in the north of Hebei region of China is widely distributed, the temperature difference between day and night is large, the phenomenon of freezing and thawing is obvious, and the soil body before and after the freezing and thawing cycle of [...] Read more.
Sandy soil in the north of Hebei region of China is widely distributed, the temperature difference between day and night is large, the phenomenon of freezing and thawing is obvious, and the soil body before and after the freezing and thawing cycle of sandy soil slopes is affected by the changes. This paper takes the stability of a sandy soil anchorage interface under a freeze–thaw cycle as the research background and, based on the self-developed anchor−soil interface shear device, analyses the influence of changing sand rate, confining pressure, and the number of freeze–thaw cycles on the shear characteristics of an anchor−soil interface in anchorage specimens. The research findings indicate that, at 50%–60% sand contents, the shear strength increases with a higher sand content and is positively correlated with confining pressure within a higher range. A higher sand content stabilises the anchoring body, but an excessively high sand content can lead to failure. Increasing the sand content, confining pressure, and freeze‒thaw cycle number all result in a reduction in the shear displacement at the peak strength. After 11 freeze‒thaw cycles, the shear strength of the anchoring body stabilises, with a reduction in strength of approximately 32%, and a higher sand content effectively reduces the reduction in strength. Full article
(This article belongs to the Special Issue Building Foundation Analysis: Soil–Structure Interaction)
34 pages, 5742 KiB  
Article
Meta-Analyses of Methionine Source Concept Validation Trials in Broilers
by Andreas Lemme, Zeyang Li and Juliano Dorigam
Animals 2024, 14(12), 1771; https://doi.org/10.3390/ani14121771 (registering DOI) - 12 Jun 2024
Abstract
While the supplementation of methionine (Met) sources in broiler feeds has been established for several decades, there is debate on the nutritional value of the methionine hydroxy analogue of methionine (MHA) relative to DL-Met. Based on a recommendation suggesting that MHA is 65% [...] Read more.
While the supplementation of methionine (Met) sources in broiler feeds has been established for several decades, there is debate on the nutritional value of the methionine hydroxy analogue of methionine (MHA) relative to DL-Met. Based on a recommendation suggesting that MHA is 65% as effective as DL-Met, many feeding trials have been conducted to challenge this recommendation. A literature search found 25 publications contributing 95 data sets suitable to compute Hedges’ g effect sizes used in the meta-analysis. The data had very little heterogeneity of almost zero and the small effect sizes of the DL-Met results were not significantly different from MHA. Data were split in various subgroups, finally suggesting that neither broiler strain (Cobb 500, Ross 308), diet type (corn, wheat based), origin of data (peer-reviewed, grey literature), nor MHA product (MHA-free acid, MHA-calcium salt) impacted the outcome of the meta-analysis. Moreover, distinguishing data in groups with dietary Met+Cysteine (Cys) levels below, at, or above requirement demonstrated that there was no interaction with general Met+Cys supply. It is therefore concluded that MHA products can be replaced by DL-Met in a weight-to-weight ratio of 100:65 in any production condition without compromising broiler performance Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

18 pages, 3473 KiB  
Article
β-Cyclocitral from Lavandula angustifolia Mill. Exerts Anti-Aging Effects on Yeasts and Mammalian Cells via Telomere Protection, Antioxidative Stress, and Autophagy Activation
by Jiaheng Shan, Jianxia Mo, Chenyue An, Lan Xiang and Jianhua Qi
Antioxidants 2024, 13(6), 715; https://doi.org/10.3390/antiox13060715 (registering DOI) - 12 Jun 2024
Abstract
We used a replicative lifespan (RLS) experiment of K6001 yeast to screen for anti-aging compounds within lavender extract (Lavandula angustifolia Mill.), leading to the discovery of β-cyclocitral (CYC) as a potential anti-aging compound. Concurrently, the chronological lifespan (CLS) of YOM36 yeast [...] Read more.
We used a replicative lifespan (RLS) experiment of K6001 yeast to screen for anti-aging compounds within lavender extract (Lavandula angustifolia Mill.), leading to the discovery of β-cyclocitral (CYC) as a potential anti-aging compound. Concurrently, the chronological lifespan (CLS) of YOM36 yeast and mammalian cells confirmed the anti-aging effect of CYC. This molecule extended the yeast lifespan and inhibited etoposide (ETO)-induced cell senescence. To understand the mechanism of CYC, we analyzed its effects on telomeres, oxidative stress, and autophagy. CYC administration resulted in notable increases in the telomerase content, telomere length, and the expression of the telomeric shelterin protein components telomeric-repeat binding factor 2 (TRF2) and repressor activator protein 1 (RAP1). More interestingly, CYC reversed H2O2-induced telomere damage and exhibited strong antioxidant capacity. Moreover, CYC improved the survival rate of BY4741 yeast under oxidative stress induced by 6.2 mM H2O2, increasing the antioxidant enzyme activity while reducing the reactive oxygen species (ROS), reactive nitrogen species (RNS), and malondialdehyde (MDA) levels. Additionally, CYC enhanced autophagic flux and free green fluorescent protein (GFP) expression in the YOM38-GFP-ATG8 yeast strain. However, CYC did not extend the RLS of K6001 yeast mutants, such as Δsod1, Δsod2, Δcat, Δgpx, Δatg2, and Δatg32, which lack antioxidant enzymes or autophagy-related genes. These findings reveal that CYC acts as an anti-aging agent by modifying telomeres, oxidative stress, and autophagy. It is a promising compound with potential anti-aging effects and warrants further study. Full article
Show Figures

Figure 1

13 pages, 10419 KiB  
Article
Baseflow from Snow and Rain in Mountain Watersheds
by Helen Flynn, Steven R. Fassnacht, Marin S. MacDonald and Anna K. D. Pfohl
Water 2024, 16(12), 1665; https://doi.org/10.3390/w16121665 - 12 Jun 2024
Abstract
After peak snowmelt, baseflow is the primary contributor to streamflow in snow-dominated watersheds. These low flows provide important water for municipal, agricultural, and recreational purposes once peak flows have been allocated. This study examines the correlation between peak snow water equivalent (SWE), post-peak [...] Read more.
After peak snowmelt, baseflow is the primary contributor to streamflow in snow-dominated watersheds. These low flows provide important water for municipal, agricultural, and recreational purposes once peak flows have been allocated. This study examines the correlation between peak snow water equivalent (SWE), post-peak SWE precipitation, and baseflow characteristics, including any yearly lag in baseflow. To reflect the hydrologic processes that are occurring in snow-dominated watersheds, we propose using a melt year (MY) beginning with the onset of snowmelt contributions (the first deviation from baseflow) and ending with the onset of the following year’s snowmelt contributions. We identified the beginning of an MY and extracted the subsequent baseflow values using flow duration curves (FDCs) for 12 watersheds of varying sizes across Colorado, USA. Based on the findings, peak SWE and summer rain both dictate baseflow, especially for the larger watersheds evaluated, as identified by higher correlations with the MY-derived baseflow. Lags in the correlation between baseflow and peak SWE are best identified when low-snow years are investigated separately from high-snow years. The MY is a different and more effective approach to calculating baseflow using FDCs in snow-dominated watersheds in Colorado. Full article
(This article belongs to the Special Issue Cold Region Hydrology and Hydraulics)
Show Figures

Graphical abstract

30 pages, 2119 KiB  
Article
Quantitative Detection of Vertical Track Irregularities under Non-Stationary Conditions with Variable Vehicle Speed
by Qiushi Wang, Hui Zhao, Dao Gong, Jinsong Zhou and Zhongmin Xiao
Sensors 2024, 24(12), 3804; https://doi.org/10.3390/s24123804 (registering DOI) - 12 Jun 2024
Abstract
Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis [...] Read more.
Track irregularities directly affect the quality and safety of railway vehicle operations. Quantitative detection and real-time monitoring of track irregularities are of great importance. However, due to the frequent variable vehicle speed, vehicle operation is a typical non-stationary process. The traditional signal analysis methods are unsuitable for non-stationary processes, making the quantitative detection of the wavelength and amplitude of track irregularities difficult. To solve the above problems, this paper proposes a quantitative detection method of track irregularities under non-stationary conditions with variable vehicle speed by order tracking analysis for the first time. Firstly, a simplified wheel–rail dynamic model is established to derive the quantitative relationship between the axle-box vertical vibration and the track vertical irregularities. Secondly, the Simpson double integration method is proposed to calculate the axle-box vertical displacement based on the axle-box vertical acceleration, and the process error is optimized. Thirdly, based on the order tracking analysis theory, the angular domain resampling is performed on the axle-box vertical displacement time-domain signal in combination with the wheel rotation speed signals, and the quantitative detection of the track irregularities is achieved. Finally, the proposed method is validated based on simulation and field test analysis cases. We provide theoretical support and method reference for the quantitative detection method of track irregularities. Full article
(This article belongs to the Special Issue Vehicle Sensing and Dynamic Control)
15 pages, 3726 KiB  
Article
Advancements in Heavy Metal Stabilization: A Comparative Study on Zinc Immobilization in Glass-Portland Cement Binders
by Abdelhadi Bouchikhi, Amine el Mahdi Safhi, Walid Maherzi, Yannick Mamindy-Pajany, Wolfgang Kunther, Mahfoud Benzerzour and Nor-Edine Abriak
Materials 2024, 17(12), 2867; https://doi.org/10.3390/ma17122867 (registering DOI) - 12 Jun 2024
Abstract
Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using [...] Read more.
Recent literature has exhibited a growing interest in the utilization of ground glass powder (GP) as a supplementary cementitious material (SCM). Yet, the application of SCMs in stabilizing heavy metallic and metalloid elements remains underexplored. This research zeroes in on zinc stabilization using a binder amalgam of GP and ordinary Portland cement (OPC). This study juxtaposes the stability of zinc in a recomposed binder consisting of 30% GP and 70% OPC (denoted as 30GP-M) against a reference binder of 100% CEM I 52.5 N (labeled reference mortar, RM) across curing intervals of 1, 28, and 90 days. Remarkably, the findings indicate a heightened kinetic immobilization of Zn at 90 days in the presence of GP—surging up to 40% in contrast to RM. Advanced microstructural analyses delineate the stabilization locales for Zn, including on the periphery of hydrated C3S particles (Zn–C3S), within GP-reactive sites (Si*–O–Zn), and amid C–S–H gel structures, i.e., (C/Zn)–S–H. A matrix with 30% GP bolsters the hydration process of C3S vis-à-vis the RM matrix. Probing deeper, the microstructural characterization underscores GP’s prowess in Zn immobilization, particularly at the interaction zone with the paste. In the Zn milieu, it was discerning a transmutation—some products born from the GP–Portlandite reaction morph into GP–calcium–zincate. Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

15 pages, 6494 KiB  
Article
Design and Construction of a Multipole Electric Motor Using an Axial Flux Configuration
by Adrián González-Parada, Francisco Moreno Del Valle and Ricard Bosch-Tous
World Electr. Veh. J. 2024, 15(6), 256; https://doi.org/10.3390/wevj15060256 - 12 Jun 2024
Abstract
In the transportation industry, the use of renewable energies has been implemented in conjunction with the development of higher-power electric motors and, consequently, the development of intelligent control systems for torque and speed control. Currently, the coupling between both systems is being developed [...] Read more.
In the transportation industry, the use of renewable energies has been implemented in conjunction with the development of higher-power electric motors and, consequently, the development of intelligent control systems for torque and speed control. Currently, the coupling between both systems is being developed through mechanical systems, affecting the efficient transmission of energy and the useful life of the components. On the other hand, new configurations of electric motors are being developed, such as axial flux motors (AFM), because these can be coupled directly without a mechanical coupling, given their characteristics of high torque at low speeds. In the present work, an innovative design of a multipole axial flux motor (MAFM) is introduced. General criteria for the design and construction are presented considering the geometry in axial flux and permanent magnets. The performance of the system is evaluated through finite element magnetic simulations (FEMM) and compared with experimental measurements of the developed prototype; confirming the effectiveness of the design, obtaining torques of up to 1.784 Nm without extra mechanical couplings and maximum speed regulation errors of 8.43%. The motor was controlled by a digital pole switching system whit six control mode, applied to a permanent magnet MFA for speed and torque control at constant speed. This control can be extended to conventional radial flux electric motor configurations and intelligent traction applications, based on torque demand. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

19 pages, 2999 KiB  
Article
Novel Deep Learning Domain Adaptation Approach for Object Detection Using Semi-Self Building Dataset and Modified YOLOv4
by Ahmed Gomaa and Ahmad Abdalrazik
World Electr. Veh. J. 2024, 15(6), 255; https://doi.org/10.3390/wevj15060255 - 12 Jun 2024
Abstract
Moving object detection is a vital research area that plays an essential role in intelligent transportation systems (ITSs) and various applications in computer vision. Recently, researchers have utilized convolutional neural networks (CNNs) to develop new techniques in object detection and recognition. However, with [...] Read more.
Moving object detection is a vital research area that plays an essential role in intelligent transportation systems (ITSs) and various applications in computer vision. Recently, researchers have utilized convolutional neural networks (CNNs) to develop new techniques in object detection and recognition. However, with the increasing number of machine learning strategies used for object detection, there has been a growing need for large datasets with accurate ground truth used for the training, usually demanding their manual labeling. Moreover, most of these deep strategies are supervised and only applicable for specific scenes with large computational resources needed. Alternatively, other object detection techniques such as classical background subtraction need low computational resources and can be used with general scenes. In this paper, we propose a new a reliable semi-automatic method that combines a modified version of the detection-based CNN You Only Look Once V4 (YOLOv4) technique and background subtraction technique to perform an unsupervised object detection for surveillance videos. In this proposed strategy, background subtraction-based low-rank decomposition is applied firstly to extract the moving objects. Then, a clustering method is adopted to refine the background subtraction (BS) result. Finally, the refined results are used to fine-tune the modified YOLO v4 before using it in the detection and classification of objects. The main contribution of this work is a new detection framework that overcomes manual labeling and creates an automatic labeler that can replace manual labeling using motion information to supply labeled training data (background and foreground) directly from the detection video. Extensive experiments using real-world object monitoring benchmarks indicate that the suggested framework obtains a considerable increase in mAP compared to state-of-the-art results on both the CDnet 2014 and UA-DETRAC datasets. Full article
(This article belongs to the Special Issue Electric Vehicle Autonomous Driving Based on Image Recognition)
Show Figures

Figure 1

34 pages, 12253 KiB  
Article
CFD Simulation to Assess the Effects of Asphalt Pavement Combustion on User Safety in the Event of a Fire in Road Tunnels
by Ciro Caliendo and Isidoro Russo
Fire 2024, 7(6), 195; https://doi.org/10.3390/fire7060195 - 12 Jun 2024
Abstract
This paper presents a specific 3D computational fluid dynamics model to quantify the effects of the combustion of asphalt road pavement on user safety in the event of a fire in a bi-directional road tunnel. Since the consequences on tunnel users and/or rescue [...] Read more.
This paper presents a specific 3D computational fluid dynamics model to quantify the effects of the combustion of asphalt road pavement on user safety in the event of a fire in a bi-directional road tunnel. Since the consequences on tunnel users and/or rescue teams might be affected not only by the tunnel geometry but also by the type of ventilation and traffic flow, the environmental conditions caused by the fire in the tunnel under natural or longitudinal mechanical ventilation, as well as congested traffic conditions, were more especially investigated. The simulation results showed that the combustion of the asphalt pavement in the event of a 100 MW fire, compared to the case of a non-combustible road pavement, caused (i) an increase in smoke concentrations; (ii) a greater number of users exposed to the risk of incapacity to escape from the tunnel; (iii) a more difficult situation for the firefighters entering the tunnel upstream of the fire source in the case of natural ventilation; (iv) a higher probability of the domino effect for vehicles queued downstream of the fire when the tunnel is mechanically ventilated. Full article
(This article belongs to the Special Issue Advance in Tunnel Fire Research)
Show Figures

Figure 1

8 pages, 4284 KiB  
Article
Dynamic Behavior and Optical Soliton for the M-Truncated Fractional Paraxial Wave Equation Arising in a Liquid Crystal Model
by Jie Luo and Zhao Li
Fractal Fract. 2024, 8(6), 348; https://doi.org/10.3390/fractalfract8060348 - 12 Jun 2024
Abstract
The main purpose of this article is to investigate the dynamic behavior and optical soliton for the M-truncated fractional paraxial wave equation arising in a liquid crystal model, which is usually used to design camera lenses for high-quality photography. The traveling wave transformation [...] Read more.
The main purpose of this article is to investigate the dynamic behavior and optical soliton for the M-truncated fractional paraxial wave equation arising in a liquid crystal model, which is usually used to design camera lenses for high-quality photography. The traveling wave transformation is applied to the M-truncated fractional paraxial wave equation. Moreover, a two-dimensional dynamical system and its disturbance system are obtained. The phase portraits of the two-dimensional dynamic system and Poincaré sections and a bifurcation portrait of its perturbation system are drawn. The obtained three-dimensional graphs of soliton solutions, two-dimensional graphs of soliton solutions, and contour graphs of the M-truncated fractional paraxial wave equation arising in a liquid crystal model are drawn. Full article
Show Figures

Figure 1

11 pages, 2286 KiB  
Article
Mechanical Properties and Thermal Conductivity of Y-Si and Gd-Si Silicides: First-Principles Calculations
by Kexue Peng, Panxin Huang, Guifang Han, Huan Liu, Weibin Zhang, Weili Wang and Jingde Zhang
J. Compos. Sci. 2024, 8(6), 221; https://doi.org/10.3390/jcs8060221 - 12 Jun 2024
Abstract
The traditional Si bonding layer in environmental barrier coatings has a low melting point (1414 °C), which is a significant challenge in meeting the requirements of the next generation higher thrust-to-weight ratio aero-engines. To seek new bonding layer materials with higher melting points, [...] Read more.
The traditional Si bonding layer in environmental barrier coatings has a low melting point (1414 °C), which is a significant challenge in meeting the requirements of the next generation higher thrust-to-weight ratio aero-engines. To seek new bonding layer materials with higher melting points, the mechanical properties of Y-Si and Gd-Si silicides were calculated by the first-principles method. Subsequently, empirical formulae were employed to compute the sound velocities, Debye temperatures, and the minimum coefficients of thermal conductivity for the YSi, Y5Si4, Y5Si3, GdSi, and Gd5Si4. The results showed that Y5Si4 has the best plasticity and ductility among all these materials. In addition, Gd5Si4 has the minimum Debye temperature (267 K) and thermal conductivity (0.43 W m−1 K−1) compared with others. The theoretical calculation results indicate that some silicides in the Y-Si and Gd-Si systems possess potential application value in high-temperature bonding layers for thermal and/or environmental barrier coating. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

3 pages, 185 KiB  
Editorial
Drivers of and Barriers to the Implementation of Integrated Pest Management in Horticultural Crops
by Małgorzata Tartanus and Eligio Malusà
Horticulturae 2024, 10(6), 626; https://doi.org/10.3390/horticulturae10060626 - 12 Jun 2024
Abstract
Integrated pest management (IPM) aims to protect plants using methods that limit the use of pesticides, as well as other interventions, to levels that are economically and ecologically justified, thus reducing the negative impact of crop protection on humans and the environment [...] [...] Read more.
Integrated pest management (IPM) aims to protect plants using methods that limit the use of pesticides, as well as other interventions, to levels that are economically and ecologically justified, thus reducing the negative impact of crop protection on humans and the environment [...] Full article
(This article belongs to the Special Issue Integrated Pest Management in Horticulture)
18 pages, 1927 KiB  
Review
Recent Advances in Resource Utilization of Huangshui from Baijiu Production
by Xiaoying Zhang, Huiwen Zhang, Zhengyi Zhang, Ruixi Wang and Jishi Zhang
Fermentation 2024, 10(6), 310; https://doi.org/10.3390/fermentation10060310 - 12 Jun 2024
Abstract
Huangshui is a typical organic wastewater in Chinese Baijiu production, with high pollution and valuable ingredients. Conventional wastewater treatment leads to resource-wasting and environmental pollution. It is urgent that the demand for effective Huangshui treatment with the development of the Baijiu-making industry. This [...] Read more.
Huangshui is a typical organic wastewater in Chinese Baijiu production, with high pollution and valuable ingredients. Conventional wastewater treatment leads to resource-wasting and environmental pollution. It is urgent that the demand for effective Huangshui treatment with the development of the Baijiu-making industry. This review systematically summarizes recent studies, revealing the main characteristics and application of Huangshui, focusing on the application of the rich microbial resources and flavor substances, which provides a practical approach to cascade and full use of Huangshui in medicine, cosmetic, functional food, fertilizer, and wastewater treatment fields. Further research suggested that Huangshui can also be used as an external carbon source for the denitrification system or as an organic liquid water-soluble fertilizer for more fruits and grains. The applications favor improving production efficiency and lowering pollutant emissions and introduce novel concepts for the sustainable development of related industries. Thus, Chinese Baijiu plants can achieve the near-zero emissions of wastewater and cleaner production. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

22 pages, 2797 KiB  
Review
Bioprocess of Gibberellic Acid by Fusarium fujikuroi: The Challenge of Regulation, Raw Materials, and Product Yields
by Aranza Hernández Rodríguez, Adrián Díaz Pacheco, Shirlley Elizabeth Martínez Tolibia, Yazmin Melendez Xicohtencatl, Sulem Yali Granados Balbuena and Víctor Eric López y López
J. Fungi 2024, 10(6), 418; https://doi.org/10.3390/jof10060418 - 12 Jun 2024
Abstract
Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering [...] Read more.
Gibberellic acid (GA3) is a tetracyclic diterpenoid carboxylic acid synthesized by the secondary metabolism of Fusarium fujikuroi. This phytohormone is widely studied due to the advantages it offers as a plant growth regulator, such as growth stimulation, senescence delay, flowering induction, increased fruit size, and defense against abiotic or biotic stress, which improve the quality and yield of crops. Therefore, GA3 has been considered as an innovative strategy to improve agricultural production. However, the yields obtained at large scale are insufficient for the current market demand. This low productivity is attributed to the lack of adequate parameters to optimize the fermentation process, as well as the complexity of its regulation. Therefore, this article describes the latest advances for potentializing the GA3 production process, including an analysis of its origins from crops, the benefits of its application, the related biosynthetic metabolism, the maximum yields achieved from production processes, and their association with genetic engineering techniques for GA3 producers. This work provides a new perspective on the critical points of the production process, in order to overcome the limits surrounding this modern line of bioengineering. Full article
(This article belongs to the Special Issue Recent Advances in Fungal Secondary Metabolism, 2nd Edition)
Show Figures

Figure 1

7 pages, 855 KiB  
Case Report
Polymicrobial Septic Peritonitis Caused by Enterococcus faecium and Enterococcus casseliflavus following Uterine Rupture in a Goat
by Gabriel S. dos Santos, Giovanna S. Francischetti, Natália F. Garritano, Stefano C. F. Hagen, Artur F. Cagnim, José Luiz Catão-Dias, José S. Ferreira Neto, Maria Claudia A. Sucupira and Marcos B. Heinemann
Vet. Sci. 2024, 11(6), 268; https://doi.org/10.3390/vetsci11060268 - 12 Jun 2024
Abstract
A one-year-old female miniature goat was presented to an emergency service after calving a dead goatling. Physical and ultrasonographic examination revealed the presence of a viable fetus; therefore, the goat was submitted to an emergency cesarean section. In the postoperative period, the animal [...] Read more.
A one-year-old female miniature goat was presented to an emergency service after calving a dead goatling. Physical and ultrasonographic examination revealed the presence of a viable fetus; therefore, the goat was submitted to an emergency cesarean section. In the postoperative period, the animal had septic peritonitis caused by Enterococcus faecium and Enterococcus casseliflavus. Both bacterial strains showed contrasting antimicrobial resistance profiles. Laparohysterectomy and abdominal cavity lavage were performed, but, once the animal had adhesions and necrotic lesions in abdominal organs, euthanasia was executed. A post-mortem examination revealed fibrino-necrotic septic peritonitis secondary to uterine rupture. To the authors’ knowledge, this is the first detailed report of polymicrobial septic peritonitis in a miniature goat and the first report of septic peritonitis caused by E. faecium and E. casseliflavus. Full article
Show Figures

Figure 1

14 pages, 1297 KiB  
Article
Precision Non-Alcoholic Fatty Liver Disease (NAFLD) Diagnosis: Leveraging Ensemble Machine Learning and Gender Insights for Cost-Effective Detection
by Azadeh Alizargar, Yang-Lang Chang, Mohammad Alkhaleefah and Tan-Hsu Tan
Bioengineering 2024, 11(6), 600; https://doi.org/10.3390/bioengineering11060600 - 12 Jun 2024
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by the accumulation of excess fat in the liver. If left undiagnosed and untreated during the early stages, NAFLD can progress to more severe conditions such as inflammation, liver fibrosis, cirrhosis, and even liver failure. In [...] Read more.
Non-Alcoholic Fatty Liver Disease (NAFLD) is characterized by the accumulation of excess fat in the liver. If left undiagnosed and untreated during the early stages, NAFLD can progress to more severe conditions such as inflammation, liver fibrosis, cirrhosis, and even liver failure. In this study, machine learning techniques were employed to predict NAFLD using affordable and accessible laboratory test data, while the conventional technique hepatic steatosis index (HSI)was calculated for comparison. Six algorithms (random forest, K-nearest Neighbors, Logistic Regression, Support Vector Machine, extreme gradient boosting, decision tree), along with an ensemble model, were utilized for dataset analysis. The objective was to develop a cost-effective tool for enabling early diagnosis, leading to better management of the condition. The issue of imbalanced data was addressed using the Synthetic Minority Oversampling Technique Edited Nearest Neighbors (SMOTEENN). Various evaluation metrics including the F1 score, precision, accuracy, recall, confusion matrix, the mean absolute error (MAE), receiver operating characteristics (ROC), and area under the curve (AUC) were employed to assess the suitability of each technique for disease prediction. Experimental results using the National Health and Nutrition Examination Survey (NHANES) dataset demonstrated that the ensemble model achieved the highest accuracy (0.99) and AUC (1.00) compared to the machine learning techniques that we used and HSI. These findings indicate that the ensemble model holds potential as a beneficial tool for healthcare professionals to predict NAFLD, leveraging accessible and cost-effective laboratory test data. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop