Skip to main content
Log in

Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The catalysts supported on LiAl5O8 (spinel) for vapor phase synthesis of dimethyl carbonate (DMC) from methyl nitrite (MN) have been studied. Their catalytic activities on supports prepared by different methods were evaluated in a continuous reactor. The samples were characterized by powder X-ray diffraction, N2 adsorption-desorption isotherms, fourier transform infrared spectroscopy and temperature-programmed reduction of H2. Li/Al molar ratio and calcination temperature greatly influence the structure of crystalline phase of Li-Al-O oxides. Desirable LiAl5O8 (spinel) was formed at 800°C, while LiAl5O8 (primitive cube) formed at 900°C is undesirable for the reaction. A high Li/Al molar ratio, which was related with LiAlO2, also slowed the reaction rate. The electron transfer ability and the interaction with active component are the important properties of the spinel-based supports. The CuCl2-PdCl2/LiAl5O8 (spinel) with better electron transfer ability and low Pd2+ reduction temperature exhibited a better catalytic ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuernberg G D B, Fajardo H V, Foletto E L, Hickel-Probst S M, Carreño N L V, Probst L F D, Barrault J. Methane conversion to hydrogen and nanotubes on Pt/Ni catalysts supported over spinel MgAl2O4. Catalysis Today, 2011, 176(1): 465–469

    Article  CAS  Google Scholar 

  2. Widatallah H M, Johnson C, Berry F J, Jartych E, Gismelseed A M, Pekala M, Grabski J. On the synthesis and cation distribution of aluminum-substituted spinel-related lithium ferrite. Materials Letters, 2005, 59(8–9): 1105–1109

    Article  CAS  Google Scholar 

  3. Valenzuela M A, Jacobs J P, Bosch P, Reijne S, Zapata B, Brongersma H H. The influence of the preparation method on the surface structure of ZnAl2O4. Applied Catalysis A, 1997, 148(2): 315–324

    Article  CAS  Google Scholar 

  4. Grabowska H, Zawadzki M, Syper L. Catalytic method for Nmethyl-4-pyridone synthesis in the presence of ZnAl2O4. Catalysis Letters, 2007, 121(1–2): 103–110

    Google Scholar 

  5. Yamamoto Y, Matsuzaki T, Tanaka S, Nishihira K, Ohdan K, Nakamura A, Okamoto Y. Catalysis and characterization of Pd/NaY for dimethyl carbonate synthesis from methyl nitrite and CO. Journal of the Chemical Society, Faraday Transactions, 1997, 93(20): 3721–3727

    Article  CAS  Google Scholar 

  6. Anderson S L, Mizushima T, Udagawa Y. Growth/restructuring of palladium clusters induced by carbon monoxide adsorption. Journal of Physical Chemistry, 1991, 95(17): 6603–6610

    Article  CAS  Google Scholar 

  7. Yamamoto Y, Matsuzaki T, Ohdan K, Okamoto Y. Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon. Journal of Catalysis, 1996, 161(2): 577–586

    Article  CAS  Google Scholar 

  8. Manada N, Murakami M, Yamamoto Y, Kurafuji T. Preparation of dimethyl carbonate in the gas-phase reaction release of Clcompound from PdCl2 catalyst and effect of methyl chloroformate. Nippon Kagaku Kaishi, 1994, 1994(11): 985–991

    Article  Google Scholar 

  9. Briggs D N, Bong G, Leong E, Oei K, Lestari G, Bell A T. Effects of support composition and pretreatment on the activity and selectivity of carbon-supported PdCunClx catalysts for the synthesis of diethyl carbonate. Journal of Catalysis, 2010, 276(2): 215–228

    Article  CAS  Google Scholar 

  10. Jiang R, Wang Y, Zhao X, Wang S, Jin C, Zhang C. Characterization of catalyst in the synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol. Journal of Molecular Catalysis A Chemical, 2002, 185(1–2): 159–166

    Article  CAS  Google Scholar 

  11. Yamamoto Y. Vapor phase carbonylation reactions using methyl nitrite over Pd catalysts. Catalysis Surveys from Asia, 2010, 14(3–4): 103–110

    Article  CAS  Google Scholar 

  12. Ohdan K, Matsuzaki T, Hidaka M. US Patent, 5688984-A, 1996-11-27

  13. Curnutt G L. USPatent, 5004827-A, 1991-04-02

  14. Koyama T, Tonosaki M, Yamada N, Mori K. US Patent, 5347031-A, 1993-02-24

  15. Yang P, Cao Y, Dai W L, Deng J F, Fan K N. Effect of chemical treatment of activated carbon as a support for promoted dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol over Wacker-type catalysts. Applied Catalysis A, 2003, 243(2): 323–331

    Article  CAS  Google Scholar 

  16. Briggs D N, Lawrence K H, Bell A T. An investigation of carbon-supported CuCl2/PdCl2 catalysts for diethyl carbonate synthesis. Applied Catalysis A, 2009, 366(1): 71–83

    Article  CAS  Google Scholar 

  17. Jiang R, Wang S, Zhao X, Wang Y, Zhang C. The effects of promoters on catalytic properties and deactivation-regeneration of the catalyst in the synthesis of dimethyl carbonate. Applied Catalysis A, 2003, 238(1): 131–139

    Article  CAS  Google Scholar 

  18. Kutty T R N, Nayak M. Cationic distribution and its influence on the luminescent properties of Fe3+-doped LiAl5O8 prepared by wet chemical methods. Journal of Alloys and Compounds, 1998, 269(1–2): 75–87

    Article  CAS  Google Scholar 

  19. Yang P, Cao Y, Hu J C, Dai W L, Fan K N. Mesoporous bimetallic PdCl2-CuCl2 catalysts for dimethyl carbonate synthesis by vapor phase oxidative carbonylation of methanol. Applied Catalysis A, 2003, 241(1–2): 363–373

    Article  CAS  Google Scholar 

  20. Zhang Z, Ma X, Zhang P, Li Y, Wang S. Effect of treatment temperature on the crystal structure of activated carbon supported CuCl2-PdCl2 catalysts in the oxidative carbonylation of ethanol to diethyl carbonate. Journal of Molecular Catalysis A, Chemical, 2007, 266(1–2): 202–206

    Article  CAS  Google Scholar 

  21. Liu T C, Chang C S. Vapor-phase oxidative carbonylation of ethanol over CuCl-PdCl2/C catalyst. Applied Catalysis A, 2006, 304: 7277

    Article  Google Scholar 

  22. Besenhard J O. Cycling behaviour and corrosion of Li-Al electrodes in organic electrolytes. Journal of Electroanalytical Chemistry, 1978, 94(1): 77–81

    Article  CAS  Google Scholar 

  23. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich D M. Aluminum negative electrode in lithium ion batteries. Journal of Power Sources, 2001, 97–98: 185–187

    Article  Google Scholar 

  24. Perentzis G, Horopanitis E E, Papadimitriou L. Effect of multivalent cation substitution on the capacity fading of lithium manganese spinel cathodes. Ionics, 2006, 12(4–5): 269–274

    Article  CAS  Google Scholar 

  25. Neumair S C, Vanicek S, Kaindl R, Többens D M, Wurst K, Huppertz H. High-pressure synthesis and crystal structure of the lithium borate HP-LiB3O5. Journal of Solid State Chemistry, 2011, 184(9): 2490–2497

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, Y., Dong, Y., Wang, S. et al. Influence of crystalline phase of Li-Al-O oxides on the activity of Wacker-type catalysts in dimethyl carbonate synthesis. Front. Chem. Sci. Eng. 6, 415–422 (2012). https://doi.org/10.1007/s11705-012-1214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1214-4

Keywords

Navigation