Skip to main content
Log in

Numerical simulation of micro-EDM model with multi-spark

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Micro-electrical discharge machining (EDM) has been identified as a micromachining process for the fabrication of components of size down to the micrometer level. This process is derived from EDM, and the principles of both the processes are similar; yet, due to significant scaling down of the micro-EDM process, lots of modifications in circuit design, electrode diameter, stress developed, and energy levels are needed. The specific analysis and modification of micro-EDM process are required to understand these capability and limitations. Therefore, a numerical model based on finite volume method has been developed to solve the micro-EDM model equations and thereby predict the effect of spark ratio (spark on time/spark off time) on the temperature distribution in the material. Moreover, the results of the analysis are successfully tested against published ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ho KH, Newman ST (2003) State of the art electrical discharge machining (EDM). Int J Mech Tools Manuf 43(13):1287–1300

    Article  Google Scholar 

  2. DiBitonto DD, Eubank PT, Patel MR, Barrufet MA (1989) Theoretical models of the electric discharge machining process I. A simple cathode erosion model. J Appl Phys 66(9):4095–4103

    Article  Google Scholar 

  3. Patel MR, Barrufet MA, Eubank PT, Dibitonto DD (1989) Theoretical models of the electric discharge machining process II. The anode erosion model. J Appl Phys 66(9):4104–4111

    Article  Google Scholar 

  4. Eubank PT, Patel MR, Barrufet MA, Bozkurt B (1993) Theoretical models of the electrical discharge machining process III. The variable mass, cylindrical plasma model. J Appl Phys 73(11):7900–7909

    Article  Google Scholar 

  5. Perez R, Rojas H, Walder G, Fl’́ukiger R (2004) Theoretical modeling of energy balance in electro erosion. J Mater Process Tech 149(1-3):198–203

    Article  Google Scholar 

  6. Snoeys R, Van Dijck F (1971) Investigation of electro discharge machining operations by means of thermo-mathematical model. CIRP Ann 20(1):35–37

    Google Scholar 

  7. Van Dijck FS, Dutre WL (1974) Heat conduction model for the calculation of the volume of molten metal in electric discharges. J Appl Phys D 7:899–910

    Article  Google Scholar 

  8. Beck JV (1981) Large time solutions for temperatures in a semi infinite body with a disc heat source. Int J Heat Mass Transfer 24(1):155–164

    Article  Google Scholar 

  9. Beck JV (1981) Transient temperatures in a semi infinite cylinder heated by a disc heat source. Int. J Heat Mass Transfer 24(10):1631–1640

    Article  MATH  Google Scholar 

  10. Pandey PC, Jilani ST (1986) Plasma channel growth and re-solidified layer in EDM. Precision Eng. 8(2):104–110

    Article  Google Scholar 

  11. Shankar P, Jain VK, Sundararajan T (1997) Analysis of spark profiles during EDM process. Mach Sci Tech 1(2):195–217

    Article  Google Scholar 

  12. Ahn Young-Cheol, Chung YS (2012) Numerical analysis of the electro discharge machining process for alumina titanium carbide composite II. Unsteady state approach. Korean J Chem Eng 19(4):694–702

    Article  Google Scholar 

  13. Luo YF, Tao J (2009) Metal removal in EDM driven by shifting secondary discharge. J Manuf Sci Eng 131:031014–031021

    Article  Google Scholar 

  14. Salah NB, Ghanem F, Atig KB (2008) Thermal and mechanical numerical modelling of electric discharge machining process. Commun Numer Methods Eng 24(12):2021–2034

    Article  MATH  MathSciNet  Google Scholar 

  15. Joshi SN, Pande SS (2010) Thermo-physical modeling of die-sinking EDM process. J Manuf Processes 12(1):45–56

    Article  Google Scholar 

  16. Shabgard M, Oliaei SNB, Seyedzavvar M, Najadebrahimi A (2011) Experimental investigation and 3D finite element prediction of the white layer thickness, heat affected zone and surface roughness in EDM process. J Mech Sci Tech 25(12):3173–3183

    Article  Google Scholar 

  17. Izquierdo B, Sánchez JA, Plaza S, Pombo I, Ortega N (2009) Numerical model of the EDM process considering the effect of multiple discharges. Int J Mech Tools Manuf 49:220–229

    Article  Google Scholar 

  18. Dhanik S, Joshi SS, Ramakrishnan N, Apte PR (2005) Evolution of EDM process modeling and development towards the modeling of micro EDM process. Int J Manuf Technol Manag 7:157–180

    Google Scholar 

  19. Kiran KMP, Joshi SS (2007) Modeling of surface roughness and the role of debris in micro-EDM. J Manuf Sci Eng 129(2):265–273

    Article  Google Scholar 

  20. Murali MS, Yeo SH (2005) Process simulation and residual stress estimation of micro electric discharge machining using finite element method. J Appl Phys 44(7A):5254–5263

    Article  Google Scholar 

  21. Allen P, Chen X (2007) Process simulation of micro electro-discharge machining on molybdenum. J Mater Process Technol 186:346–355

    Article  Google Scholar 

  22. Yeo SH, Kurnia W, Tan PC (2007) Electro thermal modeling of anode and cathode in micro EDM. J Phys D 40(8):2513

    Article  Google Scholar 

  23. Wang YK, Cheng BX, Zhen L, Peng ZL (2011) Micro EDM deposition in air by single discharge thermo simulation. Trans Nonferrous Metal Soc of China 21:450–455

    Article  Google Scholar 

  24. Weingärtner E, Kuster F, Wegener K (2012) Modeling and simulation of electrical discharge machining. Procedia CIRP 2:74–78

    Article  Google Scholar 

  25. Yasin S, Cogun C (2012) Single discharge thermo-electrical modeling of micro machining mechanism in electric discharge machining. J Mech Sci Tech 26(5):1591–1597

    Article  Google Scholar 

  26. Shabgard M, Ahmadi R, Seyedzavvar M, Oliaei SNB (2013) Mathematical and numerical modeling of the effect of input process parameters on the flushing efficiency of plasma channel in EDM process. Int J Mech Tools Manuf 65:79–87

    Article  Google Scholar 

  27. Somashekhar KP (2010) Theoretical and experimental investigation on micro electric discharge machining processes. PhD Thesis, National Institute of Technology. Kerala, India

  28. Mathew J, Somashekhar KP, Sooraj VS, Subbarao N, Ramachandran N (2009) Effect of work material and machining conditions on the accuracy and quality of micro holes. Int J Abras Tech 2(3):279–298

    Article  Google Scholar 

  29. Tan PC, Yeo SH (2008) Modeling of overlapping craters in micro electrical discharge machining. J Phys D 41(20):205302

    Article  Google Scholar 

  30. Pandit SM, Rajurkar KP (1983) A stochastic approach to thermal modeling applied to electro discharge machining. Trans ASME J Heat Transf 105:555–562

    Article  Google Scholar 

  31. Yadav V, Jain VK, Dixit PM (2002) Thermal stresses due to electrical discharge machining. Int J Mech Tools Manuf 42:877–888

    Article  Google Scholar 

  32. Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47:1217– 1237

    Article  MATH  Google Scholar 

  33. Madu P, Jain VK, Sundararajan T, Rajurkar KP (1991) Finite element analysis of EDM process. Adv Mater Process 1:161–173

    Google Scholar 

  34. Somashekar KP, Mathew J, Ramachandran N (2012) Electro thermal theory approach for the modeling of micro EDM. Int J Adv Manuf Tech 61:1241–1246

    Article  Google Scholar 

  35. Carslaw HS, Jaeger JC (1986) Conduction of heat in solids, 2nd edn. Clarendon, Oxford

    MATH  Google Scholar 

  36. Ikai T, Hashigushi K (1995) Heat input for crater formation in EDM. In: Proceedings of international symposium for electro machining, ISEM XI, EPFL, Lausanne

  37. Jain VK, Dixit PM, Pandey PC (1999) On the analysis of the electrochemical spark machining process. Int J Mach Tools Manuf 39:165–186

    Article  Google Scholar 

  38. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics, the finite volume method. Pearson Education Limited, Harlow

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Somashekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somashekhar, K.P., Panda, S., Mathew, J. et al. Numerical simulation of micro-EDM model with multi-spark. Int J Adv Manuf Technol 76, 83–90 (2015). https://doi.org/10.1007/s00170-013-5319-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-013-5319-9

Keywords

Navigation