Not logged in
PANGAEA.
Data Publisher for Earth & Environmental Science

Stevenson, Mark A; McGowan, Suzanne; Pearson, Emma J; Swann, George E A; Leng, Melanie J; Jones, Vivienne J; Bailey, Joseph J; Huang, Xianyu; Whiteford, Erika (2021): Down-core geochemical data from Disko 2 lake sediment core (West Greenland) collected in April 2013 [dataset]. PANGAEA, https://doi.org/10.1594/PANGAEA.927276

Always quote citation above when using data! You can download the citation in several formats below.

RIS CitationBibTeX CitationShow MapGoogle Earth

Abstract:
Lake sediment samples were taken in April 2013 from the ice by drilling through lake ice and recovering an undisturbed core using a HON-Kajak sediment corer. Samples were analysed for pigments (University of Nottingham), carbon isotopes and C/N ratios (BGS, Keyworth), lipid biomarkers (Newcastle University) and compound-specific carbon isotopes (CUG, Wuhan). The purpose of the analyses was to develop an environmental reconstruction of carbon cycling for an upland lake (named Disko 2) to encompass the Little Ice Age to recent warming climate periods. Analyses were completed as part of Mark A. Stevenson's PhD research while based at the University of Nottingham, UK (Stevenson, 2017, http://eprints.nottingham.ac.uk/46579).
²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs and ²⁴¹Am concentrations were measured by direct gamma assay in the Environmental Radiometric Facility at University College London (Dr Handong Yang), using an ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium detector. Radiometric dating techniques follow Appleby et al, 1986 (doi: 10.1007/BF00026640), Appleby et al, 1992 (doi:10.1016/0168-583X(92)95328-O) and Appleby, 2001 (doi:10.1007/0-306-47669-X_9) with core extrapolation and linear interpolation used to derive an age depth model to the base of the core. The pigment β-carotene was analysed on an Agilent 1200 series high-performance liquid chromatography (HPLC) using separation conditions outlined in McGowan et al., 2012 (doi:10.1111/j.1365-2427.2011.02689.x). Bulk δ¹³C and C~org~/N ratios were analysed on acidified samples using a Costech ECS4010 elemental analyser (EA) coupled to a VG Triple Trap and a VG Optima dual-inlet mass spectrometer. Key lipid biomarkers (n-alkanes, n-alkanoic acids (as fatty acid methyl esters (FAMEs), n-alkanols and sterols) were analysed using an Agilent 7890A GC coupled to a 5975C MS according to Pearson et al., 2007 (doi:10.1016/j.orggeochem.2007.02.007) and are expressed as ratios, relative to the total of each compound class. Specific ratios were also calculated for CPI 2 n-alkanes (Marzi et al., 1993; doi:10.1016/0146-6380(93)90016-5), terrestrial aquatic ratio (TAR) for n-alkanes (Bourbonniere and Meyers, 1996; doi:10.1007/s002540050074), index of waxy n-alkanes to total hydrocarbons (PWAX) (Zheng et al., 2007; doi:10.1016/j.orggeochem.2007.06.012) and carbon preference index (CPI) for n-alkanoic acids (Matsuda and Koyama, 1977) (doi:10.1016/0016-7037(77)90214-9). Compound-specific δ¹³C on C~28:0~ fatty acid methyl ester (FAME) was analysed using a Thermo Finnigan Trace GC coupled to a Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer using a combustion interface (GC-C-IRMS) according to conditions in Huang et al. (2018; doi:10.1038/s41467-018-03804-w).
Acknowledgements:
Mark Stevenson gratefully acknowledges the receipt of a NERC/ESRC studentship (ES/J500100/1). We acknowledge grants IP-1393-1113 & IP-1516-1114 from the NERC Isotope Geosciences laboratory (NIGL) for the analysis of δ¹³C~org~ & C/N ratios on sediment, soil and plant samples. Lipid and water chemistry analyses were funded by the Freshwater Biological Association's 2015 Gilson Le Cren Memorial Award to Mark Stevenson. We thank Teresa Needham, Christopher Kendrick, Julie Swales, Ian Conway, Graham Morris, Bernard Bowler, Paul Donohoe, Qingwei Song and Jiantao Xue for technical support. We acknowledge the support of Handong Yang for radiometric dating. Financial support for fieldwork was awarded via the INTERACT transnational access scheme (grant agreement No 262693) under the European Community's Seventh Framework Programme and UK RI NERC grant NE/K000276/1. Logistical support is acknowledged from University of Copenhagen Arktisk Station including Ole Stecher, Kjeld Mølgaard and Erik Wille.
Keyword(s):
Arctic; carbon isotope analysis; Disko Island; Greenland; Lake sediment; Organic Geochemistry
Related to:
Stevenson, Mark A; McGowan, Suzanne; Pearson, Emma J; Swann, George E A; Leng, Melanie J; Jones, Vivienne J; Bailey, Joseph J; Huang, Xianyu; Whiteford, Erika (2021): Anthropocene climate warming enhances autochthonous carbon cycling in an upland Arctic lake, Disko Island, West Greenland. Biogeosciences, 18(8), 2465-2485, https://doi.org/10.5194/bg-18-2465-2021
Funding:
Natural Environment Research Council (NERC), grant/award no. ES/J500100/1: NERC/ESRC studentship to Mark Stevenson
Natural Environment Research Council (NERC), grant/award no. NE/K000276/1: UK RI NERC
NERC Isotope Geosciences Laboratory, Keyworth (NIGL), grant/award no. IP-1393-1113
NERC Isotope Geosciences Laboratory, Keyworth (NIGL), grant/award no. IP-1516-1114
Seventh Framework Programme (FP7), grant/award no. 262693: International Network for Terrestrial Research and Monitoring in the Arctic (INTERACT)
Coverage:
Latitude: 69.389030 * Longitude: -53.401420
Date/Time Start: 2013-04-19T00:00:00 * Date/Time End: 2013-04-19T00:00:00
Minimum DEPTH, sediment/rock: 0.0000 m * Maximum DEPTH, sediment/rock: 0.3125 m
Event(s):
D2-K1-2013 * Latitude: 69.389030 * Longitude: -53.401420 * Date/Time: 2013-04-19T00:00:00 * Elevation: -575.0 m * Location: Disko Bay, Greenland * Method/Device: HON-Kajak sediment corer (HONK)
Comment:
± errors derived from counting statisitcs. The absolute efficiencies of the detector were determined using calibrated sources and sediment samples of known activity. See Appleby et al, 1986 (doi:10.1007/0-306-47669-X), Appleby et al, 1992 (doi:10.1016/0168-583X(92)95328-O) and Appleby, 2001 (doi:10.1007/BF00026640).
Parameter(s):
#NameShort NameUnitPrincipal InvestigatorMethod/DeviceComment
1DEPTH, sediment/rockDepth sedmStevenson, Mark AGeocode
2Depth, top/minDepth topmStevenson, Mark A
3Depth, bottom/maxDepth botmStevenson, Mark A
4Dry mass per areaDry m areag/cm2Stevenson, Mark ACalculated
5Lead-210210PbBq/kgStevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
6Lead-210, error210Pb e±Stevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
7Lead-210, supported210Pb supBq/kgStevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
8Lead-210, supported, error210Pb sup e±Stevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
9Lead-210, unsupported210Pb unsupBq/kgStevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
10Lead-210, unsupported, error210Pb unsup e±Stevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
11Lead-210, unsupported, cumulative210Pb unsup cumBq/m2Stevenson, Mark ACRS model (Constant Rate of Supply)
12Lead-210, unsupported, cumulative, error210Pb unsup cum e±Stevenson, Mark ACRS model (Constant Rate of Supply)
13Caesium-137137CsBq/kgStevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
14Caesium-137, error137Cs e±Stevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
15Americium-241241AmBq/kgStevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
16Americium-241, error241Am e±Stevenson, Mark AReverse Coaxial Radiation Detector, ORTEC, HPGe GWL
17AgeAgea AD/CEStevenson, Mark ACRS model (Constant Rate of Supply)
18AgeAgeaStevenson, Mark ACRS model (Constant Rate of Supply)
19Age, standard errorAge std e±Stevenson, Mark ACRS model (Constant Rate of Supply)
20Accumulation rate per yearAcc rateg/cm2/aStevenson, Mark ACRS model (Constant Rate of Supply)
21Sedimentation rate per yearSRcm/aStevenson, Mark ACRS model (Constant Rate of Supply)
22Sedimentation rate, errorSR e±Stevenson, Mark ACRS model (Constant Rate of Supply)
23AgeAgea AD/CEStevenson, Mark ACRS model (Constant Rate of Supply)
24Accumulation rate, dry massDMARg/cm2/aStevenson, Mark ACRS model (Constant Rate of Supply)
25Accumulation rate, carbon, per yearAcc rate Cg/m2/aStevenson, Mark ACRS model (Constant Rate of Supply)CMAR
26Carbon, organic, totalTOC%Stevenson, Mark AElement analyser CHN (ECS4010, Costech) coupled to a VG Triple Trap and a VG Optima dual-inlet mass spectrometer (MS)
27δ13C, organic carbonδ13C Corg‰ PDBStevenson, Mark AElement analyser CHN (ECS4010, Costech) coupled to a VG Triple Trap and a VG Optima dual-inlet mass spectrometer (MS)
28Carbon/Nitrogen ratioC/NStevenson, Mark AElement analyser CHN (ECS4010, Costech) coupled to a VG Triple Trap and a VG Optima dual-inlet mass spectrometer (MS)
29beta-Carotene, per unit mass total organic carbonb-Car/TOCnmol/gStevenson, Mark AHigh performance liquid chromatography (HPLC), Agilent 1200
30Carbon Preference Index 2, n-Alkanes ((C23+C25+C27 )+(C25+C27+C29))/2*(C24+C26+C28)CPI 2Stevenson, Mark ACalculation according to Marzi et al. (1993)
31Terrigenous/aquatic ratioTARStevenson, Mark ACalculated after Bourbonniere and Meyers, 1996: (C27+C29+C31)/(C15+C17+C19)
32Index of waxy n-alkanes to total hydrocarbons (C27+C29+C31)/(C23+C25+C29+C31)PwaxStevenson, Mark ACalculated after Zheng et al., 2007
33n-alkane C27/sum n-alkanesC27/tot n-alkStevenson, Mark ACoupled gas chromatography/mass spectrometry (GC/MS) on an Agilent Technologies 7890A GC linked to 5795C MS triple axis mass detector, equipped with a HP DB5-MS column
34Carbon Preference Index, n-Alkanoic acidsCPI n-Alk AcidStevenson, Mark ACalculated after Matsuda and Koyama, 1977: 0.5*((C12+C14+C16)+(C22+C24+C26+C28+C30))+((C14+C16+C18)+(C24+C26+C28+C30+C32))/((C13+C15+C17)+(C23+C25+C27+C29 +C31))
35n-Alkanoic acid C30/sum n-Alkanoic acid ratioC30/tot FAMEStevenson, Mark ACoupled gas chromatography/mass spectrometry (GC/MS) on an Agilent Technologies 7890A GC linked to 5795C MS triple axis mass detector, equipped with a HP DB5-MS column
36n-Alkanol C16/sum n-AlkanolsC16/tot n-A.olStevenson, Mark ACoupled gas chromatography/mass spectrometry (GC/MS) on an Agilent Technologies 7890A GC linked to 5795C MS triple axis mass detector, equipped with a HP DB5-MS column
37n-Alkanol C24/sum n-AlkanolsC24/tot n-A.olStevenson, Mark ACoupled gas chromatography/mass spectrometry (GC/MS) on an Agilent Technologies 7890A GC linked to 5795C MS triple axis mass detector, equipped with a HP DB5-MS column
3824-Methylcholesta-5,22E-dien-3beta-ol/sum sterolsBrassicasterol/ tot sterolStevenson, Mark ACoupled gas chromatography/mass spectrometry (GC/MS) on an Agilent Technologies 7890A GC linked to 5795C MS triple axis mass detector, equipped with a HP DB5-MS column
39n-Alkanoic acid C28:0, δ13CFAME C28:0 δ13C‰ PDBStevenson, Mark AThermo Trace GC coupled to ThermoFinnigan DELTAplus XP (GC-C-IRMS)
Size:
1040 data points

Download Data

Download dataset as tab-delimited text — use the following character encoding:

View dataset as HTML