Skip to main content
Log in

The effect of coating thickness on corrosion behaviour of Zn-Cu electroplated materials

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Electroplating and electrochemical corrosion testing techniques are commonly used manufacturing processes for corrosion prevention and corrosion characterisation. However, the influence of electroplated coating thickness on corrosion has not received adequate attention. In this work, the effect of coating thickness on corrosion behaviour of electroplated zinc coating on copper substrate is studied. Inductively coupled plasma mass spectroscopy (ICPMS) coupled with potentiodynamic and potentiostatic polarisation measurements showed that enhanced corrosion resistance can be achieved by reducing the thickness of the zinc coating during electroplating. The increased resistance to corrosion with reduction in coating thickness is attributed to electromigration phenomenon, which is not often considered in electroplating work, but nonetheless can have significant consequences not only with regard to performance of electroplated materials but also during electrochemical analysis of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Draper CW (1982) J Metals 34(6):24–32

    Google Scholar 

  2. Clayton CR, Preece CM (eds) (1982) Corrosion of metals processed by direct energy beams. Metal Society of AIME, New York

    Google Scholar 

  3. McCafferty E, Moore PG, Pease GT (1982) J Electrochem Soc 129:9–17

    Article  Google Scholar 

  4. Lee HH, Hiam D (1989) Corrosion 45(10):852

    Article  Google Scholar 

  5. Basavanna S, Arthoba Naik Y (2009) J of Appl Electrochem 39:1975

    Article  Google Scholar 

  6. Popoola API, Fayomi OS (2011) Sci Res and Ess 6:4264–4272

    Google Scholar 

  7. Hague IU, Ahmad N, Akhan A (2005) J of Che Soc Pakistani 27:337

    Google Scholar 

  8. Es-saheb M, Sherif EM, El-Zatahry A, El Rayes MM, Khalil KA (2012) Int J of Electrochem Sci 7:10442–10455

    Google Scholar 

  9. Ravichndran R, Rajendran N (2005) Appl Surf Sci 239:182

    Article  Google Scholar 

  10. Shih HC, Tzou RJ (1991) J Electrochem Soc 138:958

    Article  Google Scholar 

  11. A Weisstuch, KR Lange, Mater Protect Perform, 10 (1971) 29

  12. Abbas MI (1991) Brit Corros J 26:273

    Article  Google Scholar 

  13. MJ Rahman, SR Sen, M Moniruzzaman, KM Shorowordi, J of Mech Eng, Tran., 40, (2009) 9.

  14. API Popoola, OS Fayomi O M Popoola.,OM 2011 Proc of Mat Sci & Tech. Conf, Ohio: USA (2011) 393–400

  15. API Popoola, SL Pityana, OM Popoola, J of the South Afri Inst. of Min. and Met, 111, (2011) 335

  16. API Popoola, SL Pityana, OM Popoola. J of the South Afri Inst of Min and Met, 111 (2011) 345

  17. AA Volinsky, J Vella, IS Adhihetty, VL Sarihan, L Mercado, BH Yeung, WW Gerberich, Mat Res Soc, 649, (2001)1

  18. Fayomi OS, Tau VR, Popoola API, Durodola BM, Ajayi OO, Loto CA, Inegbenebor OA (2011) J of Mat and Env Sci 3:271

    Google Scholar 

  19. Princeton Applied Research. Electrochemical Division, 1–8

  20. Cook DC (1998) Hyperfine Interact 111:71

    Article  Google Scholar 

  21. Zhang XG, Bravo IC (1994) Corrosion 50(4):308

    Article  Google Scholar 

  22. Nogueira TMC, Seixas UR, Rios PR (1998) ISIJ Int 38(7):775

    Article  Google Scholar 

  23. Besseyrias A, Dalard F, Rameau JJ, Baudin H (1995) Corrosion Sci 37(4):587

    Article  Google Scholar 

  24. Besseyrias A, Dalard F, Rameau JJ, Baudin H (1997) Corrosion Sci 39(10–11):1883

    Article  Google Scholar 

  25. Xhoffer C, Dillen H, De Cooman BC (1999) J Appl Electrochem 29:209

    Article  Google Scholar 

  26. PSG Silva, ANC Costa, P Lima Neto, A corrosion study of Zinc and Zinc-Fe coatings in NaCl and Na2SO4 solutions In: 5° Conference Sobre Tecnologia de Equipamentos, 21° Congresso Brasileiro de Corrosao, Sao Paulo, S.P., agosto de 2001 In Portuguese

  27. J. Lienig, An introduction to Electromigration-Aware Physical Design, Proc. Of the international Symposium of Physical Design, (2006), 39–46

  28. Chen S, Chen C (2003) JOM 55(2):62–67

    Article  Google Scholar 

  29. Chao B, Chae S, Zhang X, Lu K, Ding M (2006) Journal of Applied Physics 100(8):1–10

    Article  Google Scholar 

  30. Loto CA, Loto RT (2012) Int J Electrochem Sci 7:12021–12033

    Google Scholar 

  31. Newman RC, Shahrabi T, Sieradzki K (1988) Corros Sci 28:873–880

    Article  Google Scholar 

  32. Ranjana MM, Nandi MM (2009) Indian Journal of Chemical Technology 16:221–227

    Google Scholar 

  33. Chao B, Chae S, Zhang X, Lu K, Im J, Ho PS (2007) Acta Materialia 55:2805–2814

    Article  Google Scholar 

  34. A. Lodder and J. P. Dekker, Proc. of the Stress Induced Phenomena in Metallization: 4th International Workshop. 418 (1998) 315–329

  35. Ho PS, Kwok T (1989) Rep Prog Phys 52(3):301–348

    Article  Google Scholar 

  36. Queiroz FM, Costa I (2007) Surface and Coatings Technology 201:7024–7035

    Article  Google Scholar 

  37. Fonta MG (1986) Corrosion engineering. McGraw Hill, New York, pp 86–88

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ojo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluwasegun, K.M., Matousek, M. & Ojo, O.A. The effect of coating thickness on corrosion behaviour of Zn-Cu electroplated materials. Int J Adv Manuf Technol 77, 1249–1257 (2015). https://doi.org/10.1007/s00170-014-6554-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-014-6554-4

Keywords

Navigation