

Recommended citation of the report:
Ziegler, M. O. & Heidbach, O. (2021). Manual of the Python Script PyFAST Calibration v1.0. World Stress
Map Technical Report 21-03, GFZ German Research Centre for Geosciences.
DOI: https://doi.org/10.48440/wsm.2021.003

The software described in this report, including data examples, is published as:
Ziegler, M. O. & Heidbach O.(2021). Python Script PyFAST Calibration v1.0. GFZ Data Services. DOI:
https://doi.org/10.5880/wsm.2021.003

The software is available for download on GitHub:
https://github.com/MorZieg/PyFAST_Calibration

Imprint
World Stress Map Project

GFZ German Research Centre for Geosciences

Telegrafenberg
D-14473 Potsdam

Published in Potsdam, Germany
April 2021

https://doi.org/10.48440/wsm.2021.003

https://doi.org/10.48440/wsm.2021.003
https://doi.org/10.5880/wsm.2021.003
https://github.com/MorZieg/PyFAST_Calibration
https://doi.org/10.48440/wsm.2021.003
https://doi.org/10.48440/wsm.2021.003
https://creativecommons.org/licenses/by-sa/4.0/

I

Manual of the Python Script PyFAST Calibration v1.0

WSM Technical Report 21-03

Moritz O. Ziegler and Oliver Heidbach
GFZ German Research Centre for Geosciences, Potsdam, Germany

II

Table of Contents

List of Tables .. II

List of Figures .. III

Abstract ...1

1 Introduction ...2

2 Background of geomechanical modelling ..3

3 Calibration of a model ...5
3.1 General procedure ..5
3.2 Specific procedure ...6
3.2.1. Without PyTecplot ...6
3.2.2. Using PyTecplot ..7

4 Basic principles ..9
4.1 Load output database (load_abq, load_mse) ...9
4.2 Extract variables from *.plt file (extract_tp) ...9
4.3 Writing Tecplot 360 EX macro function (write_macro) ...10
4.4 Load data exported by macro (load_csv) ...11
4.5 Estimation of best-fit boundary conditions (calibrate) ..11

5 Troubleshooting ...16

6 Examples ..17

Acknowledgements ...18

References ...18

List of Tables

Table 0-1 Structure of the GitHub repository. ...1

Table 3-1 Input variables required by PyFAST Calibration. ...5

Table 4-1 Input variables required by the function extract_tp. ..9

Table 4-2 Input variables required by the function write_macro. ..10

Table 4-3 Input variables required by the function load_csv. ..11

Table 4-4 Input variables required by the function calibrate. ..12

Table 4-5 Example for the information required for the generation of the planes.12

Table 6-1 Abaqus example files ...17

Table 6-2 Moose example files ..17

III

List of Figures

Fig. 2-1 Map view of a model area (blue box) in a geographical coordinate system.3

Fig. 2-2 Basic workflow of the tool FAST Calibration. ..4

Figure 3-1 FAST Calibration procedure including an intermediate manual step.7

Figure 3-2 FAST Calibration procedure using PyTecplot. ..8

Figure 4-1 Best-fit boundary conditions as planes in 3D. ..13

Figure 4-2 Best-fit boundary conditions in 2D...15

1

Abstract
The 3D geomechanical-numerical modelling of the in-situ stress state aims at a continuous
description of the stress state in a subsurface volume. It requires observed stress information
within the model volume that are used as a reference. Once the modelled stress state is in
agreement with the observed reference stress data the model is assumed to provide the
continuous stress state in its entire volume.

The modelled stress state is fitted to the reference stress data records by adaptation of the
displacement boundary conditions. This process is herein referred to as calibration. Depending
on the amount of available stress data records and the complexity of the model the manual
calibration is a lengthy process of trial-and-error modelling and analysis until best-fit boundary
conditions are found.

The Fast Automatic Stress Tensor Calibration (FAST Calibration) is a Python function that
facilitates and speeds up this calibration process. By using a linear regression it requires only
three model scenarios with different boundary conditions. The stress states from the three
model scenarios at the locations of the reference stress data records are extracted. The
differences between the modelled and observed stress states are used for a linear regression
that allows to compute the displacement boundary conditions required for the best-fit
modelled stress state. If more than one reference stress state is provided, the influence of the
individual observed stress data records on the best-fit boundary conditions can be weighted.

The script files are provided for download at:
http://github.com/MorZieg/PyFAST_Calibration

Table 0-1 gives an overview of the folder structure and input files with a short explanation.

Table 0-1 Structure of the GitHub repository.
Folders/Files in GitHub repository http://github.com/MorZieg/PyFAST_Calibration. The
page numbers (if available) direct to the documentation in this manual.

File Name Explanation Page
fast_calibration.py Python script for the calibration of a geomechanical-numerical

model on stress data records.
5

CITATION.bib The recommended citation for the software.
LICENSE The full GPL v3.0 license text.
README.md Readme file that contains relevant information on the usage of

the software.

examples/ Folder that contains example files for a calibration using either
Moose or Abaqus.

16

cellcent2nodal.mcr Tecplot macro file that converts cell-centred to nodal variables. 6
rename_stress.mcr Tecplot macro that renames the stress state variables from a

Moose solver to be compatible with the Tecplot Add-on
GeoStress.

6

http://github.com/MorZieg/PyFAST_Calibration
http://github.com/MorZieg/PyFAST_Calibration
http://github.com/MorZieg/PyFAST_Calibration

2

1 Introduction
3D geomechanical-numerical modelling of the stress state depends on stress data records that
are available within the model volume. Dirichlet displacement boundary conditions are altered
until a fit of the modelled to these observed data is achieved. Herein, this process of fitting the
model on observables is referred to as model calibration. Once the boundary conditions are
found with which the model is best fitted to the stress data records the model is calibrated.
The assumption is made that the stress state in the rest of the model is then also a legitimate
representation of the in-situ stress state. A manual adaptation of the boundary conditions
towards a best fit is a lengthy procedure that involves a lot of trial-and-error.

PyFAST Calibration (Python Fast Automatic Stress Tensor Calibration) uses a linear regression
to speed up and automatize the process of calibration. It is a transfer to Python of the Matlab
tool with the same name (Ziegler & Heidbach, 2021) and follows the calibration approach
described by Reiter and Heidbach (2014), Hergert et al. (2015), and Ziegler et al. (2016). The
tool runs in Python 3.x in conjunction with the visualization software Tecplot 360 EX 2019 R1
and its Add-on GeoStress (Heidbach et al., 2020; Stromeyer et al. 2020). It supports both
Abaqus output files and output databases from the Moose Framework. A fully automatized
application of PyFAST Calibration is possible using the solvers Abaqus or the Moose Framework
together with PyTecplot, the Python extension of Tecplot.

The user should be familiar with 3D geomechanical-numerical modelling, Python, Tecplot 360
EX, including a basic knowledge of Tecplot 360 EX macro functions, and the Tecplot 360 EX
Add-on GeoStress provided by Stromeyer et al. (2020) and documented by Heidbach et al.
(2020). This PyFAST Calibration manual provides an overview of the scripts and is designed to
help the user to adapt the scripts for their own needs. It contains basic technical information
on 3D geomechanical-numerical modelling (Section 2). The input data and the syntax as well as
the execution of the script are presented in Section 3. Section 4 provides information on the
individual Python functions that come with PyFAST Calibration and is mainly dedicated to
advanced users. Common error messages and according help is provided in Section 5.
Examples are provided in Section 6.

Note to users of FAST Calibration v2.0 on Matlab:

PyFAST Calibration is a transfer of only the main functions of FAST Calibration v2.0 to Python.
For sanity checks of the stress state, additional calibration data types, or a multistage approach
FAST Calibration v2.0 should be used (Ziegler & Heidbach, 2021; 2021a).

3

2 Background of geomechanical modelling
3D geomechanical-numerical modelling requires a static geological model that describes the
geometry of the geologic units and faults, the density distribution and the elastic rock
properties. For the calibration process stress data records are needed at individual points
within the model volume. To solve the partial differential equation of the equilibrium of forces
the model volume is discretized into finite elements. The discretized geometry is populated
with rock properties, i.e. the density, Young’s module, and Poisson ratio. Fitting the magnitude
of the vertical stress SV is easy as the density distribution is relatively well known. In contrast
fitting the magnitudes of maximum and minimum horizontal stress, SHmax and Shmin

respectively, is challenging as stress data of these two components is sparse (we assume here
for simplicity that SV and thus SHmax and Shmin are principal stresses). Information on the
orientation of the stress tensor by means of the orientation of SHmax is provided by the World
Stress Map (WSM) database (Heidbach et al., 2016). However, stress orientations are helpful
for the model calibration any differential displacement boundary condition will lead to an
instantaneous adjustment of the stress tensor orientation parallel and perpendicular to the
model boundary regardless the amount of displacement. In contrast, information on the
magnitudes of principal horizontal stresses is generally sparse and incomplete (Morawietz et
al., 2020).

Fig. 2-1 Map view of a model area (blue box) in a geographical coordinate system.
The boundary conditions (red) are applied in a rotated coordinate system (x’ and y’)
parallel to the model boundaries which are oriented parallel to the prevailing orientations
of the principal horizontal stress axes. Information on the orientation is available from
data of the World Stress Map database (Heidbach et al., 2016). The application of even
small displacement boundary conditions (Dirichlet type) perpendicular to the model
boundaries are usually sufficient to achieve a good fit of the overall stress orientation.

To calibrate the geomechanical-numerical model information on the SHmax and Shmin magnitudes
is essential. The model calibration is achieved by a comparison of the modelled stress to the
observed SHmax and Shmin magnitudes in dependence of the Dirichlet displacement boundary
condition (Fig. 2-1). Their values are altered until a good fit of the modelled stress state to the
observed stress information at the calibration points is achieved. Thus, the models calibration

4

depends on only two displacements which facilitates the calibration process as the best-fit
boundary conditions can be found by a system of linear equations. The automated setup and
solving of this linear equation system is the core of the FAST-Calibration tool. Note that two
implicit assumption are that 1) the rheology is linear elastic and 2) that the stress state is
controlled by a lateral displacement that is not changing with depth

The calibration procedure is illustrated in Fig. 2-2. Three different test model scenarios with
different arbitrary, but reasonable displacement boundary conditions are solved (Fig. 2-2a). At
several locations within the model volume stress data records are available (Fig. 2-2b). For
each test model scenarios the modelled stress state is compared with these stress data
records. Each comparison provides a mean deviation for SHmax and Shmin, respectively (Fig. 2-2c).
A system of linear equations is set up in the domain of the displacement boundary conditions
(x and y) and the deviations of observed and modelled data (z) (Fig. 2-2d). For the smallest
deviation of each, SHmax or Shmin, an infinite number of corresponding displacement boundary
conditions exist. However, only one set satisfies both the requirements for the smallest
deviation in observed and modelled SHmax and Shmin. This set of displacement boundary
conditions is applied to compute the best-fit model (see Ziegler et al., 2016).

Fig. 2-2 Basic workflow of the tool FAST Calibration.
The stress state from three test model scenarios with arbitrary displacement boundary
conditions (a) and observed stress data records (b) are compared (c). A set of linear
equations is set up that provide the best-fit boundary conditions (d).

5

3 Calibration of a model
PyFAST Calibration runs with full functionality both on Windows and Linux computers and
supports output files from two solvers – Abaqus and the Moose Framework. A full
automatization is achieved using the commercial PyTecplot extension of Tecplot. Alternatively,
as an intermediate manual step the user needs to run a Tecplot macro.

As a Python 3 script several functions required for script execution are provided in one file,
which can be copied and configured for each project. Alternatively, PyFAST Calibration is used
as a Python package with all required variables transmitted by the caller function.

 General procedure

The FAST Calibration approach requires at least one data record for SHmax and Shmin magnitude
each. Each data record consists of a location defined in the model coordinate system (x, y, z), a
magnitude (in MPa), and is assigned a confidence between 0 (low) and 1 (high). Furthermore,
FAST Calibration requires information on the test boundary conditions, the name of the solved
model with test boundary conditions, and (if PyTecplot is not used) the full path of the working
folder. Eventually, the name of the two stress components from the model results used for
calibration need to be specified, e.g. to be SHmax and Shmin or XX Stress and YY Stress. A
compilation of all required variables and examples is presented in Table 3-1.

Table 3-1 Input variables required by PyFAST Calibration.
Examples are provided in the script file.

Variable Description
folder Provide the directions to the folder in your system which contains the script data. It is

important to include the full path for Tecplot 360 EX (which does not support relative
paths) if PyTecplot is not used.
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test'
Example (Linux): folder = '/home/user/Project/FAST/Test'

name Provide the file name with three independent stress states derived from three
different boundary conditions.
Example: name = 'test_scenarios'

bcs Enter the displacements in x’ (Shmin or SHmax) and y’ (SHmax or Shmin) direction that are
prescribed at the different test scenarios. Make sure to assign the values in the
correct order.
Example: bcs = [[4, 2, 4],[-4, -5, -3]]

stress_vars Provide the names in Tecplot of the two stress variables in the model that should be
calibrated.
Example: stress_vars = ['SHmax','Shmin']

shmax Location, magnitude, and weight of the SHmax magnitude data records that should be
used for calibration.
Example: shmax = [[5050,-3500,-800,22.5,1.0]]

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be
used for calibration.
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]]

solver The name of the used solver, i.e. either Abaqus or Moose
Example: solver = ‘abaqus’

pytecplot Whether PyTecplot should be used or not.
Example: pytecplot = ‘off’

6

 Specific procedure

PyFAST Calibration in connection with Tecplot and PyTecplot supports output files from both
Abaqus and the Moose Framework. In case of Abaqus even two different output files are
supported depending on whether Tecplot is run on a Windows (*.odb file) or Linux (*.fil file)
operating system. For some combinations of OS, Solver, and whether PyTecplot is used or not,
certain additional aspects need to be considered. The detailed procedure is presented in the
following dependent whether PyTecplot is used or not.

 Without PyTecplot

The application of FAST Calibration without using PyTecplot requires several steps (including
two steps performed within the Python script) which are illustrated in Figure 3-1.
1. Prepare your working directory with a subfolder called “data” and set the variables in the

PyFAST Calibration script.
2. Load the model output database in Tecplot. Optionally run GeoStress (Heidbach et al.

2020) or a similar tool.
3. Run PyFAST Calibration in the working directory. A Tecplot macro is written to your

working directory. You will be prompted to execute the macro in Tecplot.
4. Run the macro in Tecplot to export the modelled stress state from the test scenarios at the

locations of the stress data records to *.csv files in the data older.
5. Press enter in the Python command window. The *.csv files will be loaded to Python

variables and the best-fit boundary conditions will then be computed and displayed.

Deviations and additions to these steps are listed in the following.

Abaqus/Windows
No additional steps required

Abaqus/Linux
- Instead of loading the standard *.odb file only the *.fil file is supported by the Tecplot loader

on Linux systems. To generate a *.fil file include the following lines in the Abaqus input
files first *STEP section.

*EL FILE
S
*NODE FILE
COORD, U

- The stress tensors variables in the *.fil file are cell-centred instead of nodal variables as

required for a successful application of GeoStress. Running the supplemented Tecplot
macro cellcent2nodal.mcr converts the stress tensor variables to nodal variables. This has
to be done before execution of GeoStress. Otherwise running GeoStress will result in an
error.

Moose

- The output database from the solver comes in three consecutive files each for one boundary
condition scenario. These files need to be loaded consecutively into one Tecplot database.

7

- The stress tensor output variables of Moose are called stress_xx etc. in contrast to XX Stress
etc. expected by GeoStress. The same holds for the displacements that are called disp_x
etc. in contrast to X Displacement. Running the supplemented Tecplot macro
rename_stress.mcr fixes this issue so that GeoStress works. If this step is omitted, the
GeoStress GUI fails to load.

Figure 3-1 FAST Calibration procedure including an intermediate manual step.

Three columns indicate the three involved parties: The user, Python and Tecplot. The
two steps are indicated by the two vertical boxes in each of the three columns.

 Using PyTecplot
The application of FAST Calibration using PyTecplot works automatically from loading the
output database files to the computation and display of boundary conditions in a single step
illustrated in Figure 3-2. Most procedures specific to certain operating systems and solvers are
implemented. Nonetheless, if running in a Linux environment with an Abaqus solver, the
command for the generation of a *.fil file needs to be included to the Abaqus input file.

Abaqus/Windows
No additional steps required

Abaqus/Linux
- Instead of loading the standard *.odb file only the *.fil file is supported by the Linux Tecplot

loader. To generate a *.fil file include the following lines in the Abaqus input files first
*STEP section.

8

*EL FILE
S
*NODE FILE
COORD, U

Moose
No additional steps required

Figure 3-2 FAST Calibration procedure using PyTecplot.

Three columns indicate the three involved parties: The user, Python and Tecplot.

9

4 Basic principles
The technical implementation of FAST Calibration is described in this chapter, mainly
designated for advanced users that may want to adapt the code for their own demands.
Therefore, the Python functions and their intentions are described.

 Load output database (load_abq, load_mse)

Only required is PyTecplot IS used. Depending on the solver (Abaqus or Moose) the according
version of the function is used. As only argument the name of the output database without file
extension is provided. PyTecplot currently does not support loading of Abaqus or Moose
output databases via a specific command. Thus it is realized using a macro command. Then the
file is saved as a *.plt file native to Tecplot.

The loading of Abaqus output databases is dependent on the operating system since Tecplot
on Windows supports only reading Abaqus *.odb files while Tecplot on Linux supports only
Abaqus *.fil files. The check for the operating system works automatically with the Python
platform function.

The Moose Framework provides the three different sets of boundary conditions in three
separate files. They are consecutively loaded and appended to the Tecplot *.plt file using
macro commands.

 Extract variables from *.plt file (extract_tp)

Only required is PyTecplot IS used. The *.plt files created by the functions load_abq or
load_mse are loaded in Tecplot. The arguments are listed and described in Table 4-1.

If a Linux operating system is used the cell-centred stress tensor variables from the *.fil file are
converted to nodal variables using the function cell2nodal. In case of using Moose as solver,
the solution time is assigned and the variables of the stress tensor are renamed to comply with
the variable names expected by the GeoStress Add-on using the function rnm_vrbls. If desired,
the reduced stress tensor (i.e. SHmax and Shmin) is derived using the GeoStress Add-on.

Eventually, the stress state are extracted at the locations where stress data is available for
comparison. Therefore, the additional function strextract is used. Its arguments are the
location and zone of the stress component, the PyTecplot model handle, and the name of the
stress component. Eventually, the modelled stress states are returned to the caller function.

Table 4-1 Input variables required by the function extract_tp.
Variable Description
name The name of the *.plt file that is to be loaded without the file extension.
solver The name of the used solver, i.e. either Abaqus or Moose

Example: solver = ‘abaqus’
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be

used for calibration.
Example: shmax = [[5050,-3500,-800,22.5,1.0]]

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be
used for calibration.
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]]

stress_vars Provide the names of the two stress variables in the model that should be calibrated.
Example: stress_vars = ['SHmax','Shmin']

10

 Writing Tecplot 360 EX macro function (write_macro)

Only required if PyTecplot is NOT used. The function write_macro generates a Tecplot 360 EX
macro that exports the modelled stress state from given locations in the model, usually at
calibration points. Since the calibration points are not necessarily at nodes the variables are
interpolated from the nodes to the exact coordinates in the volume. The function requires five
input variables (Table 4-2) which are automatically provided and transmitted by the script.

Table 4-2 Input variables required by the function write_macro.
Variable Description
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be

used for calibration.
Example: shmax = [[5050,-3500,-800,22.5,1.0]]

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be
used for calibration.
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]]

stress_vars Provide the names of the two stress variables in the model that should be calibrated.
Example: stress_vars = ['SHmax','Shmin']

name The desired name of the macro without the file type extension “.mcr”.
folder Provide the directions to the folder in your system which contains the script data. It is

important to include the full path since this information is not used in Python but for
the Tecplot 360 EX macro which does not support relative paths. Make sure of the
correct usage of slash/backslash depending on the operating system and that the
correct escape characters are used on Windows.
Example (Windows): folder = 'd:\\Data\\Project\\FAST\\Test'
Example (Linux): folder = '/home/user/Project/FAST/Test'

With these variables the function creates a Tecplot 360 EX macro with the following structure.

1. The Tecplot macro header is written.
2. The internal number of the variables SHmax and Shmin in Tecplot 360 EX are sought and

stored in the macro variable SHMAX and SHMIN.

 $!GETVARNUMBYNAME |SHMAX|
 NAME = "SHmax”

3. For each data record location specified in the variable stress an individual 1D zone

(point) is created. The number of zones created per data record location depends on
the number of model scenarios, usually three. The following syntax (with an
exemplified location) is repeated accordingly often.

$!CREATERECTANGULARZONE
IMAX = 1
JMAX = 1
KMAX = 1
X1 = 6.621267e+05
Y1 = 5.300777e+06
Z1 = -1.259692e+02
X2 = 6.621267e+05
Y2 = 5.300777e+06
Z2 = -1.259692e+02

11

4. The two variables are linearly interpolated from the source zones (i.e. one of the
model steps) to the zones defined in step 1. The following code is repeated accordingly
often.

$!LINEARINTERPOLATE
SOURCEZONES = [1]
DESTINATIONZONE = 4
VARLIST = [|SHMAX|,|SHMIN|]
LINEARINTERPCONST = 0
LINEARINTERPMODE = DONTCHANGE

5. The variable values in the 1D zones are exported to two comma-separated data files.

Each file contains all instances of one of the two variables.

$!EXTENDEDCOMMAND
COMMANDPROCESSORID = 'excsv'
COMMAND = 'FrOp=1:ZnCount=6:ZnList=[4-
9]:VarCount=1:VarList=[SHMAX]:ValSep=",":FNAME="D:\Data\Project\F
AST\data\shmax.csv"'

6. The 1D zones created in step 3 are deleted from the Tecplot 360 EX file.

$!DELETEZONES [4-34]

 Load data exported by macro (load_csv)
Only required if PyTecplot is NOT used. The content of the *.csv files written by the Tecplot
macro are loaded as Python variables. The variables from all three steps are sorted accordingly
in order to be comparable. Please note that both variables are exported at all calibration
points. Thus, calibration points with only SHmax or only Shmin data are still exported for both
stress components. Thus, the first (SHmax) values are discarded in the following. Eventually,
the modelled stress data is converted into numpy arrays and returned to the caller function.
The required arguments are described in Table 4-3.

Table 4-3 Input variables required by the function load_csv.
Variable Description
name The file name with three independent stress states derived from three different

boundary conditions.
Example: name = 'test_scenarios'

leshmax Number of SHmax calibration points. (Length of the variable shmax)
leshmin Number of Shmin calibration points. (Length of the variable shmin)
stress_vars Provide the names in Tecplot of the two stress variables in the model that should be

calibrated.
Example: stress_vars = ['SHmax','Shmin']

 Estimation of best-fit boundary conditions (calibrate)

The core of FAST Calibration is the function calibrate that sets up a system of linear equations
which are used to estimate the best-fit boundary conditions. Therefore, the boundary
displacements of at least three different combinations of boundary conditions are required
together with the solved model scenarios. The functions arguments are listed and described in
Table 4-4.

12

Table 4-4 Input variables required by the function calibrate.
Variable Description
shmax Location, magnitude, and weight of the SHmax magnitude data records that should be

used for calibration.
Example: shmax = [[5050,-3500,-800,22.5,1.0]]

shmin Location, magnitude, and weight of the Shmin magnitude data records that should be
used for calibration.
Example: shmin = [[5050,-3500,-800,12.7,0.5],[5100,-3450,-2745,41.9,1.0]]

shmax_calib The modelled SHmax stress state at the calibration points from the three test scenarios
provided by load_csv or extract_tp.

shmin_calib The modelled Shmin stress state at the calibration points from the three test scenarios
provided by load_csv or extract_tp.

bcs The boundary conditions of the three test scenarios.

The deviation of the modelled stress state from the observed data record for each boundary
condition scenario (bc) at each location (x, y, z) with available observed stress data records is
computed for SHmax and Shmin by

∆𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑏𝑏𝑏𝑏) = 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑏𝑏𝑏𝑏) − 𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

exemplified here for SHmax. The weighted mean deviation of the modelled and observed SHmax
and Shmin magnitudes are computed for each boundary condition scenario by

∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑏𝑏𝑏𝑏) =
∑ 𝑤𝑤𝑖𝑖 ∆𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑏𝑏𝑏𝑏)𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑖𝑖

with i the number of data records and wi the individual weighting of each data record. Now
for each boundary condition scenario a mean deviation of the modelled from the observed
SHmax and Shmin magnitudes exists. An example of the available information is shown in
Table 4-5.

Table 4-5 Example for the information required for the generation of the planes.
At least three different boundary condition scenarios are required. For each scenario
the displacement in x’ and y’ and ∆S�Hmax and ∆S�hmin are available.

BC
scenario

x’ displacement y’ displacement ∆𝑺𝑺�𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 ∆𝑺𝑺�𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉

1 -10 5 -12.3 8.7
2 -30 25 2.5 -3.2
3 -30 5 -14.4 -4.8

This information is used to derive the boundary conditions that fulfil the requirement that
there is no deviation between the observed and modelled ∆S�Hmax and ∆S�hmin magnitudes.
Note that no deviation between the average SHmax and Shmin magnitudes is sought. If more than
one data record is available for SHmax or Shmin it is expected that deviations are observed for the
individual data records. The assigned weights control which data records are preferred and
should have a smaller deviation. The resulting system of linear equations can be visualised as
two intersecting planes (Figure 4-1).

13

Two vectors are now available for each of the three test model scenarios that take the form

𝑣𝑣 ���⃗ = �
𝑥𝑥
𝑦𝑦

∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

�

with the boundary displacement x in x’ direction and y in y’ direction as well as ∆S�Hmax or
∆S�hmin, the resulting difference of the modelled and expected stress state in the
corresponding component.

Figure 4-1 Best-fit boundary conditions as planes in 3D.

Three test scenarios (vertically connected black circles) provide mean deviations of
modelled and observed SHmax and Shmin magnitudes for specific boundary conditions.
For both, SHmax and Shmin, the plane spanned by the boundary conditions and the
deviations in ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin), respectively, are sought. They
are colour coded with blue as a negative deviation and red as a positive deviation. The
best-fit boundary conditions are found where the contour lines z=0 (black lines) of the
two planes intersect.

It can be pictured that for each, SHmax and Shmin, this information is used to set up the equation
of the plane that is defined by the displacement boundary conditions in x’ and y’ direction and
the mean deviation of SHmax and Shmin, respectively. Hence, the planes are set up in
ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin), respectively (Figure 4-1). The planes equation in
parameter form is

𝑥⃗𝑥 = 𝑝𝑝 + 𝑠𝑠 𝑟𝑟1���⃗ + 𝑡𝑡 𝑟𝑟2���⃗

14

with the position vector 𝑝𝑝 = 𝑣𝑣1����⃗ , the parameters s and t, and the direction vectors 𝑟𝑟1���⃗ and 𝑟𝑟2���⃗
which are computed by

𝑟𝑟1���⃗ = 𝑣𝑣2����⃗ − 𝑣𝑣1����⃗

𝑟𝑟2���⃗ = 𝑣𝑣3����⃗ − 𝑣𝑣1����⃗

Then the parameter form is transferred to the coordinate form of the planes equation which is
defined as

𝑛𝑛1 𝑥𝑥′ + 𝑛𝑛2 𝑦𝑦′ + 𝑛𝑛3 ∆𝑆𝑆�𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑑𝑑

with n�⃗ as the normal vector of the plane derived by

𝑛𝑛�⃗ = 𝑟𝑟1���⃗ × 𝑟𝑟2���⃗

and d as
𝑑𝑑 = 𝑝𝑝 ∙ 𝑛𝑛�⃗

with p�⃗ the planes position vector.

Then ∆S�Hmax is set to ∆S�Hmax = 0 which represents the line with no deviation between
observed and modelled stress state (black solid lines in Figure 4-1). The coordinate form of the
equation now reads

𝑛𝑛1 𝑥𝑥′ + 𝑛𝑛2 𝑦𝑦′ = 𝑑𝑑

Then the equation is transformed to represent this line in ℝ2(x′, y′).

𝑦𝑦′ =
𝑑𝑑 − 𝑛𝑛1𝑥𝑥′

𝑛𝑛2

The same equation is setup for Shmin. Then, ∆S�hmin is set to ∆S�hmin = 0 which defines the
according line of zero deviation of modelled from observed ∆S�hmin magnitude. Both lines of
zero deviation are now defined in ℝ2(x′, y′). At their intersection both, ∆S�Hmax and
∆S�hmin, are zero and hence x’ and y’ at the intersection define the best-fit boundary conditions
(indicated by the red circle and dashed red lines in Figure 4-2).

15

Figure 4-2 Best-fit boundary conditions in 2D.

Red dashed line and red circle are displayed in ℝ2(x′, y′). Three test scenarios (black
circles) provide mean deviations of modelled and observed SHmax and Shmin magnitudes
for specific boundary conditions. For both, SHmax and Shmin, the plane spanned by the
boundary conditions and the deviations in ℝ3(x′, y′,∆S�Hmax) and ℝ3(x′, y′,∆S�hmin),
respectively, are sought. They are represented here by the contour lines with blue as a
negative deviation and red as a positive deviation. The best-fit boundary conditions are
found where the contour lines z=0 of the two planes intersect.

16

5 Troubleshooting
Several cases of possible errors are covered by error messages and instructions to resolve the
problem that are printed to the screen. In the following, several additional possible errors are
listed and possible solutions are explained.

Without PyTecplot an
error occurs in the
beginning of the second
step.

• Is the file path set to the correct location? Also check in
the macro file itself.

• Are the escape characters in the file path set correctly?
• Does the folder “data” exist?
• Do the requested variables exist? If not rename.

When opening the
GeoStress GUI stress
tensor variables are
missing

• Rename the stress tensor and displacement variables to
the names expected by GeoStress, e.g. using the auxiliary
Tecplot macro rename_stress.mcr

An error occurs during
execution of GeoStress
GUI

• Are the stress tensor variables nodal variables? Convert
cell-centered variables to nodal ones using the auxiliary
Tecplot macro cellcent2nodal.mcr

Using PyTecplot an
error occurs during
execution of
GeoStressCmd

• Are you using a *.plt file that was read from a *.fil file on
a Windows computer? Convert cell-centered variables to
nodal ones using the auxiliary Tecplot macro
cellcent2nodal.mcr

17

6 Examples
In the supplemented examples a basic calibration procedure is presented. All files are available
in the examples folder as Abaqus® solver input file (.inp) and output file (.odb and *.fil, Table
6-1) and as Moose input file (*.i) and output database (*.dat, Table 6-2). Three test scenario
with arbitrary boundary condition scenarios, and a final model are presented. The geometry is
in a separate file (*.geom and *.inp respectively). The exemplary parameters that are provided
in the Python script matches these examples.

Table 6-1 Abaqus example files
Short explanation of the files provided for an exemplified calibration.

File Name Explanation
test_calibration.fil Three model scenarios with different boundary conditions. Abaqus®

output database for loading in Tecplot on Linux.
test_calibration.inp Three model scenarios with different boundary conditions. Abaqus® input

file.
test_calibration.odb Three model scenarios with different boundary conditions. Abaqus®

output database for loading in Tecplot on Windows.
test_model.geom Geometry of the geomechanical-numerical root model.

Table 6-2 Moose example files
Short explanation of the files provided for an exemplified calibration.

File Name Explanation
test_calibration_1.i First (out of three) model scenario Moose input file.
test_calibration_1_out_
0001.dat

First (out of three) solved model scenario.

test_calibration_2.i Second (out of three) model scenario Moose input file.
test_calibration_2_out_
0001.dat

Second (out of three) solved model scenario.

test_calibration_3.i Third (out of three) model scenario Moose input file.
test_calibration_3_out_
0001.dat

Third (out of three) solved model scenario.

test_model.inp Test model geometry provided as Abaqus input file that can be read by
Moose.

The output databases can be directly loaded in Tecplot 360 EX and FAST Calibration can hence
be tested without using Abaqus® or the Moose Framework to solve the model. Please note
that the models were solved using Abaqus® 2019. Output files from this version of Abaqus®
can only be read from Tecplot 360 EX 2019 onwards. For compatibility with older Tecplot 360
EX versions the input files can be rerun in an older Abaqus® version (older Tecplot 360 EX
versions up to 2017 require Abaqus® 6.11 output files, later on Abaqus ® 6.14).

18

Acknowledgements
The authors would like to thank Kirsten Elger and Dorothea Hansche for supporting the
publication.

The work leading to these results has received funding from the Initiative and Networking
Fund of the Helmholtz Association through the project “Integrity of nuclear waste repository
systems - Cross-scale system understanding and analysis (iCross)” project by the Federal
Ministry of Education and Research (project number 02NUK053D), the Helmholtz Association
and the Helmholtz Centre Potsdam - Deutsches GeoForschungsZentrum GFZ.

References

Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., & the WSM Team. 2016. World Stress Map
Database Release 2016. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001

Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B., Reinecker, J., Reiter, K., Tingay, M.,
Wenzel, F., Xie, F., Ziegler, M., Zoback, M.-L., & Zoback, M. 2018. The World Stress Map
database release 2016: Crustal stress pattern across scales. Tectonophysics, 744, 484-
498. https://doi.org/10.1016/j.tecto.2018.07.007

Heidbach, O., Stromeyer, D. & Ziegler, M.O. 2020. Manual of the Tecplot 360 Add-on
GeoStress v2.0. World Stress Map Technical Report 20-01, GFZ Data Services.
https://doi.org/10.2312/wsm.2020.001

Hergert, T., Heidbach, O., Reiter, K., Giger, S. B., & Marschall, P. 2015. Stress field sensitivity
analysis in a sedimentary sequence of the Alpine foreland, northern Switzerland. Solid
Earth, 6(2), 533–552. https://doi.org/10.5194/se-6-533-2015

Morawietz, S.; Heidbach, O.; Reiter, K.; Ziegler, M.; Rajabi, M.; Zimmermann, G.; Müller, B. &
Tingay, M. 2020. An open-access stress magnitude database for Germany and adjacent
regions. Geothermal Energy. 8. https://doi.org/10.1186/s40517-020-00178-5

Reiter, K., & Heidbach, O. 2014. 3-D geomechanical-numerical model of the contemporary
crustal stress state in the Alberta Basin (Canada). Solid Earth, 5(2), 1123–1149.
https://doi.org/10.5194/se-5-1123-2014

Stromeyer, D., Heidbach, O. & Ziegler, M.O. 2020. Tecplot 360 Add-on GeoStress v2.0. GFZ
Data Services. https://doi.org/10.5880/wsm.2020.001

Ziegler, M. O., Heidbach, O., Reinecker, J., Przybycin, A. M., & Scheck-Wenderoth, M.. 2016. A
multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse
Basin. Solid Earth, 7(5), 1365–1382. https://doi.org/10.5194/se-7-1365-2016

Ziegler, M. O. & Heidbach, O. 2021. Manual of the Matlab Script FAST Calibration v2.0. World
Stress Map Technical Report 21-02, GFZ German Research Centre for Geosciences.
https://doi.org/10.48440/wsm.2021.002

Ziegler, M. O. & Heidbach, O. 2021. Matlab Script FAST Calibration v2.0. GFZ Data Service.
https://doi.org/10.5880/wsm.2021.002

https://doi.org/10.5880/WSM.2016.001
https://doi.org/10.1016/j.tecto.2018.07.007
https://doi.org/10.2312/wsm.2020.001
https://doi.org/10.5194/se-6-533-2015
https://doi.org/10.1186/s40517-020-00178-5
https://doi.org/10.5194/se-5-1123-2014
https://doi.org/10.5880/wsm.2020.001
https://doi.org/10.5194/se-7-1365-2016
https://doi.org/10.48440/wsm.2021.002
https://doi.org/10.5880/wsm.2021.002

19

	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background of geomechanical modelling
	3 Calibration of a model
	1.
	2.
	3.
	3.1 General procedure
	3.2 Specific procedure
	3.2.1. Without PyTecplot
	3.2.2. Using PyTecplot

	4 Basic principles
	4.
	4.1 Load output database (load_abq, load_mse)
	4.2 Extract variables from *.plt file (extract_tp)
	4.3 Writing Tecplot 360 EX macro function (write_macro)
	4.4 Load data exported by macro (load_csv)
	4.5 Estimation of best-fit boundary conditions (calibrate)

	5 Troubleshooting
	6 Examples
	Acknowledgements
	References

