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Abstract 
The 3D geomechanical-numerical modelling of the in-situ stress state aims at a continuous 
description of the stress state in a subsurface volume. It requires observed stress information 
within the model volume that are used as a reference. Once the modelled stress state is in 
agreement with the observed reference stress data the model is assumed to provide the 
continuous stress state in its entire volume.  

The modelled stress state is fitted to the reference stress data records by adaptation of the 
displacement boundary conditions. This process is herein referred to as calibration. Depending 
on the amount of available stress data records and the complexity of the model the manual 
calibration is a lengthy process of trial-and-error modelling and analysis until best-fit boundary 
conditions are found.  

The Fast Automatic Stress Tensor Calibration (FAST Calibration) is a Python function that 
facilitates and speeds up this calibration process. By using a linear regression it requires only 
three model scenarios with different boundary conditions. The stress states from the three 
model scenarios at the locations of the reference stress data records are extracted. The 
differences between the modelled and observed stress states are used for a linear regression 
that allows to compute the displacement boundary conditions required for the best-fit 
modelled stress state. If more than one reference stress state is provided, the influence of the 
individual observed stress data records on the best-fit boundary conditions can be weighted. 

The script files are provided for download at: 
http://github.com/MorZieg/PyFAST_Calibration 

Table 0-1 gives an overview of the folder structure and input files with a short explanation. 

 

 

Table 0-1  Structure of the GitHub repository. 
Folders/Files in GitHub repository http://github.com/MorZieg/PyFAST_Calibration. The 
page numbers (if available) direct to the documentation in this manual. 

 

File Name Explanation Page 
fast_calibration.py Python script for the calibration of a geomechanical-numerical 

model on stress data records. 
5 

CITATION.bib The recommended citation for the software.  
LICENSE The full GPL v3.0 license text.  
README.md Readme file that contains relevant information on the usage of 

the software. 
 

examples/ Folder that contains example files for a calibration using either 
Moose or Abaqus. 

16 

cellcent2nodal.mcr Tecplot macro file that converts cell-centred to nodal variables. 6 
rename_stress.mcr Tecplot macro that renames the stress state variables from a 

Moose solver to be compatible with the Tecplot Add-on 
GeoStress. 

6 

 
 

http://github.com/MorZieg/PyFAST_Calibration
http://github.com/MorZieg/PyFAST_Calibration
http://github.com/MorZieg/PyFAST_Calibration
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1 Introduction 
3D geomechanical-numerical modelling of the stress state depends on stress data records that 
are available within the model volume. Dirichlet displacement boundary conditions are altered 
until a fit of the modelled to these observed data is achieved. Herein, this process of fitting the 
model on observables is referred to as model calibration. Once the boundary conditions are 
found with which the model is best fitted to the stress data records the model is calibrated. 
The assumption is made that the stress state in the rest of the model is then also a legitimate 
representation of the in-situ stress state. A manual adaptation of the boundary conditions 
towards a best fit is a lengthy procedure that involves a lot of trial-and-error. 

PyFAST Calibration (Python Fast Automatic Stress Tensor Calibration) uses a linear regression 
to speed up and automatize the process of calibration. It is a transfer to Python of the Matlab 
tool with the same name (Ziegler & Heidbach, 2021) and follows the calibration approach 
described by Reiter and Heidbach (2014), Hergert et al. (2015), and Ziegler et al. (2016). The 
tool runs in Python 3.x in conjunction with the visualization software Tecplot 360 EX 2019 R1 
and its Add-on GeoStress (Heidbach et al., 2020; Stromeyer et al. 2020). It supports both 
Abaqus output files and output databases from the Moose Framework. A fully automatized 
application of PyFAST Calibration is possible using the solvers Abaqus or the Moose Framework 
together with PyTecplot, the Python extension of Tecplot. 

The user should be familiar with 3D geomechanical-numerical modelling, Python, Tecplot 360 
EX, including a basic knowledge of Tecplot 360 EX macro functions, and the Tecplot 360 EX 
Add-on GeoStress provided by Stromeyer et al.  (2020) and documented by Heidbach et al. 
(2020). This PyFAST Calibration manual provides an overview of the scripts and is designed to 
help the user to adapt the scripts for their own needs. It contains basic technical information 
on 3D geomechanical-numerical modelling (Section 2). The input data and the syntax as well as 
the execution of the script are presented in Section 3. Section 4 provides information on the 
individual Python functions that come with PyFAST Calibration and is mainly dedicated to 
advanced users. Common error messages and according help is provided in Section 5. 
Examples are provided in Section 6. 

 
Note to users of FAST Calibration v2.0 on Matlab: 

PyFAST Calibration is a transfer of only the main functions of FAST Calibration v2.0 to Python. 
For sanity checks of the stress state, additional calibration data types, or a multistage approach 
FAST Calibration v2.0 should be used (Ziegler & Heidbach, 2021; 2021a). 
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2 Background of geomechanical modelling 
3D geomechanical-numerical modelling requires a static geological model that describes the 
geometry of the geologic units and faults, the density distribution and the elastic rock 
properties. For the calibration process stress data records are needed at individual points 
within the model volume. To solve the partial differential equation of the equilibrium of forces 
the model volume is discretized into finite elements. The discretized geometry is populated 
with rock properties, i.e. the density, Young’s module, and Poisson ratio. Fitting the magnitude 
of the vertical stress SV is easy as the density distribution is relatively well known. In contrast 
fitting the magnitudes of maximum and minimum horizontal stress, SHmax and  Shmin  

respectively, is challenging as stress data of these two components is sparse (we assume here 
for simplicity that SV and thus SHmax and Shmin are principal stresses). Information on the 
orientation of the stress tensor by means of the orientation of SHmax is provided by the World 
Stress Map (WSM) database (Heidbach et al., 2016). However, stress orientations are helpful 
for the model calibration any differential displacement boundary condition will lead to an 
instantaneous adjustment of the stress tensor orientation parallel and perpendicular to the 
model boundary regardless the amount of displacement. In contrast, information on the 
magnitudes of principal horizontal stresses is generally sparse and incomplete (Morawietz et 
al., 2020). 

Fig. 2-1  Map view of a model area (blue box) in a geographical coordinate system. 
The boundary conditions (red) are applied in a rotated coordinate system (x’ and y’) 
parallel to the model boundaries which are oriented parallel to the prevailing orientations 
of the principal horizontal stress axes. Information on the orientation is available from 
data of the World Stress Map database (Heidbach et al., 2016). The application of even 
small displacement boundary conditions (Dirichlet type) perpendicular to the model 
boundaries are usually sufficient to achieve a good fit of the overall stress orientation. 

To calibrate the geomechanical-numerical model information on the SHmax and Shmin magnitudes 
is essential. The model calibration is achieved by a comparison of the modelled stress to the 
observed SHmax and Shmin magnitudes in dependence of the Dirichlet displacement boundary 
condition (Fig. 2-1). Their values are altered until a good fit of the modelled stress state to the 
observed stress information at the calibration points is achieved. Thus, the models calibration 
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depends on only two displacements which facilitates the calibration process as the best-fit 
boundary conditions can be found by a system of linear equations. The automated setup and 
solving of this linear equation system is the core of the FAST-Calibration tool. Note that two 
implicit assumption are that 1) the rheology is linear elastic and 2) that the stress state is 
controlled by a lateral displacement that is not changing with depth 

The calibration procedure is illustrated in Fig. 2-2. Three different test model scenarios with 
different arbitrary, but reasonable displacement boundary conditions are solved (Fig. 2-2a). At 
several locations within the model volume stress data records are available (Fig. 2-2b). For 
each test model scenarios the modelled stress state is compared with these stress data 
records. Each comparison provides a mean deviation for SHmax and Shmin, respectively (Fig. 2-2c). 
A system of linear equations is set up in the domain of the displacement boundary conditions 
(x and y) and the deviations of observed and modelled data (z) (Fig. 2-2d). For the smallest 
deviation of each, SHmax or Shmin, an infinite number of corresponding displacement boundary 
conditions exist. However, only one set satisfies both the requirements for the smallest 
deviation in observed and modelled SHmax and Shmin. This set of displacement boundary 
conditions is applied to compute the best-fit model (see Ziegler et al., 2016). 

Fig. 2-2  Basic workflow of the tool FAST Calibration. 
The stress state from three test model scenarios with arbitrary displacement boundary 
conditions (a) and observed stress data records (b) are compared (c). A set of linear 
equations is set up that provide the best-fit boundary conditions (d). 
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3 Calibration of a model 
PyFAST Calibration runs with full functionality both on Windows and Linux computers and 
supports output files from two solvers – Abaqus and the Moose Framework. A full 
automatization is achieved using the commercial PyTecplot extension of Tecplot. Alternatively, 
as an intermediate manual step the user needs to run a Tecplot macro.  

As a Python 3 script several functions required for script execution are provided in one file, 
which can be copied and configured for each project. Alternatively, PyFAST Calibration is used 
as a Python package with all required variables transmitted by the caller function. 

 General procedure 

The FAST Calibration approach requires at least one data record for SHmax and Shmin magnitude 
each. Each data record consists of a location defined in the model coordinate system (x, y, z), a 
magnitude (in MPa), and is assigned a confidence between 0 (low) and 1 (high). Furthermore, 
FAST Calibration requires information on the test boundary conditions, the name of the solved 
model with test boundary conditions, and (if PyTecplot is not used) the full path of the working 
folder. Eventually, the name of the two stress components from the model results used for 
calibration need to be specified, e.g. to be SHmax and Shmin or XX Stress and YY Stress. A 
compilation of all required variables and examples is presented in Table 3-1. 

Table 3-1 Input variables required by PyFAST Calibration. 
Examples are provided in the script file. 

 

Variable Description 
folder Provide the directions to the folder in your system which contains the script data. It is 

important to include the full path for Tecplot 360 EX (which does not support relative 
paths) if PyTecplot is not used. 
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test' 
Example (Linux): folder = '/home/user/Project/FAST/Test' 

name Provide the file name with three independent stress states derived from three 
different boundary conditions. 
Example: name = 'test_scenarios' 

bcs Enter the displacements in x’ (Shmin or SHmax) and y’ (SHmax or Shmin) direction that are 
prescribed at the different test scenarios. Make sure to assign the values in the 
correct order. 
Example: bcs = [[4, 2, 4],[-4, -5, -3]] 

stress_vars Provide the names in Tecplot of the two stress variables in the model that should be 
calibrated. 
Example: stress_vars = ['SHmax','Shmin'] 

shmax Location, magnitude, and weight of the SHmax magnitude data records that should be 
used for calibration. 
Example: shmax = [[5050,-3500,-800,22.5,1.0]] 

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be 
used for calibration. 
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]] 

solver The name of the used solver, i.e. either Abaqus or Moose 
Example: solver = ‘abaqus’ 

pytecplot Whether PyTecplot should be used or not. 
Example: pytecplot = ‘off’ 
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 Specific procedure 

PyFAST Calibration in connection with Tecplot and PyTecplot supports output files from both 
Abaqus and the Moose Framework. In case of Abaqus even two different output files are 
supported depending on whether Tecplot is run on a Windows (*.odb file) or Linux (*.fil file) 
operating system. For some combinations of OS, Solver, and whether PyTecplot is used or not, 
certain additional aspects need to be considered. The detailed procedure is presented in the 
following dependent whether PyTecplot is used or not. 
 

 Without PyTecplot 

The application of FAST Calibration without using PyTecplot requires several steps (including 
two steps performed within the Python script) which are illustrated in Figure 3-1. 
1. Prepare your working directory with a subfolder called “data” and set the variables in the 

PyFAST Calibration script. 
2. Load the model output database in Tecplot. Optionally run GeoStress (Heidbach et al. 

2020) or a similar tool. 
3. Run PyFAST Calibration in the working directory. A Tecplot macro is written to your 

working directory. You will be prompted to execute the macro in Tecplot. 
4. Run the macro in Tecplot to export the modelled stress state from the test scenarios at the 

locations of the stress data records to *.csv files in the data older.  
5. Press enter in the Python command window. The *.csv files will be loaded to Python 

variables and the best-fit boundary conditions will then be computed and displayed. 
 
Deviations and additions to these steps are listed in the following. 
 

Abaqus/Windows 
No additional steps required 
 

Abaqus/Linux 
- Instead of loading the standard *.odb file only the *.fil file is supported by the Tecplot loader 

on Linux systems. To generate a *.fil file include the following lines in the Abaqus input 
files first *STEP section. 

 
*EL FILE 
S 
*NODE FILE 
COORD, U 
 
- The stress tensors variables in the *.fil file are cell-centred instead of nodal variables as 

required for a successful application of GeoStress. Running the supplemented Tecplot 
macro cellcent2nodal.mcr converts the stress tensor variables to nodal variables. This has 
to be done before execution of GeoStress. Otherwise running GeoStress will result in an 
error.  

 
Moose 

- The output database from the solver comes in three consecutive files each for one boundary 
condition scenario. These files need to be loaded consecutively into one Tecplot database. 
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- The stress tensor output variables of Moose are called stress_xx etc. in contrast to XX Stress 
etc. expected by GeoStress. The same holds for the displacements that are called disp_x 
etc. in contrast to X Displacement. Running the supplemented Tecplot macro 
rename_stress.mcr fixes this issue so that GeoStress works. If this step is omitted, the 
GeoStress GUI fails to load. 

 
 
 

 
Figure 3-1  FAST Calibration procedure including an intermediate manual step. 

Three columns indicate the three involved parties: The user, Python and Tecplot. The 
two steps are indicated by the two vertical boxes in each of the three columns. 

 

 Using PyTecplot 
The application of FAST Calibration using PyTecplot works automatically from loading the 
output database files to the computation and display of boundary conditions in a single step 
illustrated in Figure 3-2. Most procedures specific to certain operating systems and solvers are 
implemented. Nonetheless, if running in a Linux environment with an Abaqus solver, the 
command for the generation of a *.fil file needs to be included to the Abaqus input file. 
 

Abaqus/Windows 
No additional steps required 
 

Abaqus/Linux 
- Instead of loading the standard *.odb file only the *.fil file is supported by the Linux Tecplot 

loader. To generate a *.fil file include the following lines in the Abaqus input files first 
*STEP section. 
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*EL FILE 
S 
*NODE FILE 
COORD, U 
 

Moose 
No additional steps required 
 
 
 

 
Figure 3-2  FAST Calibration procedure using PyTecplot. 

Three columns indicate the three involved parties: The user, Python and Tecplot. 
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4 Basic principles 
The technical implementation of FAST Calibration is described in this chapter, mainly 
designated for advanced users that may want to adapt the code for their own demands. 
Therefore, the Python functions and their intentions are described. 

 Load output database (load_abq, load_mse) 

Only required is PyTecplot IS used. Depending on the solver (Abaqus or Moose) the according 
version of the function is used. As only argument the name of the output database without file 
extension is provided. PyTecplot currently does not support loading of Abaqus or Moose 
output databases via a specific command. Thus it is realized using a macro command. Then the 
file is saved as a *.plt file native to Tecplot. 

The loading of Abaqus output databases is dependent on the operating system since Tecplot 
on Windows supports only reading Abaqus *.odb files while Tecplot on Linux supports only 
Abaqus *.fil files. The check for the operating system works automatically with the Python 
platform function. 

The Moose Framework provides the three different sets of boundary conditions in three 
separate files. They are consecutively loaded and appended to the Tecplot *.plt file using 
macro commands. 

 Extract variables from *.plt file (extract_tp) 

Only required is PyTecplot IS used. The *.plt files created by the functions load_abq or 
load_mse are loaded in Tecplot. The arguments are listed and described in Table 4-1. 

If a Linux operating system is used the cell-centred stress tensor variables from the *.fil file are 
converted to nodal variables using the function cell2nodal. In case of using Moose as solver, 
the solution time is assigned and the variables of the stress tensor are renamed to comply with 
the variable names expected by the GeoStress Add-on using the function rnm_vrbls. If desired, 
the reduced stress tensor (i.e. SHmax and Shmin) is derived using the GeoStress Add-on. 

Eventually, the stress state are extracted at the locations where stress data is available for 
comparison. Therefore, the additional function strextract is used. Its arguments are the 
location and zone of the stress component, the PyTecplot model handle, and the name of the 
stress component. Eventually, the modelled stress states are returned to the caller function. 

Table 4-1 Input variables required by the function extract_tp. 
Variable Description 
name The name of the *.plt file that is to be loaded without the file extension. 
solver The name of the used solver, i.e. either Abaqus or Moose 

Example: solver = ‘abaqus’ 
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be 

used for calibration. 
Example: shmax = [[5050,-3500,-800,22.5,1.0]] 

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be 
used for calibration. 
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]] 

stress_vars Provide the names of the two stress variables in the model that should be calibrated. 
Example: stress_vars = ['SHmax','Shmin'] 
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 Writing Tecplot 360 EX macro function (write_macro) 

Only required if PyTecplot is NOT used. The function write_macro generates a Tecplot 360 EX 
macro that exports the modelled stress state from given locations in the model, usually at 
calibration points. Since the calibration points are not necessarily at nodes the variables are 
interpolated from the nodes to the exact coordinates in the volume. The function requires five 
input variables (Table 4-2) which are automatically provided and transmitted by the script. 

Table 4-2 Input variables required by the function write_macro. 
Variable Description 
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be 

used for calibration. 
Example: shmax = [[5050,-3500,-800,22.5,1.0]] 

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be 
used for calibration. 
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]] 

stress_vars Provide the names of the two stress variables in the model that should be calibrated. 
Example: stress_vars = ['SHmax','Shmin'] 

name The desired name of the macro without the file type extension “.mcr”. 
folder Provide the directions to the folder in your system which contains the script data. It is 

important to include the full path since this information is not used in Python but for 
the Tecplot 360 EX macro which does not support relative paths. Make sure of the 
correct usage of slash/backslash depending on the operating system and that the 
correct escape characters are used on Windows. 
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test' 
Example (Linux): folder = '/home/user/Project/FAST/Test' 

 
With these variables the function creates a Tecplot 360 EX macro with the following structure. 
 

1. The Tecplot macro header is written. 
2. The internal number of the variables SHmax and Shmin in Tecplot 360 EX are sought and 

stored in the macro variable SHMAX and SHMIN. 
 
       $!GETVARNUMBYNAME |SHMAX| 
       NAME = "SHmax” 

 
3. For each data record location specified in the variable stress an individual 1D zone 

(point) is created. The number of zones created per data record location depends on 
the number of model scenarios, usually three. The following syntax (with an 
exemplified location) is repeated accordingly often. 
 

$!CREATERECTANGULARZONE 
IMAX = 1 
JMAX = 1 
KMAX = 1 
X1 = 6.621267e+05 
Y1 = 5.300777e+06 
Z1 = -1.259692e+02 
X2 = 6.621267e+05 
Y2 = 5.300777e+06 
Z2 = -1.259692e+02 
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4. The two variables are linearly interpolated from the source zones (i.e. one of the 
model steps) to the zones defined in step 1. The following code is repeated accordingly 
often. 
 

$!LINEARINTERPOLATE 
SOURCEZONES =  [1] 
DESTINATIONZONE = 4 
VARLIST =  [|SHMAX|,|SHMIN|] 
LINEARINTERPCONST = 0 
LINEARINTERPMODE = DONTCHANGE 

 
5. The variable values in the 1D zones are exported to two comma-separated data files. 

Each file contains all instances of one of the two variables. 
 

$!EXTENDEDCOMMAND 
COMMANDPROCESSORID = 'excsv' 
COMMAND = 'FrOp=1:ZnCount=6:ZnList=[4-
9]:VarCount=1:VarList=[SHMAX]:ValSep=",":FNAME="D:\Data\Project\F
AST\data\shmax.csv"' 
 

6. The 1D zones created in step 3 are deleted from the Tecplot 360 EX file. 
 

$!DELETEZONES [4-34] 

 Load data exported by macro (load_csv) 
Only required if PyTecplot is NOT used. The content of the *.csv files written by the Tecplot 
macro are loaded as Python variables. The variables from all three steps are sorted accordingly 
in order to be comparable. Please note that both variables are exported at all calibration 
points. Thus, calibration points with only SHmax or only Shmin data are still exported for both 
stress components. Thus, the first (SHmax) values are discarded in the following. Eventually, 
the modelled stress data is converted into numpy arrays and returned to the caller function. 
The required arguments are described in Table 4-3. 

Table 4-3 Input variables required by the function load_csv. 
Variable Description 
name The file name with three independent stress states derived from three different 

boundary conditions. 
Example: name = 'test_scenarios' 

leshmax Number of SHmax calibration points. (Length of the variable shmax) 
leshmin Number of Shmin calibration points. (Length of the variable shmin) 
stress_vars Provide the names in Tecplot of the two stress variables in the model that should be 

calibrated. 
Example: stress_vars = ['SHmax','Shmin'] 

 

 Estimation of best-fit boundary conditions (calibrate) 

The core of FAST Calibration is the function calibrate that sets up a system of linear equations 
which are used to estimate the best-fit boundary conditions. Therefore, the boundary 
displacements of at least three different combinations of boundary conditions are required 
together with the solved model scenarios. The functions arguments are listed and described in 
Table 4-4. 
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Table 4-4 Input variables required by the function calibrate. 
Variable Description 
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be 

used for calibration. 
Example: shmax = [[5050,-3500,-800,22.5,1.0]] 

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be 
used for calibration. 
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]] 

shmax_calib The modelled SHmax stress state at the calibration points from the three test scenarios 
provided by load_csv or extract_tp. 

shmin_calib The modelled Shmin stress state at the calibration points from the three test scenarios 
provided by load_csv or extract_tp. 

bcs The boundary conditions of the three test scenarios. 

The deviation of the modelled stress state from the observed data record for each boundary 
condition scenario (bc) at each location (x, y, z) with available observed stress data records is 
computed for SHmax and Shmin by 

 
∆𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑏𝑏𝑏𝑏) =  𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑏𝑏𝑏𝑏) −  𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

exemplified here for SHmax. The weighted mean deviation of the modelled and observed SHmax 
and Shmin magnitudes are computed for each boundary condition scenario by 

 

∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑏𝑏𝑏𝑏) =
∑ 𝑤𝑤𝑖𝑖  ∆𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑏𝑏𝑏𝑏)𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖
  

 

with i the number of data records and wi the individual weighting of each data record. Now 
for each boundary condition scenario a mean deviation of the modelled from the observed 
SHmax and Shmin magnitudes exists. An example of the available information is shown in 
Table 4-5. 

Table 4-5 Example for the information required for the generation of the planes. 
At least three different boundary condition scenarios are required. For each scenario 
the displacement in x’ and y’ and ∆S�Hmax and ∆S�hmin are available. 

 

BC 
scenario 

x’ displacement y’ displacement ∆𝑺𝑺�𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 ∆𝑺𝑺�𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 

1 -10 5 -12.3 8.7 
2 -30 25 2.5 -3.2 
3 -30 5 -14.4 -4.8 

 

This information is used to derive the boundary conditions that fulfil the requirement that 
there is no deviation between the observed and modelled  ∆S�Hmax and ∆S�hmin magnitudes. 
Note that no deviation between the average SHmax and Shmin magnitudes is sought. If more than 
one data record is available for SHmax or Shmin it is expected that deviations are observed for the 
individual data records. The assigned weights control which data records are preferred and 
should have a smaller deviation. The resulting system of linear equations can be visualised as 
two intersecting planes (Figure 4-1). 
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Two vectors are now available for each of the three test model scenarios that take the form 

𝑣𝑣 ���⃗ =  �
𝑥𝑥
𝑦𝑦

∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

� 

with the boundary displacement x in x’ direction and y in y’ direction as well as  ∆S�Hmax or 
∆S�hmin, the resulting difference of the modelled and expected stress state in the 
corresponding component. 

 

 
Figure 4-1  Best-fit boundary conditions as planes in 3D. 

Three test scenarios (vertically connected black circles) provide mean deviations of 
modelled and observed SHmax and Shmin magnitudes for specific boundary conditions. 
For both, SHmax and Shmin, the plane spanned by the boundary conditions and the 
deviations in ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin), respectively, are sought. They 
are colour coded with blue as a negative deviation and red as a positive deviation. The 
best-fit boundary conditions are found where the contour lines z=0 (black lines) of the 
two planes intersect. 

It can be pictured that for each, SHmax and Shmin, this information is used to set up the equation 
of the plane that is defined by the displacement boundary conditions in x’ and y’ direction and 
the mean deviation of SHmax and Shmin, respectively. Hence, the planes are set up in 
ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin), respectively (Figure 4-1). The planes equation in 
parameter form is 

𝑥⃗𝑥 =  𝑝𝑝 +  𝑠𝑠 𝑟𝑟1���⃗ +  𝑡𝑡 𝑟𝑟2���⃗  
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with the position vector 𝑝𝑝 =  𝑣𝑣1����⃗ , the parameters s and t, and the direction vectors 𝑟𝑟1���⃗  and 𝑟𝑟2���⃗  
which are computed by 

𝑟𝑟1���⃗ =  𝑣𝑣2����⃗ − 𝑣𝑣1����⃗  

𝑟𝑟2���⃗ =  𝑣𝑣3����⃗ − 𝑣𝑣1����⃗  

Then the parameter form is transferred to the coordinate form of the planes equation which is 
defined as 

𝑛𝑛1 𝑥𝑥′ + 𝑛𝑛2 𝑦𝑦′ +  𝑛𝑛3 ∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑑𝑑 

with n�⃗  as the normal vector of the plane derived by 

𝑛𝑛�⃗ =  𝑟𝑟1���⃗  × 𝑟𝑟2���⃗  

and d as 
𝑑𝑑 =  𝑝𝑝 ∙ 𝑛𝑛�⃗  

with p�⃗  the planes position vector. 

Then ∆S�Hmax is set to ∆S�Hmax = 0 which represents the line with no deviation between 
observed and modelled stress state (black solid lines in Figure 4-1). The coordinate form of the 
equation now reads 

 
𝑛𝑛1 𝑥𝑥′ + 𝑛𝑛2 𝑦𝑦′                       = 𝑑𝑑 

Then the equation is transformed to represent this line in ℝ2(x′, y′). 

 

𝑦𝑦′ =  
𝑑𝑑 −  𝑛𝑛1𝑥𝑥′

𝑛𝑛2
 

The same equation is setup for Shmin. Then, ∆S�hmin is set to ∆S�hmin = 0 which defines the 
according line of zero deviation of modelled from observed ∆S�hmin magnitude. Both lines of 
zero deviation are now defined in ℝ2(x′, y′). At their intersection both, ∆S�Hmax and 
∆S�hmin, are zero and hence x’ and y’ at the intersection define the best-fit boundary conditions 
(indicated by the red circle and dashed red lines in Figure 4-2). 
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Figure 4-2  Best-fit boundary conditions in 2D. 

Red dashed line and red circle are displayed in ℝ2(x′, y′). Three test scenarios (black 
circles) provide mean deviations of modelled and observed SHmax and Shmin magnitudes 
for specific boundary conditions. For both, SHmax and Shmin, the plane spanned by the 
boundary conditions and the deviations in ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin), 
respectively, are sought. They are represented here by the contour lines with blue as a 
negative deviation and red as a positive deviation. The best-fit boundary conditions are 
found where the contour lines z=0 of the two planes intersect. 
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5 Troubleshooting 
Several cases of possible errors are covered by error messages and instructions to resolve the 
problem that are printed to the screen. In the following, several additional possible errors are 
listed and possible solutions are explained. 
 

Without PyTecplot an 
error occurs in the 
beginning of the second 
step. 

• Is the file path set to the correct location? Also check in 
the macro file itself. 

• Are the escape characters in the file path set correctly? 
• Does the folder “data” exist? 
• Do the requested variables exist? If not rename. 

When opening the 
GeoStress GUI stress 
tensor variables are 
missing 

• Rename the stress tensor and displacement variables to 
the names expected by GeoStress, e.g. using the auxiliary 
Tecplot macro rename_stress.mcr 

An error occurs during 
execution of GeoStress 
GUI 

• Are the stress tensor variables nodal variables? Convert 
cell-centered variables to nodal ones using the auxiliary 
Tecplot macro cellcent2nodal.mcr 

Using PyTecplot an 
error occurs during 
execution of 
GeoStressCmd 

• Are you using a *.plt file that was read from a *.fil file on 
a Windows computer? Convert cell-centered variables to 
nodal ones using the auxiliary Tecplot macro 
cellcent2nodal.mcr 
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6 Examples 
In the supplemented examples a basic calibration procedure is presented. All files are available 
in the examples folder as Abaqus® solver input file (.inp) and output file (.odb and *.fil, Table 
6-1) and as Moose input file (*.i) and output database (*.dat, Table 6-2). Three test scenario 
with arbitrary boundary condition scenarios, and a final model are presented. The geometry is 
in a separate file (*.geom and *.inp respectively). The exemplary parameters that are provided 
in the Python script matches these examples. 

Table 6-1 Abaqus example files 
Short explanation of the files provided for an exemplified calibration. 

 

File Name Explanation 
test_calibration.fil Three model scenarios with different boundary conditions. Abaqus® 

output database for loading in Tecplot on Linux. 
test_calibration.inp Three model scenarios with different boundary conditions. Abaqus® input 

file. 
test_calibration.odb Three model scenarios with different boundary conditions. Abaqus® 

output database for loading in Tecplot on Windows. 
test_model.geom Geometry of the geomechanical-numerical root model. 

 

Table 6-2 Moose example files 
Short explanation of the files provided for an exemplified calibration. 

 

File Name Explanation 
test_calibration_1.i First (out of three) model scenario Moose input file. 
test_calibration_1_out_
0001.dat 

First (out of three) solved model scenario. 

test_calibration_2.i Second (out of three) model scenario Moose input file. 
test_calibration_2_out_
0001.dat 

Second (out of three) solved model scenario. 

test_calibration_3.i Third (out of three) model scenario Moose input file. 
test_calibration_3_out_
0001.dat 

Third (out of three) solved model scenario. 

test_model.inp Test model geometry provided as Abaqus input file that can be read by 
Moose. 

 

The output databases can be directly loaded in Tecplot 360 EX and FAST Calibration can hence 
be tested without using Abaqus® or the Moose Framework to solve the model. Please note 
that the models were solved using Abaqus® 2019. Output files from this version of Abaqus® 
can only be read from Tecplot 360 EX 2019 onwards. For compatibility with older Tecplot 360 
EX versions the input files can be rerun in an older Abaqus® version (older Tecplot 360 EX 
versions up to 2017 require Abaqus® 6.11 output files, later on Abaqus ® 6.14). 
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