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A New Approach to Iterations in Solving Geodetic 

Boundary Value Problems for Real T0pography 

Petr H o  1 o t a 

RESEARCH msTITUTE 0F GE0DESY, 

T0P0GRAPHY AHD CART0GRAPHY 

250 66 ZDIBY 98 / PRAGUE - EAST 

CZECH0SLOVAKIA 

1. Introduction

The solution of a geodetic (linear) boundary value 

problem general17 means to find a harmonic function in the 

domain outside a telluroid which meets some conditions giv­

en on the surface of the telluroid. �ollowing the definiti­

on, see (Krarup, 1973), (HÖrmander, 1975, 1976), (Grafarend, 

1978), (Brovar, Magnick;y, Shimbirev, 1961, §34), the tellu­

roid (or the surface of the Earth in the first appro:ximation 

in Soviet literature) is about as irregular as the physical 

surface of the Earth s body. However, almost all formnl.as 

which are used for practical representation of the solution 

of the problem are valid for what is usually called a zero­

order appro:ximation of the solution based on a formal appro­

:ximation of the real boundary surface (given by the tellu­

roid) by a sphere. This kind of a spherical appro:ximation is 

insomuch habitual in the respective computations as it is 

used even at the very cost of a high smoothing of the real 

topography. 

There is a belief that there exists a convergent itera­

tive (i.e. a constructive) process, in fact an analytioal 

continuation in the interpretation by (Pellinen, 1974), 

(Jlarych, 1973) or (Moritz, 1980, §46), which modifies the 

original boundary data in such a way that these, being used 

as boundary data on the sphere, define a harmonic function 
having the quality of an analytical continuation of the 

solution related to the original data end the boundary given 

by the rugged topography of the telluroid. However, it is 

not quite obvious whether the necessary perturbation of the 

zero-order solution which would represent an increment caused 
by the topography is small enough (and in which functional 

norm) to be determined by an iterative way as above. Anyway 

the iterative process must be highly unstable (which is also 

in agreement with the practical experience). 

In this paper we will confine ourselves to the so-called 

· simple Molodensky problem

( 1. 1) 

(1.2) 

/:::, T „ div grad T 0 

r 8T/8r + 2T = - rL.g 

in J2

on ;Jf2 

where L. g is the gravi ty anomaly, r = 1 x I and .fl is an

unbounded domain wi th the boundary a.n. which is star-shaped

at the origin of the system of coordinates x1 , ½ ,  x3
The simple Molodensky problem is the one considered in virtu­

ally all practical solutions of the geodetic boundary value

problem. The term has been introduced by (Krarup, 1973) and
is also explained in (Moritz, 1980, §§42,43).

lt 1s well known that for the solution of the problem 

(1.1) - (1.2) the famous integral equation method has already 

been used by Molodensky. The basic integral equation for the 

unknown density is related to an irregular surface of the 
telluroid. However, for practical reasons it was reformula­

ted and expressed as an integral equation of the second kind 

given on a spherical surface. This makes it possible to con­

sider the integral operator involved as a perturbation of the 

one that corresponds to (1.1) - (1.2) in case of .fl. being 

the erlerior of a sphere. For the solution of the mentioned 

perturbation problem a technique has been developed inspired 

•
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by a method based on an asymptotic series expansion of the 
resolvent Operator (with respect to a small parameter). The 
convergence problem related to a Neumann series solution has 
been investigated by (Moritz, 1973) and is an inspiring 
topic for further research. 

From an abstract point of view the above perturbation 
problem can be taken for a conseque�ce of a transition from 
the spherical coordinates r (radius vector), i!'(polar 
distance), Ä(geocentric longitude) to the new system of 
coordinates 

(1.3) r = r - h( 71' , ,). ) ir=zr , J = ;i 

where the fmiction h describes the telluroid's topography 
in relation to the reference ellipsoid. Following the con­
cept of the so-called spherical approximation, the reference 
ellipsoid will be treated as a sphere of radius R (which is 
often defined as the radius of a sphere that has the same 
volume as the earth ellipsoid, i.e. R = 6371 km), for a 
more detailed explanation cf. (Heiskanen and Moritz, 1967) 
or (Moritz, 1980). In consequence (1.3) carries the surface 
of the telluroid into the sphere of radius 
is necessary to express the Laplacian of T 
r , � , J • 

R .  However, it 
in terma of 

In this paper a slightly more general transformation 

(1.4) r = r - c,;(r)h( II', Ä ) ir = II' J =,,] 

will be used instead of (1.3) where w is a smooth and 
sui tably chosen function such that O ,s; w (r) � 1 + & 

C > 0 , for R :;:;; r and w (R) = 1 • The simple Molodensky 
problem will again be solved by means of an iterative pro­
cess. The proof of its convergence will be based on an 
a priori estimate of the solution of the problem, especially 
on an a priori estimate for its second derivatives. 

For an actual representation of the solution there will 
be derived the so-called Green's function (more precisely 

the Green-Stokes function in this case) ms.king possible to

write an explicit expression for the solution of the Poisson

partial differential equation in case that it satisfies a 
boundary condition of the following type 

(1.5) ou/olxl + 2u/R = f for l:z:1 = R 

which is well known in ph:ysical geodesy. 

2 . Laplacian 

In spherical coordinates r ,  zt ,  A
of T has the following form· 

the Laplacie.n

(2. 1 ) T 82T/Jr2 + (2/r) JT/rJr + (1/r2) J 2T/oz!'2 + 

+ (cosz//r2 sinzt) JT/;JIJ + (1/r sin1')2 82T/11;i
2 • 

Passing to the coordinates r ,  �, �, according to (1.4), 
we introduce, for any values of variables considered, the 
new function 

(2.2) u(r,J,X) = T(r + wG)h,ii<,�) = T(r,zt,;i) 

To express the Laplacian of u in terms of r '�'X' 
which are not an orthogonal system, we have to calculate 
all the necessary derivatives: 

(2 .3) 

(2.4) 

(2.5) 

(2.6) 

JT/Jr = Ju/Jr Jr/Jr 

J2T/Jr2 = i2-u!ar2 ( Jr/ Jr )2 + Ju/iJ r a2r/ Jr2 

rtTIJzJ = Jul iJr Jr/Jv + Ju/dJ. 

iT!a1.l = a 2u/8r2( Jr/J,J, )2 + 2 112u/JrJ� iJr/diJ + 

+ Ju/iJr J2r/11�2 + J2u/Jij-,2 

VI 
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(2.7) 

Thus 

(2.8) 

a2TiaÄ 2 = ;;2u/ar2C ;;'r;;;;, >2 + 2 a2u/arh-, Jr/;;;, + 

+ 11u/rJr i2r/J,l + rJ2
u!aX

2

o = .1T = .6r ;;u.1ar + Jgrad rl 2 
a

2u/Jr2 +

(2.13) D = - (2/r sin rJ>) Jr/J,J, 

= 2(W/r siniJ, )(1 + ho'W/Jr)-1 Jh/JÄ

provided that 

(2.14) � Jw/ ;J r > -1 

+ (2/r2) ;Jr/a,;./uhr aif. + (2/r2sin2if) o'r/rJ.), lu/iJr;JJ + Here

+ r-2uiu.1aiJ2 + (cos iJ/sin ij.) iJu/dii- +

+ (1/sin2i.') ,Pu/J?i-2)

After a small manipulation we obtain 

(2.9) E. u = l:, r � j u = ((2/r) - (r/r)2 Lir) iJu/Jr +

+ (1 - (r/r)2 1 grad rl2) a2u/Jr2 -

- (2/r2)( ;Jr/J,J a2u/dr rJiJ. + (1/sin2j1:) Jr/J;l. /u./;JrJJ. 

end inserting from (1.4), we have 

{2.10) 

(2 .11) 

(2.12) 

A = (2/r) - (r/r)2 6 r = 

= C2/rH1 - <1 +h a01ar>-1> +

+ (w/r2)(1 + hi1w/dr)-1(61h - 2h )  -

- ( 1 + h Jw /ar)-J(( (r + w(r)h)/r)2 +

+ ( w /r)2 1 grad1h 1 2) h a2w/Br2 

( -)2 - 1 2 B = 1 - r/r Jgrad r = 

= 1 - ((r + wCr)h)/r( 1 + h dw/dr))2 -

- (w/r(1 + hh.1/ar))2 1 grad1hl2 

c = - c 21r> a r/diJ- = 

= 2( w/rH1 + h Jw/Jr)-1 Jh/JzJ

(2.15) 61h = sin-\i iJ(sin1Nh/N) + s1n-2
v u

2hfJ;i 2 

is the second and 

(2.16) 1 grad1h 1 2 
= ( 8h/J,J, )2 + sin-2 zJ ( Jh/J,i, )2 

the first Beltrami's differential operator related to the 
unit sphere. Thus 

(2.17) 6 u = A du/ J r + B 8 2u.1 iJ r2 + 

+ C B2u/r 8r o'iJ: + D rlu/r sin iJ- J r aJ 

Omitting terms m:ultiplied by 

(2.18) 

we get 

(2 .10a)

(2. 11a) 

(2.12a) 

(2.13a) 

(h Jw/,3r)2 or by h a 2 w ;a r2

A = (2/r) h JwliJr + 

+ (w/r2)(1 - h11w/ar)(Ll1h - 2h )

B = - ( w /r2H2rh + wh2) + 

+ 2((r + w(r)h)/r)2h iJw/;Jr -

- ( w /r)2( 1 - 2h iJw/J r) f grad1h 1 2 

C = 2( c.u/r){1 - h Jw/dr) Jh/a'!), 

D = 2(w/r sinrJ-)(1 - httw/dr) Jh/J), 

a.. 

, 
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Moreover, we will suppose in addition to the introductory 
aection that 

(2.19) 

Hence 

(2.20) 

w(r) O for r � Re = const. > R

A = B = C = D = 0 for r � Re

It can be simply verified that this may be achieved for 

(3.4) Jw(R)/;Jr = 1/R 

In consequence the boundary condition (3.1 ) will be of the 
following form 

(3.5) R 8u/ar + 2u = - (R + h) .6g r = R 

Finally, extracting the dominant terms, we can put approxi- or 

matively 

(2.10b) A = (2/r) h8w/ar + (w/r2)L.
1
h 

(2 .11 b) B = - 2cJh/r + 2hrJw/ar - (CJ/r)2 / grad
1
h/ 2

(2.12b) C = 2( w /r) rJh/J,J, 

( 2 .1Jb) D = 2( w Ir sin/J') Jh/8'}. 

3. Boundary condition

Besides the Laplacian it still remains to express the
condition (1 .2) in terms of r, �, J .  Inserting (1.4) 
and following the notation (2.2), we obtain 

(3.1 ) (R + h)(1 + h,:lw/c:9r)-1 ;Ju/,:lr + 2u =

= - (R + h) .6 g for r = R 

since 

(3.2) w(R) = 1 

according to the definition. For practical reasons it 
would be desirable to have 

(3.3) (R + h)(1 + h ih,1/;Jr)-1 R 

(3.5a) Ju/dr + 2u/R = - ( 1 + h/R) .C:.g r = R 

4. Green's Stokes- function

Our aim is now to find an explicit expression for the
solution of the following boundary value problem 

(4.1) 

(4.2) 

L.u = g 

,:lu/olxl + 2u/R = f 

lxl > R 

lxl = R 

Following the general principles in constructing Green s 
function, we start with the fundamental solution 

(4.3) -1
J=lx- yl

of the Laplace differential equation. For lyl < lxl we 
have 

(4.4) 

and 

(4.5) 

J = L ( ly/n/ lxln+1 ) P
n

(cos Vxy) 
n=O 

JJ/,:llyl = � n( Jyl n-1/ixln+1 ) Pn(cos v
xy

)

where P
n 

is the usual Legendre polynomial of degree n 
and V xy is the angle between the placement vector x and .... 

00 

00 
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y • In case of lyl = R we obtain 

(4.6) F = uJ/81yl + 2J/R = 

= R-2 � (2+n)(R/ 1 xl)n+1 Pn(cos V ) •
n=O xy 

A function H(y) which is harmonic for I y 1 > R and for 
lyl = R satisfies the condition 

(4.7) 8H/8Jyl + 2H/R = F 

� simply be found as 

(4.8) H = � 8n , 8n = (R/Lyl )n+1 8n(y/lyl) 
n-=O 

where , after the insertion into (4.7), we get the following 
equations for the individual surface spherical harmonics 

(4. 9) � • - R-1(n+2)(n-1)-1(R/lxl)n+1 P�(cos V
xy

)

except for 

(4. 1 0) n1 
= ( B1Y1 + a�y

2 + '½YJ 
)/lyl 

with coefficients a1 which can be chosen arbitrarily. 
Putting 

(4.11) 
00 

H = R-1 � (n+2)(n-1 )-1(R2/ixll yl)n+1 P
n

(cos pTV) , 
8 

n=2 ~ 

we will now define a function 

(4.12) G (x,y) m J - H =.lx - yl -1 - H
0 -

H1 + H
8 

and we will call it Green 's-Stokes' function since its res­
triction for lyl = R (or , symmetrically, lxl = R) and 
n � 2 yields the famous (erlended)Stokes function S , as 
it is lmown in physical geodesy. Thus 

(4.13) G(x,yR/lyl) = - lxl-1 - H
1 

+ S(x,y/lyl)

where 

(4.14) S(x,y/lyl) = R-1 L (2n+1H n-1)-1(R/lxl)n+i p
n

(cospYV), a, 

n=2 ~ 

see (Shimbirev, 1 975, eq. VIII.J1 ) or (Moritz, 1 980, eq. 
IV.155). Following the principle of symmetry, we can finally
put

(4.15) 

to obtain 

(4.16) 

ai = cixi/R2 1xlJ 

H = 1 
J 

� ci�y1/(lxll yl)3 

l.=1 

where ci , i = 1 , 2, J , are arbitrary constants . 

The function G (x,y) will enable us to express the 
solution of the problem (4.1) - (4.2). The natural point of 
departure is the formula 

(4.17) u(x)-= - (1/4%) / G(x,y)llu(y) dy -
lyl>R 

- (1/4Z) / (G(x,y)Ju/o'lyl - u(y) o'G(x,y)/Jlyl ) dyS 
lyl= R 

which is a slight modification of the well lmown Green's 
third identity for the erlerior of the surface lyl = R .  
!t is valid for functions u that , besides satisfying the 
general requirements for Green's identities , satisfy certain 
conditions at infinity, such as vanishing there . Since u 
should represent the solution of (4.1) - (4.2) and 

(4. 18) 8G /81 y 1 + 2G /R = 0 for I y 1 = R 

it follows , after inserting in (4.17), that 

(4.19) u(x) = - (1/49t) / G(x,y) f(y) d
7

S -
lyl=- R 

- (1/4%) / G(x,y) g(y) dy 

lyl> R 

00 
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which is the desired explicit expression for the solution of (S.4) 
(4.1) - (4.2), provided that for our g the volume integral 
converges, e.g. for g such that g(y) = O for lyl:;;;.. Re . 
However, considering that G involves the arbitrary term 

2 11 u II 2,2 
� (R111 II n1u II )2 =
lil � 2 2 

II u II � + R2 II I grad u I II � + R4 > II Diu II �
111 = 2 

H1 , it is clear that u is uniquely determined only in a where 
quotient space with the zero vector given by a ·supplementary

space spanned by the first degree harmonics xilxl-J. (5.5) D1u =- 8lil u/8rj(rdz..qk(r sinzfJ).)l 

5. Calderen - Zygmund Inequality

As it will be clear from Section 7, we need an estimate
"up to the second derivatives" for the second term on the 
right hand side of (4.19), i.e. an estimate for the solution 
u of

Cs. 1) LI u = g l xl > R 

in case of 

(5.2) 8u/81xl + 2u/R = 0 a.e. on lxl = R 

(a.e. means "almest everywhere" in the Lebesgue sense). For 
this purpose we will use the so-called 12 - estimates for 
Poisson's equation which, in a certain sense, are an analogue 
of the Schauder theory in the HÖlder spaces. 

Let JL be a domain in R3 and g a function in the 
classical Banach space 12(11) consisting of 
functions on .f2.. that are square integrable. 
1

2
(11) is defined by

(5.3) llull2=</lul2 dn.) 1 /2 
.12 

measurable 
The norm in 

In addition, we will use the Sobolev weight space 
equipped by the norm 

w?>cn,R) 

and i = (j,k,l) is a multi-index with components j, k, 1 
being non-negative integers. The number 111 = j + k + 1 
is ealled the length of the multi-index 1 .  For the general 
definition of sobolev weight spaces see (Kufner, John, 
Fucik, 1977, espec. sec. 8.10). 

Recall now that the Newtonian potential of g is the 
function w defined by the convolution 

(5.6) w(x) = - (4,n-)-11.. 1 x - y 1 -
1 g(y) dy • 

.f2 

The desired 12 - estimates are usually established 
through a consideration of the Newtonian potential w • Of 
the fundamental illlportance for the 12 - theory 1s the 
Calderon-Zygmund inequality. It has deep roots in the general 
theory of elliptic equations and its proof, which 1s rather 
hard, goes beyond the scope of this paper. For that reason, 
following (Gilbarg and Trudinger, 1983, Theorem 9.9), we

will confine ourselves, without proof, to 

T h e o r e m 5. 1 (Calderon-Zygmund inequality). Let 
g e: 12 ( f2. ) and let w be the Newtonian potential of g • 
Then w E w�2)(J'2,R) , D. w = g a.e. and 

(5.7) II Diw II 
2 � C II g II 2 

for 1 il = 2 

where C = const. Moreover, .fL can be a bounded as well as 
an unbounded domain in R3 , consistently with the note 
made in (Gilbarg.and Trudinger, 1983, P• 235). Note, however, 
that here, for practical reasons, we have interpreted the 
Calderon-Zygmund inequality in a weight space and in spheri- "'
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cal coordinates in contrast to Theorem 9.9 in (Gilbarg and 
Trudinger, 1983). 

Considering now the Green-Stokes function (4.12), the 
L

2 
- estimate for the second derivatives of the solution of

(5.1) - (5.2) follows immediately from Theorem 5.1 and the 
explicit formu1a (4.19). Thus 

(5.8) II D2
u 11 2 � const. n g II 2 

Our aim is now to find a quantitative estimate for the 
Sobolev norm of u • 

6. Sobolev norm estimate

(6.1) 

Starting with this section we will suppose that

g(y) = 0 for 1 y 1 � Re = const. > R 

According to (5.4) we have to estimate the terms 

(6.2) 

(6.J). 

(6.4) 

Ao = / ( i G(x,y) g(y) dy)2 dx 
.n. .n. 

A1 
=· (45Z'R)2 / 1 grad u 1 2 dx

.n.. 

A2 
= (4n-R2)� > II Diu 11 �

lil = 2 

with G being the Green-Stokes function (4.12) and 

(6.5) .f2. = ( X ; R < 1 X 1 < Re ) 

to get the necessary estimate 

(6.6) II ull t
2 = (4ü)-2( A0 

+ A1 
+ A2 

) 

for the solution of (5.1) - (5.2) in .fl. • 

Using Caucby's inequality and the obvious inequality 

(6.7) (a + b + cl � (1 + c1 + &
2

)a2 + 

+ (1 + 1/ c1 + c::3)b2 + (1 + 1/t:
2 

+ 1/c::3)c2 

with c1 , c
2 

, C 3 being positive, we have 

(6.8) A0 :,;;; k II g ll � 

where 

(6.9) 

and 

(6.10) 

(6.11) 

(6.12) 

k = (1 + c1 + E2
)Aoo + (1 + 1/€ 1 

+ C3)Ao1 + 

+ (1 + 1/C
2 

+ 1/ c3)A02 

Aoo = 

Ao1 = 

/ / (J .:. H0 )
2 dy dx 

.!l. .n.. 

II H; 
dy dx

.n. .n. 

Ao2 
= / / H� dy dx 

Jl. .fl 

since G = J - H0 - H1 + H
8 

To estimate A00 we, first, recall that for I y 1 < 1 x 1 

(6.13) J = lxl-1 + � ( l yln/lxln+1) P
n

(cos f
-xy-

)
n=1 

and for I x 1 < 1 y 1 

(6.14) J = ly1-1 + � (l xln/lyln+1, pn(cos rTV)
n=1 • ..., 

Consequently 

(6.15) Aoo = 2 <Aoo1 
+ Aoo2 > 

where 

� 
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(6.16) 

end 

(6.17) 

w:1.th 

(6.18) 

( 6.19) 

(6.20) 

(6.21) 

Aoo, = 

/ 
/ (lx1-1 - Ho)2 dy dx =

=/ 
.fl. 

R<lyl<lxl 

I ( _, ,2 lyl - H0 dy dx =
1 Xl<I yl<Re 

= (11/12H4 %)2R4(1 - (28/11)(Re/R) + 

+ (24/11)(Re/R)2 - (8/11)(R
8
/R)3 + (1/11)(Re/R)4) 

Aoo2 = f:. � ( J! +
n:s1 

n 
+ 4 L ((n-m)!/{n+m.)!)2 (c� + s�)) 

m.:1 

Re lxl
� = / / (lyln/lxln+1)21yl2 dlyll:x:12 dlxl 

R R 

Re Re 
= / / (lxl n/lyln+1)2 1yl 2 dlyl lxl2 dlxl = 

R !xi 

= (1/4)(2n-1)-1R4((2n-1)(2n+3)-1{Re/R)4 +

+ 4(2n+3)-1(R/Re)2n-i - 1)

J
0 

= / P�(cos iJ) dw 

C
nm 

= / (P
nm

(cos I}) cos m.'.\ 

s = 
nm 

w 

/ (P
nm

(cos tl) sin m) 
w 

)2 dw 

)2 dw 

and dw denoting the surface element of the unit sphere. 

Here we have used the famous decomposition fo:rmula

(6.22) P
n

(cos Jtl
:xy

) = P
n

(cos t,,lx) P
n

(cos tJ,Y) +
n 

+ 2 L ((n-m)!/(n+m.)!Hcos m,4 x cos mÄY +
m.1 

+ ein m). :x sin m.'.\ ,-) P
nm

(cos z}
:x:

) P
nm

(cos zJ,Y) ,

cf. (Hobson, 1952, p. 140) where P
nm

(cos rJ,) 1s called the 
associated Legendre functio� of degree n end order m .  
Naturally P

00 
= P

0 
• Since 

(6.23) 

(6.24) 

Jn = 4 %/(2n+1) 

c
nm 

= s
nm 

= 2 91:'(n+m.)!/(2n+1Hn-m)! 

see (Smirnov, 1958, sec. 131), we obtain 

(6.25) Aoo2 = 3(4% )2 
00 2 L (2n+1>- � 

n=1 

Approaching now the estimate for A01
view of (4.16), 

, we get, in 

(6.26) 

where 

(6.27) 

For 

(6.28) 

with 

J 2 / 2 -6 
Aa1 = � Ci ( xi I x I dx

l.=1 .n. 

= (4 9l"/3)2(R-1 - R-1)2 lci 2 
e 

2 2 2 2 lcl = c
1 

+ c
2 

+ c3

A02 
(4.11) similarly yields 

)2 = 

A02 
= R-2 � (n+2)2(n-1)-2R� (J� +

n = 2
n 

+ 4 �((n-m)!/(n+m)! >2 cc� + s�)) 
m = 1 

... 
... 

J2. 

00 
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(6.29) 

Thus 

(6.30) 

where 

(6.31) 

� ..

Re 
/ (R/r)2n+2 r2 dr =

= R3(2n-1)-1(1 - {R/R )2n-1) e 

Ao2 
= 3 (4x-)2R4 � w2{n)(1 _ (R/R ,2n-1,2 

n=2 
e 

N(n) = (n+2)/{n-1)(2n-1)(2n+1) 

Quantitatively, N2(2)-< 0.0712 , N2(3) < 0.0052 , 
N2(4) < 0.0011 , etc. 

Combining now (6.9) - (6.12), (6.15), (6.18), (6.25), 
(6.26) and (6.30), we obtain 

(6.32) 

with 

(6.33) 

and 

(6.34) 

2 2 2 Ao .-;;; (4 .9iR ) Ca II g II 2 

C0 = (1 + c1 + E
2

)((11/6){1 - (28/11)q +

+ (24/11)q2 - (8/11)q3 + {1/11)q4) + 

+ (J/2) f.. (2n-1)-1(2n+1)-2((2n-1)(2n+J)-144 +
n=1 

+ 4(2n+3)-1(1/q)2n-1 - 1)) +

+ (1 + 1/t1 + c
3

H1 - (1/q))2( lcl/JR)2 +

+ (1 + 1/C
2 

+ 1/C
3
) 3 � N2(n)(1 - (1/q)2n-1)2 

n=2 

q = Re/R •

In the next step we have to estimate A1 given by
(6.J). Using Green's identity, we get 

(6. 35) /lgrad ul 2 dx 
.12. 

,;;;; / lgrad u l  2 dx = 
lxl>R

j <Ju/81 xi) u d S - / u6u dx
lxl = R lxl> R 

However, u is a solution of (5.1) - (5.2) which yields 

(6.36) / 1 grad u 1 2 dx .-;;; (2/R) / u2 dS - /ug dx � 

.12. 
lxJ=R .f/. 

� (2/R) / u2 dS + ( p /2) / u2 dx + 
1 xi =R Jl. 

+ c112 p > / i dx

where we have used the well known inequality 

(6.37) ab � r;a2/2 + b2/277 ;l > 0

Since 

(6.JB) j u2 dx :;;; c0R4 II g II�

according to (6.2) and (6.32), it remains to m.ak:e an estimate 
of only the first term on the right band side of (6.36). For 
this purpose we, first, put 

(6.39) z(x) = z(lxl) = 1 - (!xi - R)/(Re - R)

R � 1 x I :,;;; R
8 

• Then 

(6.40) / u2 dS = - R2/ lxl-2( Jz/olxl) u2 dx -
Jxl=R 12 

- R2 /1x1-2z(x)( Ju2/11i xl) dx :::;;
.J2 

.... 
N 

R 

.P. 

• 
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� (Re - R)-1 / u2 dx + 2 /1 u(x) .?u/Jlxil
.fJ. ./Z. 

� (Re - R)-1 / u2 dx + }'1
/ u2 dx +

./2. Jl 

+C1/91) /lgrad ul 2 dx
J2. 

dx � 

where we have used again the inequality (6.37) with f, > O 
instead of 9 • The last result inserted in (6.36) yields 

(6.41) 

for 

(6.42) 

(1 - 2/f1R)/lgrad ul 2 dx �
./l 

::::; (2R-1 (Re - R)-1 + 2 p1R-1 + p/2) / u2 dx +
1l 

+ (1/29) / g2 dx

f1 > 2/R

Returning now to A1
we tinally get 

and combining (6.3), (6.38) and (6.41), 

(6.43) 

lfith 

(6.44) 

2 2 2 A, � (49Z'R ) c1 II g 112

C1 = (Co(2R(Re - R)-1 + 2 p1R + R2 
p/2) +

+ R-2/2 p )/(1 - 2/ p1R)

and c
0 

given by (6.33) . 

It remains to estimate the term A
2 

given by (6.4). 
However, we will confine ourselves to the qualitative esti­
mate (5.8) which involves the use of the Calderon-Zygmund
inequality. Accordingly, 

(6.45) 2 2 2 
A2 ::::;(4%R ) C2II g 11 2 

with c2 
which generally depends' on R, Re and lcl , i.e.

(6.46) c2 = c2(R,R
8

,lcl )

Conclusively, the desired estimate (6.6) results now 
from (6.32), (6.43) and (6.45). Hence 

(6.47) II ull 2,2 � R2 14112 11 gll
2 

where 

(6.48) M = 11/I(R,Re' lcl, ci' 7;1, 1/'1) = c0 + C1 + C2 • 

7. Iterative process

Resuming now the original purpose of this paper, we
have to find a solution u of equation (t.17) under the 
boundary condition (3.5a). For this purpose we use the Green­
Stokes representation formula (4.19) which, putting 

(7.1) t = - (1 + h/R) /'J. g 

and 

(7.2) g = A du/or + B J2ufr)r2 + 

+ C a2u/r J r JiJ, + D J2u/r sin z!, Jr J,l

with 

(7.3) A = B = C = D = 0 for r ;;;i, R
8 

in view of (2. 20), changes into an integro-differential
equation for u • Our aim is to solve it iteratively. (For 
simplicity reasons we are omitting here the bar-sign above ... 

'-" 

.fJ. 
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the coordinates r , r} , )1 • ) 

Using again the inequality (6.37), with p = 1, we get 

(7.4) 

Thus 

(7.5) 

where 

(7.6) 

II gll � � 4( IIA Ju/Jrll � + II B c12u/Jr2 11� + 

+ II C 82u/r JrJ� II� + II D c12u/r sinz,I Jr J� II �) � 

� 4R-4(supiss (RA)2 (R IIJu/Jril 2
)2 

+

+ supess B2 (R2 II J 2u/ Jr2 ii 
2 

)2 
+

+ supess c2 (R2 IIJ2u/r Jr J� II 2
)2 

+ 

Jl 

+ supess D2 (R2 
II J2u/r sin zJ h ö')I II 2 >

2)
.f2 

II g 11 2 � 2 R-2 L II u II 2 , 2 

L max(supess RIAi , supess I B 1, supess I C 1 , 
fl. ./2 fl. 

supess I D 1 ) 
:12 

Treating now the right hand side of (4.19) with f ,  g 
given by (7.1 ), (7.2) as an operator detined on w�2)(J2,R) 
and denoted here by K , we can imlllediately deduce, under 

--a- supposition that ! is a sufticiently smooth function, 
that K maps the Sobolev space w�2>c12,R) into itself. 
Indeed, the second term of the right hand side of (4. 19) 
belongs to w�2 \ Jl,R) simply due to the estimate (6.47) and 
(7.5). As regards the first term this is a harmonic function 
in the domain I x 1 > R • We will denote i t by V f for short.
Due to the Green-Stokes representation formula (4.19) any 
tunction u which is harmonic for I x 1 > R and such that 1 ts 
restriction to .fL = ( x ; R � 1 x 1 :::;;; Re ) belongs to w?) ( J2. ,R)
may be uniquely represented (apart from the first degree 

harmonic components) in terms of boundary values ot the 
expresion 

(7.7) U(x) = Ju/J/xl + 2u/lxl 

which for /xi= R is an element ot the so-called Sobolev­
Slobodeckij space w�112)(1xl =R) with fractional derivati­
ves. The last statement is a consequence ot the fact that 
for functions from w�k)(.n_) , k is a positive integer, 
there e:tists a precise characterization ot traces on the 
boundary a.n. ot J2 in terms of functions from w�k) ( J2) 
with k non-integr. E.g.: 

(7.8) u E w< 1 > < 12)
2 

<=> Tr(U) € w
< 112) ( 8/2 )

2 

see (Necas, 1967) or (Kufner, John, Fucik, 1977). Here 
Tr(U) means the trace of U on ö'Jl • Conversely, for t 
(and thus also lig) belonging to w�1/2)(1xl =R) the 
restriction to .n. of the harmonic function V f is neces­
sarily an element of w�2)(fl.) • Accordingly, 

(7.9) u € w?>c12,R) => Ku € w�2)(J2,R)

which is the property of K we wanted to prove. (Note 
that we have applied the above statements related to the 
characterization of traces of function from w�2)(.Q) to
the weight Sobolev s

1
ace w?> ( f2 ,R) , bearing in mind that 

w?>c 12 ,R) and w�2 
(12) = w?)(J2, 1) are equiped with

the equivalent norms.) 

In addition, combining (6.47) and (7.5), we can 
simply deduce that 

(7.10) !1Ku -Kvll
2,2 

� M112 L llu - vll
2, 2 

for u,v E w?>c12,R) • Thus K will have the quality of 
a contraction mapping from w�2)(J2,R) into itselt if 

(7. 11) M 1/2 L < 1 

... 
.,.. 

f2 
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Onder the last condition there exists a unique solution 
u � w�2)(J2,R) of the integro-differential equation u = Ku
and thus also of the problem (2.17), (3.5a) since we can
apply the famous Banach fixed point theorem in the linear
space w�2)(12,R) which is complete, see (Lyusternik and
Sobolev, 1965, p. 43). Moreover, u may be obtained by
means of iterationa

(7.12) u = lim ¾ , un = K¾_1
n

where u0 E w�2)(.12,R) is a starting approximation.

a. Conclusion

The preceding results contain a number of parameters. 
The preliminary estimates indicate that the condition (7.11) 
is satistied for realistic topograpby and the parameter Re
great enough to have Re - R > � - � • This is an
essential prerequisite for a reasonable iterative process. 
Moreover, it is necessary to suppose that the constants· ci
in the first degree harmonic function H1 are sufficiently
smal.l since they are involved in the estimate for M .  
A natural consequence of this requirement is a need of a 
good starting approximation. However, the first term on the 
right hand side of (4.19) can be taken in quality of this 
approx:l.mation. It is formally identical with the famous 
Stokes integral. Thus the Stokes approximative solution of 
the simple Molodensk;y problem is imbedded in the sequence 
of approximations of our iterative process as originally 
desired. 
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THE IRREGULARITY IN TfiE EARTH'S ANNUAl ROTATION AS 
A CAUSE OF SYSTEMATIC TIME VARIATION 

I. B. Ivanov

The Higher Institute of Mining and Geology, 
Sofia,Bulgaria 

Seasonal variations in the Earth's rotational velocity W were 
established in 1937 by N.StoykoLfJSince then, all the authors 
who have discussed their causes have pointed out that they are 
mainly causes of a meteorological character. There is a general 
consensus, however, that the effect of the meteorological 
factors, in the broadest sense of the term, although considered 
very important, can explain only about half oh the observed 
values of these seasonal variations, and at that with quite a 
few reservations. Usually no explanation is given about the 
other 50% or, if given, it is based on a variety of causes,some 
of which run counter to the meteorological factors [2] . 

Here we submit an explanation precisely of the unexplained 50% 
of the values of these variations in the Earth's angular 
velocity. It is based on a transport of masses through the 
equatorial plane established by us [3] . 

The angular moment of a rotational body is given by the 
expressioil. 

(1) M = C c.J 

from (2) that its angular velocity GJ should be biggest about 
July 20th and smallest about January 20th. 

Thus, theoretically, proceeding from the result obtained in [4J 
one reaches the conclusion which Stoyko established with the 
observings. At that,this conclusion is obtained only from 
changes caused by factors which refer to the body of the Earth. 

Bearing in mind the above about the discussions following 
Stoyko's finding about the causes of seasonal variations in the 
Earth's rotational velocity which, as all authors stressesd, are 
meteorological in character, i.e. external to the Earth's body, 
it naturally follows that the unexplained 50% in the change in 
value of the seasonal variations in the Earth's angular velocity 

.... 
"' 

w are due to causes within the Earth. In the light of this 
deduction, the doubt may be expressed that meteorological pheno­
mena are responsible for 50% of the magnitude of these variations. 

Comments. 1) On the basis of 7-year observations of the Earth's 
rotat1onal velocity, Belocerkovsky [6] added trimestrial varia­
tions in the Earth's angular velocity � to the annual and 
semestrial known until then, nothing that they"apparently are 
due to meteorological phenomena". Moreover, an exact coincidence 
of the phases can not be expected, because "meteorological phe­
nomena recur but not at the same time". If the diagrams adduced 
in Belocerkovsky's article are examined, it can be seen that the 
extrema in the change of the Earth's rotational velocity c.J in 
one year are about four typical points around the Earth's orbit: 
perihelion, aphelion, vernal and autumnal equinox. The results 
obtained refer tb 17 stations on Soviet soil. 

where C is the body's inert moment vs the axis of this rotation. 
If_the body �s isolated, i.e. not subject to external effects, Let us analyze the third formula about TLZ
th1s moment 1s constant. 

from [.3J: 

As is known, if a rotational body has an equatorial plane, i.e. 
a plane perpendicular to its rotation, in relation to which 
plane the body is symmetric, when this symmetry is violated,then 
its inert moment C increases. In our epoch, according to [4] , 
theoretically about July 2nd, i.e. summer in the northern hemi­
sphere, the Earth is closest in shape to the rotational ellip­
soid with which it approximates, and about January 2nd its shape 
deviates most from this ellipsoid. As Kozai [� established 
from observation, these two dates deviate in reality from the 
theoretical ones by about 20 days by retarding, as is natural 
to expect because of the Earth's rheological propertie?. It 
follows then that the Earth's inert moment C, when.considerd 
as a rotational body, is smallest about July 20th and biggest 
about January 20th. 

In all the investigations of the Earth's angular velocity, its 
angular moment M is assumed to be constant. From (1) we have 

(2) M = C C;J = const 

and consequently, wpen taking into consideration the above about 
seasonal variations in the Earth's inert moment C, it follows 

(3) 

1 X == - s M 0 [ fr (,0 � ( cfL -s r;) - �: ] s:., (X;

L 

rr __ e. M [-1 w ) c 8L. - s (; J- _, ] c.o) <X, w .') t: _
lt.,y- .J 0 3i "[� 

T �-
L, 7 

L - .s, M u:, .s i Yl ( JL - s r;) .s 1 \lt E J 

f/ 

�_11 Q [ ;l (A?) c SL _SE:)-�� ] w �c:lStkf -

L, 

5M0 
.)\V\ (SL -S'E )C-o:>E. � t 
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( o(_ = ( 21f + 1 'fouo )�, t is recorded in parts of the year 
(days) for a presentat1on of the algebraic projections of the
Sun's tide-forming force "'f' on the Earth in one geocentric 
equatorial coordinate system (see Fig.). This projection is 
responsible for the seasonal transport of masses in the direc­
tion of the Earth's rotational axis, i.e. perpendicular to the
Earth's equatorial plane, and it changes its sign in the pe­
rihelion and the aphelion, being annulied in the points of the 
vernal and automnal equinox. 

Summary 

OCEAN TIDAL LOADING ALONG THE 
"BLUE ROAD GEOTRAVERSE" IN FENNOSCANDIA 

by 

*
Gerhard Jentzsch 

... 
0) 

The 29-year observations on the Earth's rotational velocity of
the U.S.Naval observatory station , elaborated by Mihailov [7], 
confirmed the existence of trimestrial variations for the 
Washington Station as well. It should be added, though, that
the trimestrial variations for this station are much smaller
than the corresponding ones in Belocerkovsky's diagrams. 

Some results from gravity tidal measurements along the Fennoscand-
2) For the station in Washington the maximum of CJ is in May ian "Blue Road Geotraverse" are presented here. The residual 
and the minimum in October. This is obviously connected with vectors for consituents 01 and M2 are compared to ocean tidal 
meteorological �actors but the movement of the No:th Am�ric�n loading, calculated for modified Schwiders�i maps. _The �oherence of 
plate probably 1nterferes as well. Supplementary 1nvest1gat1ons the results for 01 shows the sufficient 1ntercal1brat1on of the
are called for. different gravimeters. The results for M2 indicate, that an

Description of the magnitudes participating in the formulas(3) 
and figure: � - gravitational constant, M0 - solar mass, 
� = !SE 1 - d1stance between points S and E, _f, = ISL/ -
distance between points S and L, 8� , Se - dec1inations of 
points L and E, � - angle of precession,""'23° 27, o{,- angle 
connected linearly with the true anomaly V. The last one is 
supposed, for the sake of convenience, to change uniformly in 
the course of a year, i. e. Y = 2 rr t, where t is recorded in 
days (parts of a year). 
Acknowledgements are due to Dr.G.M.R.Winkler, Director of Time
Service Division, U.S. Naval Observatory in Washington, for 
kindly supplying the 23-year observation data. 
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improvement of the models for the spatial distribution o� the 
marine tide of the Norwegian shelf has to be applied to fit the 
observed residuals near the coast. Data acquisition of the 
gravimeters, calibration, and data analysis are shortly discussed. 

Zusammenfassung

Einige Ergebnisse der gravimetrischen Gezeitenmessungen entlang
der Geotraverse "Blaue Straße"· in Fennoskandien werden vorgestellt
und die Residualvektoren für die Partialtiden 01 und M2 mit den be­
rechneten Auflastwirkungen für ein modifiziertes Meeresgezeiten­
modell von Schwiderski vergiichen. Die tlbereinstimmung der Ergeb­
nisse der 01-Residuen zeigt die Güte der Eichung der beteiligten
Gravimeter. Die Ergebnisse für M2 lassen erkennen, daß eine Verbes­
serung des Meeresgezeitenmodells für den Bereich des norwegischen
Schelfs nötig ist, um eine .Ubereinstimmung der berechneten mit der
beobachteten Auflastwirkung zu erzielen. Weiterhin werden die Daten­
erfassung, die Kalibrierung und die Analyse kurz diskutiert. 

1. Introduction

Between spring 1980 and autumn 1983 tidal gravity measurements

were carried out at seven sites in Norway, Sweden, and Finland 
along the "Blue Road Geotraverse", which starts near the polar 
circle at the Norwegian coast and leads nearly south - east through 

* Institut für Geophysikalische Wissenschaften der 
Freien Universität Berlin, Rheinbabenallee 49, 1000 Berlin 33 
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The aim of these measurements can be summerized as follows 

(Jentzsch, 1983a) : 

1) Determination of realistic tidal parameters along this line for
the correction of precise gravity surveys in addition to
the measurements which have already been carried out (Ducarrne
and Kääriäinen, 1980);

2) Study of the interaction of ocean tidal loading and the
structure of the lithosphere in that area;

3) Development of an ocean tidal model of the shelf esp. for the 
constituent M2 in order to augment the respective global model
of Schwiderski (1979).

Tab. 1: Stations, instruments, and recording peFiods 

Station Instrument Period 

NESNA GS - 15/206 April 1980 - March 1981

HEMNESBERGET GS - 15/206 August 1982 - October 1983 

UMBUKTA LCR - ET 18 April 1980 - August 1981

TÄRNABY LCR - ET 18 August 1981 - April 1983 

STORUMAN GS - 11 / BN 06 August 1981 - October 1983

VAAJAKOSKI GS - 15/210 April 1981 - July 1982

VIROJOKI GS - 11 / BN 20· August 1982 - October 1983 

2. Experimentalproblems and realization of the measurements 

In this project five tidal gravimeters were used, provided by 
Fig. 1: Tidal residuals already obtained in Fennoscandia in micro- different institutes (see tab. 1).gals and degrees for M2 (upper) an 01 (lower), from Ducarrne and 
Kääriäinen (1980); the dashed lines show the "land-uplift-lines" 
for repeated precise gravity surveys; the circles denote the tidal 
gravity stations along the Blue Road: NE - Nesna, HE 
Hemnesberget, UM - Umbukta, TÄ - Tärnaby, ST - Storuman, VJ 

These gravimeters were inter­

compared by recording at the Berlin Tidal Observatory (int. nr. 

0750) before and after the measurements on the profile. The LCR-ET 

- meter served as a reference. 
Vaajakoski, VI - Virojoki. 

Only the ET 18 was already provided with analog and digital 

Sweden and Finland (see fig. 1). The recording periods varied recording equipment; therefore the four Askanias could be equipped 

between ten months and about two years (see tab. 1). The five with equal data acquisition systems. In order to apply the measur­

instruments used were calibrated by parellel recordings at the ing station to the field conditions along the profile new power 

Berlin Tidal Observatory. supply units were developed including a power failure protection, 

and a buffer circuit to attach and to recharge a storage battary.:;; 
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The components of the station are given in fig. 2: Directly to the 

gravimeter output a preamplifier is attached for pre-filtering and 

adjustment of impedance to recording equipment. The digital record­

ing system is based on a Datel cassette recorder .. After a suitable 

alias-filtering and amplification the signal is sampled with a rate 

of 30 sec, converted into 12 bit samples, and stored on the tape 

cassette. A monitor output provided with an hourly time mark is 

connected to a chart recorder. 

Storage Bott. 
12V135Ah 

.------·---0 

T emperoture 
Conlrol 

Fon-+ 

Heoter 

Temperatur• 
Sen10r 

Electronics 
2< V• 

r---------

1 RAVENHORS T - Reg, iy,t. 1 

1 ..------, �-- 1 
Clock + 
Control 

El•ctronics 

Analog­

output + 
Time-morlcer 

1 Powerpack + 

Chart -
Recordu 

Storagti l----------<1220 V-
I ....__�__. Bone,y 1 

L ________ J 

Prefilt., + 
Preomplifler 

Fig. 2: Station components of the tidal gravimeter station 
(from Asch, 1983) 

Further, the measuring stations consisted of an insolated and 

temperature stabilized gravimeter room (constant near 30
° 

C). 

Whenever possible this room was built up in a cellar space which 

was also temperature controlled to provide a fairly stable 

temperature gradient, too. 

The LCR - ET 18 was also provided with a buffer battary, but 

according to the necessary adaption to the European system the 

applied conversion of voltages caused energy loss due t6 waste heat 

which could not be buffered over a longer period. The feedback 

signal of the ET 18 was decoded by an angular decoder and converted 

into a 14 bit data word. The resolution of the digital records is 

Power 
Fo ilure 
Protection 

1 
Power Supply 

1 Sy1tem 
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Fig. 3: Coherence (in percent), and phase difference (A), transfer 
function, and transfer error (B) between the gravimeters ET 18 and 
GS - 15/206 at the Berlin Tidal Observatory (from Jahr, 1984) 
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about 0.1 µgal; in the case of the ET 18 a dynamic range of 84 dB 

is achived. and 72 dB in the case of the Askanias. For more details 

see Asch (1983). 

Although special efforts concerning stable recording conditions 

were applied, esp. with regard to stable temperatures and power 

failure, several gaps were introduced into the records. These gaps 

were caused not only by failures of electronic circuits, but also 

by mechanical problems of the chart recorders. Later, when reading 

the casettes, errors occurred due to the insufficient data security 

of the incremental recording. The stations were maintained by local 

people, who were very helpful, but only trained to do some proper 

manipulations. Regarding the stations being far away, and nearly 

unreachable during winter within acceptable time, we got better 

data then expected. Only two stations out of seven (Storuman and 

Virojoki) caused difficulties; but here maintenance problems also 

met instrumental problems. Therefore the analysis of these records 

is not yet finished. 

3. Calibration

Since the ET 18 as the most sensitive instrument was calibrated 

very carefully before, it was used as a reference. With this instru­

ment the tidal parameters of our Berlin Tidal Observatory were 

determined. There, all Askanias have recorded for at least half a 

year. In the case of the GS - 15/206 a parallel record with the 

ET 18 could be realized, and thus not only tidal amplitudes and 

phases could be compared, but also transfer function and coherence 

could be calculated. Fig. 3 gives the coherence and the phase 

differences as well as the transfer function and transfer error. In 

fig. 4 sections of the continuous transfer function are compared 

to the ratios of the individual tidal amplitudes. The errors are 

small; esp. for the main tidal waves they are better than 0.5%, 

reaching nearly the 0.1% level. This provides calibration errors in 

the order of 0.1 µgal and less for the amplitude, and less than 

0.2° for the phase. 

Due to the different drift properties of the two gravimeters (the 

ET 18 nearly without any linear drift), outside the tidal bands the 

A 
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0.6 

0J. 

0.2 

I 

I spectrum of 
transfer function 

$ ratio of individual
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Fig. 4: Diurnal (A) and semidiurnal (B) sections of the continuous 
transfer function compared to the ratios of the individual tidal 
amplitudes; error bars are given for both (from Jahr, 1984) 
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coherence of the spectra is small, and even 

constituents show significant deviations from the 

function expected within the tidal bands. 

4. Results of the measurements and tidal residuals 

the minor tidal 

smooth transfer 

Many efforts had to be applied in data preparation, filtering, 

and analysis. Both the continuously and the digitally recorded data 

were processed. Special attention was paid to the elimination of 

disturbances, the separation of the drift, and the interpolation of 

small gaps. Algorithms had to be developed and adapted to the 

properties of the individual time series. The drift was removed 

(3) L0 • 0

where O is the observed tidal vector from A0 , a , and B the 

vector of the expected body tide from � and zero phase shift. 

The record of Tärnaby is of very high quality due to stable 

station conditions and a very keen maintenance. The priliminary 

results for the two stations Nesna and Umbukta, as given by Asch et 

al. (1983) can be improved now. Differences are due to higher state 

of data processing and longer time series available. 

using physical models as well as spline - functions in order to Tab. 2: Results for the constituents 01 and M2 (see text) 

increase the signal-to-noise ratio, and to minimize fil ter 

problems. The analysis was performed using a modified least squares 

method. The errors calculated are referred to the Fourier spectrum 

of the residuals. More details are given by Plag and Jahr (1983). 

The results for the constituents 01 and M2 are summerized in 

tab. 2. With 

factor ö O the

6 = 1.160: 

A0 as observed

expected body 

(1) Ab = 6 / ö O A0

The phase denotes the difference 

(2) a = a0 - a b 

amplitude, and 

tidal amplitude 

the 

Ab 

gravimetric 

is assuming 

usually used. Thus, referring to the Greenwich meridian, a negative 

phase means Greenwich phase lag, and a positive phase a lead. The 

signal-to-noise ratio s/n referrs to the noise level of the 

Fourier spectrum of the residual noise; the mean noise levels for 

the diurnal and the semidiurnal tidal bands are used as errors. 

The residual tidal vector L0 with amplitude A1 and 

phase A denotes the observed loading signal, and is given by 

Station 

NESNA 

HEMNES-
BERGET 

UMBUKTA 

TÄRNABY 

VAAJA-
KOSKI 

NESNA 

HEMNES-
BERGET 

UMBUKTA 

TÄRNABY 

VAAJA-
KOSKI 

Ao 6 

[µgal] 

26.253 1.143 
±. .133 .± .005 

26.265 1.145 
+ . 167 + • 007
-

26.543 l.151 
.± .128 .:!: .006 

26.920 l.154
± .032 .:!: • 001 

29.577 1.154 
± .227 .± .009 

11. 289 .922 
.:!: .056 ±. .005 

8.592 .703 
+ .076 + .006
-

12.321 1.002 
.± .079 ± .006 

13.358 l. 050
± .009 ± .001 

19.107 1.172 
+ .105 + . 007 

a s/n Ab 

(0) (µgal) 

01 

1.11 362 26.636 
± .16 

.65 157 26.621 
,!. .36 

1.35 207 26.683 
± .28 

.68 846 27.053 
± .07 

.54 132 26.728 
± .43 

M2 

-2.05 368 14.203 
.± • 20 

-4.68 11 3 14. 182
.!. .so 

l. 53 156 14.263 
± .37 

1.08 1535 14.763 
± .04 

1.05 181 18.918 
+ .32 

Al

[µgal] 

.640 
:: .133 

.464 
.!_ • 167 

.643 
± .128 

.345 
.± .032 

.154 
± .227 

2.960 
±. .056 

5.662 
+ • 076

l. 974
± .079

1.430 
± .009 

.397 
+ .105

A 

[O) 

127.37 
± 11. 91 

140.36 
+ 20.62

103.29
± 11.45 

112. 86
± 5.25 

10.50 
± 84.56 

-171. 04
+ 1 .08 
-

-172.89
+ .77
-

170.40 
± 2.29 

169.88 
± . 3 5 

62.02 
+ 15.17 

N 
"' 

.... 
B 
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Fig. 5: The ocean cells of the shelf model separated into three 
parts: south, middle, and north; the Rana fjord area (hatched) is 
added using empirical data. 
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Although the stations in Norway are not far apart, their M2 here, it can be stated, that now more realistic values 

coast the calculated loading of both maps 

differences of the results increase 

are 

is 

with 

the 

residuals differ much. This is due to different station elevations, available. Near the 
which causes varying Newtonian attraction of the marine load of 

adjacent seas (see also sec. 5). 
the similar, but the 

5. Ocean tidal loading and observed tidal residuals 

increasing distance from the coast. This seems to be due to 

fact, that the Schwiderski table fits better to open ocean 

amplitudes. E.g. for the Indian Ocean Schwiderski gives a maximum 

amplitude of 47 centimeters, whereas Hendershott (1973) calculates 

The response of the earth to tidal loading was calculated accord- 138 centimeters. This produces a load amplitude of nearly 1 micro­

ing to Farrell (1972). The Green's function for an appropriate gal for Fennoscandia, but only 0.1 microgal in the case of 

earth model was convolved with a model of the ocean tide Schwiderski's. Generally, comparing the results for both maps for 

distribution. The results for the "Blue Road" presented here were M2 for Fennoscandia, distant oceans of Schwiderski's map provide 

obtained by applying this method in a similar way as described by about 10 percent of the amplitude of Hendershott's. 
Baker (1980) for Brit�in: The theoretical gravity load, L, at a 

point on the surface of the earth is given by 

(4l Lc?i = Pff GcJ?-?·1, ic-;•, dA 
oceans 

Figs. 6 and 7 contain the results for constituents 01 and M2 

(compare to tab. 2). Wave 01 provides a test for the calibration of 

the different gravimeters: Since the observed amplitudes of 01 are 

varying between 

the observed M2 

25.9 

are 
where r is the positioning vector, He?•) is the complex amplitude regarding the smaller 

and 29.6 microgals, the amplitude ratios to 

varying between ~1.6 and ~3.1. Therefore, 

amplitude of M2, the coincidence of the 01 

of the ocean tide over a surface dA, usually approximated by a amplitudes, parameters and loading residuals is satisfying. Thus 
spherical disk, and p is the density of the sea water. G(Jr'° - "'i:-"•1 J the differences between observed and calculated M2 residuals are 

is the Green's function describing the elastic and Newtonian significant: Close to the sea the observations never fit the 
attraction effects of a point mass on the surface of the earth. responses calculated with the original Schwiderski map (see fig. 7, 

vectors "ORIG" and "OBS"). Near the coast the different elevations 

Different earth models were used: the "Blue Road Crust" (BLC) as of the stations are responsible for the differences of the signal: 

derived by Lund (1979) with a Moho depth of about 45 kilometers, a For Hemnesberget, situated in the fjord 

model with a rather thin crust of about 20 kilometers (C20), and a calculate a load vector A1 = 2.62 µgal, 

area, at sea level we 

A = 173. 7° ; for an

model with a Moho depth of more than 50 kilometers (CSO). It turned elevation of 40 meters these 

out, that the response of the model C20 fitted best to the A = 179.3°, and for the station 

observations. Therefore in the following all results are referred A1 = 6.01 µgal, A = -177.6°.
to this model. 

values change to A1= 4.10 µgal,

elevation of 84 meters we get 

Further, the calculations show, that close to the ocean the load 

The algorithm used to calculate the loading vector allows to vector is controlled by the adjacent seas. Thus, the middle section 

integrate over different ocean patches separately in order to of the Norwegian shelf covers more than 60 percent of the total 

determine their individual signals. Thus, the Norwegian shelf was load. Therefore, this part was subject to change in order to test 

separated into three main parts: south,. middle, and north (see. the fit of the calculated to the observed load. The phase was 

fig. 5). The Rana fjord area was modelled using a local modified by plus and minus 20 degrees, respectively. Since the 
distribution derived from empirical data (Plag, 1982a/b). Compared coherence is significantly improved by a shelf model incorporating 
to earlier results obtained for Fennoscandia on the basis of the a 

M2 - map of Hendershott (Jentzsch, 1983b) instead of Schwiderski's 
-20 degrees phase shift, this was repeated with -15 degrees. In 

� 
VI 
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Nesna Hemnesberget Umbukta 

Tärnaby Vaajakoski 

01 - Residuals 

� - obserwd with error circle 

� - calculated 

ORIG ,. 

OBS 

-15 
t:: 

Hemnesberget 

-20

1µgal Nesna Umbukta 

Fig. 6: Observed tidal residuals for constituent 01 compared to 
calculated load vectors; note different scale to fig. 7. 

fig. 7 the results for "-15" and "-20" degrees are also given (see 

tab. 3). Compared to the numerical tidal model of the Norwegian 

shelf provided by Mathisen and Johansen (1982, see also Blanken­

burgh et.al., 1983), a significant difference arises: The phases 

given are smaller by about 10 degrees with respect to Schwiderski's 

phases in that area. 

This result leads to an investigation of the residual load R, 

(5) R L
0 

- L 

ORIG 

-15_
0 

-20
° 

Tärnaby Vaajakoski 

Fig. 7: Tidal residuals of constituent 
which was already carried out by Baker (1980) for the marine load compared to calculated load vectors for 

around Britain, in order to improve local models for the spatial Schwiderski shelf tides. 

M 2 - Residuals 

OBS C:r- · observed with error circle 

<:S ·calculated 

ORIG -original Schwiderski table 

- ,s· - she� tides partly oela yed 
· 20· by 15• and 20· resp. 

1µgal 

M2: Observed vectors 
original and modified 

N 
0\ 
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Tab. 3: Theoretical load of 01 and M2 for Schwiderski's maps 
modified at the coast ("ORIG", see fig. 5); "-15" and "-20" denote 

phase shift applied to middle section of the Norwegian shelf 
(height corrections applied, compare to tab. 2) 

01 M2 
Station ORIG ORIG -15 -20 

(µgal] (O] (µgal] (O] (µgal] [O] [µgal] (O] 

NESNA .45 138. 7 3.29 168.l 3.16 -172.9 3.10 -170.2 

HEMNES- .58 138. 6 6.01 -177.6 5.67 -173.8 5.64 -172. 4 
BERGET 

UMBUKTA .36 138.8 2.04 166.3 l. 92 175.8 1.88 178.9 

TÄRNABY .33 139.6 l. 53 160.8 1.44 170.5 1.39 173.4 

VAAJA- .19 143.4 .43 71.4 .39 70.3 not calc. 
K0SKI 

distribution of the marine tide. The results obtained for the "Blue 

indicated, a further investigation of the response to local 

of the distribution of the marine tide seems to be promising. 

models 

(3) More realistic tidal corrections for precise gravity surveys 

are provided by these measurements along the "Blue Road". 

Generally, for that purpose a standard earth is sufficient for load­

ing corrections. But close to the fjords only tidal measurements 

can provide results incorporating the tidal admittance with regard

to the distribution of the water masses, and the elevation of the 

station. Close to the sea or even to an inlet the loading signal 

can be amplified by factor two or three or even more, only by 

attraction. This is an individual property of each station. There­

fore overall calculations lead to wrong values in that area. To 

avoid systematic errors due to loading the total tidal correction

should be determined with an accuracy of one microgal or better. 

Road" seem to be promising and encourage such a study using 7· Acknowledgements 

available shelf models of that area. 

6. Conclusions

(1) Regarding the interaction of ocean loading and the structure 

of the lithosphere the responses to different crustal structures 

are too small to develop a detailed crust/mantle model for that

area. Nevertheless, all calculations had to be referred to a crust 

of about 20 kilometers depth to fit the observations. A crust of 

The preparation and the performance of the measurements as well 
as the data analysis required the cooperation of many institutes 
and scientists. The support of the Finnish Geodetic Institute 

(FGI), the Swedish Land Survey, and the Norwegian Geographical 
Survey was the key to starting and to carrying out the 

measurements. Gravimeters were provided by the FGI (A. Kiviniemi) 
and different German insti tutes of the Universi ties of Bonn (M·. 
Bonatz), Clausthal (0. Rosenbach), Kiel (J. zschau), and the 

Observatory Schiltach (W. Zürn). The instruments were carefully 
maintained by local people with the help of our Fennoscandian 
collegues. All this is gratefully acknowledged. 

greater depth (mountain root or even remnants of a downgoing slab From our side G. Asch-was mainly responsible for the experimental 
. . . . . . part of the work; Th. Jahr, H.-P. Plag, and W. Thiel did the data 

of the crust) would provide a significant amplification of the M2 analysis of the time series. Together we established the measuring 
tidal residual by about 10% at sea level. The wahr model as a sites, installed the instruments, and discussed the results. I take 

this opportunity to thank them for their intense cooperation 

reference instead of �= 1.160 provides smaller residuals, which 

would require a thinner crust. we are thankful to the 

schungsgemeinschaft) for 
German Research Society 
the financial support. 
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On the influence of coupling torques between the Earth's core and 
mantle on parameters end components of the rotation of the Earth 

Summary 

by 

H. Jochmann

Akademie der Wissenschaften der DDR 
Zentralinstitut für Physik der Erde 
DDR-1500 Potsdam, Telegrafenberg A 17 

The physical reliability of correlations between magnetic field 
quantities and components and parameters of the Earth's rotation was 
investigated. It was found that only the correlations between 
Variations of the magnetic field intensities and of the length of 
day are physically significant, while the correlations between the 
magnetic field and parameters of the CHANDLER-wobble are dubious. 

Zusa■menfassung 

Die physikalische Realität von Korrelationen zwischen magnetischen 
Feldgrößen und Komponenten und Parametern der Erdrotation wurde unter­
sucht. Es wurde festgestellt, daß nur Korrelationen zwischen den Va­
riationen des magnetischen Feldes und der Tageslänge signifikant sind, 
während die Korrelationen zwischen dem magnetischen Feld und den Pa­
rametern der CHANDLER-Welle angezweifelt werden müssen. 

Since MUNK and REVELLE (1952) proved that the decade fluctuations 
of the Earth's rotation are not excited by geophysical surface­
phenomena, it is usual to look at the core for the excitation of 
that phenomenon. 

The only indications of variations in the core or at the core­
mantle boundary are variations of the magnetic field and indeed, as 
we see by Fig. 1, exist fairly good correlations between the magnetic 
field intensity and the components and parameters of the Earth's 
rotation. 

The first curve shows the variation of the total intensity of 
the magnetic field at Niemegk, after a linear trend is being re­
moved. Further in the figure the variations of the length of day 
and of the amplitude and period of the CHANOLER-wobble are 
exhibited. 

It could be objected that we have compared global phenomena 
with a local Variation of the magnetic field, but it should be 
mentioned that there exist similar trends of the magnetic field 
variations at all magnetic observatories, only the amplitudes are 
different es it should be. Relations between magnetic field 
Variations and variations of the Earth's rotation are produced by 
coupling torques between the core and the mantle. 

As generally assumed and sufficiently proved the geomagnetic 
field is maintained by a dynamo process taking place in the liquid 
core. Temporal·variations of this process cause similar variations 
of the magnetic field and coupling parameters. The magnetic fields 
end currents of this process react with the conducting part of the 
lower mantle and produce LORENTZ-forces which are the reason for 
torques 

L = /er x {j x B)) dV (1) 

V 

exciting variations of the rotation of the Earth. 
Before considering the evaluation of this integral from magnetic 

field quantities we shall evaluate the amount of the torque 
necessary to excite the observed variations of the length of day. 
From the Eulerian equations emerges the relation between the 
relativ length of day (u3) end the exciting component of the
torque 

du3 L = C W
o dt3 (2 )-

where C is the axial moment of inertia and c..>0 the velocity of
rotation. For decade fluctuations a mean value 

f L3 i :::; 1017 Nm end a �aximum value \ L3 \ � 1018 Nm "' 
"' 
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were obtained. 
To evaluate these values from the geomagnetic field, we must 

where k, k' and k" are coupling constants. 13 is the vector of
unity nearly in the direction of the rotation axis and � is the 

know the field quantities and its variations at the core mantle relative rotation between core and mantle. 
boundary. These values can be obtained by solving the induction Assuming isotrope conductivity and magnetic permeability we 

equation obtain 

1 • 
curl (- curl 8) = -B 

,<LC-

provided that a conductivity law for the mantle and a relative 
vel?city between core and mantle are known. According to STIX 
and ROBERTS (1983) we applied a conductivity law of form 

0--( r) = 0--
a 

( r/a) 
_ ix 

(0- a 3 • 103,.n_, -l m-1 and oc = 30) and a relative angular 8 -10 velocity between core and mantle of -10 1/s corresponding to 
the westward drift of the magnetic field. Using a spherical 
harmonic model of the surface magnetic field and its secular 
variations we obtained by iterative solution of the induction 
equation and applying equation (1) following components of the 
electromagnetic torque 

L1 „ 0.4

}L2 = 0.1 
L3 •-14.0

• 1017 Nm

Although these values are first result�, we can assume that 
the correlation between variations of the magnetic field and 
the length of day are phys1cally significant. 

LM = -kM (i - 13 x) f (4) 

where kM � 1027 Nm s. 
The influence of LM on the CHANOLER-period can be obtained by 

analyzing an Earth model consisting of fluid core and solid 
mantle. We shall apply an Earth model derived by POINCARE's 
variational principle which was demonstrated by MORITZ (1982).
The version of MORITZ consists of a fluid core and an elastic
mantle. This model was modified allowing for viscosity of the 
mantle. 

To estimate the influence of the electromagnetic torque we 
must investigate the eigenvalue solution of polar motion 
equations. In first order approximation these equations are in­
dependent of the equation governing rotational variations. 
Following equations are valid for the considered Earth model: 

• A
c 

+ 012 w o • - LE U - i (� + iOC:) u + A + O. • ,,,_ ( V + i W
0 

V) = -----

Ccwo A + 0
22 wov+ i A + o12 wo

C 

C 

u+A +012
Wo C 

where 

LE = -kM (1 + i) V

LE
V "' A + 012 

W
o C 

(5) 

(6) 

are the equatorial components of the electromagnetic torque in 
complex notation. 

"'0 

Let us now have a look at the variation of the CHANOLER­
period. Applying an input-output-analysis using the annual 
wobble of polar motion, I found that the variations of the 
CHANOLER-period are much smaller than the variations shown by 
the curve of Fig. 1. 

To investigate this discrepancy we introduce a notation of 
the torque given by ROCHESTER (1976) 

u 

V 

are the polar motion components in complex notation, 
describes the polar motion of the core relative 
to the mantle, 

A, A
0 

and C0 are moments of inertia of the whole Earth and
L "" - ( k + k. 1

3 
X) 6 - '.l-

3 
13) - k. X 3 13 ( 3) the core respectively, 

... ~ - u 
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012, 011, 012 are coefficients depending on the elastic deforma­
. tion of the mantle and the influence of these 

deformations on the fluid core. 

C'c, 

,X 

is the CHANDLER-period of an elastic Earth model 
and 
a damping factor depending on the viscosity of the 
mantle. 

The eigenvalue solution of (5) yields following frequencies 
of the free wobbles: 

A 2 k
M 

� • � (l + AMtoo (1 - i)) (� + i<X.)

A D22 k
M A 

o-.. = -w (1 + - (E - -t..J) - -- (1 - i) (1 + -)) 2 o � Ac o � w
0 

A
c 

(6) 

o; is the frequency of the CHANDLER-wobble and "; the frequency 
of the diurnal free wobble. lt is seen that damping end period 
of both wobbles are influenced by coupling torques, but we must 
notice that in both frequencies kM is divided by the moment of

-10 inertia of the mantle �• Since k
M

/�-:::: 10 period and damping 
of both wobbles are not significantly influenced by electro­
magnetic core mantle coupling. 

Similar dubious is the correlation between the magnetic field 
intensity and the amplitude of the CHANDLER-wobble. As mentioned 
before the equatorial components of the coupling torque are much 
smaller than the axial component, but really the equatorial 
components should be larger to excite a wobble comparable with 
the observed quantities. 

RUNCORN (1982) suggested to explain the excitation of CHANOLER­
wobble by acting electromagnetic torques which could be described 
by DIRAC-functions. He assumed that the equatorial components 
are of the same order of magnitude as the axial component. This 
is in contradiction to our first results. 

Regarding to the present stete of investigation we can only 
expect that the correlation between the variations of the length 
day and of the magnetic field intensity correspond to physical 
relations. 
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Treatment of the Geodetic Boundary Value Problem by Contact­
Transformation 

Wolfgang Keller 

Technical University Dresden 

1. Introduction

One possibility to study free boundary value problems for 
elliptical differential equations is to use the searched func­
tion V for the definition of a contact-transformation. This 
contact-transformation transforms the free boundary value 
problem for V into a boundary value problem with fixed boun­
dary for a coordinated function �. 
This approach was intensivly studied by Kinderlehrer, Niren­
berg [1] and Kinderlehrer, Nirenberg, Spruck [2]. The appli­
cation of this principle in geodesy goes back to Sanso' [3]. 
He applies the most simple case of a contact-transformation, 
Legendre's transformation. 
A new function �, the adjoint potential, new co-ordinates 
Si, i=1,2,3 and new impulses ni = a�/asi ' i=1,2,3 are co­
ordinated to the old function V, the gravitational potential 
of the earth, to the old Cartesian co-ordinates Xi , i=1,2,3 
and to the old impulses pi = av;axi , 1=1,2,3 in the follow:iDg 
manner : 

is fulfilled in the exterior of the earth and the impulses 
Pi , i=1,2,3 are known on the surface cr of the earth, the ad­
joint potential � solves the following boundary value problem 

Tr �2 
- [Tr �] 2 ·= O

�==(&Cs)) 

(s1ätf - �)12:: = V 

s €. int E 

E = { s E, R3 1 J X € cr : s = Pi(X) ' i=1,2,3 } 
i 

(5) 

(6) 

(6') 

(7) 

Hence the linear free boundary value problem for V was trans­
formed into an equivalent boundary value problem. with a fixed 
boundary for �. 
In the trivial case of a spherical earth with homogeneous mass 
distribution, the solution of (5), (6), (6'), (7) is known: 

�oCs) = µ
112 lsl 112 

(8) 

Evidently, �o is not differentiable in the origin s = O and 
we can expect, that a singularity appears also in the general 
case. As the cause of that singularity we have to consider 
the fact, that Legendre's transformation maps the point at in­
finity onto the origin s = o.

� = X1Si - V (1) Because there isn't any sense to speak about differentiabili­
ty of V in the point at infinity, we can't expect differen-

s1 = Pi i=1,2,3 

ni = Xi i=1,2,3 

Under the hypothesis, that Marussi's condition 

* 0 x E., ext cr 

(2) tiability of � in the origin.
Therefore the aim of this notice is, to find a new contact-

(3) transrormation, which also transforms the free boundary value
problem into a new one with a fixed boundary, but with the
point at infinity as a fixed point. In this way the mentioned

singularity is avoided.

(4) 

'-" 
1\) 

• 

( a2v (x)I 
det 8x1dx3 / 

~ 
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2, Contact-transformation 

A new function <I>, new co-ordinates /;1 , i=1,2,3 and new im­
pulses 1t1 = a4>/al;1 , i=1,2,3 are to be coordinated now to 
the searched function V, to the Cartesian co-ordinates x1 , 
i=1,2,3 and to the impulses p1 = av/a:x1 , i=1,2,3 in the fol­
lowillg way: 

<I> = :z:1/;1 - V 

1/2 ..lll,._ /;1 = - µ 
IPI�& 

1t1 = O:i k Xk 

, i=1,2,3 

1=1,2,3 

O:ik(I;) : - ...a._ (61k - 3 �)
11;13 11;1 2 

Lemma 1: It holds: 

d<I> - d/;1·1t1 = (-1) (dV - d:z:1·p1) 

(9) 

(10) 

(11) 

i,k::1,2,3 (12) 

(13) 

i. e., the transformation (9) - (12) is indeed a contact-trans­
formation. 

If Marussi's condition (4) is fulfilled additionally, the 
point-transformation (10) is even one-to-one. In this case, we 
can interpret (10) intuitively : 
If we use the rotationally symetric potential 

Vo = µ/1:z:I 

as reference potential, we recognise 

avo(I;) = _ .l:...S.!. = _ µ (•µ11lp1) = p1= 2!..t:x) i:1 2 3 8x1 l i;I 3 IPI 312(µ11Zp-1A)3 a:z:1' • • • 

This means, that the point-transformation (10) :maps n-ery 
point P of the surface cr of the earth onto belongiDg point Q 
of the gravimetric telluroid E. 

t; 

Q L. 

Ir we suppose. again, that the impulses p1 , i=1,2,3 are known 
on the surface of the earth, the gravimetric telluroid is a 
known sur:race. The function <I> induces by (11) the mapping of 
the known telluroid onto the unknown surface o:r the earth. 

In the same way like in the case of Legendre's transformation, 
we get <I> as the Solution of the following boundary value prob­
lem: 

Tr �2 - [Tr �] 2 = 0 I; E:.ext E 

& � � = (Y1aYkn - ß1■k ) 

Yik(I;) = - J.11..: (61k - 3 �) • i,k::1,2,3µ � 11;1 2 

(14) 

(15) 

(16) 

ß1ak(I;) = - 3 l1L: (6.1/;k + 6akl;1 + 61kl;a - 7 l;i/;a$k) (17)
� µ2 � 11;13 

(-
; 

/;1
� 

-
<j,

)
IE 

= V (18) 

The problem has an analogue strukture like the problem, which 
arises from Legendre's transformation. 

..... ..... 
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Of course it is an exterior problem but this is only a pure 
technical difficulty. We can overcome this diff;iculty by ap­
plying the Kelvin transform.ation. 

3, Linearization 

Usually, the problem is to be linearized. The function 

u(s) = 0(1/lsl3 ) tor isl__, 

hold. 
(S1 are the three linearly ind.ependent spherical ha:rmonics of 
degree one.) 

4o(s) = -. 2µ/lsl 

With the help of the implicit - function theorem we obtain a 

(19) local existency- and uniqueness result �rom theorem 2.

is assumed to be the adjoint reference potential. This refe­
rence potential solves the boundary value problem (14) - (18) 
in the trivial case of a spherical earth with a homogeneous 
mass distribution. -In the opposite to (8)it does not appear 
any sigularity in (19). 
If we denote the adjoint disturbing potential by u = 4 - 4o, 
we arrive to : 

Theorem 1: The linearization of (14) - (18) is given by 

- Llu(s) = 0 sE.ext I: 

(- � s 1§!
1 

- u) I
I:

= (V - µ/lsl)\I: 
== !p 

(20) 

(21) 

The linearized problem is an oblique boundary �al�e �roblem 
for Laplace's equation. Theorem 2 descibes the solvability of 
this problem. 

Theorem 2: Let be the d.omain ext I: belongfi1g to the regula­
rity class c2

,

1 and let it differ from the exterior of a sphere 
only "a little". Then it exits three and only three real con­
stants o:i , i=1,2,3 and one and only one function u, such that 

- b.u(s) = 0 s E: ext E

(- � s 1§!
1 

- u)IE 
= cp + 0:1S1(s)1I:

Theorem 3: Let be fulfilled the same hypothesis as in theo­

rem 2. Furtherm.ore let be

I: sup IDo:cp(x)I 
10: 1 ;§1 X !: 

sufficient small. 
Then exists three and only three real constants 0:1 , i.::1,2,3 
and a function 4 ,  such that 

Tr �2 
- [Tr �] 2 = 0 , ? f., ext I:

1 ai1, (- � s1;::.;i;_ - 4) \ as1 !: 

4 = 0(1/lsl3
) tor

hold. 

= !p + 0:1S1 II: 

1 sl ➔ 00 

E:z:ept of this solution any other solution does not e:ld.st in 
a neighbourhood of 4o. 

"" 

.i,. 
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ON SHORT PERIODICAL VARIATIONS OF POLAR MOTION 
AND ur, - urc 

B.Ko3:aczek, A.Brzezinski, w. Kosek
J.Nastula, B. So3:oducha
SPACE RESEARCH CENTRE, PAS
Warsaw, POLAND

ABSTRACT. The MERIT data o:f pole coordinates, UTl-lJTC 
and l.o.d. from the period between October 1983--July 1984 
have been used for analysing spectra of their variations in 
the short periodical part :from 10 - 90 days by the Maximum 
Entropy Spectral Analysis-liIBSA. A few short periodical vari� 
tions detected by MESA in all series of data determined by 
different techiques seem to be real short periodical varia­
tions of polar motion and UTl-UTC. Their amplitudes, which

are of the order of a few miliarcseconds only, are weakly 
determined, and they can be changeable. 

1 • INTRODUCTION 

Simultaneous observations made by different techniques 
during the l\IBRIT Ca11Paign have given the most accurate and 
the most dense data for the Earth rotation study. 
The MERIT observational data from the period of ten months, 
October 1983 - July 19841 have been used for analysing
spectra of the polar motion and ur1-urc in the short 
perioctical part 

I 
from 10 to 90 days, by the Maximum Entrop_ 

Spectral Analysis. - MESA. 

2. SPECTRAL ANALYSIS OF THE MERIT DATA OF POLE
COORDINATES AND 1Jr1-UTC 

First, all time series of pole coordinates determined 
by BIH-Astrometry, IIMS-Astrometry 

I 
DMA-DOPPLER, CSR-LASER, 

NGS-VLBI as well as UTl -1.l'rC determined by BIH and l.a..cl. 
determined by CSR have been smoothed using a Gaussian :filter 
with 3 di:fferent Gaussian windows, whose width at hali illSXi­
mum amplitude- FWHM was 5, JO and 50 days, respectively. 
The series. of smoothed data have been computed with di:f­
ferent steps oft, 2 and 5 days. 

..... 

VI 
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In order to diminish the inf'luence of long periodical 
variations on short periodical part of spectra,differences 
of each series of pole coordinates1 UTl-UTC and l.o.d.
smoothed using a Gaussian fil ter wi th two different F�IHM of 
5 and JO days as well as 5 and 50 days have been computed 
and used for further spectral analyais. Transfer function 
of such filters is shown in Figure 1. 

Diagrams of power spectral densities of differences 
computed wi th F1'/HM of 5 and JO days of chosen series of 
pole coordinates, UTl-UTC and l.o.d. are shown in Figures 
2a-2c, respectively. 

The short periodical part of spectra of pole coordi­
nates determined by BIH-Astrometry and DMA (44) -Doppler 
are the most noisy. I?MS-Astrometry data are vecy strongly 
smoothed in this part of the spectrum. The spectra of varia­
tions of x coordinate determined by DMA-67 and CSR are the 
most similar. It can be seen in the diagrams of logarithms 
of power spectral densities presented in Figure J. Most of 
detected by MESJ,. periods of short periodical terms appear 
in three or four series of pole coordinates determined by 
different techniques. 

It is noteworthy to stress that the order of magnitude 
01' short periodical variation ampli tudes is two times 
smaller than in the case of Chandler or annual periodical 
variations. i,mpli tudes of short periodical variations de­
tected by :-IESJ, in the range of periods of 10-90 days are of 
the orc.er of' a few miliarcseconds, mostly 2-5 mas and are 
comparable with the 1 mas order of their errors. 

i:'eri'ormed test, in which time series consisting of a 
sum of several periodical terms with amplituctes of 2-5 mas 
and the no ise wi th o = 5 mas have been anaiysed by J-.:ESA, 
revealed that I,:ESA detects well such periodical terms 
(Table 1) • 

1he list of periods and amplitudes of short periodical 
variations detected by Ii.ESA in the analysed time series of 
pole coordinates, UTl-UfC and l.o.d. is given in Table 2. 
Amplitudes and phases have been determined by the least 
squares method, on the basis of data of resolution of 1 day. 

The accuracy of amplitude determinations increases with 
the increase of resolution of smoothed data. In the case of 
s.m oothing resolution of 5 days 

I 
comparable wi th the reso­

lution of' original data,accuracies of amplitude determina­
tions are of the order of 1 mas. fhases are very weakly de­
termined. Errors of phases are usually of the order of tens

of degree. 

Amplitudes of periodical terms. with periods langer than
60 days are considerably diminished by the us.ed filter with 
FWHM of 5 and JO days.

1 
Figure 1. So, MESA of differences o:f 

smoothed series. o.f po e coordinatea wi th FWHM of 5 and 50 
days was performed, too. The results are given in Table J. 
Amplitudes of the periodical terms with periods langer than 
JO days are greater than be:fore, but their errors are 
higher. 

Periods of the most energetic periodical variations 
and their amplitudes or power spectral densities are dif­
ferent in different series o:f pole coordinates,, but these
differences are within the railge· o:f their errors. 

Same most energetic short periodical variations were 
detected by MESA in each analysed series, although maxillla 
of pow.er spectral densi ty have different shapes of high 
sharp pea.lcs or o:f wider and lower peaks. divided into two 
parts. These periodieal variations· detected near� in e1l 
series nave approxima te1y the :following periods: 75 or 
langer, 55-60, 45, J5, 27, 24, 18, 14, 12 days. Tald.ng into
account the errors o:f the analysed data and of determined 
parameters o:f short periodieal variations, we decided to 
add power spectral densities o:f several series o:f x and o:f 
y coordinates, separately, in order to increase the ef'f'ects 
of real short periodieal variations o:f polar motion. These
variations of polar motion ought to have the same periods in 
all series of the data d'etermined by different techniques .• 
Combined spectra o:f pole eoordinates o:f the most accurate 
techniques are presented in Figure 4. In combined speetra 
there are the short periodieal variations with the greatest
amplitudes detected in the single series of pole coordinat.es, 
end their amplitudes are greater. However1 in the combined
spectra the maxima o:f power spectral densities for longer 
periods like:24, 27, J5, 45, 50-60� 75 days are more in­
creased than in the case of a shorter part of these apectra. 
It means that these periodical terms are detected by. all 
techniques, and can be real periodical terms o:f polar mo­
tion. 

The data of UTl-UTC determined by BIH-Astrometry end. 
of l.o.d. determined by CSR-LASER have been analysed in 
the same way as the data of pole coordinates. Spectra o:f 
UT1-UTC and l.o.d., obtained by MESA., are presented in 
Figure 2c. In both series of the data short periodieal varia­
tions,with the following periods,have been detected: 60-70, 
J5, 27 , 19, 15, lJ , 12 days. Additionally, there are 
high peaks för periods of 14 and 21 days in the case of'. BIH 
data and for periods of 45 days in the case of CSR data. 

"' 

"' 

.. 

r 

DOI: https://doi.org/10.2312/zipe.1985.081.02



Amplitudes of these short periodical variations computed by 
the least squares method are given in Table 2. 

Short periodical variations with periods longer than 
50 days are not so well determined on the basis of the pre­
sent MERIT data, due to the short period of observations. 
Thus, we have analysed the longer series of pole coordinates 
determined by Bil!-Astrometry, CSR-LASER and DMA-Doppler in 
the last few years between 1978 - 1984 (B.Kolaczek et al., 
1984). These data cf pole coordinates have been used f'or 
computation cf an instantaneous velocity vector cf a pole 
- v

i 
for each 15 days.

V · = V( X• ;_X· 
l 

) 2 + ( y · - y · 
l 

) 2 o 
i i i- i i-

In order to remove long periodical variations, differ­
ences cf instantaneous velocities and mean velocity values 
for 60 days have been computect. The spectra cf these dif­
ferences cf pole velocities obtained by MESA for different 
techniques as well as for combined spectra cf all tech­
niques are presented in Figure 5. 
Short periodical variations with the greatest amplitudes 
have approximately the following periods : 75 , 60 , 40-J5 , 
JO , 26 days, which are similar to the periods detected in 
pole coordinates. 

In conclusion we can say that the present accuracy of 
pole position data and UT1-U

TC allow to detect some short
periodical variations cf polar motion and UT1-UTC, and esti­
mate the order cf their_amplitudes. This part cf spectrum 
cf polar motion and UT1-UTC needs further careful investi­
gations. 
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Kolaczek B., King R.W., .3rzezinski A., Kosek W., 
1984. Intern. Symposium "On Space Techniques 
for Geodynamics , Sopron, Hungary, July 1984. 

Table 2. Amplitudes of differences cf pole positions 
determined by one technique and smoothed with FWHM of 5 
days and JO days and with the step of 1 day 

Per. Ampl. Per. Ampl. 
/days/ /mas/ /days/ /mas/ 
VLBI-X VLBI-Y 

97 4+0.4 
74 5-o.4
62 5 0.4 
J6 J 0.4 
26 2 0.4 
18 2 0.4 
16 2 0.2 

DMA67-X DMA67-Y 
97 J+0.4 7J 2+0.6 
62 5-0.4 5J 4-0.5
44 J 0.4 J8 4 0.5
J2 2 0.4 28 4 0.5 
24 2 0.4 2J J 0.5 
19 2 0.4 15 4 0.5
14 2 0.4 12 2 0.5

BIH-X Bil!-Y 
72 4+0.8 76 5,:!:0.8 
45 6-0.8 52 5 0.8 
J2 5 o.8 JJ 8 0.8 
29 5 0.8 24 J 0.8 
25 7 0.8 16 J 0.8 
22 5 0.8 15 6 0.8 
14 4 0.8 1 J 4 0.8 

Per. Ampl. 
/days/ fmas/ 

CSR-X 
77 4+0.4 
50 2-0.4
41 2.0.4
J2 2 0.4
24 J 0.4
18 2 0.4
14 2 0.4
12 2 0.4

DMA44-X 
99 J,:!:0.4 
65 J 0.4 
48 J 0.4 
JJ 4 0.4 
16 2 0.4 
14 1 0.4 
11 1 0.4 

UTl-UTC/Bil! 
/ ms/ 

59 6+2.2 
28 5-2.2
21 5 2.2
15 5 2.2
14 9 2.2
11 J 2.2

Per. Ampl. 
/days/ /mas/ 

CSR-Y 
77 6+0.7 
54 5-0.7
28 2 0.7
22 2 0.6
14 1 o.6

DMA44-Y 
76 5+0.7 
54 J-0.7
4J 2 0.7
J4 2 o.7 
25 1 0.7 
19 1 o. 7 
15 1 o. 7 

L.O.D/CSR
/ ms/
44 8+1.2 
J6 r1.2 
25 6 1.2 
19 8 1.2 
16 4 1.2 
12 6 1 .2 

'-"' 
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influencee of ayatematic differencee between different star catalogues on the results 
of latitude end time determinations with the PZT 2 

by 
M. Meinig1 )

Summary 

45 

Syetematic errors in the etar catalogues, used for the reduction of PZT observations, 
effect directly the reaulte of latitude end time determinations end therefore also the 
Eerth rotetion parameters which ere being derived from these results. In the geodetic­
estronomical observetory of the Central Institute for Physics of the Earth the catalogue 
PZT 80 is presently being used. This catelogue contains star places, which were improv�d 
by own PZT results. The systematic differences between this catalogue and the catalogue 
of northern PZT atars NPZT 74 are approximated by analytical expressions in dependence 
on the right ascenaion. The influence of these differences on the latitude and time 
determinations is presented for the observation series with the PZT 2 in the vears 
1981 - 83. The obtained reaults are compared with values calculated from data of the 
Bureau International de l'Heure. 

Zusammenfassung 

systematische Fehler in den Sternkatalogen, die bei der Reduktion der PZT-Beobachtun­
gen verwendet werden, wirken sich direkt auf die Ergebnisse der Breiten- und Zeitbestim­
mungen aue und beeinflussen somit die aus diesen Ergebnissen abgeleiteten Erdrotations­
parameter. Im geodätisch-astronomischen Observatorium des Zentralinstituts für Physik 
der Erde wird gegenwärtig der Katalog PZT 80 verwendet, der Sternörter enthält, die auf 
Grund eigener PZT-Ergebnisse verbessert wurden. Die systematischen Differenzen zwischen 
diesem Katalog und dem Katalog der nördlichen PZT-Sterne NPZT 74 werden durch analyti­
sche Ausdrücke in Abhängigkeit von der Rektaszension approximiert. Der Einfluß dieser 
Unterschiede auf die Ergebnisse der Breiten- und Zeitbestimmungen wird anhand der Beob­
achtungsreihen mit dem PZT 2 für die 3ahre 1981 - 83 dargestellt. Die erhaltenen Ergeb­
nisse werden Vergleichswerten gegenübergestellt, die atis BIH-Daten berechnet wurden, 

When meking observations with photographic zenith teleecopes {PZT) special star 
oataloguesmuet be used for the reduction, aince fundamental etare can hardly be observed, 
In general, there exiat individual star cataloguee et the PZT etatione, For standardiza­
tion of theae catelogues end for adaptation to the system of the fundamental catalogue 
FK4 an observation programme was carried out upon the recommendation of the Inter­
national Astronomical Union in the seventies according to which the stars of the PZT 
atations on the northern hsmiephere were observed together with FK4 stars with meridian 
circles. 10 meridian circles were involved in this programme. As a result of this inter­
national cooperation the catalogue of the northern PZT stars NPZT 74 was issued /1/, 

The eyetematic differencee between catalogue PZT 80 /2/ which_ is presently being 
uaed et Potsdam for the reduction of the PZT observations end catalogue NPZT 74 are 

i)Acade•y of Sciences of the G.D.R,, Central Institute for Phyeics of the Earth,
ODR- 1500 Potsdam, �elegrafenberg 
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approximated by analytical axpressions in dependence on the right ascenaion and are 

graphically presented in Fig, 1 and 2, The reaulting maximum amounts of the 0yatematic 

differences are 0,09" for the decli�ation and 0,0138 for the right asc0nsion, 

For the latitude and time determinationa with the PZT 2 of the geodetic-a0tronomical 

observatory of the Central Institute for Phyaica of the Earth corresponding corrections 

were calculated by groups for consideration of the 0yatemetic cetalogue differencee. 

The corrected data were graphically presented together with the uncorrected results 

after smoothing of the data series for tha years 1981 - 83 (Fig, 3 and 4), For 

comparison the curves of the latitude changes and (UT1-UTC)-valuas calculatad from 

data of the Bureau International de l'Heure (BIH) were also plotted. 

In Fig, 5 to 8 the differences between the individual curvas are graphicelly 

presented in a sceled-up manner. The diffarences batween the curves obtained on the

one hand from the results with the Yasuda-catalogue (NPZT 74) end on the other hend with

our own catalogue PZT 80 show an annually r.ecurrant pariodic behaviour (Fig, 5 end 6), 

The deviations vary between -0,05" end +0,09" for the letituda and betwaen -0,0128 
and 

+0,008 9 for the time. For comparison, the differences of the results obtained in the

old systern and in the new system of astronomical constante introduqedfrom 1, 1, 1984

for the period from the beginning of the MERIT main campeign till the end of 1983 were

also graphically presented, Although the differances mantioned last are smaller then

the differences between the two star catalogues considered, their influence0 era of

such a magnitude that they must be considered for the calculation of new star coordinate

corrections from our own observation results.

Further graphical presentations include the diffarence curves of the resulte obtained 

with the Yasuda catalogue and our own catalogua, respectively, regarding the BIH 0yatem 

(Fig, 7 and 8), These difference curves cen ba considarad as local z-tarm for tha 

latitude and as local T"-term for the time, respectively, The variations of the z-tarm 

are within the limits of -0.10" and +0,09" for our own cateloqua end within the limits 

of-0,04" end +0,14" for the Yasude catalogue, The r-term varies between -0.0368 and 

-0,0059 for our own cetalogue and between -0.0338 and -0,0038 for the Yasuda catalogue.

A constant portion could be split off from the 'Z"-term and eliminetad by a correction

of the conventional longitude used for the reduction,

The graphical presentations show that the curve beheviour largely dependa on the 

catalogue used, Therefore, it cannot be excluded that residual systematic star coordinate 

errors still have an influence on the local z-term and 'Z"-term, respectively. Although 

it would be formally possible to derive improvement0 for the atar coordinate0 from 

the deviations compared with the BIH 0y0tem on condition that the remaining local 

terms of the latitude and time determination0 are minimized, thi0 procedure doe0 not 

seem justified, because then errors resulting from other causes (refraction, temperature 

influences, instrumental errors) might felsely be transferred to the etar coordinate0, 

The differences between variou� ayatema for the yeara 1981 - 83 were rapreeented in 

the analytical form 

Ll • X
0 

+ x1 sin 2 7r t + x2 cos 2 fT t + x3 sin 4 1r t + x4 cos 4 Tr t

(� • tl•• in Besselian year0). The coefficients X
0

to x4 were determined by the method of
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least squares and are given in Tab, 1, The quantity A • t. X� also given in Tab, 1 1s 
1„1 a criterion for the mutual approximetion of the compared systems, lt 

becomes evident that the results obtained with the catalogues PZT 80 end NPZT 74 
respectively are in better agreement with the BIH system than the both catalogues 
between �ach other, 

A decision upon which of the two catalogue systems (Potsdam PZT 80 or NPZT 74) is 
better suited for the reduction of the observstion data of the PZT 2 cannot be taken 
on the basis of the present investigations, 

Tab, 1: Differences between various systems for the years 1981 - 83 

Latitude 

x
o 

PZT 80 - BIH 0,003" 
NPZT 74 - BIH 0,039 
NPZT 74 - PZT 80 0,036 

ll2 
PZT 80 - BIH -0.02138 

NPZT 74 - BIH -0.0211
NPZT 74 - PZT 80 0,0002 

Literature 

x1 x2 

0,002" 0,047" 
-0,055 0,022 

-0,057 -0.025

-0,00188 -0,00439 

-0,0057 0,0032 

-0,0039 0,0075 

X3 

0.010· 
-0,003
-0,013

-0,00398 

-0,0027
0,0012 

-0.011"
0,001
0,012 

-0.00016 

-0,0027
-0,0026

A = 

4

� x2 

t;T i

0,2434 • 10-2 

0,3519 10-2 

0,4187 • 10-2 

0,3695 • 10-4 

0,5731 • 10-4 

0,7976 • 10-4 

/1/ Yasuda, H,; Hurukawa, K,: Hera, H,: Northern PZT Star Catalog (NPZT 74). 
Ann, Tokyo Astron. Obe,, Second Ser., Vol, XVIII. No, 4 (1982), 367. 

/2/ Meinig, M,: Verbesserung der Sternörter des Potsdamer PZT-Katalogs, 
Astron. Nechr. 305 (1984) 4, 195 - 202, 
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INTERACTIONS BETWEEN OCEANIC ANO GRAVITY TIOES, AS ANALYSE□ FROM 
WORLD-WIOE EARTH TIDE OBSERVATIONS AN□ OCEAN MODELS. 

P. Melchior, B. Ducarme, M. Van Ruymbeke. C. Poitevin, M. De Becker 

Observatoire Royal de Belgique 
Avenue Circulaire 3, 1180 Bruxelles, Belgium. 

ABSTRACT 

The problem of interactions between earth tides and oceanic tides 
is rather complex as it invalves effects of newtonian attraction, loa­
ding and associated change of earth potential, tangential pressure and 
friction on the moving ocean floor which are not always easy to evalu­
ate, principally for coastal or island stations. 

This paper takes advantage of two facts : 
(1) By the end of 1983 the International Center of Earth Tides has col­

lected and evaluated a considerable amount of data from 223 stations
including those of the Trans World Profiles developed by the same 
group of authors (102 stations). This ensures, for the first time, 
a World wide distribution including the tropical areas and the sou­
thern hemisphere.

(2) In 1978-80, new oceanic cotidal maps of high quality, established 
by E.W. Schwiderski, became available, 

We have cal=ulated, for the eight principal tidal waves, the cor­
relations between the observed gravity variations and those resulting 
fram a calculation based upon the Schwiderski maps. This correlation is 
highly significant. 

At the level of accuracy of the best transportable gravimeters the 
agreement is perfect except at a few places where effects of lateral he­
terogeneities in the mantle can perhaps be suspected. 

These cotidal maps can therefore be safely used as working stan­
dards for other geodetic and geophysical applications. 

INTRODUCTIDN 

There are presently in geodynamics a number of problems where a 
very precise correction (or predictionl for tidal effects is needed : 

gravimetry, altimetry, VLBI. laser ranging to the Moon and satellites, 
etc. As an example, in terms of the vertical component of gravity, 
"precise" means 1 µgal (= 1□-8 ms-�, and, probably soon, better than
1 µgal (Melchior, 1983). A working standard to be used as a model for 
such precise tidal computations is not easy to select because of the 
compl1cation of ocean-continent tidal interactions which consist in a 
number of intricated effects. These are : 
- the direct attraction of the periodically moving masses of water upon 

the ground based instruments
- the flexure of the ground under the load of these masses 
- the change of the earth's potential due to this load deformation of

the earth 
a modification of oceanic tide height due to the body tide of the 
ocean's bottom. 

These interactions can be predicted using Farrell's procedure 
(1972) based upon Green's functions, provided that a good model of the 
various oceanic tidal components is available. Their evaluation depends 
upon the chosen rheological model of the earth's interior. 

Thus, precision Earth Tide measurements carry much information 
about the tides of the Ocean, about heterogeneities in the lithosphere 
and mantle as well as about liquid core dynamics. All these informations 
are to be extracted now. 

At first sight we believed that a model composed of homogeneous 
isotropic spherical layers is much more likely to be valid for the body 
tide, having significant displacements through most of the earth's vo­
lume, than for the load tide whose displacements are appreciable only 
in the lithosphere and upper mantle. Differences in lithospheric struc­
ture, as beneath ocean basins and continents, would therefore affect the 
load more than the body tide. 

Near the load the surface deformation is very sensitive to the pro­
perties of sediments. At larger distances from the load one has to take 
into account structures down to generally a depth two or three times 
the horizontal distance between the load and the point of observation. 
Lack of knowledge of these lithospheric features is the reason why the 
loading effects are presently not accurately predictable. Eventually 
these features must be determined in order to produce correct tidal pre­
dictions for precision measurements. 

However, the most recent results, derived from world wide tidal 
gravity measurements, lead Melchior and De Becker (1983) to conclude 
that some anomalies observed in specific tectonic areas could be due to 
very deep lateral heterogeneities. 

TRANS WORLD TIDAL GRAVITY PROFILES 

There was a considerable handicap to the use of such a method of 

1.11 
1.11 
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investigation which was due to the complete lack of reliable observa­
tions in some 80 % of the surface of the Earth and particularly in all 
the Southern hemisphere. 

To fulfil these gaps in data the Royal Observatory of Belgium 
(Bruxelles) and the International Centre for Earth Tides have jointly 
organized measurements in Asia, Africa and the South Pacific. Starting 
in 1973, a first tidal gravity profile extending over·17400 km from 
Istanbul to Papeete (Tahiti) involves 36 stations. A second profile 
from Cape to Cairo involves 20 stations in East Africa. A program in 
East Asia involves 10 stations in China, 5 in Japan and 1 in Korea. 

Transportable recording instruments (Geodynamics and Lacoste Ram­
berg gravimeters) were used, precise enough to reach a precision of few 
tenths of ruicrogals on the amplitude of the tidal waves after 4 to 6 
months of continuous recordings which was, at each place the duration 
of ob?ervations indeed but rather more extended measurements have been 
made at Brussels, Canberra, Alice Springs and Wuhan. Before starting 
the experiment all the instruments were first very carefully compared 
at the Brussels station to determine their instrumental constants (Du 
carme, 1975). A check was made at Canberra and at Wuhan by comparing 
again five or four of the instruments-. 

When this progranvne started - in 1973 - no one of the existing oce­
anic tide models fitted the earth tide observations. Therefore the ini­
tial objectives of these measurements were : 
(1) To deteFmine to what extent measurements in continental stations

like Urumqui, Lanzhou or Alice Springs are free from oceanic tidal 
influence and can thus be considered as "lo.ad amphidromic points".

(2) To compare coastal station results with those from continental sta­
tions and to see if the tidal parameters (amplitude factor ö and 
phase difference al exhibit any regional behaviour and what is the 
extent of such regions. 

(3) To check if any one of the existing cotidal charts permit adequate
correction of the observed data so that one will obtain identical 
tidal parameters at all the places, that moreover fit the Love num­
bers obtained· by the integration of the fundamental equations of 
the spherical elasticity when using the best models of the earth's 
interior. 

(4) In the event that is proved to be impossible, to see if any impro­
vement or correction of the cotidal charts may be done or if another 
geodynamical process or geophysical parameter has to be invoked to 
explain the observed anomalies. 

Since 1979, Schwiderski (1979, 1980a,b) has constructed new cotidal 
maps for the nine main tidal waves Q1, 01, P1, K1, N2, M2, S2, K2, Mf 
by integration of th� classical Laplace equations completed with terms 
allowing for bottom friction, turbulent dissipation and tidal vertical 
movements of the ocean bottom. This integration is based upon a 1°x1° 

grid which means that most of the coastal areas are included. 

It consequently became one of our major aims to compare the on­shore gravimetric tide measurements with the effect calculated with the Schwiderski maps (as well as with other available maps). We can consider indeed that a cotidal map which allows generation of computed attrac­tions and loads in agreement with the Earth tide gravity measurements over a sufficiently broad area can be used with confidence as a working standard for height, tilt and strain tidal corrections or to apply thenecessary corrections to high-precision measurements performed by newtechniques like altimetry, very long-baseline interferometry (VLBI), Moon and satellite laser ranging and absolute gravity. Such measurements are extremely important for earthquake prediction by allowing to control crustal• uplifts, fault motions and stress-strain accumulation. 
To correctly control the minute changes involved, tidal correctionsmust be applied with a precision of 1 µgal or better, which correspondsto about 3 millimeters in height. This is not an easy task. 
On the other hand valuable information about global oceanic and solid Earth tides has been derived from satellite perturbation data over the last ten years by many authors (Melchior, 1983, eh. 15). Because they all have exactly the sallle frequencies, it is impossible to separate in this way the individual contributions of the oceans, of the Earth tide and of the interactions between ocean and crust (even if a depen­dence of the satellite orbit inclination is apparent). Therefore, a net of ground measurements is essential to serve as a ground base and shouldcomplement the satellite measurements. 

INTERPRETATION OF THE RESULTS BY A VECTOR DIAGRAM

In our previous papers we introduced the following definition ofthe "residual vector" � (B1, Bi) : 

th Bi CDS (wit + Bi ) = {öi Ai CDS (wit + ai) - öi Ai CDS wit} f($) (1) 
where i refers to the tidal component considered (Q1, 01, P1, K1, N2, M2, S2, K2 J . Ai is the "theoretical" tidal amplitude calculated for a rigid Earth model with the Cartwright-Tayler-Edden tidal potential, wi being the tidal frequency, ai the observed phase lag. f($ ) is t�e depen dence on the latitude $ for the various tidal families, and Ö{ and öi are respectively the theoretical and the observed amplitude factors. TheÖ!h allow the deformation of an elastic Earth model to be taken into ac­count. Hydrodynamic effects of the flattened liquid core are sufficien­tly well established that this Earth model should include them : they reac_h up to 2 % of the amplitude of the most important diurnal wave (K1 ). 

In terms of Love numbers 

ö 

Equation (1) can be written 

r 

+h-�k2 (2) 

UI 
C7\ 
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e = A - R (3) 

as shown on the figure 1, A (öiAi• ail being the observed tidal vector 
and R (öth Ai• Ol the calculated tidal vector for an oceanless elastic 
earth model with liquid core. The mean square error an the experimental 
determination of Ä is represented by the error circle of radius E. 

We also define the corresponding "load vector" t (Li• Ai) which 
contains the periodic attraction as well as loading effects of oceanic 
tides. This is calculated by the Farrell procedure (1972) based upon 
Green"s functions, an the basis of the Schwiderski cotidal maps. 

Dur computation program, written by M. Moens (Melchior et al. 1980), 
is based upon the following principles. 
(1) The.Newtonian attraction is directly calculated taking the altitude 

of the stations into account. 
(2) The load deformation of the ground is calculated by polynomial in­

terpolation in the Farrell tables without considering the altitude,
this effect being considered as negligible.

(3) Mass conservation of oceanic waters has been ensured by two alter­
native procedures : (a) a uniform correction which consists in the
introduction of a sheet of water of constant thickness with a cons­
tant phase: (b) a correction proportional to the tidal amplitude,
which is thus larger in the coastal areas. Both procedures give the
same result at the 0.1 µgal level. Procedure (bl was employed rather
than (a).

There are about 45000 polygones 1 °x1° in each Schwiderski cotidal 
map but, for near-shore stations, the nearby oceanic 1 °x1 ° zones have 
been redivided into smaller and smaller squares up to 0.125°x0,125° in 
size. When the centre of a small square is less than 10 km from a sta­
tion the corresponding effect has not been taken into account. This is 
essential because if the observing station is very near to the centre 
of such a square, the evaluation loses any physical meaning. 

+ + 
Ta compare the vectors B and L, we calculate the correlation of

B cos ß with L cos land the correlation of B sin ß with L sin A as well. 
This is done for the eight main waves and, in each case, for three Earth 
models which differ in the latitude dependence of the ö parameter. 

This latitude dependence results from the flattening of the Earth 
as well as from Coriolis and centrifugal force. It was theoretically 
demonstrated by Love (1911) and Wahr (1981) and experimentally establis­
hed by Melchior (1981), Melchior and Oe Becker (1983). 

Ocean-continent tidal interactions have total amplituues reaching 
2-3 µgal in continental Europe but 5-10 b)ge.l in Spain or the United 
Kingdom. Around the Indian Ocean (East Africa and South East Asial they
also reach 30 u�al, while up to 40 µgal interactions have been observed
in the Soutn Pacinc Islands (Melc·h1or et al •• 1981 l. 

A very important feature is that, as clearly shown by Fig. 1, the 
correlation between 8 sin ß and L sin A is not affected by the choice 
of the Earth modei B sin ß being independent of it an the condition that 
the viscous phase lag of the Earth is negligible, which has been demons­
trated by Zschau (1978). This can provide a check for the instrumental 
calibrations and/or for the oceanic cotidal maps. 

A s,na 

B s, n ß 

A c;osa 

Fig. 1. Comparison of observed and calculated ocean-continent tidal 
interactions. For the semi-diurnal M2 wave, the correct scale of this 
figure should be : R = A = 40 (Europe)-90 (Equator) µgal: a. 0- ± 5° ; 
L = B = 2 (Europe)-10 (South Pacificl µ�al: X= 0.5-5 µgal: E = 0.5 
(Europe)-1 (Equatorial zone) µgal (B = A - R, B - t = xi�

The essential result was that the recent Schwiderski maps (1979, 
1980a,bl fulfil these requirements to a large extent, so that it seems 
appropriate to use these cotidal maps as working standards to correct 
Earth tide parameters (amplitude factors and phasesl for the influence 
of oceanic tides. The use of the same maps for all stations preserves 
the homogeneity of the network. 

A final residue vector X IX, xl B - t is then calculated 

xi CDS lwit + x
i
) = Bi CDS (wit + ßi) - Li CDS (wit + Ai). (4) 

This vector shown in fig. 1, contains the unexplained part of the 
observed residual vector B. When IXI > e it is suspected to contain the 
following systematic effects : 
Instrumental systematic errors 

Calibration (frequency-dependentl 
Thermal influences 
Barometrie effects 
Power supply, ground connection, dead band of the recorder 
Drift. 

\JI
-:i
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Geaphysical effects : 
Lateral heterageneity af lithasphere and upper mantle 
Lacal distartians af the aceanic catidal maps 
Load barametric effect. 

Camputatian errars : 
Map digitizatian, camputer pracessing 
Errars in caardinates, imperfectians af analysis methad. 

An impartant result af □ur analysis was that the sina campanent 
X sin x appears quite always smaller than 0.5 µgal while "ne casine 
campanent X cas x may reach at same specific places up ta 5 µgal. This 
is reflected in the carrelatian caefficients given in the Table 1. One 
may lagically suspect therefare an effect af deep lateral heteragenei­
ties af the lithasphere and upper mantle (Melchiar and De Becker, 1983). 

TABLE 1 ..,. ..,. 
Carrelatian caefficients bet•�=n abserve�·residue B and aceanic laadin�L 

Wave N Casine campanent Sine campanent 

Q1 32 0.776 0.702 

01 175 0.516 o. 778
P1 55 0.567 0.720
K1 177 0.459 o. 643 
N2 171 0.698 0.776 
M2 180 o. 848 0.929
s2 179 0.717 0.634
K2 53 0.723 o. 770

Note that s2 wave contains a non negligeable cantributian fram atmasphe­
ric tides. 
N : number af ground based tidal gravity statians. 

CONSIOERATIONS ABDUT SOME TYPICAL AREAS 

A detailed analysis af the different areas where measurements have 
been made is given in (Melchiar et al. 1981). We will here restrict aur­
selves ta a few typical examples. 

Europe 
There is a very high density af tidal statians in Eurape, accupied 

with many different instruments from different institutians. 

The abserved .residues B exhibit an autstanding fitting with the 
laading effects t well under the naise estimatian c (0.3 µgal). Six sta­
tians present hawever a X cas x residue af 1 ta 2 µgal. These statians 
are lacated in the twa different areas af extreme lithasphere's thick­
ness existing an bato sides af the Alps (Melchiar and De Becker, 1983: 
Melchiar et al. 1983b). 

Indian Ocean 
The cansiderable discrepancies between the Indian Ocean catidal 

maps prapased by the different authars were attributed by same af them 
ta the fact that this area is very near ta a resanance with tidal fre­
quencies, so that slight changes or errars in the dimensians (which de­
pend af c□urse upan the grid dimensiansl displace the eigen-frequencies 
and cause great difference's in the resul ts. 

Schwiderski refuted this paint af view. In his madel the M2 tide 
is anly 40 cm in the centre af the Indian Ocean while i" r6öches 138 cm 
in the Hendershott model. 

Dur measurements around the Indian Ocean fit in general quite well 
the Schwiderski catidal map. In particular □ur statian at Antananariva 
which, with its geagraphical pasitian in the centre af Madagascar, 150 
km fram the sea, is surely a otrategic place far checking the catidal 
maps af this acean. 

Far East (China, Japan, Korea) 
This area is also interesting because af the camplicate pattern af 

the tides inside the gulf af Chihli and the Korea Bay. 

With same 10 statians all araund we have been abla ta shaw that the 
M2 warld Schwiderski map leaves a final unexplained residue af abaut 

\11 
CXl 

1 µgal but with a rather systematic negative phase. This is larger than 
the naise. By intraducing carrectians fram lacal catidal maps af this 
gulf, this residue reduces ta 0.5 µgal while the phase gat a large dis­
persian shawing that it more or less represents naise. 

THE DIURNAL TESSERAL WAVES IN SOUTHEAST ASIA AND INDDNESIA 

We expected that this zane wauld-be the mast crucial test far three· 
essential reasans. 
(a) The Sauth China Sea is a resanant diurnal system : the amplitudes 

af the K1 and □
1 

tidal waves reach mare ar less 0.5 m in the area. 
(b) Because of abviaus geagraphical reasans all □ur statians are mare 

ar less coastal.
(cl The diurnal direct Earth tide is extremely small as all our statians 

are very clase ta the equatar. 
This explains why □ur □1, K1 and occasianally P1 laad vectars amaunt ta 
1-3.5 �gal □ver all this area. 

A first typical feature to be abserved is that the phase difference 
in the K1 and 01 laad signals fits everywhere with the correspanding 
difference in the neighbauring harbours, with anly ane exceptian in 
Manila. as shawn in Table 2. This shaws evidently that the experimental­
ly abtained laad vectar is mainly sensitive ta the near-sea tides. 

An remarkable check is also affered by the wave P1 which, in gene­
ral, is difficult ta extract fram earth tide data, its periad being 

... 
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TABLE 2 

South East Asia and Indonesia 

K
1

-o
1 

residual phase difference in degrees 

Southeast Asia 
2460 Colombo (Sri Lanka) 
2501 Bangkok (Thailand) 
2551 Penang (Malaysia) 
2550 Kuala Lumpur (Malaysia) 
2601 Hong Kong 
4010 Baguio (Phicippinesl 
4011 Manila (Pr,:�ippinesl 
2555 Kota Kinabc:u (Malaysia) 
2701 Saigon (Vietnam 

Indonesia 
4105 Banjar Baru (Indonesial 
4100 Bandung (Indonesial 

(a) observed with gravimeters; 
(bl in the nearest sea. 

(al (b) 

18 29 
-56 -43 
-32 -58 
-46 -58 
-15 -so

-20 -40
- 3 -41
-33 -so

-43 -20 

-36 -40 
-34 -23

4110 Ujung Pandang (Indonesia) -13 -22 
-15 4111 Manado (Indonesial 

4150 Jaya Pura (Indonesia) -14 -21 

4160 Port Moresby (Papua) -36 

4210 Darwin (Australia) -47 -23 

equal to 23h 53m 57s makes its frequency very close to the K1 and S1 
frequencies ·so that only very good instruments, carefully protected 
against barometric as well as thermal disturbances, have been able to 
isolate it (Melchior, 1978). 

However, this tidal component, which is the third in amplitude in 
the tesseral family, is of major interest for investigations of the li­
quid core hydrodynamical oscillations. It is with great satisfaction 
that we can point out here that the load effects computed from the 
Schwiderski P1 cotidal map are in close agreement with the observed P1 
loads in all the thirteen stations where we could separate it from K1 
and s1 and where, of course, this P1 signal was not too weak (see
Table 3). 

SMALLER COMPONENTS Q1 AND K2

TABLE 3 
P1 wave. Observed and calcuTäfecf"l:"oading and attraction effects. 

9904 
2600 
2612 
2823 
2847 
3019 
3020 
4105 
4115 
4160 
4209 
4205 
6004 

Observed residues with respect to Molodensky Model I. 
(All stations where 8 � 0.3 µgal are considered). 

Station 

Kerguelen (TAF) 
Guangzhou (China) 
Shanghai (China) 
Kyoto (Japan) 
Mizusawa (Japan) 
Oj ibouti (Afar l 
Mogadiscio (Somalia) 
Banjar Baru (Indonesia) 
Kupang (Indonesial 
Port Moresby (Papua) 
Alice Springs (Australia) 
Armidale (Australia) 
Uwekahuna (Hawai) 

Observed 
residue 

Schwiderski 
map 

Vectorial 
difference 

B(µgal) 8(0

) L(µgal) A( 0

) X(µgal) x( 0

) 

0.40 
0.33 
D.38
0.60 
1 .13 
0.62 
0.57
1.57
0.85
0.87
0.28
0.46·
1 .17

-82
-94
-28
-26 

4
139 
104 

-125 
-116 
- 16 
-106 

7
83

0.37 
0.40 
0.43 
0.64 
0.76 
0.65 
0.78 
0.90 
0.92 
0.91 
0.18 
0.26 
1.03 

-106 
- 92
- 32

7 
5 

147 
137 

-115 
··118 
- 19
-133 

38
102

0.16 
0.07 
0.06 
0.21 
0.37 
D .1 D 
0.43 
0.70 
0.11 
0.06 
D .18 
0.27 
D.39 

-14 
97 

123 
-118 

4
36

2 
-137 

42
113
-27
-2'1 
23

has a maximum amplitude of 9.5 microgals at the equator. The residues 
reach a maximum of 0.5 µgal for Q1, 1 µgal for K2. Oespite these very
low amplitudes their phases are in fair agreement which shows that the 
noise in our measurements seems to be less than 0.3 µgal. 

LDAOING AMPHIDROMIC POINTS 

For many years it has been of interest to find points where the 
oceanic effects are minimized, even possibly zero. The question is whe­
ther such points exist. If they could be discovered it would be worth­
while to install there the best gravimeter to investigate the hydrodyna­
mic effects of the Earth's liquid core. It is also interesting to look 
at such points for absolute gravity measurements. However the geographi­
cal position of such a point will be different for each tidal component. 

At a certain distance from a sea the direct attraction of its water 
masses and their loading effect are equal and opposite, cancelling in 
such a way that the effect of the ocean is virtually zero. This 1s true 
only_ for the nearest sea and as the more distant oceans have a signifi­
cant effect it is not easy to predict where the effects of all the oce­
ans together will cancel. This not necessarily happens just in the cen­
tre of each continent. 

In a paper presented at the IAG Commission on Earth Tides, Melchior,

Ducarme and Chueca (1983a) show that a fair agreement is also found for We have calculated such maps for each continent (Melchior, Ducarme 

these waves between observed and calculated ocean-continent interactionS-1983). The M2 map for Africa is given on the figure 2. It shows indeed

Q1 wave has a maximum amplitude of 6 microgals at 45° latitude. K2 wave
U1 
\D 
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� 
that the minimum of attraction and loading is not located in the middle 0 

af the continent at all but in the Republic of Mauretania. 

It is clear from our Trans-World Tidal Gravity Profile that one 
such point must exist in Australia for the M2 wave, between Alice Springs
and Broken Hill, which is indeed confirmed by the Parke map (1979) (at 

$ = - 28 °30', A = 137 °30') but not by the Schwiderski or any other map. 
The M2 Parke map indicates, moreover, that such points exist also in
Argentina, near Tucuman ($ = - 28 °, A = 297 °) and in Texas, west of 
Dallas ($ = + 33 °, A = 260 °) while the M2 Schwiderski map gives amphi­
dromic points at $ = 33.5 ° N, A = 106.5 ° W in New Mexico and north-west 
of Lanzhou ($ = +37 °, A = 103 °30') in China. 

With the 01 Schwiderski map we have not found any amphidromic point
in Australia even if the load is everywhere very small there. We also 
found that □ver a broad area in China (between 25 ° and 35 ° N, 84 ° and 
92° El the o1 load is nearly uniformly small as it does not exceed 0.1 
µgal. The situatian is similar in Africa (narthern Nigeria, Tamanrasset, 
Bangui). 

C0NCLUSIONS 

At the level af same parts in 10-10 af g, we abtain a general agree­
ment between twa campletely independent methads af investigatian i.e. 
The mathematical canstruction af aceanic catidal maps an ane side and 
the an share tidal gravity variations abservatians an the ather side. 

It is time naw ta cansider new refinements af bath types of ap_­
praach. In the madelisation af interactians, we shauld intraduce visca­
sity and lateral heterageneities in the mantle and, as painted out by 
Schwiderski same cantributians which have been discarded until naw : 
horizontal pressure af the sea an the shelf slapes, self loading af 
earth tides and Cariolis farce. 

The warld caverage af tidal gravity measurements has been canside­
rably improved since 1973 by t-he Trans Warld Tidal Gravity Profiles 
(figure 3) but is still far from being sufficient. By the end af 1983 
there are anly very few measurernents available an the American cantinent. 
Dur team starts measurements in Brazil just by the end af this year. 
The great number af data already campiled required the arganizatian af 
an Earth Tides Data Bank (Ducarme, 1983). This Data Bank is extremely 
flexible, allawing naw the statistical investigatian af different acea-

Fig. 2. Tidal laading and attractian effects in Africa, Tidal wave M2, nie and earth tides madels.

amplitudes, given in µgal, are peak ta peak. 
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Figure 3. Trans World Tidal Gravity Profiles 1973-198� 

performed by the Royal Observatory of Belgium and the International Center for Earth Tides, Brussels 

(because of their high density in Europe, stations are not indicated in this area). 
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Abstract 

In order to :find new application :fields :for horizontal
pendulums in geodynamic measuring tec.hniques their
improvemen1 is very important. Conventional recording 
systems are not very convenient :for geodynamic
phenomena, t.here:fore a new capacitive horizontal 
pendulum with electric output and an intelligent 
digita.l data recorder .has been constructed. For the 
reproduction o:f t.he original signal this latter also 
uses logical decisions besides mathematical :filtering 
o:f t.he data. That is the reason why analog recording 
can be abandoned and it is not necessary to store all
sampled data. The recorder can be programmed :for various
kinds o:f tasks. 

Zusammen:fassung 

Um neue Ai;1-wendungsmöglichkeiten :für Horizontalpendel in 

der geodynamisc.hen Messtec.hnik zu :finden ist die Ver­

besserung von Horizontalpendeln sehr wichtig. Die .her­

kömmlichen Registrieru:ngssysteme sind :für Registrierung 

der verschiedenen geodynamischen P.hänomena nicht völlig 

geeignet, des.halb wurde ein neues kapazitives Horizon­

talpendel mit elektrischem Ausgang w1d einem intelligen-

ten digitalen Datenregistrierungssystem konstruiert. Um 

das originales Signal wiederherzustellen benutzt das 

letztere gewisse logische Entscheidungen neben den mate­

matischen Filtersmethoden :für Filterung der Daten. Aus 

diesem Grund kann die analoge Registrierung weggelassen 

werden und es ist nicht nötig alle gemessene Werte zu 

speichern. Das digitale Registrierungsgerät kann :für 

verschiedene Messau:fgaben programmiert werden. 

l. Introduction

Recently more and more data are needed :for the study o:f

geodynamic phenomena. To acquire this mass o:f data with

the required accuracy new measuring instruments and

automatic digital data acquisition systems are to be

developed. T he conventional horizontal pendulums with

photorecorder used :for Earth tide recording do not 

comply with requirements o:f modern measuring and 

computation technique. This is the reason why we have

developed a horizontal pendulum with capacitive

transducer w.hich supplies an electric signal and

there:fore it can be easily integrated with digital data 

acquisition and processing systems. The traditional

analogous pendulum records are read out manually or by

means v< a curve digitizer /indirect digitizing/ at

hourly time marks. In this case t.he quality o:f the

digitization is completely depending on the evaluating

person making a manual pre:filtering o:f the tidal curve

whic.h always contains some microseismic oscillations, 

spikes, steps and gaps. 

By sampling the output :signal o:f the capacitive 

pendulum by means o:f a simple digitizer at .hourly time 

marks t.he error o:f t.he digitizing can be very high 

because o:f the above-mentioned properties o:f the tidal 

signal. In this case an analog record is also needed to 

veri:fy the digital data. Another solution is the 

� 
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increasing of the ,;arnpling rate what increases the 

number ,:f data to be stored /Jentzsch, 1981; Plag and 

Jahr, l98J/. 

To solve this problem we have developed an intelligent 

digital data acquisition system which works with a high 

sampling rate and is capable to prefilter tidal data by 

means of mathematical :filtering algorithm,; and logical 

decisions. Therefore it gives out correct and reliable 

tidal data at hou.rly time marks and need no large 

storage capacity for tidal recordine-. 

2. 'fhe construction and functioning of the capacitive

pendulum

Ou.r horizontal pendulum is a metal pendulum and has a 

Zöllner suspension. Figure l shows the top- and profile­

-view of the pendulum. Its base /l/ is a right-angled 

triangular plate which is rigid enough to hold the 

whole pendulum with high stability. The base plate is 

standing on a fixed foot /L/ which is placed in the 

right angled corner and on two levelling screws /L1; L2
/

in the acute-angled corners. On the base plate there is 

a bracket /8/ with clamps /6, 7/ for suspension wires. 

The two wires clamped at points A and B hold the 

pendulum beam /9/, in horizontal position. The wires 

are made o:f tungsten and have a diameter o:f 20 µm. 

The sensitivity ot' the pendulu1n is depending on the devi­

ation o:f rotation axis AB of the pendulum beam from the 

vertical. The deviation can be decreased or increased 

by means of the levelling screw L
1 

denoted "sensitivity

screw". T.he smaller this angle is the more sensitive 

the pendulum is. At zero angle the sensitivity is 

infinitely high and the pendulum is in an instable 

state. If the vertical changes perpendicularly to the 

vertical plane of the pendulum beam the latter will 

move to a new vertical plane containing the rotation 

axis AB i.e. the pendulum beam rotates around the axis 

AB in the horizontal plane. The same effect can be 

caused by tilting the pendulum around the axis 

containing the top of the fixed foot /L/ and one of the 

sensitivity screw /L1/ by means o:f the "dri:ft screw"

/L2/.

In this latter case the position o:f the rotation axis 

AB is changed against the vertical. A capacitive 

transducer is applied to measure electrically the 

rotation angle of the pendulum beam. T.he capacitive 

transducer is a differential plane condenser, the 

:functioning o:f which is based on the change o:f the 

surface of opposite-standing plates. The moving plate 

/ll/ is fixed and electrically connected to the 

pendulum beam because the output of the capacitive 

transducer is led out via the suspension wires. That 

is the reason that a glass plate is under the bracket 

to insulate it from the base plate. 

The standing plates /12/ of the differential condenser 

are insulated from each other and from the console 

/lJ/ by a glass plate, too. The differential condenser 

connected together with two fixed capacitances o:f 

equal value forms a capacitive bridge circuit. The 

console holding the standing plates is adjustable to 

balance the bridge at the middle position of the 

pendulum beam. 

Figura 2 shows the electric construction o:f the 

capacitive pendulum. The bridge is supplied by a 

sinewave oscillator o:f high amplitude stability. 'Ibe 

amplitude o:f the supply voltage is 20 V and the. 

:frequency is 15 kHz. The output voltage o:f the bridge 

is detected by the high input impedance preampli:fier 

/15/ placed near to the transducer under the console. 

The input of the preamplifier is connected to the wire

,-

er, 
� 
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cl.amp /7/ and its output vol.tage is transferred on a 

l.ow impedance via the connector /l.6/ to the separate 

el.ectronical. unit which contains al.l. other el.ectric 

parts with the exeption of the preampl.ifier. The 

preampl.ifier is fol.l.owed by a sel.ective ampl.ifier and 

phase-sensitive rectifier which enabl.es the sign­

-correct measurement of the deviation of tlie pendul.um 

beam from its zero position. The phase-sensitive 

rectif'ier is fol.l.owed by a third-order Butterworth 

l.ow-pass fil.ter for fil.tering the sel.f-swinging of the 

pendul.um. The output signal. of the l.ow-pass fil.ter is 

ampl.if'ied by a DC ampl.ifier, the output of which is 

the fil.tered output. In most cases we need an 

unfil.tered output which is the output of a DC ampl.ifier 

ampl.ifying directl.y the output signal. of the phase­

-sensitive rectifier. If the capacitive pendul.um is 

inserted into a measuring system it is very important 

to know its transfer function which is depending on the 

eigenperiod of the pendul.um. Figura 3 shows the transfer 

function of the pendul.um relative to the unfil.tered 

output at different eigenperiods. 

3. The intelligent digital. data acquisition system

Figura 4 shows the block diagram of the data acquisition

system. It is control.l.ed by a microprocessor MC 6802

from MOTOROLA. The control.l.er program is stored in the 

EPROM memory. The RAM memory is used for cal.cul.ations

and temporary storage of data as a buffer memory. \fuen 

the buffer memory is ful.l., the sampl.ed or preprocessed 

data can be transferred in bl.ocks into the exchangeabl.e 

non-volatile semiconductor memory which can be exchanged 

as a cassette, or into the cassette unit, or the data 

can be directl.y transferred via a tel.ephone l.ine to a 

l.arge computer.

The exc.hangeabl.e semiconductor memory is rlore rel.iabl.e 

under conditions of an Eart.h tide observatory than the 

cassette unit which contains moving mechanical. parts. 

The storage capacity of t.he exc.hangeabl.e semiconductor 

memory is sufficient for about l.5 days to store t.he 

prefil.tered hourl.y val.ue of tidal. data measured by a 

pair of .horizontal. pendul.ums incl.uding t.he storage of 

environmental. parameters too. Tue digital. recorder 

system has l.6 analog input channel.s, an analog 

mul.tipl.exer, and a l.2-bits anal.9g to digital. converter. 

The sampl.ing and converting of the analog channel.s is 

control.l.ed by the master.processor. 

The exact time is given by the real-time cl.ock which 

can be synclu·onized. by means of a DCF-77 receiver. Tue 

speed of the system can be increased appl.ying a sl.ave 

processor which can be a high speed arit.hmetic or a FFT 

processor depending on the desired fil.tering al.gorithm. 

The data acquisition system has a keyboard and a displ.ay 

too, for manual. control. and for input and displ.ay 

parameters needed for data sampl.ing and fil.tering. 

On the one hand the intel.l.igent digital. data acquisition 

system can be used as a simple digitizer .• In this case 

it sampl.es and digitizes t.he analog input signal.s with 

the given sampl.ing rates and stores them in bl.ocks on 

cassette tape. This is advantageous if' both the 

preprocessing and the processing are to be made on a 

l.arge computer /e.g. recording of the free oscil.l.ation 

of the Earth/. On the other hand the intelligent digital. 

data acquisition system can do the preprocessing .• 

That means in the case of Earth tide recording that the 

system works with a high sampl.ing rate /l.-30 s/, fil.ters 

the sel.f-swingings of the pendul.um excited by 

earthquakes or microseismic activity, then removes the 

steps, using l.inear prediction and l.ogical. decision and 
O"I 
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af'ter a second f'il.tering it stores on1y the hourl.y 

val.ues of' the Earth tide /Fig, 5/, 

'Ihe f'irst and t.he second f'il.tering method can be a 

silllpl.e or a Fox-Schul.l.er averaging f'or tidal. records& 

·'Ihe Olicroprocessor can execute t.hese al.gorithllls witll 

high speed,

Steps are removed as f'ol.l.ows: t.he microprocessor 

c.al.cu1ates af'ter eac.h sampl.ing a new smoothed and step­

-corrected val.ue s/n/, then f'rom previous val.ues

cal.cul.ates a predicted val.ue s/n/ , f'or s/n/, p 

Whenever I s/n/ - s/n/ 1 > S, a step is assumed andp 
s/n/ is substituted f'or s/n/ and the step correction 

val.ue is corrected according to t.he new step, 'Ihe val.ue

s/n+l./ will be step-corrected wit.h this new correction 

val.ue, If' there is no step, s/n/ is stored, Because 

so!lle parts of' the above described system are still

under construction, t.he f'il.ter met.hod was tested with

dif'f'erent sampl.ing rates and l.imits S on a computer,

The simul.ated input signal is shown in Fig, 6, Tue

eigenperiod of' the self'-swinging superposed on the 

"simpl.if'ied" tidal signal. /a sinus wave of' one day 

period/ was 50 s, the spikes and steps .had half' of' the

alllpl.itude of' the signal., The accuracy of' the met.hod

depends on t.he quality of' the linear prediction, the

sampling rate and the l.imit S, Tabl.e 1 shows the errors

of' the method at dif'f'erent sampl.ing rates and lilllits. 

It can be seen that both parameters have an optimum. 

"When the l.imit is too l.ow the error will be very high

because the program al.ways substitutes s/n/ for s/n/ , 

If' the limit is too hign, t.he program will not sense 

the smal.l. steps in the input signal, 

'.C'abl.e 1. 

Limit S Sampling period Avarage error of' the 
[s) f'iltering in pero�ntagE

of ampl.itude with RMS
error 

0,1. 5 0,29 .:t 0.32 
0,1. 10 0,72 + 0.75 
0,1. 20 1.,94 + 2.14 
0,05 5 o,48 + 0.51. 
0,05 1.0 0,08 + o.os 
0,05 20 0.33 � o.4o 
0,02 5 0,19 + 0.07 
0.02 1.0 0.07 + 0.08 
0.02 20 0,57 + 0.63 
0.01 5 0,37 + 0.1.1. 
0,01. 1.0 0,25 + 0.10 
0.01. 20 0.60 I o.42 

4, Concl.us ion 

The microprocessor techniques makes it possibl.e to buil.d

an intel.l.igent digital. data acquisition system which can

preprocess or process tidal. data automatical.l.y 

decreasing manual. work, The above described system can 

be very easily reprogrammed f'or recording other 

geophysical. phenomena, on1y the parameters /linear 

prediction coefficients, l.imit, etc/ must be chosen 

properl.y, This makes it possibl.e together with the 

capacitive sol.ution f'or the pendul.um to record f'ree 

oscil.lations of' the Earth paral.l.el. with continuous Earth 

tide recording what is out of' capability of' conventional. 

pendul.ums and recording system, 
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Research on the Computational Methode of 
Gravity Topographie Effect 

Meng Jiachun 

(Institute of Geodesy end Gsophysics, Academia Sinica) 

A b • t r a C t 

Tnis papsr dsals with all kinds of methoda for computing tha gravity topographic 
effect. These methods include: topographic correction Solution C, MOLODENSKY'a series 
solution G1, PELLINEN's formula G', analytic continuation solution gn (including that
carried ou� stepwise end esparatsd-rings) and BJERHAMMAR'• solution. The papsr proves 
the interrelation between the formulas of topogfaphic correction, derives the rela­
tion between the analytic continuation solution and BJERHAMMAR's solution and deducss 
some of their naturss. In these methode, sach has a common opsrator L. Gsnsrally 
spsaking, thsre sxists in them csrtein connections with each other, but they can not 
be replaced �utually. The linear solution (or it may be called gradient solution) 
of analytic continuation solution is respectevely the approximate value of 
MOLODENSKY's series solution G and BJERHAMMAR's solution. When solving with these 
methods, the basic queetion en�ountered is the eame. The paper also pute forward that, 
to use reduction of separated ringe may decrease difficulties brought about in 
iterative computation. 

I. Introduction
In the computation of geodetic gravimetry, the effect of topography on gravity can

not be neglected. Generally gravity topographic effect is classified into two parts, 
i. e. effect on normal gravity and that on gravity anomaly. In the topographic correction
of gravity anomaly, there are topographic correction solution C, MOLODENSKY's series
solution G1, PELLINEN's formula G', analytic continuation solution gn (including that
carried out etepwise and eeparated-rings) and BJERHAMMAR's solution, etc. The analytic 
continuation solution demands to compute the vertical gradient of gravity anomaly, 
Wheter we operate on the baeis of linear reduction or not, we can divide it according 
to linear reduction or nonlinear reduction up to 2nd order (l) (or n-th order <2> ).

Owing to different data one used, three kinds of representation of gravity vertical 
gradient may bs classified in accordance with gravity anomaly, height anomaly and 
vertical deflections (3a). But nonlinear reduction is resolved according to gravity
anomaly. When classifying them by using reduction surface, the surface gravity anomaly 
may be sxtended analytically to the point-level, geoid or a certain sphere surface 
within the earth. 

In these methods, their starting points, forma of formulas and their results are 
all different. G1 ie given out in accordance with MOLODENSKY's problem, the analytic
continuation eolution draws support from TAYLOR series and is solved in the way of 
analytic continuation, and BJERHAMMAR'e solution is derived in line with poisson 
equation, But we still pay close attention·to the questions about the interrelation 
of these topographic correction formulas, the advantages and disadvantages of each 
method and their applicabilities. 

II, Discussion abaout formulas correlation 

In the topographic correction of gravity anomaly, all of the topographic correction 

C, MOLODENSKY's series solution G1, PELLINEN's formula G'and analytic continuation
eolution gn (n = 1, 2, ••• ) have a common operator. lt will be seen here after that,
all formulas of topographic correction have something to do with gravity vertical 
gradtent L1 (6 g). HENCE, this operator is expressed by L. lt may be explainsd as
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vertical derivative. For example, the topographic correction solution ie expressed to 
be 

(1) 

(2) 

Gis gravitational constant, 6 , density of �opographic masses, R, radius of the 

earth, � , spherical diatance between the computing point P end moving point (sur­
face element) Q, and hp end h are relief heights of p end Q respectively. By using
the operator, it may be simplified as 

(3) c=nG-bL<ß.--RpJ
2 

Similerly, there are 

(4) G1 • L (h - hp)� g

(6) L, o L, (� g) • L (ö g -ö gp)

(5) 

As to the free-air anomaly in the mountain areas, owing to be proportion which 

BOUGUER layer holde is much larger than the proportion which ths absolute value of 

BOUGUER anomaly makes up, therefor it may be approximately assumed 

(7) 

HENCE, under the condition that the free-air anomaly !lg hae linear correlation with 
the height h, PELLINEN 'e formula G' may be written ae 

(8) G' 0 2 C 

Therefrom we may conclude: ( 1) When there is short of gravity data, according to the 
hypotheeis � g = ah+b, G' may be obtained by computing C with data of topographic 
height. (2) Avoiding the hypothesis of the crustal deneity -g-, topographic correction 
solution C may be replaced by computing G' directly. 

As for G
�
, HEISKANEN and MORITZ havs expressed it tobe the sum of the following 

two terms <3 • 4>:

(9) �.=�, +lfa =- �:�JJ AJ-Lfe cia-t�� ��3-f r{fh dr

C1 

By using the opsrator L, it is written as 

( 10) 

Hera, G1 1  is the linear solution g1 of the analytic continuetion of gravity anomaly,
which corresponds to the free-air correction carried out by reducting the gravity 

anomaly from earth surface to the sea level. To do reduction like/this has to use

earth surface height of the computing point, but the phyeicel meaning of G12
is not clear. 

G' = L (h - h ) (lig -fl g ) p p 

flg - fl g P "' 21t G ö ( h - hp) 

DOI: https://doi.org/10.2312/zipe.1985.081.02



72 

(12) 

Taking notice of formula (7) , 
G,= L (h-�) (llg - 615p) + 

"" G' + �Sn 
� L, (llg)

it may be written approximately als
L (h-�) lll5p 

However, by uaing formula (7) , YOICHIRO FUJII (5) hae derived 

( 13) G, = G: + Glt "" 2TEG6 L (h-�) 2 + L (h-�)llSp
.,. 20 + � L, ( /lg) 

In FUJII'e paper, G ii 
and G 12 were originally written as G11, G12 reepectively. 

Hera, in order to avoid mixing up with the forementioned signs adopted by 
HEISKANEN and MORITZ, the author adds an aeteriek to sach sign to differentiate them 
from the original signs. In view of the approximation of BOUGUER layer, G i"'.J. is twice 

as much as the topographic correction solution c. The meaning of FUJII'e formula (13) 
reets with that to make clear the physical meaning of G 1� and G 1�. 

After comparing formulas (10), (12) and (13) , we may conclude: (1) In all of the 
formulae given by HEISKANEN and MORITZ, the author and FUJI!, G1 hae a bearing on the 
let-order vertical gravient L1 of gravity anomaly. And the interrelation between G1 
and the formulae of L1, G' and C has been also given out. In quantity, G1 is equal to 
the linear combination of gravity vertical gradient L1 with L (h ß g .; hp �p) or with 

PELLINEN'e solution G', or with topographic correction solution C) respectively. 

(2) By using the same grid, YUKIO HAGIWARA (4) has computed G1, Gll and G12 respective­
ly for the gravity etations on the 35°30'latitude circle in Tanzawa mountain areae 
of Japan. The resulte calculated ehow that, in the formula (10) of HEISKANEN and 
MORITZ, though the amplitudes of G11 and G12 are not equal, and yet the waveform are 
nearly alike. While according to FUJII's formula (13) and using the same grid, the 
reeult obtained after computing Tanzawa mountain areas shows that, G 1i is much smaller 
than G 1�. Herefrom we may conclude like thie: G1 is a quantity which is approximately 

proportional to L1 ( llg) .

With the aid of TAYLOR series of the vertical gradient of the gravity anomaly 
L (ß g), the analytic oontinualtion solution can solve the gravity topographio effect. 
It may be a linear solution (which is also called gradient solution) by taking into 
aocount of lst-order vertical graient 1i• and may be also a non-linear reduction by 
giving consideration to n-th-order verti�al gradient 1n• Generally speaking, to at­
tend to the second order 12 

is enough. This way, when earth surface gravity anomaly 
llg is extended analytically to the geoid with TAYLOR series up to 2nd ?rder, it 
may be written as 

(14) 6 g* = ßg 2 - hL, ( 6g) + hL, (hL, (6g1) - h L
2 

( 6g)

where
L, ( 6g) = 

-5 h 
/ {}2 "'g

If earth surface gravity anomaly 6g is extended analytioally to the point level, then 

c15> llg• = ßg - 31, (ß g) + 31, r 31, < 6g)l - 3212 <"' g) 

As it does not have the difficult to oompute defleotion of the vertical when using 
MOLODENSKY 1s series solution, so it is considered as the most wide-ranging and 
ingenious method for solving MOLODENSKY 1 s problem. If /lg is extended analytically 
to the point level and then to the geoid (or a certain sphere surface within the 
eerth), we may have stepwise and separated-rings analytio continuation <5) . 

c16Y ßg• = 6g' - hpL• c ßg) + hp1,r3 1, c ß g) , + h� 1
2 

(/l g) 

Mg 
L2 ( 6g) "" - ~ 

2 h 
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Where, 69' is gravity anomaly on the point level, h and hp are elevations of arbitrary
point and computing point respectively, Z is their elevation difference. Apparently, 
when leaving out the 2nd order vertical gradient term, we get the gradient solution of 
gravity anomaly continuation2 • 3) 

(17) ( 1B ) 6 g ' = 6 g - 3 L l ( 6g )

Under the condition of hp=O, i. e. when the point level and geoid are coincident, we
have 6 g • = 6 g'. This makes the method of continuation to the point level become a 
special case of formula {16). 

According to the description of this section and the next one, we can see that, all 
the computing methods of computing gravity topographic effect on hand have a common 
operator. Generally epeaking, there exists certain relation between each of theee 
methods, but they are not replaced mutually. As to their differences in numerical 
solution, they may be different depending on the kinds of regional topography. 

III. Analytic continuation solution and ßJERHAl'-1'1AR's Solution

In analytic continuation solution, one of the moet important queetione is the compu­
tation of the vertical gradient of the gravity anomaly L

1 
( 6 g). Under the condition

to use enough accuracy to carry out plane approximation about sphere andin the case 
of projection of earth's surface to a plane with an azimuthal equidistant projection, 
the integration of the earth's surface will be traneformed into one on the tangent 
plane at the computing point. Now if let the computing point p be the origin and set 
up plane polar coordinates and rectangular coordinates systems, then, the integrated 
coefficients of L

1 
( 6 g) may be written a•5)

( 19)
k. _ t ,_, _ -'-)= Ar 

'.lf n\ r„ ri+, n ri < r .. +"'r J 
n is the numbers of subblock in the ith circular zone, r1 is the inner radius of
this zone and ,1 r is the width. 

(20) l< .. =L(-1 >'+J+l --=�c=-/-,+�/f�?--
.. , l,J=1,2 2Tt- .,'i 

x1, Y� are the plane rectangular coordinates of the corner point of the ith and
jth subnetwork. Thue we have 

(21) L, (6g) = E K 1 j (6 g - 6 �)

In order to avoid man-made hypothesis to be introduced during the course of computing
the disturbing potential, BJERHAMMAR presented out to extend downwards the earth sur­
face gravity anomaly to the equivalent sphere within the earth, and let

( 22) LJJ:==�rp� t
2��i4JJJ A3'iD�gr_"�

0--

Whe re 

(23) 

(24) 

(25) 

t == ß. r,, = R+llp 

D=f=J 1+t2-:1tc�tf 
/-::: ( R..2

+ r,,2-2R (j, Cost/- ) � 

or it may be also written as 

(26)
M*-A9 _ _ß

2

(�-R.
2

) fif t.J
'(-

-AJ;-da-op- QP 4n:rp iy- f_3 

./-- , . 

Ä r 
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R 1s the rsdiue of equivalent sphere, hp is the dietance from earth surfsce point to
the equivalent sphere. 

As to the two arbitrsry points on the earth surface, within a certain limit they 
msy be written es (2) 

( 27) R, 2 • .fo + ( h - h 
p) 2 

Bssides, we have 
(2B) .. h (1 h h 2 

) P -� •---i...- - ••• 2R 2R.1. 

on the tangent plane of equivalent sphere where the computing point lies, if the polar 
coordinates system is chosen and the rast is eimilar to what the author did in paper (5) 

then from the second term at the right side of formula (26) we may write: 

apparently, when r - ao , the integration constant C=O. So we obtsin: 

(30) 

Now, we shall make inferences as followe: 

( 1 ) In the downward continuation of gravity anomaly, BJERHAMMAR's solution may ba
expressed as the sum of the gradient solution extended analytically to the same 
spherical surface with the effects related to gravity vertical gradient of every sur­
face element and its topographic elevation difference. 

Because of that, when expanding the right-hand side of formula (29) according to 
the binomial theorem, we have 

(31) 

where 
(32) 

1 
/,. -li -riie )�/- I .• n' is an arbitrary real number, where n'=- - 2, \ , HENCE, forniula (30)

may be written as: 

(33) AJf ::LJJp-lip(t-*+ J.i1)f L,cag*>+ Llu3ß J

(34) L,(Lt'·) = E Kt/-1J*-tiJl> L,ij =K4(1JJ*-tJJ/)
While g1 • -hpll ( � g♦ ) is gradient solution, and the initial value of A. g* is
AQ• Now the proof is at an end. 

(2) If analytic continuation solution and BJERHAMMAR's solution of gravity

2 

(29) 

l( r., ( _:fü?_.t...!JL)j_{_L- _J_ 
--j = f- 21<. 2R" 71 r~ r,it-1"° :1.1r1 

+l. ,i9 cn'>(i'de). 2m _ _l_ '\" ,n'J( -Ar~A'e) } 
r.L m ra r...+1 "6-_1m .. +1 "m=I • ,,,_ 

( .M_ _.it_)K ·(i+B) C><J t J) 2mc f 
= I- 21? + 2R" \i.J /3 = L (;J,)(fl-np) r./"' f f,_:zm-1r.w t r,.,=im-2 ,tt., 

JIJ=/ ' _j 
+· ·· + r-rY•H + r ~) 

A -<+I MI I 
= _J_ ( P - Apf·( ~ + ~r: -+ -;::-:;:-) +· .. 

2 n rL •.t· .t+t 1..::+1 
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anomaly are not extended simultaneously to the same spherical surface, BJERHAMMAR's 
solution may be expressed approximately as stepwise analytic continuation solution 
extended to the same spherical surfaca. 

All of us know that, when the distance h from sarth surface point to the equivalent 
. es sphere is equal to 300m, h /Ra 4.7088 x 10 even under the condition of hp• 10000m,

-3 p 
h /R = 1.5696 x 10 is still smallsr than the spherical approximate error 
(t- = 3.352836 x 10-3). Generally speaking, L1 ( 69) is about a magnitude of 10-2•
Therefore, hp/R in formula (33) and the above each term may be generally omitted. 

Let hp be the distance from earth surface point to equivalent sphere with the 
earth, hp is the distance from point level (or the geoid) to the equivalent sphere, 
and z is the distance from earth surface point to point level (or the geoid), end if 
hp in (33) is replaced by np + z, then the preceding two terms in (33) will become 
(18) end (17). And the inference (3) shows that, so long as the value h-hp in the 
central zone is far smaller than 250m, E L, ij B will be probably smaller. 

(3) In plain, plateau, hilly terrain and parts of low mountain areas, BJERHAMMAR's
solution may bs equivalent to the analytic continuation Solution. 

In absolutely ideal plain and plateau areas, i.e. under the condition of h-h = 0, p 
formula (33) may be written as: 

(35) tJ 'I* -iJC/ - /In ( /- _:&
-+ .:.i]_ )L (at/*)op- Of r 21? 21('- t <J 

In areas where the topographic undulation is smaller, e. g. in plain, plateau,

hilly terrain and parts of low mountain areas (the elevation difference is about
250m), their value ( h - hp ) 2 may be still smallsr than the spherical approximats

f 
error. Because of that, at the place r = 4.625km away from the computing poin� end 
when h-hp=l00m, the magnitude of (h -

r
h

fl 
l is 10-4; when h-hp=250m, (h

; 
h

fl
) 

= 2.9218 x lo-3• According to ths definition, ws have 
_/_> 1 > --'rrt r" r.<+1 0+1 

HENCE, so long as the value h-hp in the central zone is smaller than 250m, L,1j B 
in formula (33) may be possibly smaller. This way, BJERHAMMAR's solution will be 
equivale1t to the analytic continuation solution. Contrarily, in low mountain areas

(h - h ) will be close to or greater than the spherical approximate error. There-
� fore, the effect of topographic height on gravity topographic effect should not be 

neglected. 

(4) In the case to demand accuracy alike, no matter how far the radii of templet
circular zones of analytic continuation solution and BJERHAMMAR's solution we compute, 
they may be the same. 

B 
Ws know that, K1j 

shown in formula (29) is the integrated (templet) coefficiente
of BJERHAMMAR's solution. It is the function of elevation h of computing point, the p 
circular zone radii r ,r / of templet and the topographic elevation difference 

1 1 + 
h-hp. When h-hp = 0, Kij obtained at the right-hand side of formula (29) is the
integrated (templet) coefficient of analytic continuation solution. As for any 

B 
circular zone, the coefficient K1:, will decrease with the increase of 
value h-hp. But as to different values h-hp, the difference value of K1� 
on a certain circular zone may still remain certain magnitude. For example, on the 
circular zone apart from 30' of the computing point, the difference value of K � j 
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of this circular zone may be taken as a magnitude of 10-7 - 10-5 for the different
values of h-hp; on the circular zone apart from 1°, the difference betwsen their
coefficients may have a magnitude of 10-8 - 10-6• In the caae of that the require­
ments of data unit and accuracy are definite, if we use different values of h-hp
for certain circular zone, then, the radius of this circular zone computed how far 
may be identical. HENCE, the templet of 8JERHAMMAR's solution may be the same as 
with analytic continuation solution. 

IV. The Advantages and Disadvantages of Every Method

In computation, all solutions such as the topographic correction solution C, 
M0L0DENSKY's series solution G1, PELLINEN's formula G', analytic continuation solu­
tion gn(n = 1, 2, ••• ) and BJERHAMMAR's solution 98 have a common operator L.
Judging from this, the problems such as the precise solution of integrated (templet) 
coefficient Kij' computation of central zone, the division of templets and how 
far do we compute the circular zone radius of templet, etc, are all similar, HENCE 
the difficulties encountered when operate them are also the same. 

In the preparation of data, some methods only require data of topographic height h, 
for example, C; some requires gravity anomaly 6g besides topographic height, e. g. 
G1, G'; some only requires data of topographic height at the place of computing point
besides 69, e.g. 9n• 98•

In these methods, they require separately the data of h-hp or 69- 69p• or t·hey uss
both of them, In numerical values, h-hp is generally greater than 69- 69p• or it is
even greater by a magnitude than it. Therefore, under the condition when the operators 
are alike, the convergence (rate) of L1, 98 is fast; G1, G' take second place; and
owing to {h-hp)2 is greater, the convergence rate of C is the slowest, According to
the same reason, the circular zone radius of G1, G' may be computed farther than that
computed for L1, 98,

As to iterative computations, BJERHAMMAR's solution may be iterated to the n-th • 
order, e,g. in WUHAN area iteration requires 2-3 times, in WUDU area, it requirea 6-7 
times at most. In theory, analytic continuation solution may be iterated to the n-th 
order. In application, to iterate 2 times is enough ( ( 2), p,420), But the methods of 
C, G1, G' do not require iterative computations, From this point of view, it is their
advantage. The distinguishing features of geodetic gravimetry computation are: the 
computing templet will be displaced witz the change of computing point, the scale of 
templet and how far will bs the circular zone radius computed are not alte red with 
the change of computing point. Thus, if the circular zone radius remains unchanged, 
to do one time of iterative computation will require the data of 2'{' • So the problem 
of iterative computation of BJERHAMMAR's solution is more prominent than that of 
analytic continuation solution, 

In BJERHAMMAR's solution, the value 69"'-69p will bs gradually discreassd aftsr
doing every iterative computation, and at the first several times its reduced range 
is greater. HENCE, when computing the idea of separated-ring reduction presented by 
the author in literature (5) may be used. This idea is: according to the given 
accuracy required, for different values of 69 - 6gp ths reduction may be carried out

by choosing different block distance (or circular zone radius), Here, we mey 
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considsr the rsducing range of �g• - �g; reduces one by one end in unequal interval 
the circular zone radiue, and it may reduce it in equal interval. 

By ueing it in BJERHAMMAR'e solution in WUOU area, the result showe that, the 
value �g • - �gp after the firet iteration ie reduced smaller by 70 - 90 % or morEJ 
than the initial value; iterative computation ie chiefly the firet 2-3 timee; to adopt 
the principle of separated-ring reduction is reasonable end it may quicken the rate of 
iteration. 

v. CQnclueion
To eu■ up all mentioned above, we may have conclusions ae followe:
(1) All the computing methods of gravity topographic effect now aveilable have e

common operator L, and certain relation between theee methode may be found out. HENCE, 
the value of gravity topographic effect obtained by ueing a certain method may be 
transformed into a value got by another method. But, generally epeaking, theee methods 
can not be replaced mutually. 

(2) The linear solution (i. e. gradient solution) of analytic continuation solution
is the approximate value of MOLOOENSKY's series solution G1 and BJERHAMMAR's aolution
respectively. C and G' are also the partial value of G1•

(3) In the downward continuation of earth surface gravity anomaly, BJERHAMMAR's eolu­
tion may be expreesed ae the sum of the gradient solution extended analytically to the 
same spherical eurface with the effect related to topographic height. If they are not 
extended to the same spherical eurface, BJERHAMMAR's solution may be expreseed approxi­
materly as the stepwiae continuation solution extsnded to the same spherical aurface. 
In plain, plateau, hilly terrain and parts of low mountain areas, BJERHAMMAR'e solution 
maY be equivalent to the analytic continuation solution. 

(4) Soma basic problems we meet when we uae all methoda in computation are the aame.
Let us axamine from iterative computations, G1, G' are different from analytic continua­
tion solution end BJERHAMMAR's Solution, and it is not necessary to operate iterative 
computation; in the respect of number of times of iteration, the number of times of 
analytic continuation eolution may be lees than that of BJERHAMMAR's solution; in the 
respect of forced conformity, the latter is better than the former: in iterative compu­
tation, to adopt separated-ring reduction presented by the author 1s reasonable. lt can 
not detract accuracy, and may cut down many related data, furthermore, the rate of 
iterative computation ie fast.
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TIOTEHWWJ:OrPA!l!WIECKAH 3A,!J,AT.{A H KOHUEIJUllii rPABvITHPYIIl(illC 

;:J;vfCKOB 
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GR.;\ VI'rATINu DL,KS 
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_, 
Q) 

PE31ME. PaCCM,O'l'peHo ABa nowcoAa K noTe�aJiorpaq>H1<eCKOH sa,o.aqe-TI3, Abst�act. Here are considered two approaches as to the potentialo­

IlOA KOTopoA noHHMaeTCH y,,;.e ASBHO pemaeMB.H sa,o.aqa YA06Horo aHaJIH'l'Hllec-
Jraphical probleo PP, under which we understand for a long time 

a solving problem of convenient analytical representation of 
Karo npeAC'l'aBJieHHs: BHemHero no'l'eH�aJia npHTsateHM ruraHe'l'1,1. IlepBI,IA -

AeCKp'KIITHBHI,IA; COOTBeTCTBYi)�e ev;:y H3BeCTHI,Ie cnoco61,1 npeACTaBJieHHH 

external yotential planet gravitation.The first one is descriptive 
to which corresponds mown methods of solution of direct PP. The 
second is a constructive on8; it brings to inverse PP, which is 

noTe�aJia AOCTaBJIHXJT pemeHHe nplD40H Il3. BTopoH no,IOCOA - KOHCTPYKTHB- a new kind of inverse problems of potential theory.
Hl,IH; OH npHBOAHT K o6paTHb114 IT3, mmm::nqID4CS: HOBHM BHAOM o6pa'l'HbllC 

sa,o;aq TeopHH noTe�8.lla. 

06c�eHa noCTaHOBlta o6paTHOA TI3, B KO'l'Opoi H3BecTHI,IA IlOTe�BJI 

ruraHe'l'li npeACTaBJieH CYlß'OA noTe�8.llOB npocToro H ABOiiHoro cnoeB, 

pacno.noaeHH!iDC Ha 3a,D;a.HHOA IlOBeplCHOCTH BffY'1'PH IlJiaHeT1,1; HCKOlll:ilMK 

JmllJU)'l'CS: OJIO'l'HOCTh H llllOMeH'l' 3'1'HX CJIOeB. qacTH!ifi CJiyqaH '1'8,KOi\ sa,o.amr, 

KOrAa CXOH npe'AIIOXars::i'l'c� B 3Da'l'OPHf1bHOH IIJIOCKOCTH, npKBOAH'l' K

KO�en�H rpaBH'l'Hpylllqltl'. AßCB:011 - Kr,ll. 

CorxacHO Kr,ll IlOTe�a.JI WiaHeTH npeAC'l'aBJieH cywoA noTeH�MOB 

TpelC IlJIOCJDIX itpyrOBI\IX OWiO�eHTpeHHbllC AHCKOB: �OKBJibHOro - �. 6es­

Ma.CCOBOro uaTepKBJibHoro - EM)]; H AHUOnbHoro - ,M. � (c qeTHl,IMH 

30HaJlbHHIOI rapMOHHKBMH) OTBeqaeT ILllaHeTe B Ilpe'AIIOXOXeHMH rJIAPOCTaTR­

lleCJtH paBHOBeCHoro ee COC'l'OllHIUi; EMJl (c rapMOHHKaMH, qeTffHMH O'l'HOCH­

'l'exbHO IlJIOCKOC'l'H anaTopa) .M ,lJ.;lt (c Heqe'l'HHlffl-B '1'011 ae CMWCJle-rapMOHH­

KalOI) OTpazal)'l' HerJfAPOCTaTHqHOCTh ILllaHeTH: COOTBeTCTBeHHO ee CIUO(eT­
Hqeyl) H HeCIUO(e'l'pHqeyt> 'llSC'l'h O'l'HOCHTeXbHO 3KB8.T6pHMhHOH MOCKOCTH. 

06cY3,11,eHH BJibTepHaTHBH II YCTaHOBJieHHH HOp,18.JlhHOro noxs: 3e.MJIH. 

YK8.3aHH MexaHHUCDe Ilpe'AIIOCH.IIIDI Kr.D,. 

Here is discussed inverse PP in which a known potential of 
the planet represented as sums of potentials oi the simple and 
double layers, situated on the given surface in the interior of 
th� planet dlllsity and moments of these layers are tobe sought. 
A particular case of this problem, when layers are supposed tobe

in equatorial plane, brings to the conception of gravitating disks­
CGD. 

According to CGD potential of planet is represented as the 
sum of three potentials of the plane circular one-centered disks: 
focal disks - FD, material, massless MMD and dipole disk - DD.FD 

/with even zonal harmonics/ corresponds to a planet supposing l:aydro­
statics of its balanced state; MMD / with harmonics even as to 
equator plane/ and DD / with odd ·harmonics in the same sense/ 
represent a planet non-hydrostatically: namely its symmetrical 
and non-symmetrical parts as to equator plane. 

Here are also discussed alternatives in setting normal 
Earth gravitation and given mechanical prerequesites of CGD. 

DOI: https://doi.org/10.2312/zipe.1985.081.02



MerqepHKOB r.A. 

(CCCP, �bBOBCK11H non11TexH11qecK11H 11HcT11Ty-r) 

IIOTEI-fWWlOr PA�WIECKAf!. 3.A,JJ,NlA l1 KOHUEI11\11H rP ABl1Tl1PYIOOjl1X 

,JJ,l1CKOB 

§I. HID!te 6y'AeM paccMaTp11BaTb 3a,n;aqy Y'A06Horo aHaJI11T11qecKoro npe'A­

cTaBJieH11H BHelllHero noTeHI.\}laJia np11TH/KeHl1H IlJiaHeTli, COBepmeHHO He

CBHSHBaH ee HH c onpe'AeneH11eM qiopw nocne)J,HeH, Hl1 c ee BHYTpeHHHM

cTpoeH11eM. 8Ty 3a,n;aqy )41,I Ha3HBaeM noTeHI.\}la.Jiorpaqi11qecKoW ) . 0Ha He
�

HOBa. BnepBHe ee pemHn erqe ]aI1Jiac, pa3noJ1CHB noTeHW{8JI np11T.HllteH11H

WiaHeTH B Pft'A mapOBbllC q>yttKI.\}IH, KOTO� H TIOHHHe HBJIHeTCH OCHOBHl,IM

annpOKCl1Mal\}111 B OT'AenbHbOC o6nacT.flX npocTpaHCTBa H 'AP·' - H BCe 

3TO, CKruKeM, - CYTb pa3Hhle MeTO,JJ;l,l perneHl1H noTeHlJ,l,faJIOrpaqiHqeCKOH 

3a,D;atrn. 063op 11 6116n11orpaqJ11H HX HMeIOTCH B [6 '7] . 
KaK B11)J,HO, HeKOTOpbre H3 nepetrncneHHhlX MeTO,JJ;OB OTBeqaIOT � 

� no,n;x:o,JJ;Y: KaK Ha.IDiyqIDHM o6pa30M (B KaKoM-TO onpe'AeneH-

HOM CMWcne, HanpIDtep, C D0311l\}IH Teop1111 KBB,D;paT11qecKHX np116nH/KeH11H) 

on11caTb noTeHI.\}laJI ( V- MH T ) aHan11T11qecK11 - np11 n0Morq11 cnel\}laJib­

HbOC qiyttKI.\}IH HnH pa3noJKeHHH B pH,IJ;w. TaKOMY no,n;x:o,JJ;Y cnep,y10T npe'A­

CTaBneH11H TIOTeHlJ,l,faJIOB pft'AaMH no ruapOBhlM q>yttKI.\}l.fIM, no rapMOHHKaM 

CJKaToro snn11ncoH,JJ;a, no qiyttKI.\}IHM ]B.Me, MeTO'AOM KOHeqttl:,ll{ sneMeHTOB 

11 HeKOTopwe 'APyI'He. EcnH 11CXO,JJ;HTb 113 np11Hl\}lna Teop1111 Ha.HJiyqmHX 

annapaTOM KaK npH TeopeTKqecKIDC 11CMe'AOBaHHHlC, Tax 11 np11 pemeH11H KBa,n,paTHqeCKHX np116nIDKeH11H, TO MR nonyqeHl1H Y'AOBneTBOpmorqero ev.y 

pa3H006pa3Hl,OC npaKT11qecKHX 3a,n;aq. Ü'AHaKO npeMaran11cb 11 'APyI'11e perueHl1H 3a,D;atrn Heo6XO'AHMO 3HaTb q>OPMY IlJiaHeT� [r1, 11 - B COOTBeT-

q>OpMl,I onHcaHHH noTeHI.\}18Jla. l1 'Aalte B nocne'AHee BpeMH ycHJieHHo 1131,1c- CTB1111 c 3TIDl - 113 TOEbKO-qTO yKa3aHHblX npe'ACTaBJieH11H V nepB1,1e 

KHBaDTCH HOBHe HeTpB'AKI.\}IOHHHe cnoco6H ero npe'ACTaBJieHKH, KMeHHO 

TaKHe, KOTOpHe He TepM B TOqttOCTK, Il03BOnMK 6H 3!ppeKTKBHy10 K 

3KOHOMKqHYD peaJIK3awm Ha 8BM. 

l1CTOpKH paccua.TpHBaeMoro Bonpoca 11 ero aKTY8JlbHOCTb BHHYJt,IJ;a!OT 

IlO'AOHTH K Hewy C HeKOTOpbllC o6IqHX Il0311l\}IH. Ho CHaqana OTMeTHM 

KpaTKO MHOroo6pa3He B03MOJKHblX nO,D;lCO'AOB K He.t.cy'. �aJKe Knacc11qeCKl1H 

nB.IIJiaCOB Pft'A mapOBbllC q>yttKI.\}IH 'AOTiycttaeT pa3EHqHHe 11HTepnpeTall,1111 

[r ,2 3) H pa3HHe q>OpMl,I 38TIHCl1 ero �.� • A KpOMe Hero 'AaHbl 6HnH erqe 

onHCB.HHH noTeHlJ,l,fa.Jia no rapMOHHKB.M c�aToro 3nnHIICOH'A8 BparqeHHH, 

Pfl'Aa.MH no q>YHKI.\}IHM ]ru.te, noTeHI.\}IMOM npocToro cnoH, CYMMOH noTeH­

l\}18JIOB ToqeqHl,llC MaCC, npH IlOMOrqH wynbTHKBB,D;pHKOBbllC H 'APyI'HX BK,11,0B 

q>yttKlzy!H, C HCnonb30Ba.Hl1eM TBK Ha3HBaeMbllC HenO'ABHlltHbllC �eHTpOB 

(MHmwx: HJil1 KOMIIJieKCHbllC), KOM611H11poBaH11eM pa3nl1qttbllC cnoco6oB ero 

JEJ ]eKlJ,l,fH "06paTHHe 3a,n,atrn Teop11H reonoTeHI.\}laJia", npotn1-
Ta.HHaH aBTopoM Ha MeJlt'AYHapo)J,Hol 3HMHeH mKone "Teo�eT11qecK11e 11 
3KCneplUleHTaJibHble Bonpoc1,1 IlJia.HeTapHOH reO'Al1HaMHKH ���-1X-�.X.1�ö�,
KHeB). 

,JJ;aIOT cTporoe pemeHHe MH I1JiaHeT cqiep11qecKOH qiopMlil, BTopwe H Tpe­

TbH - 'AnH IlJiaHeT 3n�HDCOK,11,8JlbHOH qiopMbI (cOOTBeTCTBeHHO B BK,11,e 3E­

nHTICOK,ll,OB BparqeHl1H 11 TpeXOCHhlX snnHDCOK,11,0B). l1cnonb30BaHHe XOHeq­

HblX sneMeHTOB npe,JJ;YCMaTp11BaeT Ha116onee nonHoe OITHCaHHe ITOTeHlJ,l,fa­

na peanbHOH IlJiaHeTw. Bce 3Tl1 ITO,D;lCO,ll,hl ocyrqeCTBnmoT MaTeMaTHqeCKYJO 

annpoKC11Ma�11IO V ; 6y,JJ;eM ctrnTaTb, qTO OHH 'AOCTaBJimoT peweHHe � 

� noTeHI.\}18JIOrpaqi11qecKoH 3a,n;atm. 

Ho K O�HCaHHIO noTeHI.\}18Jla peaJibHOß IlJiaHeTw B03MOJKeH H 'APyI'OH 

ITO,D;lCO'A - �· KOTOPOMY COOTBeTCTBYIOT o6paTH� ITOTeHlJ,l,f-

8JIOrpaqi11qecKHe 3a,D;a'C!H: HB,IJ;O OTliCKaTb DOBepx:HOCTb s 11 Ha HeH 

pacnonOJKl1Tb 'ABa cnOR - npOCTOH 11 'ABOHHOH (MH O'AHH 113 HHX), cyw­

Ma ITOTeHlJ,l,fanoB KOTOpl,IX BbipaJKa.Jia 61,1 noTeHll,l,falJI IlJiaHeTW 11 'AOITYCKa.Jia 

61,1 6onee npocTHe BJ,IqHCneH11H ero, HeJKen11 Tpa,n,11�110HHWM o6pa3oM no 

PH,JJ;Y ruapoBblX qiyttK�HH. 

Bo3MOlKHOCTb nocTaHOBKl1 TaKHX o6paTHbllC 3a,n,aq BHTeKaeT K3 cne-
... 
\Q 
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,Jzy!O�IDC coo6pa.JKeHHH. IlycTb ·noBepx:HOCTb er TeJia H3BeCTHa, 6y,D;eM
noJiaraTb, trro OHa npHHa,IJ,JieJKHT K Maccy DOBepx:HOCTeH ].fillYHOBa
(K HHM OTHOCRTCR, HanpHMep, orpattHqeHHwe 3aMKHYThle DOBepx:HOCTH

Macca C
1 

) • M nycTb Ha H3BecTHhl sHai:.eHHR noTeHqHaJia V H
"'l!V 

ero HüpMaJibHOH npOH3BOM{OH � • Tor,D;a, KaK M3BeCTHO, BHeWHMH

noTeHI .. \HaJI V TeJia 'r MOJKeT 6:1,1Tb npe,D;cTaBJieH cyw,ioi1 noTeHqHaJIOB

npocToro M ,D;Bo�oro cJioeB, pacnoJioJKeHH:bllC Ha er :

v(P )=-�� j 1,,{�� )._Jo, + J jv, {-�f 
P0

)Ja-, , ( Q Eo; P,c a-) <r 1
(S (!" 

Y K a 3 a H H hlH qiaKT B03MOJKHOCTM npe,IJ;CTaBJieHHR 06beMHoro DOT6HqHa-
Jia CYMMOH DOTeHqHaJIOB ,D;Byx C�OeB 

V=V'+V'' (2) 

HeKOTopoH orpaH�qeHHOH rJia,D;KOH ,D;BYJCCTOpOHHeH noBepx:HOCTH s' �. 
pacnoJIOJKeHHoH BHYTPH � M He IDdeID�eH c Heß o6�mc ToqeK. Ilpe,D;-

IlOJIOJKHM 

Cl H 

lil!H T 

TaIOKe, trro cyi.wa (3) Bwpa.JKaeT Ha <r H B o6JiaCTH MeJK,IJ,y 

S aHaJIMTH.:.ecKoe npo,D;oJIJKemie BHelliJ-lero noTeHq11aJia ( V 
) BO BHYTPh TeJia ?:: ' eCJIH' KOHetlHO' 'OHO cyiqec:TByeT. 

JlCHO, qTo, eCJIM ,D;JIR 3a,IJ;aHHoro TeJia 'C M:bl CMOJKeM KaKHM-TO 

o6pa30M pa3,D;8JIHTb ero IlOT8HqHaJI Ha ,D;Be qacTM, KOTOphle XOTHM sa­

TeM TpaKTOBaTb DOTeHQ11aJia.Ml1 CJIOeB (COOTB8TCTB8HHO npocToro H 

,l\BOHHOro) ' JI8JKa!qIDC Ha Bhl6paHHOH anpHOpH noaepx:HOCTH s ' o6beM­

JI8MOH DOBepx:HOCTbRl 0- TeJia t- , TO 6y,D;eM HM8Tb 3,ll8Cb ,!\Be TH­

IlHtlHhle o6paTHhle 3a,D;ami TeopHH noTeHqHaJia C npHCyiI\HMH HM CBOHCT­

Ba.Ml1 HeKoppeKTHOCTH. IlpH 3TOM OilHChlBaRl�He HX BL!paJK8ID!R (4) H 

(5) - OTHOCHT8JibHO MOTHOCTeH f H y 3THX CJIOeB - RBJI�TCR
HJIH ,D;aJKe O,D;Horo H3 HHX, HMeeT OCHOBODOJiaraID�ee 3HaqeHHe B MaTeMa- HHTerpaJibH!,D,lli ypaBH8HJ,!,HMH l po,D;a c HenpepHBHl:ilMH R,Il,paMH; npHqeM
THqecKOH qiH3HKe npH HCCJie,D;OBaHHH H peweHHH KpaeB:bllC 3a,lla� TeopHH
n0Tettq11ana. 3,D;ecb JKe o6cYJK,D;aeTcR HHOH Bonpoc - Bonpoc o pasH006-
pas11H qiopM on11caID!R BHelllHero o6beMHoro noTeHQ11aJia V 3HamiT,
HMeR o6pa3eq ero BwpaJKeHHR B BH,lle (!) H ymiTHBaR HenpephlBHOCTb
IlOTeHqHaJIQB CJIOeB (npocToro H ,llBOHHoro) BO BHellIHeM no OTHOWeHH�
K HHM npocTpaHCTBe, MOJKHO npe,D;IlOJIOJKHTh, trro H3yqaewi1 IlOTeHQ11aJI
npe,D;cTaBHM cyio,:oH 

V 'V' "V" = K + 1( 
; (3) 

B KOTOpOH K03!ppHqHeHTI,! K1 H \.<.11 - IlOCTORHHhle HJIH ,D;aJKe nepeMeHHwe,
V

I 
V'' a IlOTeHqHaJIW H (HMeHHo, - IlOTeHqHaJI npocToro CJIOR

vtP),= 1 �t d�Q.., ( o E$) P�s) (4)
H DOTeHqHaJI ,D;BO�oro JoR PQ

V"(P) = jv. � .. u.,y.s,, (Q�!',, Pef; S) <51

- COOTBeTCTBeHHO C IlJIOT1rocTbID 'f H MOMeHTOM J.I ) OTHeCeHl,I K
'

YCJIOBHR pa3pewHMOCTH 3THX ypaBH8HHH ,D;OJDKHH ,D;aTb KaK IlO,D;TBe�e­

HHe npaBHJibHOCTH Bw6opa IlOBepx:HOCTH S , TaK H npaBOMOtmOCTb npH­

HRToro pas,D;eJieHHR V Ha qacTH V' H V''

06paTHhle aa,n;ami TeopHH noTeHqHaJia, B KOTOphllC 3a,D;8.HHWH BHew­

HHH noTeHqHaJI ( V lil!H T ) TeJia -Z:: HeHssecTHOH qiopMhl, ,D;oneH

6hlTb npe,D;CTaBJieH CyYMOH (3), Ml,l Ha3lJBaeM �-
\ II 

� 3a,D;a'tlB.MH. K03!ppHqHeHTI,! K H \.<. npH 3TOM MOPYT CqHTa'l'b-

CR 3a,IJ;aHHl,IMH. EcJIH O,D;HH H3 HHX paBeH 0, a BTOpOH e,D;HHHqe, TO no­

TBH�aJI npe,D;CTaBJIReTCH TOJibKO O,D;ID!M CJIOeM - npoCTl,D( HJlH ,D;BO�. 

IIosepx:HOCTb s;: HeC�aH B Taro« 3a,D;atlax CJIOH (HJIH c.noH) M01t8T

CtlHTaTbCH JIH6o H3BeeTHOH, JIH6o ,D;aJte TIO,D;JieJitaiqeH onpe,D;eJieID!ID. 3TH 

3a,IJ;aqK o6be,D;HH�T B ce6e pR,U, sa,n;aq, H3B6CTH:bllC H3 npaKTHKH reo,D;e-

3HH. HanpHMep' IIpH 1<
11
=0 H '-< 1 =l HMeeM npe,D;CTaBJieHHe BH8WHero no­

TeHqHaJia l1Jla.H8TW TIOTSHqHa.JIOM npocToro CJIOR: sa s 3,D;eC:b wory,r

6h!Tb npHHRTI,! pasMe�eHlil,le BHYTPH n.naaeTw TIOBepx:HOCTb c4Jepw KJIH 
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3JIJIHilC0i!'Aa H3B6CTF{I:,l)C paswepoB, JIH6o Il0Bepx:H0CTb, napaJIJieJibHa.H 

H6H3B6CTH0A Il0Bepx:H0CTH (j MaHeTw H HSX0Affll{MC.H BHyTpH Il0CJI6'A­

HeA. 

B8lltHO 0TMeTHTb, trr0 noTeHQHaJIOrpaq>HqecKHe 38,Jl;aqH MoryT H3Y­

qaTbC.H B 'AHCKpeTHOA Il0CTaH0BKe. IlpHB6A611.IlpHMep. IlycTb IlOT6HQHa.JI 

V saweH.HeTC.H noTeHQHa.JI0M npocToro CJI0.H. ECJIH BMecTo HenpephlB­

HoA IlJI0THÖCTH r-- 3T0ro CJI0.H HCKaTb MaCCW \ll'L� ero 3JI0M6HTa� 

M0ll!a,D;0K, CK0HQ6HTpHp0Ba.HHl,l6 B H6K0T0phllC T0qKSX CJI0.H, T0 IlP1'!'A6M 

K H3B6CTHOA 38,Jl;aqe Il0CTpoeHH.H MH0roToqei:nn.ix: MOAM6H Il0TeH�aJia. 

3a,D;aBllll'ICb npH 3T0M noBepx:H0CTbD CJI0.H s 6Y,IJ;eM HM6Tb JIHHeHHYJO 

38,Jl;aqy no onpeAeJieHHID Ma.CC \ll'Li. • EcJIH Ee Il0Bepx:H0CTb CJI0.H CqH-

qecKHX QMeA. 3aweTKM, trro B c.nyt1ae npeACTauemu1 n0Te�a.11a V 
1 II 

T t 3eMJIH 1/.,t, Ü H V.=/=- Ü, a B CJiyllae - � =Ü; ,JµS: rffAPOCT8TK1leCD 

paBH0Becm.oc nJiaHeT npH 0ilHCaHHH HlC Il0JIHOro Il0'1'8HQHUa \<11 =0 •. 

B8llCHo TalOlte, trr0 IlOTeHQHaJIOrpaq>HlieCKa.R 38,Jl;a'Qa �OIIJCK8.8T AJIC­

Kp8THYJO II0CTaH0BKY, trro, B qac'l'HOC'l'H, npHBO�'l', lt MHOrOTOU1Uiil• 

11 T0ll:8't'.IH0-AHTI0JibHl,D( K0A6JI.HM. Il0T8HQHUa; xpowe Toro, H C81(0 

38,Jl;aH:He noTeH�a.na MaHeTW M0Jt0'1' 6W'l'b B3s:TO B A)lCKp8THOlrl BlfA9. 

CyiqecTB8HHO TalOlte, trr0 Il0B8plCHOCTb s , H8CYJll8Jl CJIOH, M0&8'1' 

CqHTaTbC.H HCK0MO� HJl:11 MOJlteT CllHT8TbC8 sapaaee 38AaHHOA. Bce 3'1'1l 

M0M8HTN A0JIEHN 6I,ITb npeAYCM0TpeHii A0T8.JlbHOA DOCTaHOBKOA xaaAoA

KOHKpeTHoA noTeH�aJiorpaqiHqecxoA sa,D;a'tlH. Ho npEmAe qew nepexo-

TaTb H6H3B6CTH0H, T0 �HCKpeTHa.H Il0CTaH0BKa o6paTHOH II0TeH�aJI0- AHTb K TaKOBOA, CAeJiaeM CJie��e 3aMe1:IB.HJUI. 

rpaqw1qecKoi1 saAami: npH \<' =I, \< 11 =Ü oxBaTb!BaeT o6lllHH CJiyqai:i noc- ÜT noBepx:HocTeA S , Ha 1toToph1lC WJ.11 OIIHCaHHJI noreHQHa.:aa V

TpoeHH.H MH0r0TQq8qHbJlC MOA8JI8H noTeH�aJia, B K0T0pbllC Ü!>�8A8JI8HHID TeJia CY),lM0H (3)-(5) IlpeAil0JiaraeTC1l nowecTHTb npocToA H ABOAHoA 

II0WJ,eJKaT MaCCbl Wl;,, , H8X0A�8C.H Ha II0Bepx:H0CTH -� , qHCJieHH0 CJI0H, Tpe6yeTCH T0JibIC0 B03M0JtH0C'l'b pa3M0ll!8HHS: Ha HHlC 3THlC CJI08B. 
'2· ..... OIIP8A8Jl.H8MOH HCK0MhlMH T0tiKaMH K0HQ8HTpa�H Macc ( cl.-= i , vi. , IlocJieAHHe A0JilltHJ,I pa3BHBaTb B 0KpYJE8illl!0M HlC BH8111H6M np0C'l'paHCl'l'Bf! 

A
i. 

; R= c-wt). KoHKpeTHa.H nocTaH0BKa OAffOH TaKoi1 38,Jl;aqH H peme- noTeH�a.JIW npHT.HllteHHs, sHatleHHH KOTopwx: (H HX npoH3BOAHJ,IX) B 'l'0ll-

HHe ee AaHbl B [s] . KSX CJI08B )µ11 pacci.ta.TpHBaewoA 38,Jl;SqH HecyiqecTBeHHW. !I03TOJq He'l' 

3aMeTHM, HaK0H�Q, qto IlOTeH�aJIOrpa�HqecKa.H sa,n;aqa npH �·= He06XOAHMOCTH 6paTb IlOBepx:H0CTH s H3 KJiacca nosepx:HOCTeA Jumy-

= 1,( 11 =I B AHCKpeTHÖH II0CTaH0BKe npH HCK0MOH nosepx:H0CTH s 0606- H0Ba; II0A HHMH A0CTaT0't'.IH0 Il0ApasyweBaTb orpaHH'l:leHHWe I'Jia,D;KHe 

lllaeT II0CTp0eHHe MH0r0T0ll:8tnffllC MOA8JI8H II0T8H�aJia 3a cqeT BKJIIDqe- AByxCT0p0HHHe Il0Bepx:H0CTH KJiacca c/ , IDf6HH0 TaxHe, IC0T0pR8 MO­

HH.H B tiHCJio fcKOMJ,OC napaueTpoB 3THX MOAeJieA rpaBHTa�oHHbOC AHII0- ryT HecTH Ha ce6e YKasamwe CJI0H, npH 3TOM,ICalt -yEe IlOAli8PKHBMOCb, 

V,, JieA, Ha6op K0T0ph1lC C00TB8TCTByeT II0T8H�a.ny ABOMHoro CJI0.H • 3TH II0Bepx:H0CTH, 6Y,D;YllH pacnoJI0E8HHl,IMIII B o6JiaCTH '/; ; He 'AOJIEHW 

B MaTeMaTHqeCK0M CMb!CJie IlOT8H�a.norpa�11qeCKa.H sa,n;aqa paCKpbl- HM8Tb o6rqHX T0treK C ee rpaHHQeA - Il0Bepx:H0CTbll er •

BaeT MHOroo6pa3Hbl8 B03M0JKH0CTH 3aM6Hbl o6beMHoro noTeH�aJia TeJia IloBepx:HOCTH s MoryT 6b!Tb 38.MICHY'fID&H H M0rYT 6WTb H83aMXHy-

noTeH�aJiaMH APyrHX BßA0B. ,LJ,ll.H re0A83HH 3Ta 38,Jl;a-c.a Il03B0JI.H8T no­

TeH�aJI npHTmKeHHH nJiaHeTbl ( noJIHb!H - V , JIH6o ero rJiaBHYJO 't18CTb 

HJIH B03MYUlaDlllYID - T ) onHcblBaTb pa3JIH't1Hb!MH cnoco6aMH, cpeAH K0-
m

T0pblX M0JKH0 0TblCKSTb HaH60Jiee Il0,D;lC0'Affil{H8 ,Jµ.H Tex :HJIH :HHbllC npaKTH- IIJI0CK0CTM cetreHH.H TeJia i . QqeBHAHO, pacnoJiarM CJI0H B nJI0CK0C- ... 

Tb!MM. Bo BT0p0M CJiyqae 0HH A0UHbl 6wTb orpa.H11qefihl OAH0H HJl:11 Hec­

K0JibK:HM:11 saMKHyTb!MH KpHBbIMH. IlpocTeibn:HMH TaKHM:H H638.MKHYThlMH no­

Bepx:H0CT.HM:11 S HBJI.HIOTC.H o6�aCTH HeKOTOpOH nJI0CK0CTH, Hanpmcep, 
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T.HX: ceqeHHH, HMeeT onpe'AeJieHHblH CMbICJI Bb16paTb ceqeHHH, npoXO'Afl-

uµ,ie qepe3 QeHTp Macc TeJia 'z::; , H CO'AePJKaII\He ero 'AHaMeTp, TaK KaK 

OHH - KaK ceqeHHR TeJia - HaH6onee IlOJIHO OTBeqaDT eMY B QeJIOM. 

B03MOl!tHOCTb HCDOnb30BaHHR TaKHX llJIOCKHX CJIOeB IlO'ACKa3waeTCfl 

3aMeqaTeJibHOH TpaKTOBKOH [9] noTeHQHaJia O'AHOPO'AHOro 3JIJil1IlCOH'A8 C 

IlOJIYOCHMH 0. ::,,�;:, C. IlOTeHQHaJIOM Heo�OPO'AHOro 3JIJIHilTHqecKoro CJIOH 

('AHcKa) c nonyoc.f!MI,j � o.l-ci , 'fZ1-2- , pacnonollteHHoro B nJIOCKOCTH,

onpe'AeJIHeMOH qcm.rn: 3JIJIHilCOH'Aa, nepneH'AHKYJiflPHHMH ero MaJIOH OCH. 

06pHCOB8B pa3H006pa3H@e B03MOlltHOCTH Bb160pa IlOBepx:HOCTeH s

WIR onHcaHHH o6beMRoro noTeHQHaJia V TeJia 't CJMMOH (3)-(5) ,Mhl 

npe'ACTaBHM TaK noTeHQHaJI llJiaHeTbl, HCilOJlb3Yfl HM:eHHO IlJIOCKHe CJIOH 

B ee 3KB8TOpHaJibHOM ceqeHHH H HCXO'Afl npH 3TOM TaKllte H3 Toro, qTQ 

MOCKOCTb 3KBaTopa RBJifleTCfl )Vlfl PH'APOCTaTHqecKH paBHOBeCHbllC 

n.naHeT ecTeCTBeHHOH IlJIOCKOCTbD HX CHMMeTpHH. 

R =Ls =C\€.-t ) 

I''Ae O.e 3KB8TOpHaJibHHH p�HYC llJiaHeTbl, a t. ::,,0 

Ha, 

(6) 

- MaJiaR BeJIH'tffl-

IloTeHQl18JI v- llJiaHeTbl OTHeCeM K BP811\8Dll\eHCR BMeCTe C HeH 

nprIMoyrOJibHOH 'AeKapTOBOH CHCTeMe KOOP'AHHaT o�d2 , H8qaJIQ RO­

TopoH COBMell\eHO C QeHTpOM 148.CC llJiaHeTbl, a OCb 01 COBn�aeT C ee 

OCbD Bp811\eHHR. Tor'Aa B COOTBeTCTBHH C ycJIOBHm.rn: noTeHQHaJIOI'pa�H­

qecKOH 3a'Aa'tffl BHpa3HM V cyi,iMoH (3) npH 1,(1 = \,( 11 =l, cJiaraewe

KOTOpOH CYTb 

V{:. d 1)- \ }}-{$,:/) J.�1 
' -{V(3-xY+('f'/_-�f .;-:c.1 (7) 

V"/ ) r 'l. v{�,"!) d.�
l
J(

>�P- = J.0/(�-xf +(r-,1-'Jj2 + z� J ; (8) 

i 

§2. PaccMoTpID4 Tenepb O'AIDi BalltHHH qacTHHH cJiyqaH noTeHQHaJiorpa­

ipHqecKOH 3�a'tffl. 

3'AeCb Y , d �, 2 - KOOP'AHHaT@ npoH3BOJibHOH TOtntH P BHe

nJiaHeT@; t , '1? - KOOP'AHHaTbl TeKYll\eH TOllKH Q nJiocxoil o6JiaCTHS;

By'AeM IlO'A s IlOHHMaTb llJIOll\�b 3JIJIHnca HJIH Kpyra, JieJ!t� B 

3KB8TOpHaJibHOH IlJIOCKOCTH llJiaHeTbl H HMeDII\HX QeHTp B QeHTpe MaCC 

n.naHeTbl, B03MOlltHO HaH60JiblIIHX pa3MepoB, HMeHHO TaKHX, qTQ HX 

KOHTypbl, O'AH8KO, He KaC8DTCR KOHTJPa 3KB8TOp�aJibHOPO ceqeHHR 

llJiaHeTbl (CHTyaqHR, aHaJIOI'HqHM TaKOBOH npH BBe'AeHHH cq>epbl Bbep­

xaiompa). ,Il,pyrmm CJIOBaMH, 38 s npHHHMaeM 'AaJiee llJIOll\�b 3KB8TO­

pHaJibHOI'O ceqeHHH llJiaHeTbl, o6o�eHHYD 3JIJIHDCOM HJIH OKpy,itHOCTbD H 

"�aTyv" He3H8't!HTeJibHO K QeHTPY, HMeHHO, HaCTOJlbKO, qTQ orpaHH'tffl­

B8Dll\Me ee 3JIJIHDC HJIH OKpy.!tHOCTb CTaHOBRTCR "nOqTH" BilHCIIHHblMH B 

3TO ceqeHHe. M XOTR )VIR HeKOTOpbllC llJiaHeT (Mapc,3eMJIH) IlO'A s Bbl-

� = }A- < t , 11 ) H y = Y < J , 17 ) - COOTBeTCTBeHHO llJIOTHOCTb 

npocToro H MOMeHT 'ABOIDiOI'O CJIOeB, Ilpe'AilOJiaraewe npHH8'AJ!el!8JIIHMH 

K KJiaccy IPYHKQHH t_; . 

IlpH H8IlHCaHHH 3THX noTeHQHaJIOB HCDO.llb30B8.HH q>OpMy-Jibl (4) M 

(5), npHqeM B IlOCJie�eH 38 IlOJIOJKHTeJibHOe HanpaBJieHHe HOpMaJIH Vt. 

K s B3RTO OTpHQaTeJibHOe HanpaBJieHHe OCK 01 . (38.Yel'MM, tl'l'O �op­

My-Jibl ( 7 ) l1 ( 8) npH R-== H npH 3�8.HHbllC . Ha B c e i% nJiocxoc­

TH IPYHKQH.HX: � ( } ' � ) K y ( 3 '� ) 'A8DT COOTJleTCTBeHHO peme­

HHe 3�aq )],Hpmc;re H HeHMaHa )VIH ypaBHeHHR .ll;anJiaca B_CJIY1W-e 

no;rynpocTpaHCTBa). 

IlpoCTOH CJIOH' npe'AilOJiaraeMb!H H8XO'ASllpillCH Ha MOll\a,11,H gpyra s B 

ro�o IlOHHMB.Tb llJIOll\�b 3JIJIHnca,6Y,D;eM BCe ze 'AaJiee-B qenmc OnKCaHHR 3KB8TOpHaJibHOH llJIOCKOCTM llJiaHeTbl H pa3BHBalllll\MH BHe ee H Ha ee 

I'JI06aJibHoro (0611\eDJiaHeTapHoro) rpaBHT8QHOHHoro IlOJIR IlJiaHeTbl H pa'AH IlOBepx:HOCTH noTeHQHaJI (7), 6y�eM H83HB8Tb MaCCOBl,I)( MaTe H8.JibHl,I)( 

ynpOll\eHHH Bl,lqHCJieH:Hit - npHHHMa.Tb 38 s Kpyr P8'AHYC8 � MM)]; B CBR3H C TeM, tl'l'O Kpyr (HJIH 3JIJIHnc) - )VIR C03-

n s 
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,IJ,aHJIIH IDII B oKpyiicaD�eM ero npocTpattcTBe noTeHQKaJia V
1 

- np'ilXo-

,IJ,JIITCH Ct!JIITaTb HarpyxeHHWM noBepx:HOCTHWWI uaccaMK IlllOTHOCTJ/1 

[" ( � , ·•l ) , o6niaH wacca KOTOphllC paBHa Macce ruiatteTw. 

)J,BOHHOH CROH, o6pa30BaHHJ,iH cnROillHh!M o6pa30M pacnono�eHHblMH 

Bepx:HOCTb, TO npJIIXO,IJ.JIITCR nOHJIIMaTb TIO,IJ, noTeHQKaJIOM \/ B TaKOH 

ToqKe ero aHaJIJ11TJ11qecKoe nponoxeHJ11e J/13BHe Bo BHYTPh ruiaHeTbl, KOHeq­

Ho, npl/1 ycnoBJIIJ/1 ero cyniecTBOBaHJ/1&. 

3-e. Bcno1&1HaR pasHhril xapaKTep y6wBaHJ11H noTeHQKaJIOB cnoeB

Ha ,IJ,JIITIORSD4JII, opJ11eHTJ11pOBaHHl,IMI/I nepneH,IJ,1/leyRRpHO K ero TIROCKOC- no Mepe Y,IJ,aJieHJIIR OT HJIIX, OTMeTHM, �o B RD60H BHeWHeH TO'tlKe 

TJ/1 1/1 pa3BJIIBaDllll/1141/1 B CBOeH COBOKynHOCTJ/1 BCD,IJ,Y BHe ero (sHat!JIIT, 1/1 

Ha noBepx:HOCTJ/1 ruIB.HeTw) noTeHQKaJI (8), 6y,IJ,eM JIIMeHOBaTb ,IJ,JIIITORb-
;v

1 (P)\ >; v"(P)\. 
HlilM ,IJ,JIICKOM ,D,lJ, Ha OCHOBB.HJ/11/1 Toro, qTo CBOHCTBa 3TOPO noTeHQKaJia n 6 � �a,Il,JIIM npH RJ/ll!teHHOe peweHJ11e paccMaTpJIIBaewoi-\ noTeHQKMorpa�JII-
- KaK TIOTeHQKaJia ,IJ,BOHHoro CROR - 06ycAOBJieH1,1 �YHKQKeH pacnpe,IJ,eRe- � 

qecKon sa,n,aqJII,
HJIIR MOMeHTOB ,IJ,JllnoneA y ( t ,11 ), CO3,IJ,aDlllHX TaKOH ,IJ,JIICK. 

B TaKOH npe.rr.naraeMOH KOHKpeTHOH noTeHQKaJIOrpa�qecKOH sa,n,aqe 

Tpe6yeTCR onpe,IJ,eRJIITb TIROTHOCTb y 1/1 MOMeHT y YKa3aHHhllC rpaBJIITJ/1-

PYDllll/lX ,IJ,JIICKOB. 

ÜTMeTIDII CHaqana OCHOBHl,le CBOHCTBa noTeHQK8JIOB (7) 1/1 (8) 3TJIIX 

,IJ,JIICKOB, 

I-e. IlJxo�a,Il,b $ rpaBHTHPYJOllll/lX ,IJ,JIICKOB Bbl6patta TaK, CM.ycno­

BJ11e (6), �o noTeHQKaJibHJ,ie �KQKJ/1 V' ( Y , d , � ) 1/1 V' ( -X , d , .t ) 

1/1 JIIX. qaCTHJ,ie npol/l3BO,IJ,fflie ;m6wx: nopR,IJ,KOB CJ'Tb �YHKQKJII, HenpepWB­

Hl,le BCD,IJ,Y BHe s ; 3Ha'llKT, OHJ/1 1/1 BCe 1/lX npOJll3BO,Il,Hl,Ie HenpepWBHW 

He TORbKO BO BCeM BHemHeM npocTpa.HCTBe OTHOCJIITeRbHO IlllaHeTw, HO 

1/1 Ha ee noBepxHoCTJ/1 er

2-e. H3 (p()pyYR (7) J11 (8) noTeHQKaJIOB ,IJ,JIICKOB, B cywe BwpaxaD­

lilJIIX BHemHKH noTeHt(Jlla.Jl 3eMRJII, BJll,IJ,HO, �o noTeHQKaJI MM,Il,, T.e.V'c p) 

qeTHaH �YHKQKR, a noTeHQKaJI ,D,D,, T.e. V" ( P ) - HetleTttaR �YHKQKH 

V
I 

V" OTHOCJIITeRbHO z . )J,pyrJIIMJII CROBaJ41/1' noTeHQKa.JIW 1/1 rpaBKTKPYD-

ll!JIIX ,IJ,JIICKOB - 3To cy-rb qeTHBJi 1/1 HeqeTHaR qacTJ/1 noTeHQKaJia V nna­

HeTw OTHOCJIITeRbHO ee 3KBaTopl/laJibHOH TIROCKOCTJ/1. B TOM cnyqae, KOP­

,IJ,a ,IJ,RH KaKoA-nJ/160 BHemHeA TOtlKJ/1 p ( j( ' ö ' ) ) HeT eA CJIIMMeTpHtl­

HoA, To'!IHee, nocne,IJ,H.!UI nona,n,aeT BO BHYTPh MaHeTbl JIIJIJ/1 Ha ee no-

Ey,IJ,ell! nonaraTb BHeWHJIIH noTeHQKaJI V nnaHeTw sa,n,aHHlilM Ha6opow 

CTOKCOBJ,llC TIOCTORHHbllC 

� = [ C ,S,. l 
,IJ.O HeKOToporo nopR,IJ,Ka Jv . Ha OCHOBa.HJ/11/1 CBOHCTBa 2-ro 3anJ11meM: 

_, V · V
fl 

V '\J = tt.1'1 ' -::=: H�1. ' 

r,IJ,e VqeT.1/1 V Heq. - cooTBeTCTBeHHo qeTHaR 1/1 HetleTHaR qacTJ/1 no­

TeHl,IJllaJia V oTHOCHTenbHO i HnH OTHOCJIITeRbHO �? , r,IJ,e 't1 -
nonRpHoe pacCTOfil!Jlle BHemHeH TOqKH [> • 3HaqJIIT, JIICXO,IJ,HOH 1/lH�pua­

l..\JlleH O M1i,i}. HBJIReTCfl neBafl qaCTb ypaBHeHHH (7). 3a,D,aHHasl Ha6opoM 

napaMeTpOB 

V'= [C� , ,.S .. � ( ,
f{ )�,+""""-'"- ( K=0,I,2, ... ) (9) 

a ,IJ,Rfl ,D,lJ, - neBaH qacTb ypaBHeHJ/lfl (8) c Ha6opoM CTOKCOBWX: TIOCTO-

.HHHbllC 

\.l'M , l.. \tl.W'I • 

f{ \,'\H>\-=1\,'(+i 
(IO) V" [c � l 

iloTeHQKaJI nnaHeT1,1 V co,IJ,epmT B yceqeHHOM ,IJ,O .N -ro nopR,IJ,Ka 

pR,IJ,e '{ mapOBhllC �YHKQKH ( /v+I)2 CTOKCOBWX: IlOCTO.aHHWlC, ]erKO el 
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1 

llOACm!TaTb, '!ITO yceqeHHi,rli PM� noTeHI.J;Ha.Jia MM,1J, ID4eeT B CBOeM 
,, 

cocTaBe ! ( N + I) ( N+ 2) nocTOfililil>llC, a B pMe V
.,., 

noTeHI.J;Ha.Jia M

KX o61Ilee KOJIHqecTBO paBHo 4 N ( f/-t- I) • 
i vi:lfaBeCTHO, t1To BcHKa.H cpyHKI.J;H.fi AByx nepeMeHHi,llC Cf ( t , '1 ) E d--g

�.fi JI11J6oro q>HKcHpoBaHHoro }f H.MeeT f ( N + I) ( /V+ 2) cTeneHHi,llC uo­

MeHTOB 

\fr"I= J�(s,'l1)!P„t'dL<; ) (p+9,�N). (II)

s ' 
3HatlHT, Ha6op ( 9) CTOKCOBiilX TIOCTOßHHWJC, onpeAeJIJmll!HA � , 

AOCTaBJI.He'l' BCe CTeneHHhle MOMeHTW �P\ TIJIOTHOCTH MM,lJ,, llO3TOyY ero 

IlJIOTHOCTb � = r ( 3 , '>?. ) MOlle'l' 6WTb BOCCTaHOBJieHa pemeHHeM yce­

qeHHOH (AO /V -ro nopMKa) CTeneHHoA npo6JieM!il MOMeHTOB, KOHeq­

HO, npH BWTIOJIHeHHH YCJIOBHH ee paspemHMOC'l'H. 

MoMeHTW rp�
TIJIOTHOCTH MM,1), O'AttO3Ha'!IHO BW'llHCJI.HIIJTC.H npH 3TOM
' 0, no IIOCTOHHHWM o.., .. H ,t,

.,
,.. 3Toro 'AHCKa BH'Aa 

C\�,._ ] -= 
A
' j -i.'." 1 ��,j

l 

l • elf;
ß 1 ""' f l µIAV'/1 
"''"' 

(12) 

1 ,, � 
c '2. , (1 - TIOJIHpHlile KOOp'AHtta'l'w TO"tlKH Q c 3 , 'Y/ ) 'AHCKa B ero 

TI.IIOCKOCTH) , KOTopwe, B' "CBOIO oqepeAb, JierKo noJiyq8.ilTCH no COO'l'­

BeTCTBYl)IqiU,( C'l'OKCOBW IlOCTO.HHHWM c.h ... H �
... 

H3 KX Ha6opa (9) 

TIY'feM cpaBHeHfül K03!ppHI.J;HeHTOB paaJiolleHH.H noTeHqHa.na V' ( P ) MM.D. 

B PM mapoBWX: !pyttKQHA c qeTHilMH (B CMWCJie h-t\'VI. =21<.
0 

) KO�­

eHT!Uffl Jian.nacoBa �a noTeHI.J;HaJia V ( P ) . 

IloQTH 8Ha.JIOrHQHO H8XOAHTC.H H MOMeH'l' y ( 3 ' 11 ) 'AHflOJibHOro 

'AHCKa. ÜTJIJl1me npH6.nneHHoro pemeHH.H ypaBHeHH.H (8) O'l' OTIHCaHHOA 

npoqemw: TaKOBOro �H MM,n 38.KJIDQaeTCH B TOM, QTO TalGU4 lle 06-
" 0 II 

paao.M BBO'AH)G,le H noJiyqaewe TIOCTO.8:HHWe q
.,,___ H "'

1-1
.... , H.Mellll!He 

BH'A ( 12) , HO, CleayCJIO��Ö, C q>yttKI.J;Heß y ( 1 , 'Y/_ ) BMeCTO r ( 3 , '7 ) 

H HHWMH IIHOZHTe.nJDffl,A�'"' , BwpallB.l)TCH - C TOQHOCTblll AO K03qxpHqH-

eHTa, aaBHC�ero OT \ll. H Wl ' - yxe qepea C'l'OKCOBH TIOCTO.HHHi>le 

c
l'l+

i,IM H sk+i,\NI • TaKHM o6pa30M, pa3JIOlleHHe v;, "BTIHTi>IBaeT" 

B ce6.H CTOKCOBli TIOCTO.HHHHe AO (N+I)-ro TIOPMK8 BKJIIIJqHTeJibHO. 

3a cqeT 3Toro O'Att03HaqttoCTb pemeHHH yceqeHHH cTeneHHoA npo6.new 

MOMeHTOB �.H cpyHKI.J;HH Y ( � , rvi_ ) AO ß-ro IlOPMKa Tpe6yeT 

yi:i:eTa CTOKCOBHX TIOCTOSlHHlillC n.naHe'l'i>I AO (f/+ I )-ro TIOpMKB.. Ü'AttaHO 

OTMeqeHHOe Bblllle 3-e CBOHCTBO noTeHI.J;Ha.llOB rpaBHTHPYlllllKX AHCROB 

TIOACKa3i>IB8eT Qe.necoo6pa3HOCTb npH KX COBMeCTHOM npHC>JIHJleHHOM 

IlOCTpoeHHH YllHTi>IBaTb BCe CTOKCOBH IlOCTOHHHHe 3eMJIH AO aapattee 

Ha.MeqeHHoro TIOPMKa N . ' HBXOAH npH 3TOM Il.llOTHOCTb r ( 3 ' 1?.
MM,1J, H3 pemeHHH yceqeHHOH 3a,IJ,8qH AO Jl -ro TIOPMKa, a .MOMeHT 

.Y <J .� ) M - Ha yceqeHHoA aa,n,atlH AO c/{- I)-ro nopMKa. 

IloAqepKHeM OAHO JIIIJ6om,rrHoe o6cTOHTeJibCTBO. KaK H3BeCTHO, 

o6paTHaH aa,n,aqa TeopHH noTeHI.J;HaJia, B KOTOpoA no H3BeCTHOMY 

�HemHeyY IlOTeHI.J;Ha.JIY IlJlaHeTH, TOqHee no Ha6opy ee CTOKCOBHX 

IIOCTO.HHHHX AO HeKoToporo nopMKa N , Hll\eTcH n.noTHOCTb S pac­

npeAeJieHH.H ee MaCC, O'AttO3H8QHOro pemeHHH He HMeeT. IlpH CBeAeHHH 

3TOH 3a,IJ,aqH K TpexwepHOH c�eneHHOH npo6JieMe MOMeHTOB, yceqeHHOH 

AO N -ro nopMKa, �g o6ecneti:eHHH eAHHCTBeHHOCTH ee pemeHH.H He 

XBaTaeT l \'\. ( 'lt - I ) MOMeHTOB Ha KaJt,IUiA Vt -NM IIO�OK ( l'l.'.r 2). 

I!:CJIH ;,r;e HCKaTb TIJIOTHOCTb � H MOMeHT y rpaBHTHpylllllHX ,IVICKOB 

MM,I\ H M 3TOH DJiaHeTH, pacnoJiaras napa.ueTpaMH ee BHemHero no.nH 

Ta.lOlte AO Jv -ro nopMKa, To, KB.K 6w10 noKaaatto, 3TH "DJIOTHOCT­

Hlie" xapaKTepHCTHKH AHCKOB MOrYT 6i>1Tb onpeAeJieHhI O'AHO3HaqHO B 

KJiacce MHOrOttJieHOB f/ -ro H (Jl- I )-ro nop�ROB. H XOTJ! 3TH 

rpaBHTHPYIIJ�He AHCKH - CY'fb a6cTpaKTHHe ROHC'l'pYKQHH, paCCMOTpe­

HHe KX oKaaHBaeTC.H He6ecnoJie3HblM. 

§3.�H3 06cY2t,11;eHHOro MBCCOBOro MaTepHaJibHOro 'AHCKa MM,ll; IJJlaHeTH

MOMeT 6i>1Tb B�e�eH MeHbmHH no paawepaM !pORa.nbHHM AffCR ��,OTBetmll-. 
� 
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�HH 3TOA IIJIB.HeTe B npeAIJ.OJIO&eHHH HaxOlK,ll;eHHH ee B rH,l!JlOCTaTHqec­

KH paBHOBeCHOM COCTOmiHH. 

A,In Il0,11.TBe�eHHH 3Toro CHaqa;za BCil014HH� � öl , lfl'O pa3JIOJKe­

HHe B pH,11. mapOBWX �Y}UCQHH IlOTeHQHaJia v� rH,l!JlOCTaTHqecKH paBHO­

B8CHOA IIJiaHeTW, BHemHil ypoBeHHaa noBepx:HOCTb ROTopoa CY'fb cqie­

poK,D;, C0,11.epm!:T B ce6e TOJibKO qeTHWe 30HaJibHWe rapMOHHRH. C ,11.py­

roA CTOpOHW, B ps,n, TOQHO TaKoro JKe BH,11.a paa;raraeTCH H noTeHQHaJI 

Heo,11.Hopo,11.Horo 3JLllHilCOK,D;a BpruqeHHH C 3JLllHilCOH,11.aJibHO-CJIOHCTOA 

CTpyitTypoa, R03�H:cyieHTW KOToporo 3aBHCH,I OT 3aROHa H3MeHeHHH 

IIJIOTHOCTH npH nepexo,11.e OT CJIOH K CJIOD t!� . 3HaQHT, COXpaHM BHe 

3JLllHIICOH,ll.a, o6öeMJID�ero cqiepoH,11., noTeH:cy{aJI V* rK,D;pocTaTHqecICH paB-

HOBecHoA IIJiaHeTw, T.e. OTO�eCTBJIM YJt8.3aHHWe Bwme ,II.Ba pn,11.a no 

qeTHWM 30HaJibHWM mapOBWM (pYHK:cyiml B HX o6�eA o6JiaCTH CX0,11.HMOC-

TH, MOlKHO noTeHQHaJI 3TOH IIJia.HeTw TpaKTOBaTb noTeHQHaJIOM 3JIJIHilCO­

H,ll.a C Ha,IVlelK8.lqlil( 3JLllHilCOH,11.aJibHWM CTpoeHHeM. 

ITpaRTHQeCICH C�a3a.HHOe peaJIH3yeTCH Me,11.YDIIlHM o6pasoM. CHaqa;za, 

38AaBIDHCb JIHHe� MaCmTa6oM IlOCTpoeHHA, CQHTa.Ji, HanpHMep, 38AaH­

HWM 3KBaTopHaJibHW HJIH noml:pHl,IH pa,IJ.Hyc cqiepoH,11.a, Hai\IJ.eM ero no-

C p-n. r,n;e - CTOKCOBW nocTommwe peaJibHOH IlJiaH8TW, a HaACTpo'IIHile 
hO 

CHMBOJIW '.:). H elf· - 03Haqal)T 3JIJIHilCOH,II. H cq,epoK,11;. OTHM CalGDI BBe-

,n;eHHOMY KBasH06�e3eMHOMY 3JLllHilCOH,ey' npHIIHCa.Ha 3JLJIHDCOK,ll;aJibHO 

MOHCTa.Ji �� OilHCWBaeTCS rpüpllYJiaMH (5 .67) K3 �� , 

BwpaJKaD� K03�HQHeHTW �: qepea ero IlJIOTHOCTb, sonpoca O ipa.Jt­

THqecKOM Haxoz,n;eHHH ICOTOpoA 3,11.eCb He CTaBHTCH. 

06cYlK,Il,eHHaa npo�e,11.ypa noaBoJIHeT onpe,11.enHTb napaMe'fPlil Taxoro 

KBasHo6�enJiaHeTapHoro sJL11HncoH,11.a, reoweTpnecRHe napaMeTpi,I KoTo­

poro npaICTHqecICH He OTJIHtmDTCH OT TaROBWX: o6�ellJia.HeTapHoro S.lLlIHII­

COH,D;a. Ho 3TOT 3JLllHilCOH,II. - HeyposeHHWA, 0,11.HaICo, BO-nepma., OH ,1\0-

BOJibHO IlOJIHO xapaKTepHayeT rH,l!JlOCTaTHqecRH paBHOBeCHYJ) IIJiaH8TY, 

H6o ero noTeH:cy{aJI co,11.epm!:T Bce yqTeHHWe ,11.0 N -ro nopBAKS soHanb­

HWe napa.MeTpw DJiaHeTw J
.,_
-<- -�-<,O , no.nyqeHHWe no pe3YJib'l'a'l'aM aa6-

JI1D,I1.eHHA (HeqeTHWe 30HaJibHWe H BCe Teccepa.nbHW8 ra1.:110HHXH ero Dpll­

HHTW paBHDIMH Hym::,): BO-BTOpillC, ero �pwa H pa3MepiiI Ha.ruryqmDI o6-

pa30M B onpe�eJieHHOM CMWCJie OilHCWB8.llT cqiepoH,11.; B-TpeTbl!X, pacnpe­

�eJieHHe DOTeH:cyiaJia Ha ero noBeplCHOCTH H3BeCTHO: OHO Bwpa&aeTCS 

yce-qeHHWM pH,11.0M v; no lleTHWM TIOJIHHOllfB.Y JlegaH,11.pa C RO�eHTSMH 

J , B�BO,IJ,HMl,IMH H3 pesyJibTaTOB Ha6JIB),11.eHHH; npH 3TOM oqem, npoc­
.i. .. 

Bepx:HOCTb no H3B8CTHWM napaMeTpaM BHemHero rpaBHTaqHOHHoro noJIH TO BhltmCJIHeTCH H pacnpe,11.eJieHHe CWIW TßlleCTH Ha 3'1'0M 3JUiilDCOK,ll;e; 

nJia.HeTw J. =-l ( =0,I,2, ••• ), ee yrJIOBOH cxopocTH W Bpanie- B - qeTBepwx, noTeHQHaJI ero cocTaBJIHeT rJiaBHYJl qacTb noTeHQHa.lla 
-<I< �K,0 

HHH H npH coxpaHeHHH Ma.CCW IlJiaHeTw. YK8.3aHHoe MOlltHO c,11.eJiaTb JIH6o peaJibHOH IlJiaHeTw. 

no MeT0,11.HRe �2,I�, JIH6o no �opwyJia.M (27 ,8), (31 ,7) H3 �öl, r,11.e, CBOHCTBa BBo,n;HMoro T�K KBa3Ho6�eIIJiaHeTapHoro 3.JIJIHIICOK,ll;a ,1\aJ>T 

npaB,11.a, nocJie,11.HHe npHBe,D;eHI,I TOJibKO ,D;O =3. 3aTeM Ha OCHOBaHHH B03MOlKHOCTb npHHHTb ero 3a HOpMaJibHWA 3JLllHIICOK,II; IIJIB.HeTW. Bce xe 

no,11,XOAJllllero KpHTepHn LI 4, 15 , I � annpoKcHMHpyeM Hai\Il.eHH:bIH cipepoH,11. noBTopm.1 e�e pas: 3TOT 3JL11HncoH,11. - HeypoBeHH!irl\. Ho, ytDI'l'WBaa ax-

"o6�eIIJiaHeTapHWM" 3JIJIHilCOH,II.OM C Maccoa, ecTeCTBeHHo paBHOH wacce TYaJibHOCTb BOnpoca O Bw6ope HOpMaJibHOro IlOJIH, j'.I\OBJI8TBOpsl)II!8rO 

IlJiaHeTw. IToJiaraeM,HaKOHe�. trro 3TOT 3JLllHilCOH,II. pa3BHBaeT BO BHem-

HeM npocTpaHCTBe TOT �e noTeH:cy{aJI, 

J
!l·=J�·=-CP•n. 

),<. ' �"'-
l'\O ) 

qTo H cipepoH,11., T.e. ctmTaeM 

(\ll.=J1<., \(=OJ i
J
L,· ·; Vl�/v) 

paaHoo6paaHI,IM sanpoca.M reocpH3HKH, reo,n;eaHH H He6ecHoA MeXaHHB::11, 

MW o6pruqaeM 3,11.eCb BHID48.HHe Ha TaKOH B03MOlltHiiH, aJibTepHa'l'HBHWI 

K npHHSITOMY, no,n;x:o� K ero pememm. HanoMHJQf IIP.li 3TOl4 11'.l'O .o'!K83 a,. 
JI 
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OT ypoBeHHoro HOpMaJibHOro 3JIJIHTICOH,D;a B TeopHH �Hrypw 3eMJIH yYE.e 

6bIJI 0Mf8E'Ahl npe,IJ.MeTOM BCeCTOpOHHero o6cYJK,IJ;eHHSi [161 . He yrJiy6Ju1-

HCb B paCCMOTpeHHe 3TOro BaJKHoro BOnpoca H He npe,ru>emaH Bw6opa B 

,11.aHHOH aJibTepHaTHBe, 6y,11.eM ,11.a.n:ee B3aMeH HOpMaJibHOro ypoBeHHoro 

3JLnHTICOH,D;a TIOJib30BaTbCH OTIHCaHHh!M s,11.ecb KBa3H06Ille3eMHWM 3JIJIHTICO­

H,IJ.OM, TIOHHMM TI0,11. TIOCJie'AHHM 3JIJIHTICOH,D;, HaHJiytmrnM o6pasoM annpoK­

CliloOIPYJllllHH c�poH,D; H HMelll�H 3JIJIHncoH,D;aJibHO-cJioHcTyio CTPYKTYPY• 

IToTeHI.\HaJI KBa3H06Ille3eMHoro 3JIJIHTICOH,D;a MOlKHO 38.MeHHTb B COOT­

BeTCTBHH C KJiaccHqecKOH TeopHeH npHTmteHHH co�oKycm,oc 3JIJIHTICOH,D;OB, 

CM.[9,I7J' TIOTeHI.zylaJIOM TIJIOCKoro CJIOH, pacnoJIOEeHHoro B 3KBaTopH­

aJibHOH IlJIOCKOCTH Ha Kpyre s
.,,_ 

C QeHTpOM, COBTI�alO� C QeHTpOM 

3JIJIHTICOH,D;a, H C p�ycoM, paBHOM TIOJIOBHHe paccTOHHHH Meityzy �oKy­

CaMH Mep�aHHoro 3JIJIHTICOH,D;a, T.e. JIHHeHHOMJ 3KCQeHTpHCHTeTy ce­

MeHCTBa CO�OKYCHWlC 3JIJIHTICOH,D;OB. 8TOT TIJIOCKHH CJIOH - �OKaJib� 

� � - HMeeT nepeMeHHytO noBepx:HOCTHytO TIJIOTHOCTb �) ' 

3aBHCmIC{ll OT 3aKOHa H3MeHeHHH o6beMHOH TIJIOTHOCTH CJIOeB, CJiara.!l­

ll!HX 3JIJIHncoH,D;; Macca 3Toro ,IJ.HCKa paBHa Macce TIJiatteTw. 

IlnoTHOCTb � ,t{r, 11) � ';j_ ;� MOJr.eT 6b!Tb Ha�eHa aHaJIOrHqHQ 

TIJIOTHOCTH � ( ! ' "1 ) MM,!],' T. e. TaKllte H3 pemeHHJi npo6JieMbI MOMeH­

TOB, HO npH npHpaBHHBaHHH HYJIID BCex: CTOKCOBi>IX TIOCTO.HHF!l« TIJiaHe'flil, 

ttpowe ero onpe,11.e.nJDlllpfX lleTHbllC 30HaJibHbllC j ,11.0 HeIWToporo anpHo-
�"' 

pH npHHHToro HX nop.iwta N

B�e.nJUI H3 MM,n OCHOBttyll llaCTb �. H�O Tenepb ellle yqeCTb ero 

OCTaJ>oC71>CJi llaCTb - TY, noTeHrzyia.n KOTopoA B CyMMe C TIOTeHI.zylaJIOM 

� COCTaBJiaeT BCIO lle'1'HYJ) qacTb noTeHrzyiaJia n.natteTw. 8TOH OCTa.BllleH-

HHTO BO BHHMaHHe npH pemeHHHH npo6Jie.Mbl MOMeHTOB, ,11.0CTaBJI.HIOilleH 

IIJIOTHOCTb TaKoro R1,IJ;. 

CD 
(l'\ 

½TaK, KOHQenrzyiH rpaBHTHPYlO!llHX ,11.HCKOB saKJIIO'llaeTCH B TOM, 'llTO 

TIOTeHI.zylaJI TIJiatteTbl (HJIH ee "npHTmiteHHe") 38.MeHReTCH cyuuol1 noTeH­

WiaJIOB (HJIH "npHTßl!teHHH") Tpex KpyroBbllC KOHQeHTpHqecKHX ,11.HCKOB, 

HaxO,IJ..filllIDCCH B TIJIOCKOCTH 3KBaTopa TIJiaHeTh! - �. am H M, CBOH­

CTBa H MeT0,11.HKa TIOCTpoeHHH KOTOpbllC 6bIJIH Bblllle oqeplleHh!. Ilo,11.qepK­

HeM JIHlllb, q,ro � xapaKTepH3ytOT n.natteTy B npe,11.noJIOl!eHHH ee t'H,D;pO­

CTaTHqecKH paBHOBeCHOrO COCTORHHH, am OTpal!aeT HerH,D;pOCTaTH'lleC­

KHe CBOHCTBa TIJiaHeTbl, o6yCJioBJieHHh!e ee CID4MeTpHtlHOCTblll OTHOCHTeJib-

HO TIJIOCKOCTH 3KBaTopa, a ,lJ,lJ. - aHTHCHMMeTpHtlHYJO qacTb ee HerH,D;pOC­

TaTHmiOCTH. 

,ll,o6aBHM ellle, 'llTO napaJIJieJibHO C aHaJIHTHqecKHM pemeHHe 3�a'llH 

0 npH6JIJ.m'.eHHOM TIOCTpoeHHH rpaBHTHpytOillHX ,11.HCXOB MOl!eT 6h!Tb ,11.aH H 

�CJieHHblH MeT0,11. HX KOHCTPYHPOBaHHH, npHB0,11.ßll!HH K TO'lle'llH0-,11.HTIOJib­

HW MO,IJ.eJIRM noTeHrzyiaJia TIJiaHeTbl. 

rpaBHTHPY!OlllHe ,11.HCKH am H M BBe,11.eHW, Kal!eTCR, BnepBwe, a 

3Hati:eHHe � B Teop,rn �Hrypbi 3eMJIH OTMeti:eHO 6:blJIO B pa6oTe (181 , 
r,11.e TIOKa3aHa B03MOlKHOCTb o6bRCHeHHH noTeHQHaJia npHT.flllteBHH ypoBeH­

Horo 3JIJIHTICOH,D;a pacnpe,11.e.neHHeM MaCC Ha 3TOM ,11.HCKe. 3,11,ecb :m:e OH 

HCTIOJib30BaH ,11.JIR o6bHCHeHHH npHTHl!CeHHR rH,D;pOCTaTmecKH paBHOBec­

HOH TIJiaHeTh! H HeypoBeHHoro 3JIJIHTICOH,D;a C 3JIJIHTICOH,D;aJibHOH BttyTpeH­

l;!eH CTPYKTypoA. ÜMfaxo Ha.H6oJiee ecTecTBeHHo Heo6xo,IJ.HMocTb ero 

BBe,11.eHHH Bh!TeKaeT H3 CJie,Il,Yl)IJlIDC Mex:rurnqecKHX coo6paMeHHA. 

ITpHTJtl!CeHHe c�pHqecKH - cHMMeTpHllHOH TIJiaHeTOH BHemHeA TO'llKH 

CH qeTHOH ti:aCTH COOTBeTCTByeT 6e3MaCCOBW MB.Te HaJibHhlH ,11.HCK - EM.n MO:!.eT 6blTb 3aMeHeHo, KaK YCTaHOBHJI HbilTOH, npHTHlleHHeM MaTepHaJib­

c IIJIOill�lll s : ero noTeHQHa.n xapaKTepHsyeTca BCeMH qeTHh!MH HOH TOlDCH, pacnoJIOl!eHHOH B QeHTpe MaCC TIJia.HeTw - CKBJ!teM Ma.CCHBHO-

( 8 CMh!CJie \,\+\.VI =QeT.) CTOKCOBWMH TIOCTOHHHlilMH rt.naHeTw, KpOMe lleT- ro mapHKa HH'llTOl!Horo pa,IJ.Hyca. A ,11.JIR TIJiaHeTY 3JIJIHTICOH,D;aJibHOH !pOp-

HhDC 30H8.JlbHlillC, yqTeHHHX: TIOTeHI.zylaJIOM �. - H ßTO ,11.ÖJllltHO 6'bl'l'b npH- MH C 3JIJIHTICOH,D;aJibHO-CJIOHCTOH CTPYKTJPOH TaKO� mapHK, oqeBH,IJ.HO, 
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,IJ.OJ!JlteH 6HTb CIIJI!)II\eH B Ma.CCHBHID! "sJIJIHTICOH�K�. Hs TeopeMbl MaMO­

peHa O npHTSlllteHHH 3JIJIHTICO�OB cne,n,yeT, qTo yxasa.HHhrl\ "snnHTICOH­

�K· - H eC'l'b Ra.K pas (pOKanbHhlj.\ �CK 061I\eMaHeTapHoro 3JIJIHIICo�a, 

JrBJim:i�J.\cSI npe,D.MbHl,IM nono:m;eHHeM cnmo�BaJOII\erocSI snnHnco�a, co­

(pOKyCHoro HCXOAffOMY L9J . 
,naJibHeAlmw pa3BHTHeM 3TOH npo3paqttoj.\ �eH HMSieTCSl BCSI H3JIO­

:m;eHH8.Ji 3,D.€Cb KOH�enqHSI rpaBHTHpyionµ« AHCROB. 
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Abstract 

VAR!ATHJNAL PRINCIPLES FOR EARTH ROTATION 

Helmut Mo ritz 

Institute of Theoretical Geodesy 
Technical University Graz, Austria 

Hamilton's principle of least action, in the form of Lagrange's equations, 
was applied to the rotation of a rigid earth, e.g., by Woolard (1953) and to 

classical treatment and the modern approach through the language of exterior 
differential forms. 

Let the motion of a dynamical system (e.g., a system of point masses which 
are free or linked to each other, or a rigid body) be described by n (generalized) 
coordinates or parameters q , q , ••• , q , where n is called the number 

1 2 n 

of degrees of freedom of the system. Their time derivatives 

dq 
q
r; of

are called (generalized) veiocities. 

(1-1) 

m 

the rotation of an elastic earth with a liquid core by Jeffreys (1949) and Jeffreys by 
and Vicente (1957a, b). In the form of Hamilton's canonical equations it was 

Denote the kinetic energy of the system by T , and its potential energy 
U . Then T is a quadratic form in the q 

r

applied to a rigid earth by Andoyer (1923, 1926) and, most recently and accurately, 
by Kinoshita (1977). 

Poincare (1910) modified Lagrange's equations, using non-holonomic group 
variables, and applied it to the rotation of a rigid mantle with a homogeneous 
liquid core. Finally, Moritz (1982a) applied Poincare's equations to the rotation 
of the earth model of Jeffreys - Molodensky (elastic mantle and liquid core), 
which results in extremely simple equations derived in (Sasao et al., 1980) 
in a different way. 

Since the rotation of a rigid earth is well-known, the paper reviews the 
classical approach by Jeffreys, using holonomic variables, and, in more detail, 
the recent approach through Poincare's equations using non-holonomic variables 
related to rotation groups. 

1. Lagrange•s·Equations

The principles of classical dynamics are treated in any course of theo­
retical physics. Standard treatises are, e.g., (Goldstein, 1980) and (Lanczos, 
1970); (Arnold, 1978) can be re�ommended as an excellent synthesis of the 

T ; a q q rs r s 
(1-2) 

summation over twice repeated subscripts is implied as usual (Einstein surrmation 
convention), and the coefficients a will in general be functions of thers 
coordinates: 

a ; a (q , q2, ••• , q )
rs rs 1 n 

The potential energy U is a function of the coordinates: 

U;U(q1, q2, qn)

(1-3) 

(1-4) 

(and possibly also of time t; this possibility will be disregarded here), 
Hamilton's principle. The equations of motion may be derived from the following· 

principle of least action, or·Hamiltön's principle. We introduce the Lagrangian, 
or Lag_rangian function, L , by 

L ; T - U ( 1-5) 

as the difference between kinetic and potential energy, and define the action 
A by the integral 

t2 
A ; j L dt ( 1-6) 

tl 

r 
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of L along the trajectory from the initial point (time t ) to the end point1 
(time t2) of the motion. 

Then the principle of least action states that the motion is such that 

t2 t2 
A = J L dt = J (T-U)dt 

t1 tl 
Lagrangian equations. 

the condition (1-7) leads 

d faL]
c1t Gf 

r 

aL a"cf° = 0 

r 

= minimum (1-7) 

Using well-known methods of the calculus of variations, 
to Lagrange's equations 

(1-8) 

a system of n ordinary differential equations of the second order for 
qr = qr(t) 

The geodesist knows the relation between a variational problem and a system 

rotati.onal synvnetry (8. = A) • The potential energy U expresses the effect 
of sun and moon, the lunisolar attraction. 

For this case, Lagrange's equations (1-8) can be fonned and, after some 
transfonnations, neglecting small tenns, lead to the well-known Pöisson equatiöns 

• 1 L e = en 2 • 

• 1 ,t,sine = - en Ll •
(1-11) 

whose solution gives precession and nutation in longitude ,t, and obliquity 
e ; n is a constant average value of the earth's rotational speed, and L1
and L2 are appropriate components of the lunisolar torque. 

These brief remarks are only intended to convey a general idea how Lagrange's 
equations can be applied to earth rotation in a simple but important special 

of second-order differential equations from ellipsoidal geometry: a geodesic case. The case of a rigid earth is well known,being treated in many textbooks, 
line, being the shortest connection between two points (on the ellipsoid or cf. (Plummer, 1918; Schneider, 1981; Melchior, 1983; Moritz and Mueller, 1985). 
on any other· smooth surface) satisfies the condition of least arc length, analogous The most detailed and accurate treatment is Woolard's (1953), which has served 
to (1-7), and is also a solution of a second-order system of differential equations,as an official standard in astronomy until 1979. 
analogous to (1-8); in this case n = 2 • 

Rotation of a rigid body. The position (or rather orientation) of a rigid 
body rotating around its center of mass may be defined by three Eulerian angles 
$, e, ,t,. Then 

Hamilton's canonical equations constitute a very elegant reduction of Legendre's 
system of n second-order differential equations to a system of 2n first-order 
differential equations. Hamilton's equations use the 2n canonical variables 

ql = $ ' q2 = e ' q3 = 1j, ( 1-9) 

are the generalized coordinates describing the rotation of a rigid body such 
as a rigid earth; hence n = 3 in this case. 

For a certain specification of the Eulerian angles, the expression for 
the kinetic energy has the form 

1 • 2 •2 2 1 • • 2 T = I A(e +,t, sin e) + -z C(4>+,t,cose) , (1-10) 

q 1• q2 • Cl,, ; Pi, P2 , • •. , Pn wi th 

aL
P r  = -.-

aqr 
they have the simple form 

Clr aH 
apr 

Pr

where the Hamiltonian 

H = T + U 

aH 
acir 

H is defined by 

which serves as an example for the general expression (1-2). The constants as the sum of kinetic and potential energy, 
A and C denote the principal moments of inertia of a rigid earth, presupposing 

Q) 
\0 
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The Hamiltonian approach has been introduced by Andoyer in 1911, cf. (Andoyer, be the vector describing elastic (and possibly rotational) displacement of any 

1923, 1926 ). Recently, Kinoshita (1977) has used Andoyer variables to derive material point of the body; it is the vector leading from the "undeformed" to 

the most accurate theory of precession and nutation presently available for 
a rigid earth; cf. also (Moritz, 1980b; Moritz and Mueller, 1985). In general 
books on mechanics, the Hamiltonian approach to the rotation of a rigid body 
is hardly found, an exception being (Arkhangelsky, 1977). 

We shall not discuss the Andoyer-Kinoshita method in this paper as we shall 

the "deformed" position of that material point and will be assumed small. The 
displacement u is different for different points x = (x , x , x ) , so that -

- 1 2 3 
it will be a function of position 

u = u(x , x , x )
- - 1 2 3 

(2-2) 

restrict ourselves to the more realistic earth model consisting of an-elastic this function is assumed to be continuous. 
mantle with a rigid core, which so far has not been treated by Hamiltonian methods. 

2. The Method of Jeffreys and Vitente

The first to treat the rotation of an elastic earth with a liquid core
by Lagrangian methods was Jeffreys (1949). This approach has been perfected 
by Jeffreys and Vicente (1957a, b). In what follows we shall try to outline 
this method in a simple way, at the risk of oversimplification because the details 
are enonnously complicated. 

A basic principal difficulty consists in the fact that the mechanics of 
an elastic earth is problem of co�tinuum mechanics for which the number of degrees 
of freedom is infinite. In fact, a general continuous function requires for 
its complete description a countably infinite set of parameters, e.g., its Fourier 
coefficfents or its spherical-hannonic coefficients, as the case may be. 

The lunisolar potential, which is responsible for tidal deformation and 
also for precession, nutation, and forced polar motion, can be expanded in such 
an infinite series of spherical harmonics. Fortunately, this series converges 
very rapidly, so that it can be truncated after degree 2 or 3 , reducing the 
problem to one of a finite number of degrees of freedom which can be treated 
by the methods of classical dynamics. 

Kinetic and potential energy. Let 

u =(u
1
, u

2
, u

3) (2-1] 

Then the kinetic energy is expressed by 

T =½ff fp(Ü�+ü�+Ü�)dv (2-3) 

p denotes the density, dv the element of volume, and the integral is extended 
over the earth. The expression may be considered a continuous analogue of (1-2), 
the integral corresponding to the sum implicit in (1-2 ) by Einstein's convention. 

The potential energy is given by 

- 1 fff r a
2

v 
a(Ve+Vl ) 

u - 7 PI ax.ax. uiuj + -ax:-
- l. J l. 

u + 
i 

aV [ 
au . aui

) _1 
aui

] +- _J - - - - dvax. ui ax. uj ax. P Pij ax.
J l. l. J 

(2-4) 

Here V denotes the gravitational potential of the (undeformed) earth, V the 
e 

lunisolar perturbing potential, V
1 

the change of the gravitational potential 
V because of elastic deformation, and P .. the stress tensor. The sul!ITiation 

l.J 
convention applies to i, j running from 1 to 3 . 

We shall not attempt to derive (2-4); cf. (Jeffreys and Vicente, 1957a). 
We point out, however, the analogy to "small oscillations" well-known from classical 
dynamics, for which U is a quadratic function of q 

U -
1 

b q - 7 rsqr s (2-§) 

with constant coefficients b • In fact, (2-4) is quadratic in the displacements rs 

\J) 

0 
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u1 , and the integral in (2-4) again corresponds to the sum implicit in (2-5). 

lt is important to note that so far we have regarded the earth as nonrotating, 
in order to simplify matters and make the situation more transparent. Rotation 

will be taken jnto account later. 

Truncation. The dynamical system defined by 

t2 
f(T-U)dt = mi�imum (2-6) 

tl 
with (2-3) and (2-4), has infinitely many.degrees of freedom as we have mentioned

above. 

The corresponding generalized coordinates q would be the coefficients 

of some spherical-harmonic expansion of the compo�ents u of the displacement
i 

vector u • Since such an expansion is linear in the coefficients, the u will
- i 

be linear functions of the q --- r

By an appropriate truncation we can achieve that we have only a finite

number n of such q , so that u. will be a linear function 
r i 

where 

u = 
i 

L C. q = C. q 
r=l 

ir r ir r 

u. and
i 

c. , but not
ir 

ui = ui(x1, x2, x3, t) ,

cir = ci)x1' x2, x3, t)

(2-7) 

q , will be functi'öns ot position and time:r 

(2-8) 

taining a kinetic energy of form (1-2) and a potential energy of form 

1 
U = '2" 

b
rsqrqs + 

c
rqr

(2-10) 

with constants b and c , which obviously is of form (1-4). The Lagrangian
rs r 

equations (1-8) then give a system of linear ordinary differential equations 
of second order for the q (t) 

Consideration of rotation. This barest sketch of the basic idea must now 
be made more precise and more concrete. First of all, we must introduce a rotating 
frame of reference, since (2-3) and (2-4) refer to a non-rotating inertial frame. 
We select a frame of reference which rotates with uniform angular velocity n around 
an x3-axis that has a fixed direction fn space; a properly "earth-fixed" reference
frame will deviate little from this uniformly rotating frame. Jeffreys describes 
the transition from one frame to the other by a rotation matrix. lt is known that 
every rotation matrix depends on 3 parameters (e.g., three Euler angles). 
Jeffreys denotes these three parameters by l', m', n'; they can be supposed 
small since the rotation matrix relating the "earth-fixed" frame to the uniformly 
rotating system will devi�te little from the unit matrix,- but they will depenQ 
on time. 

Similar to (1-9), we may put 

q
1
(t) = l', q/t) = m', q3(t) = n' (2-11) 

for the first three Lagrangian parameters describing the rotation of the earth 
as a whole. 

Another set of three parameters, denoted l, m, n , will describe the rotation 

whereas of the liquid core with respect to the mantle, so -that 

qr = qr(t) (2-9) 

is a function of time only. The stress tensor is linearly related to u. by
i 

the well-known elastic stress-strain relations (Hooke's law), the known external

potential also has a truncated spherical-harmonic expansion, and V1 , being

the result of a small deformation, is also related linearly to u .. Taking 
i 

all this into account, we can perform the integration in (2-3) and (2-4), ob-

q
4
(t) = l, q5(t) = m, q6(t) = n (2-12) 

Elasticity of the mantle. We are yet to specify those parameters qr that
enter into the expansion (2-7) of the elastic displacement vector � and that 
correspond to a truncated spherical-harmonic expansion. 

Because of the enormous distance of sun and moon from the earth, and since \0 
.... 

r 

n 

DOI: https://doi.org/10.2312/zipe.1985.081.02



the spherical harmonics of degree O and 1 are to be disregarded, the term 
of degree 2 will be dominant; cf. (Moritz, 1980a, sec. 55). Furthermore, for 
earth rotation, only the order 1 is relevant (the so-called diurnal tides, 
cf. Melchior, 1983, p. 26). Thus, only terms proportional to 

R (e,s1.l = P (cose)cos>. ,21 21 

S (e,>.) = P (cose)sin>.
21 21 

(2-13) 

will be relevant. Here e (polar d�stance) and " (longitude) are spherical 
coordinates, and the Legendre function P21 is defined by

P 21(cose) = 3sinecose . (2-14) 

Solving the partial differential equations of elasticity for the mantle, 
taking into account appropriate boundary conditions at the earth's surface and 
at the core-mantle boundary (Melchior, 1983, sec. 5.5; Moritz, 1981, secs. 
7 and 8; Moritz and Mueller, 1985, secs 4.3 to 4.5), we can express everything 
in terms of the radial displacement ur at the earth's surface and at the core­
mantle interface, expanding into spherical harmonics and retaining only the 
terms (2-13): 

ur(R) = q7(t)R21(e,>.) + q
8
(t) S21(e,>.) ,

ur(Rc) = q9(t)R21(e,>.) + q1o(t)S21(e,>.)·
(2-15) 

rlere, R = 6371 km and Re= 3485 km denote the mean radii of the earth and 
the core, respectively; the coefficients q7(t) through q10(t) furnish the
desired generalized "coordinates" describing mantle elasticity. 

lt is not difficult to see that exactly 4 parameters are needed to describe 
mantle elasticity. lt is well known that the Solution can be expressed in terms 
of three Love numbers h, k, l (cf. Melchior, 1983, sec. 5.5; Moritz, 1-981, 
p. 96). However, h, k, and � satisfy a linear relation which expresses the

Lagrange's equations. Using the "rotational" parameters q (t) to q (t) 
1 6 

and the "elasticity" parameters q (t) to q (t) we get a Lagrangian 
7 10 

L = L(q1' q2' ••• ' \ol (2-16) 

for a dynamic problem with 10 degrees of freedom. L will be quadratic in 
the qr and can be shown to have the form 

L = � a � � - � b q q + c q � - d q 
L rs r s L rs r s rs r s r r 

(2-17) 

where the summations go from 1 to 10 • The coefficients a etc., are rs 
constants but depend on the model assumed for the internal structure of the earth 
and must be computed accordingly. The presence of the "gyroscopic term" 
crsqr�s is due to the rotation of the earth (cf. Goldstein, 1980, p. 354; 
Lanczos, 1970, p. 122). 

Finding these coefficients constitutes the main difficulty, which is enormous 
indeed. After that, matters are straightforward. Using (2-17), Lagrange's equations 
(1-8) give immediately 

a q + (c -c )q 
+ b q + d = 0

rs s sr rs s rs s r 
(2-18) 

The further treatment of these linear differential equations is Standard. Using 
complex combinations 

q
l + iq2 = Q l ' 

q4 + iqs = 02 (2-19) 
q7 + 

iqs = Q3 ' 

q9 + 
iq10 = Q4

(with an appropriate choice of rotation parameters it is possible to disregard 
n and n' ) we are able to reduce (2-18) to a system of four complex linear 
differential equations for Qk (k = 1,2,3,4) , and "transforming to the frequency 

vanishing of the tangential tension. Thus we are left with two independent numbers domain" by 
h and l, which, apart from a known factor, are nothing else than radial and 
tangential displacement at the earth's surface, ur(R) and u

t
(R) • lnstead Qk(t) = Q�eicrt 

of u
t
(R) we may also take ur(Rc) , which leads to (2-15). 

(2-20) 

\0 
II) 
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we get a system of four linear algebraic equations to be solved for Q� 

The Lagrangian approach of Jeffreys and Vicente has a conceptually simple 
structure: once the Lagrangian (2-17) has been established , everything else 
follows in a logicallystraightforward manner. Nevertheless, the details of the 

3. Every rotation matrix has an inverse �-1 which again is a rotation
matrix. 

Furthermore, the inverse of a rotation matrix is simply its transpose: 

cornputation of the coefficients ars , etc., for a given earth model are enonnously A-1 = AT (3-1) 
complicated, and only a man of the physical insight an d mathematical skill of 
Sir Harold Jeffreys could have devised such an approach an d lea d it to a success- so that 
ful conclusion. 

In view of these difficulties, Jeffreys an d Vicente (1957a, b) considered 

only two greatly simplified earth models: the central particle model, consisting 
of a homogeneous core and a central mass point representing the solid inner 
core, and the Roche mo del using a continuous density distribution in the core 
according to Roche's law. For the same reason, beginning at an early stage, 
cornputations were perfonned numerically instead of analytically, so that the 
physical interpretation becomes difficult. Thus this approach, though logically 
very elegant, is physically not completely transparent. 

Therefore, Molodensky (1961), wishing to use more realistic earth models, 
gave up the variational approach and instead used the partial differential equations 
of elasticity and hydromechanics. A particularly simple and elegant solution 
of Molodensky"s problem was provided by Sasao et al. (1980), and it turned out 

AAT =ATA= (3-2) 

fhe matrix 

dl! = �-l d� = �T
d� (3-3) 

is skew-symmetric, which immediately follows by differentiating (3-2). Thus 
i t has the fonn 

drr = 

r 0 

d1r 
- d/
-

2

-d1r3 d1r
10 - d< 

d1rl 0 .J 

On introducing the matrices 

(3-4) 

that these eouations can be derived and physically interpreted by another variational 
principle which goes back to Poincare (1901). 

[ 
o o o 1 [ o o 1 l [ 0 -1 

� 
lt is not surpr1s1ng that, after 35 years of efforts, we now understand 

the problem better, but this would not be possible without the pioneering work

of Jeffreys and Molodensky. 

3. Poincare's•Equations

The rotation group. lt is well known that rotation matrices � forma
�. so that the following properties hold_: 

1. The product of two rotation matrices � and !!_ is again a rotation
matrix C =AB. 

2. For the unit matrix we have AI= I A = A 

I1 = o o -1 , I
2 

= o o o , f3 = 1 o o (3-s) 
0 1 0 -1 0 0 0 0 0 

this may be written 

drr = I1 d1r1 + I2d1r2 + 
f3d1r3 = I1d1ri (3-6) 

The term f1 d1r1 obviously represents a rotation by the infinitesimal angle
d1r1 around the x1 axis, and similar for the other term�.

lt is immediately verified that the matrices f1 satisfy the basic

tornmutation relations 

� 
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(' 

IT1• I;J = I3 

IT2• I;J = I1 

IT3• IJ = l2 

The commutation symbol [J stands for 

ITi' Ij] = Iiij 
- I#i ,

E,E. being the usual matrix product of E. and E. 
-.... -J -i -) 

(3-7) 

(3-8) 

Eqs. (3-7) are a special case, for the rotation g,roup, of the general 
commutation relations 

rE i' Ij] = 

cijk�k (3-9) 

valid for a general tontinuöus group, or Lie gröup; cf. (Smirnow, 1971) or 
(Choquet-Bruhat et al., 19�1). The c.. are constants, called the structure 

Given w_ , one cannot, however, integrate (3-12) to obtain coordinates i since 
i 

the drr_ are not, in general, perfect differentials. Nevertheless, it is useful 
i 

still to regard the drr as some kind öf toordinates, called anholonomic coordi­
i 

nates, which make sense only in the infinitesimal domain; cf. (Grafarend, 1975). 

The important property of the drr is their group-invariance, whereas 
holonomic coordinates for the rotation group, e_.g., the three Euler angles, 
are not group-invariant; see below. 

The törque L = (L , L , L )  is related to the rotational potential energy 
--- - 1 2 3 

u �

-dU = L
1
drr

1 
+ Lirr

2 
+ Lirr

3 
= Lidrri

so that we may write formally 

L = 
_ au 

i a;-­. i 

(3-13) 

(3-14) 

iJk 
constants of the gro�p. For a general group, they run from 1 to n , n being which is analogous to the relation between force F and potential V 

again the number of degrees ot treedom. By (3�8), the interchange of i and 
j means a change of sign, whence 

ci jk = -cijk

For the rotation group we have in particular 

c123 = c231 = c312 = 

c213 = c321 c132 = -1 

all other ci jk = 0

The c .. k are zero for commutative (Abelian) groups. iJ 

(3-10) 

(3-11) 

The angular velocity component w. along the xi axis may be considered

a change of drr
1 

with respect to time t : 

drr. 
(3-12) wi = clt 

f. = -grad V or Fi 
_ aV

äx 
i 

the minus sign being conventional in both cas_es. 

(3-1.5) 

Poincare's equatiöns. Starting again from the principle of least action 
(1-7), but using anholonomic coordinates drr_ and velocities w. , we find 

i i 

Poincare's equations- of motion: 

d ( al) 
cff aw"-:- +c w_l!:__-1!:._=0 i jkjawk arri 

(3-16) 

They differ from Lagrange's equations (1-8) only by the middle tenn, containing 
the structure constants c_. ; for holonomic coordinates (possible in the case . �k 
of commutative or Abelian groups), they even reduce to Lagrange's equations. 
A derivation of (3-16) can be found in (Moritz, 1982b, c), or in (Moritz and 
Mueller, 1985, sec. 4.6.2). 

Eqs. (3-16) were given by Poincare (1901) explicitly with a view to application 

'°�

1. 
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to the problem of earth rotation, but this paper remained practically unknown 
to mathematicians. This is the more surprising as otherwise his wor� in dynamics 
is highly recognized by them.Recently the topic, motion on a Lie group, has 
become quite fashionable, cf. (Hermann, 1968; Abraham and Marsden, 1978; Arnold, 
1978); none of them quotes Poincare's paper. Nor does (Whittaker, 1961), who 
uses general non-holonomic coordinates (not restricted to Lie groups). 

We take into account L = T - U and the fact that the potential energy 
U does not depend o� the velocities wi. We furthermore assume that T depends 
only on wi so that aT/ani = 0 . Then, using (3-14), we may write Poincare's 
equations (3-16) in the form 

d 
[ a

T
) cff aw i

+ C w 2I.-ijk j aw - Li
k 

(3-17) 

there is no <langer to confuse the torque components Li with the Lagrangian L 

Application to Euler's equations. As an example, consider the rotation 
of a rigid body. Then the group under consideration is the three-dimensional 
rotation group, whose constants are given by (3-11). For the kinetic energy 
we have the simple equation 

· 1 2 2 2 
T = 7 (Aw1 + Bw2 + Cw3) , (3-18) 

where A, 8, C are the principal moments of inertia, and the coordinate axes 
are the principal axes of inertia. Then (3-16) immediately gives 

A� + (C-B)w w = L 
1 2 3 1 

8� + (A-C)w w = L
2 3 1 2 

C� + (8-A)w w = L 
3 1 2 3 

which are the well-known Euler equations for rigid-body rotation. 

(3-19) 

It is instructive to compare the approaches of Lagrange and Poincare. In 
the Lagrangian approach, using holonomic coordinates $, e, w, the kinetic 
energy (1-10) depends on the coordinates q in addition to the velocities

r 
q , whereas in the present approach, (3-18) depends only on the velocities 

r 

w .• Eq. (1-10) is a quadratic form in the velocities with variable coefficients, 
J 

whereas (3-18) has constant coefficients. Furthermore,'(3-18) has a very simple 

and symmetric form, expressing group symmetry or group invariance. 

Thus the essential feature of Poincare's approach consists in the fact 
that, using anholonomic variables, the group symmetry can be fully exploited. 

4. Rigid Mantle and Liquid Core·

Poincare (1910) considered an earth model consisting of a rigid mantle
enclosing a homogeneous liquid core. Both the earth's surface and the core­
mantle interface are regarded as concentric and coaxial ellipsoids of revolution. 

Poincare uses two different approaches which both lead to the same result: 
1. The core movement is treated by the equations of hydrodynamics.
2. The core movement is considered a "simple motion", reducing to a rotation

of the core after an affine transformation of the ellipsoidal core-mantle inter­
face into a sphere. 

The first approach is appealing on physical grounds and is, therefore, 
also treated in the textbook literature; cf. (Lamb, 1932, p. 724; Melchior, 
1983, p. 125). The second approach is considered by Poincare himself simpler 
and more elegant; it will be briefly sketched here; for more details cf. (Moritz, 
1982c; Moritz and Mueller, 1985). 

The kinetic energy is given by 

1 ( 2 2 2 T = l Aw1 + Bw
2 

+ Cw3 + 

+ A x2 
+ B x2 

+ c x 2) + c' 1 C 2 C 3 

+ Fw1x1 + Gw2x2 + Hw3x3 (4-1) 

generalizing (3-18) because of the rotation of .the core with respect to the 
mantle (angular velocity components x1, x

2
, x3 ). Here A, 8, C and Ac,

Be, Ce denote the principal moments of inertia for the whole earth and for 
the core, respectively. Because of symmetry we have 

8 = A , G = F (4-2) 
I.D 
I.J1 

A 
C 
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furthermore it may be shown that, to a sufficient approximation, 

F = Ac , H = C c • (4-3) 

We m11w wish to apply Poincare's equations (3-17). We here have six degrees 
of freedoril: three for the rotation of the earth as a whole (,.,J and three 
for the core rotation (xJ . Thus the whole six-dimensional group relevant 
for the pr.esent problem consists of two independent rotation groups. The structure 
equations (3-7) for rotation groups give 

rE,El=E •--1 �- -3 

[ E E;J = E 
-2' - -1 

[E E]=E 
-3' -1 -2 

'

' 

r E c, E � = - E c 

--1 -2 -3

[Ec, E� = - Ec 

-2 -:r -1 

[ EC, E� = - EC 
-3 -i -2 

(4-4) 

' 

where Ec denotes E. for core rotation. Note the difference in sign due to 
-i -i 

the fact that the second rotation is with respect to,the mantle whereas the 
first is a rotation of the mantle with ·respect to inertial space. Any rotation 
E. commutes with any -rotation Ec since the two rotations are independent of
-1 -i 

each other, whence

[E.,�=0 
-i -½J ( i and j = 1 , 2, 3) 

The six quantities w, w, w, x, x, x 1 2 3 1 2 3
•.. , w and E , E , E , Ec, Ec, Ec with 

6 -1 -2 -3 -1 -2 -3 

The corresponding structure constants c 
ijk 

to (4-4) and (4-5). 

(4-5) 

may be identified with w, w, 
. 1 2(. ) E , E , ••• , E accord1ng to 3-9 • 

-1 -2 -6 
are all 0, 1, or - 1  , according 

Thus Poincare's equations (3-17) with i, j, k running from 1 to 6 , 
give 

d r�) - w � + w � = L 
ift ,aw1 3 äw2 2 äw3 1 

d ( aT) a T + a T - L cff aw2 
- "'1 aw3 "'3 � 

- 2

d ( aT] a T + a T - Lcff aw3 
- "'2 � "'1 aw2 

- 3 

(4-6) 

d 
[ a

T
) + aT aT _ o 

c1t � x3ax -x2ax -
1 2 3 

d 
[ aT) aT aT _ o 

cff ½ +x1äx; 
-x3� -

d [ aT) + aT aT _ o 
cff ax3 X2 � -x 1 � 

-

(4-7) 

The right-hand side of (4-7) is zero since the lunisolar torque .!:. acts on 
the whole earth; there is no external torque which would effect a relative motion 
of the core with respect to the mantle. This relative motion is caused purely 
by the rotation of the mantle which, through the ellipticity of the core-mantle 
interface, acts on the core through "inertial coupling" ( which, e.g., also renders 
the rotational behavior of a raw egg different from that of a hard-boiled egg). 

The further treatment is straightforward. We substitute (4-1) into (4-6) 
and (4-7), taking (4-2) and (4-3) into account. Then, after some algebra and 
neglecting small terms, the third equation of (4-6) gives, with L = 0 because 
of rotational symmetry, 

w3 = n = const. 

and the third equation of (4-7) has the solution 

x3 = 0 

Introducing the complex quantities 

U = w1 + iw
2 

, 

V =  x1 + ix2 
L = L1 + iL2 

(4-8) 

(4-9) 

(4-10) 

the tirst two equations of (4-6) can be combined into one complex equation, 
and the same can be done with the first and second equation of (4-7). The result 
is 

AÜ + A v -i( C-A)nu + iA nv = L 
C C 

A Ü + A v + iC nvC C C 0 
(4-11) 

C7'I 
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which are Poincare's equations. By a transformation to the frequency domain, 
putting 

u = u e iat 

0 

v = v e i<•t L = L e iot 

0 0 

' (4-12) 

these equations can be reduced to a system of algebraic linear equations for 
two unknowns and thus easily solved, if the lunisolar torque L is given. 

The physical meaning of the two equations (4-11) is different. The first 
is a consequence of the well-known angular momentum equations 

dH 
at+ wxH=L- - -

� (4-13) 

rotation x of the core with respect to the mantle and a resi·dual deformation 
V 

-e 

The kinetic energy of a mass element is ½ .!'._2dM and hence for the whole 
earth we have 

T=HJJ.!'._2 dM (5-3) 

The substitution of (5-1) for the mantle and (5-2) for the core leads rather 
directly to the expression 

1 1 T 
= 

-z Cij wi wj + �j wi xj + 7 C{j \ xj (5-4) 

which holds for an arbitrary body (rigid or not), in a system rotating with For a rigid body, using principal axes of inertia, the inertia tensors 
angular velocity � ; the vector !!_ denotes angular momentum. The second equation, C .. (whole earth) and ce _ (core) are diagonal, and (5-4) reduces to (4-1).
however, can be interpreted only in terms of the hydrodynamics of the liquid F�� an elastic body, howe�ir, we must allow for small time-dependent deviations 
core. from diagonal form, putting 

Formally, however, both equations (4-11) are very similar; and the present 
derivation from a variational principle explains the similarities as a simple 
consequence of the two basic rotations, w

i 
and x

i 

5. Elastic Mantle and Liquid Core

Kinetic energy. The velocity of a particle in the mantle can be split up
as foll ows: 

v=v =wxx+ v - -mantle - - -m 
(5-1) 

where �x� denotes a rigid rotation and .!'.. , a small deviation from rigid 
rotation due to elastic deformation. In a similar way, we have for a particle 
in the core 

V = .!'..core 
= � x � + X. x � + .!'..c (5-2)

where, in addition to the rotation � of the entire earth, we have a relative. 

[ 
C .

] = 1 � l.J 

._ 
0 

0 

A 

0 n [ 
C 11 

+ C 12
c
13

12 
C 22 

C 

23 : 1

3 

l 23 
C 

33 

(5-5) 

and similarly for the core. Here A, C, A ,  C (the last two being principal 
e e 

moments of inertia for the core) are constants. As regards the residual inertia 
tensors, 

c .. = c .. (t) , c�. = c� (t) , 
l.J l.J l.J l.J 

(5-6) 

we only retain those which are related to nutation and polar motion, namely 
c , c , ce , and ce . Other terms do not influence these phenomena and can 13 23 13 23 
be disregarded without harm. Then (5-4) takes the final form 

1 ( 2 2 ) 1 2 T = .,,- A w +w + .,,- Cw + C w w + C w w +<. 1 2 <. 3 13 1 3 23 2 3 

+ � A (2w X + x2 + 2w X + x2) + � C (2w X + x2) + L e 1 ! ! 2 2 2 L e 3 3 3 

+ Ce (w X + w X +XX ) + Ce (w X + w X +XX )
13 1 3 3 1 1 3 23 2 3 3 2 2 3 

(5-7) 
\D 
-.1 

C 
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Potential energy. For the total potential energy U we now have to consider· 
elasticity, so that 

u = u + u + u
g e d 

(5-8) 

Here U is the gravitational potential energy related to the lunisolar torque; 
g 

it is the same as U in sec. 4. Now, however, we have two additional terms 
related directly (U) and indirectly (U) to elastic deformation. More precisely, 

e d 

U represents the energy of the elastic forces which are a reaction of the 
e 

earth (including its liquid core) to the external forces, and U represents 
d 

the change in gravitational energy due to elastic deformation. 

Ud is relatively easy to derive; we find

U = n(c f + c f )  
d 13 1 23 2 

(5-9) 

where f and f represent the given external (lunisolar) potential; cf. 1 2 
eq. (5-20) below. 

Then U e can be found using a theorem given in (Love, 1927, p. 173): "The

Ued = 
Ue + Ud

(5-11) 

for the combined energy of elastic deformation, so that the total potential 
energy becomes 

u = u + u 
g ed 

(5-12) 

Application of Poincare's equations. First we have to find the variables 
for the present problem. Just as in the rigid-mantle problem discussed in the 
preceding section, we have two rotation groups, given by the six velocities 
w1, w2, w3

, x
1

, x
2

, x
3

• In addition to these rotational variables, the kinetic 
energy (5-7) also contains the time-variable products of inertia c , c , 

13 23 
c�

3, c�
3 

; and also the potential energy depends on these variables; cf. (5-9) 
and (5-10). Thus we have four additional degrees of freedom, which describe 
the elastic deformation. They are ordinary (holonomic) variables q , q , q , 

7 8 9 

q
10 , 

so that the usual Lagrange equations (1-8) hold for them. (This also fits 
into the group-theoreti c scheme, wi th 1r .  inst_ead of q. for i = 7, 8, 9, 10, 

i i 

the corresponding subgroup being Abelian with zero c .. k .)iJ 

potential energy of deformation of a body, which is in equilibrium ·under a given The Poincare equations (4-6) and (4-7) finally remain the same since we 

load, is equal to half the work done by the external forces, acting through have two independent rotation groups as in sec. 4. In addition to these six 
the displacements from the unstressed state to the state of equilibrium." The resultequations we have 
is 

U = 
1

Q rE (c 2 + c 2) + E (ce 2 + Ce 2) + 
e 7 l 11 13 23 22 13 23 

+2E (c Ce + c Ce i] 
12 13 13 23 23 

(5-10) 

where the E .. are constants only depending on the internal structure of theiJ 
earth model under consideration; they can be expressed relatively easily, e.g., 
through the standard functions y (r), y (r), y (r), y (r), y (r), y (r) of 

1 2 3 4 5 6 
(Alterman et al-., 1959). 

A detailed derivation of T and U can be found in (Moritz, 1982b, secs. 
6 and 7) or in ( Mori tz and Mue 11 er, 1985, sec. 4. 7) . 

We finally put 

a(T-U) = o i = 7, 8, 9, 10 , aqi

which follows from (1-8) since T-U does not contain the corresponding q·_ 
i 

Since only U d, but not U , depends on these q_ , this reduces to
e g i 

aT _ aued aT _ aUed
ac13 - ac13 

' ac23 - ac23 
' 

au au 
2!.....:� 2!_=� 

e e ac13 ac13 ace ace 

23 23 

(5-13) 

The 10 equations (4-6), (4-7), and (5-13) relate and determine the 10 
quantities C C Ce and Ce wl' w2, w3, X1' X2• X3• 13' 23' 13 ' 23 

We note that the torque components Li are the same as in sec. 4, namely
purely gravitational: since U ed does not depend on the rotational variables,

�

O'.l 
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we have 

L. = - � 
i a11. 

au 
- ____J[ 

a\ 

representing the usual components of the lunisolar torque. 

(5-14) 

The rest is straightforward. We substitute (5-7) into (4-6) and (4-7). 
The third equations of the two systems again give 

w3 = n = const.

(5-15) 
X

3 
= 0 

The complex combination of the first two equations of each system yields 

AÜ - i(C-A)nu + Ae(v+inv) + n(c+inc) = L , 

A Ü + A v + iC nv + nc = 0 , 
C C C C 

with (4-10) and 

c = c13 +ic23
e · e 

ce = cl3 + , c23

(5-16) 

(5-17) 

f = il/(C-A)n (5-20) 

Discussion. Eqs. (5-16) and (5-19) probably constitute the simplest formulation 
of the Jeffreys-Molodensky liquid core problem. They are due to Sasao et al. 
(1980), who derived them using the equations of elasticity and of hydrodynamics, 
corresponding to "Poincare'sfirst method" as mentioned at the beginning of sec. 
4. For a rigid earth, with c .. = O , they reduce to Poincare's equations (4-11)

l.J 

äs they should. The remarkable achievement of Sasao et al. (1980) was to show 
that the generalization of (4-11) to an elastic mantle can be made in such a 
simple way. That means, the resulting equations were simple, but their derivation 
was rather complicated and difficult. 

The present approach, corresponding to "Poincare's second method",tries 
to conform to the useful guideline that simple results should be derived in 
a simple way. The logical simplicity is expressed by the fact that the equations 
of hydrodynamics are not needed and both equations (5-16) are derived in a unified 
way. 

The internal structure of the earth only enters through the coefficients 

DiJ or Eij which, besides permitting a simple physical interpretation as coeffi­
cients in the elastic energy (5-10), can easily be expressed by means of standard 
functions and computed for arbitrary (basically radially symmetric) earth models 

The complex combination of the results of (5-13) gives with f f + if : featuring a heterogeneous liquid core and even a solid inner core. 

u = E11c + E12ce + f

v = E12c + E22ce

which may be inverted to yield 

c = D11(u-f) + D12v

ce = D12(u-f) + D22v

1 2 

(5-18) 

(5-19) 

The four equations (5-16) and (5-19) determine the four complex unknowns 
u, v, c, ce in the usual manner. We finally note that f is related to the 
given lunisolar torque L by 

With respect to the Lagrangian approach of Jeffreys and Vicente outlined 
in sec. 2, the simplification is achieved by using non-holonomic rotational 
variables and, as elastic variables, the products of inertia c13, c23, c�3 and
c�3 instead of the radial displacements according to (2-15).
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SECULAR AND LONG TERM VARIATIONS IN POLAR MOTION

F'ROM CLASSICAL AND DOPPLER OBSERVATIONS 

A. P0111a• and E. Proverbio••

Abstract. The existence o!' secular and low frequency va.riations 

in the spectrwn o!' polar motion has been reported in a large 

number o!' works and discussed by several authors. 

However, the reality and the geophysical and/or ■eteorolo&_! 

cal causes o!' these phenomena are still a matter of discussion 

chie!'ly because the only long series o!' pole coordinates are 

essentially the ones based on the results of the !'ive ILS st� 

tions. 

The comparison of classical series (ILS and BIH) o!' polar 

coordinates with those derived !'roa Doppler observations lead 

to the emphasizing of s0111e characteristic !'eatures in the s� 

cular polar motion in accordance with the crustal motion model. 

1. lntroduction

The observed Earth's polar motion emphasized the existence

o!' !'ree variations (The Chandlerian wobble) primarily caused 

by the CQIIIPlex internal structure o!' the Earth and its elast! 

city, and !'orced variation (annual and short tena !'luctuations) 

due to the mechanical interaction ot the solid Earth with its 

• Stazione Astronoaica Inter. di Latitudine, Cagliari, Italy

•• Istituto di Astronomia • Fiaica Superiore, Cagliari, Italy
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atmosphere and hydrosphere. 

The evidence of secular and long term variation in polar 

motion has been from time to time denied or explained by means 

of kinematic and dynamics models. Therefore the existence of 

similar secular motion shown in the ILS since 1900 and BIH si� 

ce the 1956 polar coordinates (Poma & Proverbio, 1976) seems 

to testify to the reality or such a motion. 

A plausible geophysical mechanism or polar motion drift is 

based on the possibility of changes in the products or inertia 

or the Earth due to large scale mass displaceaent like the degl�

ciation or polar cup effects and concomitant sea level changes 

(Diclonan, 1979; Nakiboglu & Lanabeck, 1980); but tne difficulty 

of deriving in such a way the amplitude of secular drift calls 

for further research in this direction. 

The comparison of the mean BIH pole of inertia with the 

mean pole derived from c21 and s
21 by GEM 6 and GEM 8 shows

the existence of secular variation in very poor agreement (Poma 

& Proverbio, 1979); it confirms the difficulty of the analysis 

based on the measurement of the Earth's pole of inertia and 

urges the furthering of studies in this problem. 

On the other hand the motion of the Earth's crust according 

to the plate tectonics theory causes secular variation in lati 

tude and longitude of the astronomical stations, as has been 

put in evidence by Proverbio & �uesada (1974). In fact the 

existence or single ■ovements in the continental plates does 

not disagree with the existence or a global movement in the 

Earth's crust. 

Though the changes in the products or inertia or the Earth 

due to tectonic global movement do not influence secular polar 

motion by more than 10% or the observed value (Han-Shou Liu et 

al\, 1974), variations in the zenith of the stations caused by 

global crustal motion could simulate the secular and long tenn 

variations observed in the coordinates or the pole of the Earth. 

An attempt to explain the obaerved motion or the pole by tal<ing 

into account the EÖtvÖs weal< rorce, tending to move the cont1 

nent toward the equator, was -de some time ago by Mikhailov 

(1971) and the results confirmed the possibility or applying 

such a model t.o try to explain the observed drift or the Earth' s 

pole. 

2. Analysis of the observed secular motion

One of the critical questions in the d1scuss1on of whether

the observed secular and long-period tenns in the polar motion 

are a real phenomena or whether these variations are only a 

consequence of the local effects in the mean latitude of the 

observing stations essentially concerns the data set: most of 

the results were based on the observations of the five ILS st� 

tions, a number which often has been considered to be too small 

to allow reliable conclusione. 

About ten years ago, an attempt was aade (Poma & Proverbio, 

1976) to derive secular polar motion starting from the data or 

the polar co-ordinates supplied by the BIH, pratically indepe� 

dent of those from the ILS. 

By c0111paring ILS and BIH values over the period 1956-1974 

an evident similari ty or the drifts or the ILS and BIH pole 

was shown. Considering the large nuaber or instrwnents oper� 

ting in the BIH collaborating stations, this result was, in 

our opinion, reliable evidence of the reality of secular polar 

motion. However, the non-homogeneity in the BIH systea before 

1-.J 

0 
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� af'ter 1962.0 caused doubt about this conclusion .• Table l· 

For these reasons and since we have now at our disposal h01D2 

geneous data of 22 years from BIH a new analysis is here unde� 

taken. 

Annual means cf the polar co-ordinates (x, y) after smoothing 
with a F60 filter (unit: 0'!001) 

The source of data are: Year 

for the period 1955.9 - 1961.9 BIH values are from Bulletins 1959 

Horaires (series 4-5) or BIH taking 1nto account the corrections 60 

which refer these results to the 1968 BIH syst- given in Annual 61 

Reports of the BIH; later values f'or 1962.0 to 1984.0 are froa 

the BIH Annual Reports (values for every l/20th year). 

ILS values are from the Annual Reports and the Monthly Notes 

or the IPNS. 

In order to remove the Chandler and annual components the 

ILS and BIH eo-Ordinates (x, y) have been filtered with F60 

(six - year runninc -ans) which elim1nates or strongly red� 

ces per1ods � 6 years. The mean annual values of the fi 1 tered 

co-ordinates x F60 and y F60 (baryceritres of the polar wobble) 

are given in Table 1 and plotted in Fig. 1, where an averaged 

val� of' 0':037 is reaoved from (x F60)
ILS

; th• BIH values bef� 

re 1962.0 are joined by hatched l1nes. The annual ■ean dif'f� 

rencea b•t-en BIH and ILS pole positions are also listed in 

F1g. 1 and shown at the top of Fig. 2. 

A visual exaaination of these diagrams clearly suggests soae 

considerations: 

a) there is a significant similarity in the variation of the 

BIH and ILS y-coordinatea; 

b) the trend in y appears fairly tobe a linear drift with 

superimposed oscillation of little aaplitude 
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c) there 1s no evidence of d1scont1nuity in the BIH y-coordin�

te bet'ore 1962.0

d) the x-coordinate shows the existence of lon& term fluctuation

whereas there is evidence of the existence of little secular trend.

exist it m1ght be expected that the ILS pole should move with 

respect to BIH pole. No evidence for such a motion over a long 

period 1s shown in our results. 

Systematic differences between the y-coordinate of the BIH 

and ILS systems exist, but they are small. Points (b) and (d) are in agreement with a former analysis of 

the ILS data over the period 1902-1960 (Proverbio et al. 1971). 

These conclusions are also supported by numerical results. 

Solutions for a linear rate of drift by least squares give for 

dy/dt 

dy/dt dy/dt 
(0" .001/yr) (0".001/yr) 

1965 - 1978 BIH 2.0 I LS 2 .o 

1959 - 1978 BIH 3.5 ILS 3•3 

1959 - 1980 BIH 3.5 

1965 - 1980 BIH 2.4 

1965 - 1978 BIH-ILS 0.0 

1959 - 1978 BIH-ILS 0.2 

The formal uncertainty is about 0" .0002 

It must be noted that these estimates concerning the y-coor­

dinate could be slightly affected by the presence of syst-atic 

variations superimposed upon the linear dritt. lt is interesting 

to note that, when the linear term given before is removed from

th• BIH data, residuals suggest the existence of additional pe­

riodic terms. 

However, there can be little doubt that this linear variation 

represents a real secular drift. If this secular motion does not 

A comparison with other systems of polar coordinates further 

confirms our conclusions. Markowitz (1982) has estimated the r� 

te dy/dt from the IPMS from the 1962 to 1981 and finds 

dy/dt 0" .0026/yr 

+ .0004

We have also computed the drift between the y-coordinates of 

the BIH and OMA systems. The latter are the Coordinates of the 

pole obtalned by the Defense Mapping Agency from üoppler observ� 

tions of Transit satellites. By uslng the annual mean BIH-DMA 

differences published by BIH (Annual Report for 1980) and plol 

ced in the bottom of Yig. 2 we have: 

( dy / d t \, lH-DMA

over the period 1971-1980. 

- 0". 0016 /yr

Taking into account the value found by Markowitz (1982) frOIU

OMA data from 1970 to 1981 

we may conclude 

(dy/dt)DMA • 0".0055/yr

+ .0008

Drift y(ILS) "if Drift y(BIH) � Drift y (OMA) 

1-' 

0 
\J1 

T 
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How�ver, a much longer series is necessary to have a significant 

estimate of the OMA drift. 
Table 2 shows, for example, the results obtained by Soler 

and Mueller. 

On the contrary, the x-coordinate shows large and apparently 

systematic variations. We shall discuss this point later. 

Bearing 1n mind the trend in x shown in Fig. 1 and Fig. 2, 

it is difficult to obtain a reliable value for a drift because 

the estimate of the apparent rate of drift depends upon the p� 

riod in which the data are computed. Moreover it may be seen 

that the Blri-ILS differences are larger in x than they are in 

y. However, even if no consptcuous evidence appears, there is 

a discrete s1milar1ty between the pattern of the BIH and ILS 

x-coordinate.

3. Conclusions.

Accordtng to available ltterature the mean rotation pole as

detennined for many years by ILS, has an apparent drift (see 

e.g. Markowttz, 1982).

dx/dt 

dy/dt 

0".0009/yr, 

0".0034/yr, 

However, the reality of th1s secular motion has been and 

still is questioned and often attributed to the local non polar 

effects of the ILS stations,mainly Ukiah (Jatskiv, 1981). In 

particular, several attempts have been made recently to calc� 

late the possible apparent displacement of th� ■ean pole due 

to the driftin& of the stations as a conaequence of plate tect2 

nies (Dickman, 1977, Soler and Mueller, 1978) but whithout great 

success, all the models generating an apparent dr1ft of the 

rotat1on pole a magn1tade smaller than the observed value. 

The apparent displacement (!:)..x, ß_y) of the mean pole over 

70 years has been derived from the changes in latitude and lo� 

gitude of each station of the ILS and IPMS network, computed by 

using eight absolute plate veloctty models of Solomon et al. 

(1975). 

Several conclus1ons follow from the tabulated results: 

a) The computed drift of the mean pole is generally greater

in the dtrection of the x-axis than along the y-axis. 

b) All eight models provide, for the ILS and IPMS pole, prat!

cally the same J:::y, displacement. 

c) lf the number of the observing stations increases as is the

case of the IPMS network, the displacement of the mean pole 

along the x-axis is reduced. 

After c0111paring these results with those obta1ned by us in 

the above section we believe that the preponderance of evide� 

ce fa1rly suggests that secular ■otion is a real phenomenon 

quite free from the influence of local effects. 

Such effects, of course, ex1st and are almost certa1nly 

less important in the BIH and IPMS network because a !arge 

nuaber of stat1ons tends to average the■ better. 

Local effects may play a role in the observed fluctuations 

of the x-coordinate. It should be investi&ated better. But they 

cannot have significant effect on the secular motion since the 

observed drift chiefly occurs alon& the y-axis and agreement 

between ILS, BIH, IPMS and DMA observations as regards the y 

coaponent is &ood. 

1-' 

0 
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Table i 

Apparent di■placeaent (in 111eter■) of the 111ean pole over 70 

years froa ILS and IPMS obaervatoires ror different absolute 

plate velocity aodels. 

Model 

A3 Unitona drag coetticient 
beneath all plates 

83 Drag beneath continents only 

B4 Continents have 3 times 
iaore drag than oceans 

C3 Drag opposing horizontal tr� 
slations or slabs, oceanic 

�X 

ILS IPMS 

1.59 1.00 

0.75 0.23 

1;23 0.65 

subduction zone only 1.75 1.17 

C4 Same but including Arabian 
and Himalayan trenchea 1.60 1.00 

Dl Maximwn pull by slabs 
plus plate drag 0.65 0.12 

E2 Drag beneath 8 1111d-plate 
hot spots 

E3 Drag beneath 19 hot spots 

0.53 0.96 

0.97 0.48 

� 

ILS IPMS. 

0.25 0.28 

0.50 0.50 

0.35 0.37 

0.12 0.13 

0.10 0.16 

0.12 0.13 

-0.34 -0.30

0.11 0.11 

The models or plates are described in (Soloaon et al.,1975) 

The values or the apparent displace■ents .ß.x and b or the 

-an pole are taken from (Soler and Mueller, 1978)

It may be ot interest to recall the results'reported by Yuai 

and Wako (1970); by the adoption or local dritte at Mizusawa 

and Ukiah they computed the resulting ■otion or the ILS pole 

and round a reduction or about 1/2 in the x-ccaponent and only 

20% in the y-component. 

It is also noticeable the agreeaent tound by McCarthy (1972) 

between the observed secular trend or the latitude or Washington 

and the change in the same latitude derived rrom ILS secular 

motion. 

Again, this reasonably agrees with our conclusions because 

the Washington latitude is very sensitive to the variation or 

the pole along the y-axis. 

Theretore, unless new techniques (such as Laser, VLBI, etc.) 

give results very different in the near ruture, the reality or 

secular motion or the pole cannot, in our opinion, be disaissed. 

As discussed in Section 1, however, the discovery or the origin 

and the physical mechanism causing this motion remains a ■ore dif 

Cicult task. Further deta11s are given in an article being prepared. 

· We thank Mr. Vincenzo Gusai ror drawing the Cigures and

Mrs. Rosanna Lepori ror typewriting the manuscript. 
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ON THE CONVERGENCE PROBLEM OF THE SATELLlTE DERlVEa SPHERICAL HARMONIC 
EXPANSION OF THE GEOPOTENTIAL AT THE EARTH'S SURFACE 

Lars E. Sjöberg 
The Royal Institute of Technology 
Department of Geodesy 
S-100 44 STOCKHOLM, Sweden

ABSTRACT 

The problem of downward continuing a satellite derived series of spherical 
harmonics of the Earth's gravity field to the surface is·considered. An error 
formula is derived, which dgrees with.that given by M.S. Petrovskaya and N.I. 
Lobkova. Despite of Ch. Jekeli's extensive numerical study it is concluded 
that the error of a high degree hannonic expansion (N � 300) is not yet 
satisfactorily known. 

1. Introduction

During the last 15 years several geodesists have discussed and attempted to 
solve the problem of convergence of the spherical harmonic expansion of the 
Earth's external gravity field. Outside the minimum sphere bounding all mass 
of the Earth (the atmosphere is neglected) the convergence of the series is 
doubtless. The problem occurs when applying the exterior type of series with­
in the bounding sphere and, in particular, at the surface of the Earth. 

A "proof of divergence" of the series was given by Morrison (1970}. However 
the proof was based on the erroneous statement that the series of spherical 
harmonics diverges if its subseries of zonal hannonics diverges. 

A "proof of convergence" of the series was given by Amold (1978} for a very 
general topography of the surface of the Earth. See also Amold (1980). How­
ever, ft is easy to find a counter-example to Arnold's very general result. For 
example, the radius of convergence of the exterior harmonic series of the 
potential of a homogeneous, oblate ellipsoid equals the focal distance (see 
for instance MacMillan, 1958). If the focal distance (ae) exceeds the length 
of the semi-minor axis (b} there will be regions on the surface of the ellip­
soid around the poles where the radius vectcir r satisfies b � r < ae. In these 

... 
0 ex, 
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regions the external type of spherical harmonic expansion diverges in contrast between the exterior and inner harmonic series } to degree 300. These errors 
to Amold's proofs of convergence. 

Another example of a divergent series was demonstrated by Sjöberg (1980). For 
a homogeneous ellipsoid with a disturbing spherical mass (M) in its interior 

attained RMS values from 0.3 µm to 0.4 nm (and 0.02 µGal to 4 µGal, respec­
tively) in areas ranging from near the equator to the vicinity of the pole. 
From this result Jekeli drew the conclusion that "the estimation of point 
or mean gravity anomalies and geoid undulations (height anomalies) using the 

it was shown·that the exterior type of harmonic series does not always convergeouter series expansion to degree 300 anywhere on the earth's surface is 
at the surface. At points located within the geocentric sphere through the 
centre of M (the sphere Öf convergence) the series diverges. 

practically unaffected by the divergence of the total series". This conclu­
sion appears to solve the downward continuation problem of the harmonic series. 

Moritz (1978) paid attention to the approximation theorems of Krarup-Runge 
and Keldych-Lavrentiev. See also Colombo (1982). These theorems prove the 

Below we will approach the downward continuation problem following the line 
of Sjöberg (1977). In the final discussion we will return to Jekeli's result, 

existence of a potential regular down to an internal sphere and approximating and we will also give a numerical example. 
the potential of the Earth in its exterior arbitrarily well. "�s a practical 
consequence .we recognize that it is always possible to consider the ·earth's 
external potential as a 'convergent potential'." (Moritz, ibid.) 2. Formulas for solution of the problem 

Although we agree with Moritz' statement, this does not prove anything about The Newtonian potential of the Earth in an arbitrary point P is 
the convergence of the actual harmonic series of the exterior geopotential. 
Thus we prefer to .formulate the relevant problem as follows (Sjöberg, 1980): 

"Given a spherical harmonic series VN (truncated·at degree N) of the earth's 
external gravitational potential (V}, it is required to reveal whether there 
is an optimum degree of expansion of VN, for which degree IVN - VI is a mini­
mum. 0nly if IVN - VI is negligible and the minimum of this error occurs at a 
very high degree, beyond practical limits, we may regard the series VN as 
'practically convergent'·. 11 

In Freeden and Karsten (1982) and Jong (1982 } methods are given of how to 
determine approximacing potentials regular down to an internal sphere in 
accordan.ce with the approximation theorems. All methods are based on surface 
data. However these methods do not solve the above stated problem. 

V= III t dv 
V 

where 

v = volume of the ·Earth 

µ = Gp; G = Newton's constant of gravitation 

p = density of mass 

i = (r� + r
2 - 2r r - cos w }112 

l l 

ri = geocentric radius of the current point (Pi) 

r = geocentric radius of P 

w = geocentric.angle between P and Pi 

(2.1) 

The At an arbitrary point outside the bounding. sphere of radius R (i.e. for r > R) 
the reciprocal distance i-l may be expanded {Pn( ) = Legendre's polynomial}

In Sjöberg (1980) the divergence was shown for a very simple Earth model. 
minimum lvN - VI/Y < l nm occurred at 200 < N � 400 (Y = 978 Gal). Jekeli 
(1981, 1982) has studied ·the problem in a much more refined Earth model based 
on elevation elements of resolution 0�6 (= 67 km). Based on a method given by 
Petrovskaya (1979) {cf. formula (2.1 2) below} he computed the downward con­
tinuation error of the height anomalies and g�avity anomalies (the difference 

n 
i-1 = ..!. ; (

ri
) P (cos w) r n=0 r n (2.2 } .... 

0 
1,1) 

r 
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Inserting this series expansion into (2. 1) and changing the order of summa­
tion and integration we obtain 

n 

V =
} n�O ff f µ(

r

:) 
Pn(cos w) dv

V 

(2.3) 

For points inside the bounding sphere (r < R) the series (2.2) does not con­
verge and the validity of (2.3) is doubtful. A general series expansion for 

r < R is 

r n rs n+l 
V = } n�O ff [f µ0) + f µ (�) ]

(J 0 r 

P
n
(cos wl dv (2 .4) 

where r
5 

is the radius of a current point at the surface of the Earth 
(r � ri � r

5
) and a is the unit sphere. Thus the possible error of extending

formula (2.3) inside the bounding sphere is given as the difference between 
(2.3) and (2.4) (Cook, 1967; Levallois, 1969; Sjöberg, 1977): 

N 
rs n n+l 

öV(N) =} 
n:o Jf f 

µ 
[(:) 

-
(�) 

] Pn(cos w) dv 
a r 

(2. 5) 

where N approaches infinity. In practice, however, we know the spherical 
harmonic coefficients corresponding to (2. 3) only to a finite degree (N). 
Subsequently the "downward continuation error" of a series expansion (2.3) 
to degree N may be represented by (2. 5). If for an arbitrary E > 0 there 
exists a number N0 such that

jöV(N)j<E for N > N0 (2.6) 

then formula (2.3) is convergent. Even if this is not the case in the strict 
sense, we define (2.3) as "practically convergent" if the minimum of jöV(N) j 
is negligible and N0 is beyond practical limits.

Let us assume that the density (µ) is constant for each latitude and longi­
tude (i.e. independent of ri). Then formula (2.5) may be rewritten (cf.
Sjöberg, 1977 and 1980) 

where 

öV(N) = � 
ff

µ I(r, r ) P (cos w) da
n=O s n 

0 

2 
(r/rl n+3 - 1 (r /r)-(n-2)

-1
I(r, r

5
)= r { n + J - s 

n - 2 

(r/r)5 - 1 
- R.n(r /rl

if 

if 

if 

r > r - s
r < r s 
n * 2 

r < r 
5 

n = 2 

(2.7a) 

(2. 7b) 

Formula (2.7) was recommended by Sjöberg (1980) for investigation of the 
convergence of öV(N) with N for a known topography. As the density of the 
topography is not known in detail, µ was assumed to be constant for the 
entire topography (above the sphere of radius r). 

lt was shown in Sjöberg (1977) and Jekeli (1981) that the "downward continua­
tion error" representation according to (2.7) is unlikely large for small N 
and decreases for increasing N. As this formula is the difference between two 
series of very different nature, the exterior and the inner series, it is 
p:issiblethat it includes also some contribution that vanishes when N approaches 
infinity. If öV(N) + 0 as N + oo the series (2.3) is strictly convergent. 

We will now exclude the always converging parts of (2. 5), extracting a possibly 
divergent formula. From the notations 

ri = r + H

we obtain the series expansions 

n+2 

1-' 
1-' 

0 

(:) 1 + (n+2) (!!) + (n+2�(n+l) (!!)2 
+ (n+�)(n;l) n (!!)3 

+ ... (2 _8a)r r x r 

0 

( 
-

l~ 
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and 

( )
n-1 

..!.. = 1 _ (n-l)(!!) + {n-1) n 
(!:!.)

2 _ {n-1) n!n+l} 
(
!!)3 + •

ri r � r 2 x r • • 

Inserting these expansions into (2.5) with 

2
dv = r1 dH da 

we. arrive at 

öV(N) = öV(O}(N) + 5y(l}(N} + öV{2){N) +

where 

and 

H 

5y(O)
(N) = ff f µH öN(W) dH da 

a 0 

H 

öy(l}(N) =} ff f µH2 
BN(W} dH da

a 0 

öV(2)
(N} =�ff f µH3 QN(w} dH da 

3r a 0 

where 

and 

öN{w) = E (2n+1) Pn{cos wl
n=O 

N 
QN(w) = ½ E (2n+l)(n+1) n Pn(cos w) 

n=O 

{2.8b) 

(2 .9a) 

(2.9b) 

(2.9c) 

(2.9d) 

Let the spherical harmonic expansion of a function f be convergent. Then it 
is easily shown that 

� ff f(Q) öN(WpQl da
Q 

+ f(P) N + 00 (2.10) 

lf the point of computation (P) is located on or outside the surface of the 
Earth, then 

and 

H 

f{P) = f µH dH � 0 
0 

H 

f(P) = f µH2 dH = 0 
0 

and it follows that (2.9b) and (2.9c) vanish as N approaches infinity: 

5y
(O)(N) + 0 and öV(l}(N) + 0 as N + 00 

Thus we are left with (2.9d) and higher-order terms (see 2�9a) .as the possible 
divergent downward continuation error. Assuming that the density of the 
topography is constant (2.9d) may be written 

öV(2)(N) = ::-z ff H4 QN(wl da 
12r a 

(2.11) 

Except for the sign the fomulas (2.9d) and (2.11) agree with fonnulas (15) 
and (24) of Petrovskaya and Lobkova {1982) derived from Brovar's integral 
fonnula. Furthennore they presented the following fonnula (with opposite sign) 

ov <2l(N) = oi ff Ag(�)3 QN(w) da 
a 

(2.12) 

where Ag is the gravity anomaly at the surface of the Earth. Jekeli (1981, 
1982) gave a similar fonnula where Ag is replaced by a surface density (in 
practice derived from surface gravity anomalies). 

'"" 
1-' 

C} 

H 

N 

... 
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3. Some numerical results and discussion

Petrovskaya and Lobkova (1982) derived a closed formula for the function 
QN(W): 

2 

2 QN(w) = � {PN+l(t) - PN(t)}.+ � {(N+2) PN(t) - N PN+l(t)}
(1-t) 

(2.13) 

where 

t = cos 1jl 

(Note that we have �lightly corrected their fonnula.) 

Finally Petrovskaya and Lobkova (ibid.) gave the fonnula 

QN(0} = N(N+l}2(N+2}/4

This fonnula is given in Table 1 for some N. 

Table 1. Q
N
(O) = N(N+1)2(N+2)/4 

N 100 200 300 400 500 

QN(0) 2.60:x107 4.08 x108 
2 .05 x10

9 6.46 x109 1.58 x10
10 

In Figure 1 we fllustrate QN(1j1) sfn 1jl for N = 100 and 300 and for comparison
we give also F(1j1) • 1/2 S(1j1) sin •• where S(1j1) is Stokes' function. From the 
figure we conclude that F(1j1) is much.smoother than QN(,). which fluctuates
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more and more around the w-axis a.s N increases {the period is approximately In an arbitrary point P(r, wl outside M (w = spherical distance from the 
2w/N). This effect and the roughness of argument H4 of (2.9d) and (2.11) or center of M to·P, r = geocentric distance to P) the disturbing potential 
Ag H3 of (2.12) implies that the result of a numerical application is very originated in M is given by: 
sensitive to the size of the used blocks or compartments for the numerical 
integration. Jekeli (1981) used the block size o?6. -Some of his results are 
given in Figure 2. He suggested that the reduced downward continuation error 
at the degree 300 is a consequence of the different nature of the exterior 
and interior series of expansion. On the contrary we ·believe that this result 
is a smoothing effect due to too large blocks (0?6) for this high degree ex­
pansion. In add;tion one has to consider that the topographic data was actual­
ly limited to 1° block size and that within this limit down to o?6 the data 
was ·artificially generated. 

Jekeli's excellent work is certainly the most extensive contribution so far 
to solve the downward continuation problem. However from the above concerns 
we conclude that the size of the error of high degree spherical harmonic ex­
pansions (N � 300) is still an open question. 

4. An Example 

A disturbing point mass M is located outside the mean earth sphere of radius 
R0 (see Figure 3). 

R = 6373 km R
a

= 6371 km

M 

2 km M = 6.334 x 1010 g

24.6 km 

R 

Figure 3. Molodenskii 's mountain. 

T = µ/(R2 + r2 - 2Rrt)1/2 µ=GM (4.1 l 

where 

G = constant of gravitation 

R = geocentric radius of the center of M 

t = cos w 

Let T be represented by the following truncated series of Legendre's poly­

nomials: 

N 
(R)

n+l
TN = * E r Pn(t) 

n=O 
(4.2) 

and the downward continuation error becomes TN - T. The computations for r < R 
show errors oscillating around the zero-axes with a typical minimum of its 
envelope at some high degree. These minima are given in Table 2 for various 
spherical distances (wl to the disturbing mass. The table shows that the 
external spherical harmonic representation of this model within the bounding 
sphere has serious limitations. 
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Table 2. Numerical results with fonnulas (4.1) and (4.2). 

Nopt = optimum degree of truncation of envelope.

y = 978 Gal. 

t/1 T/y [nm] Nopt ITN-TI/T [%]

. 10' 23.0 1896 44.4 
13' 17.8 1458 51.3 
15' 15.5 1265 49.2 
17' 13.7 1749 46.1 
20' 11.6 1487 42.3 
25' 9.3 1620 38.0 
30' 7.8 1710 34.8 
10 3.9 1575 24.6 
30 1.3 1605 14.2 
50 0.8 1647 11.0 

100 0.4 1632 7.7 
20° 0.2 1626 5.5 
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On the compa.rison of the results of two different E-W-strainmeters 

operating at Tiefenort in the period 1978 - 1984 

Summary 

Simon, D. x)·; Ka.rmaleeva, R. M.; Latynina, L. A. xx) 

The paper contributes to the poasible application of tidal strainmeters for measure­
ments of recent crust.al movements. 

The records of two E-W-strainmeter of different type were analyzed. The instruments

a.re measuring since 1978 simultaneously at the Tiefenort station, 5 meters distant 
from each other. 

115 

The first result of the comparison between the corresponding tidal, thermoelastic and 
secular components of the records of both the strainmeters was that there are no essen­

tial instrumental falsifications. lt seems that the use of laser interferometrio oal.1-

bration methods and the good protection of the instruments against meteorological in­
fluences allows the neglection of the instrumental disturbance components in the first 
approximation,

As the second main result of the simultaneous strainmeter records at the Tiefenort sta­

tion must be rega.rded the detection of significant local components induced by the cavi­
ty effect and the pressure of the overburden. 

By measurements with two strainmeters operating in the vertical direotion it was shown 
that the amplitudes of the above mentioned local components can be diminished distinotly 
by an optimal choice of the measuring places. 

In this connection a.re to consider several regulas resulting from the model calculations 
of HARRISON /1976/ concerning the oavity effect in tunnel-like galleries and from the 
calculated loading pressure situation around such tunnels. 

It was shown in the case of the vertioal strainmeter measurements carried out at the 
Tiefenort station that the oonsideration of such regulas leads to a deorease of the 
local components (cavity effect and loading influence) of about one order of magnitude.

x) Akademie d. Wies. d. DDR, Zentralinstitut fUr Physik der Erde
Potsdam, Telegrafenberg

xx)Akademie d. Wies. d. UdSSR, Institut fUr Physik der Erde, Moskau
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Zusammenfassung 

Die Aufzeichnungen zweier Strainmeter unterschiedlichen Typs, die seit 1978 an der 

Station Tiefenort_ 5 m voneinander entfernt in E-W-Richtung aufgestellt sind, werden 

analysiert. Es zeigten sich keine wesentlichen instrumentell bedingten Störungen, da 

die Geräte gut gegenüber äußeren Einflüssen geschützt sind und mit einem interferome­

trischen Verfahren mit Hilfe eines Lasers geeicht werden. 

Mit zwei Vertikalstrainmetern konnte gezeigt werden, daß der Einfluß lokaler Strain­
störungen durch eine geeignete Wahl des Aufstellungsortes um etwa ein� Größenordnung 
reduziert werden kann. In diesem Zusammenhang sind die Ergebnisse der Modellrechnungen 

von HARRIS0N /1976/ bezüglich der Hohlraumeffekte und die Einflüsse der Luftdruckbe­

lastungen zu beachten. 

Certain errors of the measurements of recent crustal movements are difficult to detect 
since the data were received from measuring campaigns which differ very much in time. 

There are no informations concerning the processes which run down in the time between 

the measuring campaigns. As a consequence several authors propose continuous tilt and 
strain records in special test areas. 

It seems that long-basic watertube tiltmeters are suitable instruments for such a pur­

pose, since the results of tilt measurements at the Königstein station are in a good 

agreement with the correspondend dat.as of the precision nivellements (LORENZ /1984/). 

Concerning the possible application of tidal strainmeters for measurements of recent 

crustal movements there are no experiences. In the most papers the strainmeter records 
are to short for a determination of the secular oomponents (VARGA /1984/). For the 

estimation of the secular strain rates and 

the instrumental errors 
- the meteorological strain components
- and the influences of the local cavity distribution, geology and topography, respecti-

vely

better founded informations are to receive from simultaneous records of strainmeters of 

different type. 

In the present paper are used for this purpose the reoords of two horizontal E-W-strain­
meters of different type operating at the Tiefenort station in 1978-1984. The instruments, 

a wire strainmeter with a length of 24.99 m and a quartz tube one of 26.J0 m are installed 
5 meters distant from eaoh other. The first part of the records of the quartz tube strain­
meter was excluded from the analysis, since as a consequence of certain irregularities 

of the records R. M. KARMALEEVA found a crack in the quartz tube and changed a part of 

it in May, 1980. Since the repair the instrument worke normal. 

Both the instruments are calibrated by magnetostrictive lengthenings of the measuring 

normale. The amplitudes of the m.agnetostriotive impulses were determined by laaer 

interferometrio measurements with an accuracy of about ± 2 %. The aoouracy of the rela­
tive calibration reach ± 0.5 %. A digital output of the strainmeters in short time steps 

allows the elimination of heating influenoes of the calibration coil and the small tidal 
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variation in the time of calibration. 

First informations concerning the amplitudes of the instrumental and local strain com­

ponents induced by the cavity effect were deduced from the observed parameters of the 

tidal strain waves. For this purpose are used the harmonic constants of the lunar diur­

nal and semidiurnal waves o
1 

and M2, which contain only Bmall meteorological consti­

tuents. 

Table 1 shows that the difference between the observed amplitudes of the large o1 waves

is smaller than the error of the absolute calibration. 

The little amplitudes of the M2 waves are a consequence of a zero amplitude of the cor­

responding body strain wave appearing in the geocentrical latitude of 51.3° N, calcula­

ted for the Earth model of WAHR /1982/. The latitude of the Tiefenort station is about 

50.8° N, therefore in the observed M2 wave the ooean loading component dominates.

On the other hand the ooean loading component of the observed o
1 

wave is very small 

since in the Atlantic the ooean tides with the period of the o1 wave reach only 1 % -

10 % of that of the corresponding M2 waves. Consequently it is possible to estimate

the amplitude of the local component of the o1 wave by a comparison of the observed

and the theoretical "in phase" components of o1• The observed amplitude is about 7 %

larger than the calculated one. 

This amplitude difference was interpre�ed mainly as an influence of the cavity effect. 

Since the instruments are installated between the walls of the gallery and near the 

end of it (fig. 2), where aocording to the model calculations of &RRISON /1 976/ the 

cavity effect usually has a relatiye maximum, 

On the other hand the influences of the local geology and topography are considered as 

to be small since the aalt deposit near the station is homogeneous and the relief of the 

Earth surface near the station is rather small. 

Fig, 1 shows the long periodic components of the strainmeter records. Here as before 

in the case of the tidal waves the outputs of both the instruments agree very good. 

The main components of strain variations in the period range of half a day to several 

years was measured by the two strainmeters of different type with comparable amplitu­

tes and phases, Therefore, if we analyse these components, it seems to be possible to 

neglect the instrumental errors of the records in the first approximation. 

In fig. 1 at the first sight are to distinguish two different components of the long 

periodic strain variations: the first one has a period of about one year, the second 

one seems to be a linear component. 

In order to explain the yearly period measurements of rock temperature begun in June 

1982 at 7 different boreholes located inside and outside of the station. The drill 

holes are 40 cm deep and equipped with reading thermometers having a graduation of 

0.01° C or 0.1° 
c, respectively. The locations of the measuring places are shown 

in fig. 2. 

l 
1 
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Two different streems of freah air flow along the bounda.ries of the station, which is 

protected against the air streems by thick walle and double doors. During the period 

1982 - 1984 inside the station no variation of rock tempera�ures were measured within 

± 0.01° 
c. But outside of the station at the measuring places No. 1 and 7 located at 

distanoes of about J00 m or 400 m respectively, from the entrance of the station, the 

double amplitudes of the yearly tempera.ure variations reaoh about 6° C or 9° c, re­

speotlvely (fig. J). 

These differenoes between the temperature waves are oaused by the different distances 

of the measuring plaoes to the corresp9nding shafts. Inside of the emplitude differenoes 

the temperature waves are very similiar .• For instance in the very hot and long summer 

1983 the rook temperature was higher over a period of about 4 month than the maximal 

temperature in the last rainy summer. And in the winter 1983/84 the rock temperature 

was lower during 3 month than the oorresponding minimal temperature of the winter 1982/ 

83. These phenomenas are measured analogously at both the measuring places 1 and 7.

Such seasonal differences from one yea.r to the next one are important for the interpre­

tation of long periodio strain rariations.

In fig. 4 the horizontal strain variations are compaired with the rock temperature 

curves measured in both the boreholes number land 7. For the explanation of the ob­

served strain variations the rough drawing on the right hand of the figure is used. 

In the cold season - here between Iovember 1983 and.March 1984 - the rook are cooling 

and contracting consequently the aalt rock in the stations area not with:standing the 

constant rook temperature here must expand •. The strain velocity is proportional to the 

heat transfer or to the temperatur differences between aalt rocke and the air masses. 

Additional measurements of two vertical strainmeters oonfirm �hie explanation. The 

first instrument is installated between roof and floor, the second one in a bore hole 

drilled in the ground of a gallery. A rough drawing in the lower part of fig. 4 ex­

plains the situation. 

According to .our idea a horizontal expansion of the stations area in the wintertime 

must produce a diminishing of the distanoe between roof and floor of the cavity and 

a vertical dilatatfon in the ground of it, since the floor moves upwards. 

Such movements a.re visible in fig. 5. For the comparison of the reoords of the ver­

tical strainmeters it was necessary to exolude from the record of the floor - roof 

strainmeter a linear oomponent induced by influences of the pressure of overburden. 
This loading component has a velocity of about 2•10-6/yea.r. After that the records

of both the vertical strainmeters and of the horizontal one are in a good agreement 

with our model. 

For instance in the last Winter - between •ovember 1983 and March 1984 - the horizon­

tal EW strainmeter and the borehole instrument have measured expansion movements, 

but the floor-roof vertical strainmeter a oompression. The thermoelastic components 

of the records of both the vertical strainmeters are quite symmetrioally with referen­

ce to the time axia. 
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The recorda of the vertical atrainmetera and the rook temperature data are useful for 
an exact elimination of the thermoelaatio oomponents of the horizontal strain records. 
This work is not yet finiehed. 1 Therefore fig. 6 shows only a rough approximation of 
the non-thermoelastic component of the horizontal strain variations. It seems to be 
a linear component with a yearly strain rate of about 2 • 10-7 (dilatation).

119 

The observed velocity of the seoular strain component agrees good with the mean strain 
rates, which were oaloulated for adjoining regions, for example for the Saxonian one. 
Here fHUlll( 1/1974/ caloulated a mean strain rate of about 3 • 1 o-7 /year for the EW direc­
tion, using the results of two trigonometrio measuring campaigns whioh differ in time 
by about 60 years. 

As a conaequence of thia and due to the good agreement between the reoorde of two paral­

lel inatruments of different type operating at the Tiefenort station during a period 
of about 4 years tidal strainmeters may be suitable instruments for measurements of re­
cent crustal movements too. For the determination of the yearly strain rates of reoent 

crustal movements from strainmeter records shorter measuring periods are necessary 

than in the aase of trigonometric measurements (for instance 6 years instead of 60 years). 

There.--fore a continuous control of the strain veloci ty in special test areas by meane 
of such instruments seeme to be possible. 

Furthermore the measuring resuits of both the vertioal strainmeters have shown that 
essential improvements of the regional representativeness of the measured strain rates 
and the tidal parameters may be reached by changes of the measuring plaoes. 

Both the instruments differ only in the looation and in the manner of inatallation; their 
measuring systems are quite the same. 

The records of the floor-roof vertioal strainmeter are disturbed by large looal loading 
and meteorologioal components. These effeots are diminished in the aase of the bor< 
hole instrument as follows 

1. the mining loading strain is diminished by a factor of K1 � 10 (see fig. 4)
2. the barometric pressure effeots (loading and instrumental ones) are dimini.ahed

by a factor of 8 (absolutely) or 3, relatively,
3. the cavity effect seeme to be smaller than 1 %, sinoe the first harmonio analysis

of a record of 110 days results a �-Amplitude ot

obs
e rr (�) = 

the oorresponding 
model of WÄHB 

theoretioal amplitude was oaloulated aooording to the Earth 

' 

"-s, 
"' 35.93 • 10-10

• (�) rr 

Analogou.s improvements of the regional representativeness of the measuring results 
are to reach in the oase of horizontal strainmeters too. For this purpose we must 
consider several regulas resulting from the model oaloulations of HABRISOK /1976/ 

35.66 • 10-10 ; 
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Table 1. Station Tiefenort/GDR 
Tidal reeul t „ of the EW etrainmeter 1 978 - 19S.

year reoord. e
].
;1. l01J wire •�;\. l01 J tube reoord. 

month A X 10-10
-ae A x 10-10 '3t month 

1978 12 72. 184 0.97° 

1979 12 71.643 1.16° 

1980 12 71.872 2.95° 72.213 1.16° 6 

1981 12 72.338 3.03° 70.645 1.74° 12 

1982 12 74.220 3.75° 74.624 2.24° 12 

1983 12 72.300 1.51° 71.798 1.97° 12 

1984 6 72.571 2.51° 71.637 0.05° 6 

72.590 2.380 72.183 1.59° 

mean 0.762 1.19° 1. 481 0.57° 

!... 

WAHR model 67.368 00 body strain wave

yee:r reoord. e
:A.7v (M2) wire e�iL (M2) tube reoord. 

month A x 10-10 
-;,e, A X 10-10

1Jl month 

1978 12 5.042 -64.82° 

1979 12 4.708 -68.62° 

1980 12 4.921 -56.48° 4.912 -64.48° 6 

1981 12 4.665 -66.99° 4.827 -5B.53° 12 

1982 12 4.897 -64,23° 
4.J72 -56.44° 12 

1983 12 4.500 -58.23° 4.394 -59.52° 12 

1984 6 4.900 -59.47° 4.558 -62.46° 6 

4.816 -62.69° 4.613 -60.29° 

mean 0.195 4.65° 0.247 3.19° 

WAHR model 1.557 00 body strain wave 
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concerning the oavity effeot in galleries or tunnels of elliptic cross-sections and 
the loading pressure Situation around such tunnels. 

The amplitudes of the looal strain components induced by loading influenoes and the 
cavity effect have a relative minimum at measuring places in the floqr and near the 
symmetry a:ids of the gallery and distant from its ende. 

121 

Fig. 7 shows the old and the new manner of installation of the horizontal strainmeters 
at the Tiefenort station. 

The first instrument is installed about 1 m above the floor between the walle of the 
gallery and near the end of it. The second strainmeter operates in an artifical clett 
with a depth of about 80 cm drilled into the floor near the middle axis of the gallery 
and distant from its end, 

Two NS instruments installed in the old and the new manner record simultaneously since 
the autumn of 1984, For the determination of the amplitudes of the different local com­
ponents a recording period of about 1 year seems to be necessary. 
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Fig. 1. The longperiodic componente of the FN/ strainmeter records 
W wire instrument; Q quartz tube inetrument 

Fig. 2. Map of the etation and its surroundings 
fresh air etreams 

T1, ••• T7 measuring plaoee of the rock temperature 
E\V I, EW II ( tube) meaeuring places of the horizontal 
VI , VII (borehole) and vertical strainmeters 

Fig. 3. Resulte of the rock temperature measurements 1982 - 1984 in the 
boreholee T1 - T7 

Fig. 4, 

Fig, 5, 

Fig, 6, 

Lefthandt comparison between the records of the EW strainmeter EW I and 
the results of rock temperature measurements in the borehole T1; 
Righthand, upper part: model of the horizontal strain variations inside and 
outside of the station during the wintertime; 
Righthand, lower part1 model of the vertical etrain variations inside the 
station during the wintertime 
Comparison between the longperiodic components of the records of the horizon­
tal strainmeter EW I, the vertioal straiDllleter VI and VII, respectively 
The linear component of the long periodic strain vari.ation in the EW 
direction 1978 - 1984 (instrument EW I) 
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The old and the new ma.nner of installation of horizontal strainmeters 

Fig. 7 at the Tiefenort station 
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Planets around Barnard's star? l) 

by 

Klaus-Günter Steinert 2)

Summary 

From Analyses of long-focus observations unseen objects may 
be found from perturbations in the proper motions of a star. 
The question is discussed under what conditions it should be 
possible to detect planets around the nearby Barnard's star. 

Zusammenfassung 

Aus Untersuchungen von photographischen Beobachtungen an lang­
brennweitigen Instrumenten können aus den Störungen der Eigen­
bewegungen eines Sterns unsichtbare Objekte gefunden werden. 
Es wird die Frage diskutiert, unter welchen Bedingungen es 
möglich sein sollte, Planeten um den benachbarten Barnardschen 
Stern zu entdecken. 

1·. Introduction 

In 1844 F.W. Sessel pointed out that irregularities in the 
proper motions of stars indicate the existence of unseen 
companions. Indeed some decades later companions of Sirius 
and Procyon announced by Sessel were found by Clark in 1862 
and by Schaeberle in 1896 resp. with visual refractors. 
The history of discovering the planets Neptune and Pluto is 

very sil!l.,i.lar. 

By means of long-focus photographic astrometry 50 years ago 
the first unseen companion of a star, that means the component 
of a visual binary (Ross 614) was discovered from series of 
observations and analyses of the perturbation in proper motion 
over nine years. Twenty years later the object was seen and 
photographed in its apastron. The next one was VW Cephei. Since 
this time the method of discovering double star companions by 
long-focus photography in astrometry was developed and there is 
no doubt about the usefulness of it. Systematic search began 
already in the middle of the thirties at several observatories. 
Intensive work in this field was done at the Sproul Observatory 
Swarthmore, Pennsylvania, using the well known 61 cm refractor 
with 10.93 m focal length. 

As the amplitudes of unseen astrometric companions of the ex­
plored binaries are about 0.1", the determination of period, 
excentricity and periastron passage is very accurate. To deter­
mine the perturbations of a star's proper motion in principle 
Schlesinger's method of dependences is used. To avoid effects 
of magnitude equation it is necessary to select reference stars 
having magnitudes of the same or.der as the objects (field stars) 
to be investigated. The period of observation depends of course 
on the period of orbital motion of a star and its companion 
around their common barycenter. 

In the case of faint nearby visual binaries as a rule this 
astrometric technique 1s quite valuable and may be regarded as 
fully developed (v.d. Kamp, 19B1). 

2. Barnard's star

Besides this it should be possible to apply this method of fin-
ding companions of stars from perturbations in their proper mo­
tion for the discovery of planets around nearby stars. It is 

1) Mitteilung des Lohrmann-Observatoriums der TU Dresden Nr. 52 evident that in this case the necessary accuracy is the larger
2) Technische Universität Dresden, Sektion Geodäsie und Karto­

graphie. DOR-8027 Dresden, MommsenstraBe 13

the more distant the star and the closer the planet is to it. 
Of course the demanded accuracy also depends on the mass ratio 
of star and planet. 

1-' 
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The smallest stars have about 0.07 times the solar mass.Smaller tradiction by other authors. Especially w.o. Heintz (1980) from 

objects are according to our present knowledge black dwarfs, 

and if smaller than 0.005 solar masses planets, that means 

objects which are not able to develop nuclear energy,Compared 

to this Jupiter's mass is 0.001 solar mass. 

After w.o. Heintz (1980) it is necessary to secure an accuracy 

in determining the perturbations of proper motions, and to 

derive the existence of a perturbing body better than 0.01" 

over a long period of observations. 8ecause the orbital period 

of a presumed planet is previous unknown, the series of obser­

vations must be extended over some decades. In the case of 

Barnard's star Peter van de Kamp (1981, 1983) has used obser-

Sproul observatory negates absolutely the reality of the plan­

ets found by v.d. Kamp. His main contra-arguments are: 

- v.d. Kamp's curves mentioned above reflect instrumental

errors which can also be found from observations of other

stars made at the Sproul refractor 

- a systematical accuracy of 0.01" can not be reached from

photographic plates over a field of 20', as it was used

by v.d. Kamp with the Sproul refractor: that means 10-5

relatively

- proper motion and parallax of Barnard's star are very

large compared with the presumed perturbations.

vations with the Sproul refractor started in 1938. That means These contra-arguments are to be compared with P.v.d. Kamp's 

for his latest results v.d. Kamp (1983) could use the material results and discussed to consider some facts for clearing up 
of 1200 nights from 44 years (1938 - 1982), each night with the problem, because it is of cosmogonic importance and in-

about four plates, each of them with up to 5 expositions. Since directly it is connected with SETI. 

Conclusions 
1975 v.d. Kamp made some analyses for finding planets around 

Barnard's star from the perturbations of its proper motion. The 3•

results obtained by him �epend on the boundary conditione 

considered by van de Kamp. With the following dates for 
In the opinion of the author there are some facts pro and 

contra the results as well of v.d. Kamp as of Heintz. 
Barnard's star: Red dwarf; apparent magnitude 9.5m: spectral 

type M 5; mass o.14 solar masses: parallax 0.547"; distance 

6.0 light years: proper motion 10.31 "/year v.d. Kamp (1983) 

got from the analysis of perturbations in proper motion the 

following results: there are existing two planets around 

Barnard's star, having radii of circular orbits 2.7 and 3.9 

An accuracy of 10-5 can be reached in photographic astrometry.

That was proved with plates of the 2-m-Schmidt in the Lohrmann-

program. Main condition for this is of couree a long-time con­

etancy of the instrument's adjustment. 

Such a constancy may be doubted for the Sproul refractor, be-

astronomical units resp., masses of 0.6 and 0.4 times the mass cause there were some changes in the construction and adjust­

of Jupiter resp. and orbital periods of 12 and 20 years resp •• ment of the instrument. The dates of these events were 1941.82, 

Representations of the perturbation curves of Barnard's star 1949.21, 1957, and 1966. It is very likely that they have in­

caused by these presumed planets are to be found in v.d. Kamp's fluenced anyhow the results of v.d. Kamp's analysis of the

publications (1981, 1983). The curves having a semi-amplitude proper motion of Barnard's star in spite of reductions because 
of 0.01" or 0.5 fm in the focal plane of the Sproul refractor of variations of the instrumental equation connected with these 
are calculated from so called normal points, i.e. mean values events. The simultaneous variation in both coordinates alpha 
of alpha and delta over one year. and delta also point in this direction. 

Thie intereeting reeult of P.v.d. Kamp is not without con- Using different time intervalls of Sproul observatione lead to 

different results for the presumed planets as is shown in v.d. 

� 
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Kamp's book "Stellar Paths" (1981). 

Barnard' s star moves very fast. Its distän.ce f.rom the sun 
becomes smaller. Therefore proper motion and parallax are 

GEODYNAMIC EFFECTS IlJE TO EARTH'S DEFORMATION 

Jir{ Tre!l 

... 
1\) 

changing. To avoid systematic influences accuracies of 0.2 % Summary 
and 4 % resp. are necessary, what is possible to be reached as 

Geophysical Institute, Czechosl.Acad.Sci., 
Bocni II, Sporilov, CS - 141 31 Praha 4 

mentioned above. 

The fact of using only four reference stars for the determina­
tion of the perturbations of Barnard's star is an other weak

point for deriving the existence of planets around it, 
particularly because of the altering of a reference star's 
influence to the position of the field star. Barnard's star 
changes his position at the plate relatively to the tangential 
point of the Sproul objective for 5 mm per 10 years. 

The author agrees with P.v.d. Kamp (1983) and with W.D. Heintz 
(1980): it is possible to find planets arourid nearby stars 
with the photographic method. However there must be fulfilled 
all conditions to avoid systematical influences from the in­
strument, from the reference stars, and from the measurement 
of the plates. 

And indeed it seems there are not yet series of observations 
with the quality needed and having the necessary length. 

References 

Some geodynamic effects arising due to deformation of the Earth 
are investigated. In undeformed state the Earth 1s replaced by a sphere

with radially depending density. Its deformed state 1s described by 
displacement vector field. Corresponding density disturbances are 
expressed in terms of the density and displacements. Further, diaplace­

ment vector field 1s decomposed into irrotational and solenoidal parts.

Gravitational changes on the Earth's surface are composed from: 
1/ the changes due to density disturbances inside the Earth 

11/ the changes due to deformations of the density interfaces

iii/ the changes due to radial displacement of the observational poi.Bt 
Mathematical expressions are derived for the deflections of the 

vertical, the displacements of the principal axes of inertia, the 
changes of Earth's rate of rotation and its centre of gravity in terma

of the density disturbances. 

l. Introduction

The mass distribution in the Earth's interior and the shape of its

surface depend on working of external and internal force fields. 

Heintz, w.o. (1980): Die Sterne� (1980), Heft 1, pp. 55 _ 58 Generally, it 1s changing with time. However, such changes evoke

v.d. Kamp, P.(1981)1 Stellar Paths, Reidel Publishing company a number of geodynamic effects: the variation of the gravitational
field and rate of rotation, the displacement of the principal axea

v.d. Kamp, P.(1983):
Dordrecht, Boston, London 
Astronomische Nachrichten 
No. 3, pp. 97 - 100 

� (1983), of inertia and the centre of gravity. 
From external disturbing factors, the tidal effects due to planetary 

attraction are most important. The study of this phenomena has long 
history and forms an independent part of geodynamics [1]. 

In this paper, we will study the geodynamic consequence.ß ofEarth's

deformation. Solving this problem, we choose a kinematic approach. 
(the deformations are considered given a priori). As a result, we will 
derive expressions, describing above mentioned geodynamic effects 
in terms of the density disturbances arising from deformation. 

0> 
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2. Displacement field in spherical geometry

According to fundamental theorem of vectoranalysis, any displace­
ment vector field "tmay be resolved into irrotational and solenoidal 
parts 

➔ -+ -
(1) U : U1 + U:z I 

rot C::, = 0
1 

·Eqs.(l) will be satisfied by putting 

➔ 
(2) c.,

4 
= graJ <f, 

➔ �
u

2 
= rot A.

div�= o. 

3. Density disturbances

Let us consider a volume element dct" and correaponding ■ass
element dm. In reference state be!ore deTormation is 

(7) dm = � (r) Jq;-
1

where F Cl) is density in a point with position vector "t. In 
0 

disturbed state after deformation it holds 

(8) dm - F(r + ""J)dt"',
➔ d I 

The qt1anti ties 'f , Aare called scalar and 
ducing spherical co-ordinates r, v'" , ...\ we

where u is displacement vector and 't' de!ormed volu■e
vector potentials. Intro- ➔ 

CD 
In view of u is small quantity, we can write 

ele■ent.

can expand T in the follow-
ing manner 

c3) Cf(r,t7,.A) =ff �(r)F:i
m

(z)[ a� cosmv\ + b� sin rn�] 
1

n= o m=o

where �(z) are associated Legendre polynomials and z= cos t?. 
The solenoidal part of the displacement field can be written as 

- ➔ � � � ➔-r ➔ s 

c4) u2 = rat(A,. +A
t

)= rot Ar t rot A t
= u2 + u2 1

� � 
where A, resp. At � vector r, resp. in 

� ➔ 
es) A,. :: T r,

is veetor potential in direction of the position 
direetion perpendicular to � Therefore,we may put

� 
➔) 

-
At=rot(Sr =fradSxr. 

(9) F(r+ �) = � (1) + f (r) + ir. graJ F;, C1).

Here f is density disturbance, which is supposed tobe s■all. The 
change of a volume element is given by expression [3] 

(10) 

From 
with 

(11) 

dt:t-; = ( 1 + div J) d't. 

the condition of equality o! right-hand sides of Eqs.(7),(8) 
a view to (9),(10) we arrive at 

f = - (i.g-raJ � + F;, J;v u) = - div(� et).

This formula gives density disturbance as a function o! reference

density and displacement. 
Here so-called toroidal and spheroidal defining scalars [2] T, S 
can be again divided into their spherical harmonics components 

We will suppose radially dependent density in the reference state:

(6) S(r,17, .A) 

T ( r, ,r, .>t) 

� n 

=II 
ri=o n.=-o 

Sn (r) 
1 p n,(z) 

r, 

T (r) n 

m 

c„ 

eh 

cosm<>.+ 

d
,.,, 

n 

f" 

F (1) • F (r). Then, with a view to (1),(2) Eq.(11) reduces to 
0 0 

f : - ( u„ F/ + F;, t/f) 
I 

(12) 

s,nm�t where the prime indicates a derivative with respect to radial co-
r. Further, in spherical coordinates ho ___ • _. � 1 [( 2ep')' . 'd ( . 'a<"f) 1 'c) 'f CP_ r , s,ntr+- s,nir- +--·--

(i3) !).. 1 - � �i,- dlJ' ,intJ" d1A2. rs,rw 

.... 
1\) 
l,t) 

\ 

m J ordinate ] . 
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Final.ly, after expression of the radial. displacements from Eqs.(2;,(4), 
(5) we arrive at

00 11 

(14) f = �L [ oc
,,
(r)(a::costni>. + b�sinmCA,) +

n"O m=o m ,,., )] m ) 
+ ß" (r)( c cos rn.>. + d" siti m� P,., ( z =

oO n 

= L [Dl,Jr)Y
0

'rtr,�)+ ß"(r)Y
n
ß(tr,vi)]

1 n-o ,., 
) where radi� functions Ci" ( r) , ßn ( r are defined as follows 

(15) c:x,,,,(r) = �[n(n+1)<f:,-(r2Cf'J']- F/Cf„
1

1

(16)
ß"(r) = - n(nt-+1) 

r;,'sn.

4. Gravitational effects due to density disturbances inside the Earth

Let us suppose Earth's model according to Fig.l. Here outer surface
rzR corresponds to Earth'a surface and 

'1t 2ff 

(19) 4 9C 'r;, (0,A) � (2ni-1) J J Y,, (17,.>.)P,Jcos<r)-;in&cl"'di>i.
C) 0 

Then, 

(20) 

where 

(21) 

after integration of Eq.(17) we obtain 

( ) ,. f- Y,, (0,1\) 
Tf p :: .., 1r.l<: fu (2n -,.1) R6

+1

R
R 

Y = y
°'

jrx (r)r
M2dr + Y

ß

jßfr)r"+ 2 Jr. 
11 ,, " l"l n 

R; r?; 
The change of gravitational acceleration 1s 

'dT., 4 f- ( n + 1) Y,,(e,!l) 
<22> S�

., 
(P) = - � = '1f3C � (2n-,. 1) R

"+2 

Finally, changes in the direction of the vertical are 

(23) 
'JT., '-t'IC1t � 'JY,, (0, /\) 

e1,:, (P) "' �R'�0 " g � (2n-t-1)R"+
2 

de

... 
""' 
·o

r•R corresponds to core-mantle boundary. (24) d T., Lt ,ex � d Y
,, 

( 0, I\) 
Bearing in mind that deformations are 
confined to solid part of the Earth, 

e„v.(P) = aR<;;,.e;M = rrfin0 L_
- ·-

� .) rt"O 

we can write the expression for disturb-5. Gravitational effects due to deformation of the density interfaces 
ing gravitational po�ential 

Fig.l 
R ,r 2,r 

<11> T.,(P) =t1e]JJ f(Q)s>-"r\,-,,t'l"drdtrcl-A,
R; o O 

where P denotes a fixed point at the Earth s surface and Q current 
point of integration. From the theory of spherical harmonics are known 
following formulae [ 5] 

(18) 
,f 

� 

cO n 

: � :.1 p ( cos (f)
nro R , l"I / 

r�R 
I 

Our density model F (r) contains two clean-cut density interfaces: 
0 , core-mantle boundary r=R and Earth s surface r=R. Clearly, there are 

jumps in the reference d!nsity/l� (R;)=6; andi,.�(R)= 6 . We will in­
vestigate corresponding gravitational effects by means of simple layera

with surface densities 

(25) d(:) .� .-J = ( !f, [ (�), � . .. ],
where ur denotes radial component of the displacement. Further, at the 
interfaces we can use developments in surface spherical harmonics 

(26) ur [( R;),o; �] =ff [(
u

;) cosm.>.+ (v;) sinm..\]P�(z) =
R n•o m•o un Yn 

= t. [ ( 8:}r, �iJ.

I 

1 

DOI: https://doi.org/10.2312/zipe.1985.081.02



The potential arising from the deformation of Earth's surface 
is gi ven by 'jt" 2,r 

<21) T2 (P) = ae6R
2 JJ u,.

(R,o-,,;.) <:(\;,.,i7dt7d.>..
0 0 

Now, we must separate two cases. First, if the observational point 
Pis rising, then its radial distance rp) R because ur(P)> O.

In this case " 

(28)
" oO R _ = L ---;.rr- P" ( cos er J, 
<s' n=a rp n1-2 

From this expression we immediately obtain 
. .;._ n1-2 n -t-1 

U (0 /\)(38) �g-;(r) = 4w�6ifu9 2n+1 ni -, / 

, ( ) _ 4 1t1C6; � n-1-2 dU"; (0,A) 
<39) 

e20- p - g fu Cf (2h + 1) d6 

(40) e�
,A 

(P) = it'!r'de6; f_ 
9 

n+2 'dU
n
; (6,A) 

g sin 0 ti=o (2n.,. 1) 'JA 

I 

6. Gravitational effects due to surface deformation at the

observational point
<29) / ;.- U,, (e, 1i)R 

T2 
(P) = 4 'fT"aeo � (2n.+1) r;1-1

On the other hand, for sinking point Pis rp < R, 
00 

" 

u (P) < 0 andr 

Owing to radial displacement, the observational point P( R, e, /\)
is shifted inP'(R+ur,f),A). Corresponding disturbing potential will be 

(30) 
-1 = L Rr:H P,, (cos </1)' 
r n=o oo U (0 llk n

(31) r2 (P) = 4 'fT1t6 L n , _!_. 
n=o 

Finally, for unchanged point P /u (P). 

(41) 

where 

O/ Eqs.(29),(31) reduce to (42)

r (p,, _ d ( �M)u = _ (�) 1,1 = -ge,, 
3 

1 - dR R r- R� r r 1 

M is the mass of the Earth. Disturbing gravitational 

'JT
3

2 ;;eM __ � u 
�CT (P) = - - = - 3 u,. -

R � r-.
=>3 'd R R 

effeet is 

T ( ) ,. ,1R 
t" Uit, A)

(32) 2 P = .., '!raeo &o 2n+ 1 . The changes in the direction of the vertieal, resulting from a 
surface deformation at the observational point are 

The derivative of Eqs.(29),(31) with respect to (-rp) and putting dt4,- 1 cO 'JUn (6,t\) 
r = R gives (43) € (P) = - --- = - - L de IP o0 31"' R "0 R -

nt--1 U ( ) '( � 
a n-o . 

<33) ög/P) = 4 'ft?Jt6; 2n .,.1 " e,/\ , u„ P > O, (44) e (p) = _
Jur- : __ '1_ f_ JU,, (e,A) .

(34) ög2.(P) =-lt,rac6 � 2:+1 U
h

(e,A), u,. (P) < o. 3.>. Rsin0'JA Rsin0 n=o d/\.
7. The disturbance in the Earth's rate of rotation

The changes in the direction of the vertical are found from (32) 

( >) ft'fl-;c6 � 'JU" (6, /\) 
(35) e P1 = --- L_ ------217 g- rl"O . 

(36) ( ) _ 4'frx6 f_ 'JUn (0, /\)
e2.>. p - gsin0n=o (2n+1)dl\

In the similar way, the potential arising from deformation of 

Earth's core-mantle boundary is given b,Y, /. ) R ; / 
00 

nt1 V -\6,..1 i 
(37) T (P)=4'traeoiR,·L'f 2,.,, ,. 1 Cf

=

-R ·2 n=o n + ·, 

Assume the Earth in the shape of a rotational eDipsoid, in the 
centre of which, O, we shall place the origin of rectangular co-or­
dinate system xyz. The z-axis is identical with minor axis of the 
elipsoid (positive direction to the north ). The x-axis is defined 
by the intersection of the equatorial plane and the prime meridian 
and the y-axis makes up the clockwise system. 

1-' 
\.,.) 
1-' 
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In the reference state before deformation the·Earth rotates about 
z-a.xis with angular rate of rotation W

0 
• The principal moment of

inertia with regard to z-axis is C
0

• If the displacement field is axi-
symmetric it holds 

(45) C = C0 
+ dC, C.J:::: c.,

0 
+ fev, �c << e

o
, f c.v <<c.Jo. 

(52) 

(53) 

8,r "( ) öC
2

=ß6R 5l.f0 -u21

8'1t ,i "( 
dC

3 
= 

'1S 
0;R; 5 u0i- u2J.

According to third Euler's equation [6] 
a. The displacements of principal axea of inertia

(46) j_ ( Cw) "' 01 Cc.., = const. 

dt 
Then, with a view to (45) we arrive at 

(47) 
S'w ac 

(.Jo Co 

In the reference state before deformation are co-ordinate axes

x,y,z identical with principal axea of inertia. The tensor of inertia 

(54) Tij „ [ 

T11• A O O 

] 0 T22• A 0

O O r
33

• C

... 
� 
1\) 

It is sufficient to calculate small quanti ty Sc in a spherical 
approximation according to formula c;i 2'1f 

R'lt2!t 
2 2. 

(48) �c = 1 I) f(r,v)r\inO-d<t + j J 6u/R,v)R sin1"dS +
contains only diagonal terms. If the mass distribution becoaea axially 
asymmetric, then will be 

�
i 

O O O 0 

+ �
2

I
1t

6· lJ (R- 17) R\in
2
'l7 d-S. = aC

1 
+ dC2 + sc3,J I r 11 1 1 

0 0 

where 

( 2. d ] (4g) [i;] = ;:
r-

sinlTdi7dv.. 

dS- R-
ciear1y: dC1 ex;resses the influence of density disturbances 

in Earth' s mantle, whereas öC
2 

and f ( 3 are resul ting from de­
fo�mations of density interfaces. According to Eq.(14), the zonal 
part 

(50) 

of density disturbance is given by 

f(r ,'7) "'I:[-an Oln (r) + c�ßn (r)]P
0
(z). 

n:::-o 

Taking into account developments (26) we obtain'after integration 

\c = S<Jt f [a o(o (r) + Co ßo (r)]ri, dr -
(51) d 1 3 J o 

R· 
R' 

�; J [ a2 rx 2 (r) + c2 ß2
(r)]r"dr.

R; 

[ 

T11• A' T12• -F T • -E 13 

(55) T21 .. -F
" 

T • -D Tij
.. T22• A 23 

T = -E T
32= -D T33

• c'
31 

To· the first order accuracy, for directional cosinea 3 , 1'l , S
the new principal axis of inertia z 'then holds [ 7 J 

E D 
(56) '5 c-A 1

1/_::::--
C-A I 

� = 1.

The products of inertia may be calculated from 
R 'lt 2!t 

[ COS ,.>. ] 
(57)[!] = 1 I f f(,,17,c>.) 

r2 sinvcosti 
sin 1A 

der+

R;o o 
CJt21t '2. [COS'"'] 

+ ( r u (R tT,�)�R -;in"I.Tcosv . d� + 
j j r 1 �in V\ 

0 0 

,i:l'lt '.2. [eo�.>.] de-
+ fJy(R.o-lA)6-R-sin\TcoslT . �; =

J r ,, , 1 1 s 111 .>. 
0 0 

. [ �: l + [ �: J + [ �: J . 

of 

::----. 

::: 

• 
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With a view to well-known formula [8) 
+" 

' 
( k '" ) d _ 2( n + m). d d. 

(58) J P1 (z) pn (z Z - ('h,.dl(ri -n-1)1 �m 1h 1 

-1

where rkm is Kronecker 's symbol, we obtain from ( 57)

(sg) [ �:] = �; l CD !�, (rJ /dr � G� )! ß,(r) r 'dr] ·

By sub

[

s
;

itu

l

ting 
�:

) in
:

o

[

}
7

]

) we

l

�
t

l

afte
�;

nt

:
g

R

r
�

t

[

i
:;;

l ( 60) 2 = -- 6 R _ � 
1 

3 
= 5 °; i v 1

_ D2 5 _ v2 D3 2, 

9. The change of the centre of gravity

In the reference state before deformation, the centre of gravity 
is located in the origin of co-ordinate system xyz. After deformation• ➔ it 1s shifted and its new position vector is r (x ,Y ,z ). lt holdsR <n 2,t 

1 
1t i,r o o o o 

(6l) i:: � J I) Hr,ü,..\)t d� + M J J u,.(R ,i✓,�) 6t d S +

R; o o o o 
1t ,,.. 

+ _1_ j J u,. 
(R;,l7,-") �i 1 dS; = r;

., 
+ � 1- r:3 ,M o o  

where M is the mass of the Earth and ?(x,y,z ) the poaition vector 
of density disturbance. After integration we arrive at 

(62) 
➔ 
ro„ 

R R 

::: _,,. 3 [ (a:, b;, a;) J ol., (r)/dr + (c:,c1:,c;) J ß/r)r3 dr], 
FR R; R; 

-+ 6 ( " ., 0)
(63) r02 =

F 
u1, v1, u1 , 

- -'- . .  u .  
➔ 3 6·

( 
1 1 °) 

ro3 - � 
F

u,., , v,.,, .. , ,

where F is mean density of the Earth. 

10. Conclusion

The model analysis we have carried out indicates that gravitational 
changes can arise mainly due to local deformation at the point of 
observation and at its near surroundings. 

On the other hand, the displacement of the principal axes of inertia, 
the changes of Earth's rate of rotation and its centre of gravity

may occur only due to planetary deformations of global character. Seme 
estimates for the case of deformation of Earth's core-mantle boundary 
are given in [9], [10). 
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1. lntroduction 
. t; 

On the Long-wavelength Correlation between G_ravity and Topography 

by 

C.C. Tscherning 
Geoda!tisk Institut 
Gamlehave Alle 22 

DK-2920 Charlottenlund 
Danmark 

Spherical-harmonic expansions of the topography, the rock-equivalent topography, 
the topographic-isostatic reduction potential and the gra.vity potential of the Earth now 
ex ist complete to degree ( N) and order 180. 

The coefficients are of varying quality. But it is difficult to know how good or 
how bad the sets are. "Good" or "bad" also depends an for which purpose one wants 
to use the coefficients. 

An important application is in the area of gravity field modelling, where the 
contribution from either the potential of the (isostatically compensated) topography or 

from the expansion of the gravity potential in subtracted from the observations. In both 
cases a considerable smoothing is expected, which if achieved should facilitate the use 
of various approximation or prediction techniques. 

A necessary, but not sufficient, condition for a !arge smoothing to be achieved 

Abstract: 

is the occurrence of a strong correlation between the various spherical harmonic coeffi­
cients. lf the correlation is below 50% no smoothing is achieved. A small correlation 
also indicates inconsistencies between coefficient sets, which in principle should represent 
the same information. This is used as an indicated for the quality of the various sets. 

Spherical-harmonic expansions of the topography, the topographic-isostatic 
reduction potential and the gravity potential of the Earth (OSU78, OSU81., GEMl0C) 
now exist complete to degree (N) and order 180. 

A correlation analysis of the various fields by degree has been made. While 
the general correlation between gravity and topography for the sets OSU78 and 81 
is around 50% for N > 15, the correlation with GEMlOC is considerably lower for 
N > 36. This indicates that this set is unreliable above this degree. 

The topographic-isostatic reduction potential may be computed either rigorously 
by integrating the topography and its compensation or by condensating the topography 
and its compensating masses. In the last case the spherical harmonic coefficients of the 
isostatic reduction potential are related in a simple linear manner to the spherical har­
monic coefficients of the expansion of the topographic heights. 

An optimal depth of compensation for each degree has been determined by 

Since a strong correlation may exist even in cases where two sets differ by a 
)arge scalefactor, so-called smoothing coefficients are introduced. These quantities are 
used to describe quantitatively the smoothing per degree achieved. Furthermore, the 
quantities are used to determine optimal depths of compensation, defined as the depths 
where the largest smoothing is achieved. 

requiring the reduced field to be as smooth as possible. Depths between 35 and 15 km 2 C . . 
were found for N > 20, which are much lower than the values found earlier by Rapp • orrelauon and smoothmg 
using another optimal depth principle. . . 

. . . . . Let us regard the sphencal harmomc expans1ons of two functions with fully nor-lt was found that the correlauon between the pnmmve condensated topograph1c- )' . d . . - - - -
isostatic potential coefficients showed a higher correlation with the OSU78 and 81 sets ma ize coefficients (Cnm' Snm) and (Anm' Bnm),  respectively. 
than did the rigorously computed coefficients derived at Technische Universität Graz. Th . . 
Since tliis is opposite to what should be expected, the quality of these coefficients e correlatwn by degree 1s then 
must be in doubt. 

n - - - -

m�Öcnm Anm + Snm 8nm) 

Pn = ( �(A, B) a�(C, S)) t (1) 
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with the degree--variances 

o�(C, S)

o�(A, !3)

n - -
= ml:=O(C�m+S�m)

; � (Ä' + ä• )m;.() nm nm 

(2) 

(3) 

lt is obvious, that the correlation may be high, even if the two sets differ 
by a scala factor, so the correlation is not necessarily a good measure for an 
agreement or disagreement betwe,en two sets. In fact, it is of more importance in 
physical �E•odesy to know which degree of smoothing we obtain, if we subtract one 
set from the other. 

A measure for the smoothing per degree is 
n 

s n 
m�O ((Anm - Cnm)' + (Bnm - 5nm)') 

o�(A, B) (4) 

The correlation between various potential coefficient sets are shown in Table 1. 
Here OSU78 is described in Rapp (1978), OSU81 in Rapp (1981), GEMl0C in Lerch 
et.al.(1981), "rock eq" in Rapp (1982) and "topiso" in Grasegger and Wotruba (1983). 

We should naturally expect a very streng correlation between the coefficient sets 
for the spherical harmonic representation of the gravity potential, W, since the expan­
sions have be computed using very much the same data. But this is not the case. 
OSU78 and 81 seems to be in agreement, but GEMl0C shows little correlation with the 
two OSU sets for n > 40. 

Similar phenomena, exposing less reliable coefficients, can be seen when regarding 
the smoothing coefficients, Fig. 1 - 9. However, the level of smoothing obtained when 
subtracting the potential of the isostatically compensated topography depends on the 
adopted depth of isostatic compensation, D. 

The degree-variances obtained from the potential of a topographic expansion with 
coefficients A and B and its isostatic compensation are (Lambeck, 1978, p. 592)nm nm 

o�(D) 
3p 1 

(� )' TTn+TY1 p [ 1 - (� )n )' o�(A,B) (5) 

where p c is the average crustal density, p the average Earth density and R the mean
Earth radius. The square- root of this equation gives basically the relation between the 
individual coefficients. 

This has been used by Rapp (1982) in order to find compensation depths, so that 

a;(o) "a� (C, S), 

(where the Cnm , Snm set was the OSU81 set).

The result was rathe� !arge depths of SO km. However, if we instead suppose that 
the optimal depth is attained where the smoothing is largest, then the results in Fig. 10
and 11 are obtained. Here more realistic depths of between 1 S and 30 km are obtained 

We would also expect that a good gravity potential coefficient set should show for N > 15- In general the estimated values will be too small, due to the !arge noise 
1 · · h h · f h · t t"al f the topography This is in both coefficient sets. (The depths were found by linearising eq. ( 5) and solving for a streng corre auon w1t t e expans1on o t e po en 1 o . 

h Osu b h h and GEMl0C shows very Jittle D in a least-squares adjustment with one unknown). clearly the case for t e two sets, ut t e topograp y 
correlation_ by degree. From this one may conclude, that the intermediate wavelength In general it is surprising to see that the smoothing coefficients are close to or 
(40 < n < 120) information in the two OSU sets is the most reliable. For the very long !arger than 1, indicating no smoothing. This is reflected in the results given in Table 2, 
wavelength coefficients, we know that GEM l0C is identical to GEM 10B, which has given which show the variation of the geoid undulations and gravity anomalies before and after 
excellent results for all types of orbit computations (S. Kioske, private communication)). the subtraction of the potential of the isostatically compensated, but condensed, topo-

Furthermore, it is interesting to see that the in principle rigorously computed 
coefficients of the isostatic reduction potential show less correlation with the OSU78 
and 81 sets, than the coer'ricients computed based on the attraction of a condensated 
topography. lt may therefore•be suspected that the former set of coefficients contain 
numerical errors. That this is possible has been admitted by our Austrian colleagues 
(Sünkel, 1984, private communication). 

graphy. 

'"" 
""' 
\,II 
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3. Conclusion

The ailalysis of the correlation between various sets of potential coefficients 

or expansions of the potential of the topography shows unexpec ted low values and also 

(arge variations in the values as a function of the degree. This points at some sets 

as being of lesser quality than others. 

The variation of the smoothness coefficients as a function of adopted depth of 

compensation shows that- it may be useful to use varying depths of compensation for 

varying degree. However, the smoothing achieved by subtracting the effect of the 

topography ( to degree and order 180) is very small for the geoid and also rather smal 

for gravity anomalies. This is in contrast to results obtained in local areas, where a 

25% smoothing· generally is obtained by subtracting local topographic effects. 
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Table 2 - page 143 

1 

bl 

Coeff. 
set n 

2 
4 
6 
8 

10 

12 
14 
16 
18 
20 

22 
24 
26 
28 
30 

35 
40 
45 
50 
55 

60 
65 
70 
75 
80 

85 
90 
95 

100 
105 

110 
115 
120 
125 
130 

135 
140 
145 
150 
155 

160 
165 
170 
175 
176 

178 
179 
180 

l.a. .

OSU78 
osu 81 

100 
100 
100 
99 
97 

97 
91 

91 
92 

90 

90 
91 
89 
89 
86 

91 
92 

93 
95 
95 

95 
94 
95 
93 
94 

91 
91 
91 
90 
92 

91 

91 

91 

90 
88 

86 
87 
86 
82 
83 

80 
86 
83 
84 
80 

80 
81 
82 

b . 1 

OSU78 OSU78 osu 81 
GEMl0C topiso 1:opiso 

100 - 44 -43 
100 45 46 
100 34 33
98 43 42
94 65 68

92 -2 4 
79 55 56 
84 47 52 
78 65 66 
75 53 56 

78 51 46 
81 62 53 
67 64 68 
75 61 60 
55 59 59 

65 60 61 
72 59 62 
77 60 63 
85 58 64 
78 58 57 

75 63 64 
70 57 59 
70 60 62 
62 44 49 
65 56 56 

65 44 46 
53 35 37 
52 51 59 
49 50 48 
49 56 57 

50 53 53 
55 43 43 
45 46 50 
39 56 54 
36 41 42 

30 33 42 
27 47 49 
19 35 36 
30 36 42 
19 34 33 

10 31 32 
6 37 38 

12 26 24 
6 31 33 
5 28 30 

9 43 43 
5 43 45 
7 32 41 

- - -

GEMl0C OSU78 OSU81 topiso 

ff d . % ...

� 

topiso rockeq rockeq rockeq 

-43 -44 -43 99 
30 47 47 99 
32 46 45 97 
37 36 34 96 
68 66 68 97 

8 2 8 94 
52 54 60 94 
45 50 60 96 
59 55 59 93 
48 57 62 91 

42 49 49 91 

39 61 52 93 
59 61 67 95 
50 70 67 92 
28 59 62 95 

38 57 56 91 
47 58 64 91 
47 61 63 90 
52 54 59 88 
49 58 57 88 

42 66 67 89 
46 61 63 86 
44 58 61 85 
29 56 56 79 
44 57 57 78 

34 50 50 78 
28 47 50 75 
38 52 58 74 
31 50 54 66 
39 60 62 73 

31 60 60 73 

24 50 50 60 
24 50 57 72 

20 58 57 66 
20 49 54 58 

2 47 49 57 
9 55 56 62 
6 49 47 57 
7 40 52 49 
6 41 41 55 

6 46 50 51 
3 56 52 57 
0 40 44 48 

-3 47 52 43 
10 39 42 52 

1 45 48 56 
0 48 54 56 
8 40 48 55 

Ta e 1. Corre nons etween sets ol potenua coe riorrs for varvin.e: euee, n, m 
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Table 2. Mean sq. variinion of g_eoid heights and gravity anomalies from various 
sets of potential coefficients complete to degree· and order 180, or 
computed from differences between such sets. 

Coefficient set Mean square variation derived from 
(1) (2) Set (2) set (1) - set (2) 

Geoid Gravity Geoid Gravity 
m"""'2 mgal**2 m>'* 2 mga1**2 

OSU1978 none 915.9 551.6 
top.-iso., D=30 15.4 125.4 933.9 441.1 
rock eq., D=20 10.5 115.4 925.2 431.8 
rock eq., D=25 16.3 167.6 930.8 434.8 
rock eq., D=30 23.2 226.8 937.7 446.7 
rock eq., D optimal 110.9 143.6 805.0 408.0 

OSU1981 none 921.3 585.8 
OSU1978 915.9 551.6 3.5 82.0 
top.-iso., D=30 15.4 125.4 938.7 460.7 
rock eq., D:20 10.5 114.4 930.0 446.2 
rock eq., D optimal 113.1 166.1 808.3 419.7 

'GEMl0C none 920.9 467.6 
OSU1978 915.9 551.6 7.7 307.2 
top.-iso., D=30 15.4 125.4 940.0 445.7 

top.iso. rock eq., D=30 1.9 92.3 

The set rock eq •. is the coefficients of the potential of the rock-equivalent topo­
graphy, condensed, and with its isostatic compensation at the depth D. D optimal 
means that the different compensation depths have been used for different degrees, 
so that the best agreement with the coefficient set ( 1) was obtained. 

Polar Motion Between 1900.0 and 1984.0 as Determined 

by Different Teclmigues 1) 

by 

J. Vondrak2) 

SUMMARY 

Polar motion between 1900.0 and 1984.0 as determined by 

classical astrometry (till 1973.0) and the BIH combination 

of classical astrometry and modern teclmiques (after 1973.0) 

1s studied with stress on periods equal to one year and 

loIJger. Carter's hypothesis on the frequency modulation 

of Chandler wobble is supported; non-linear relationship 

between frequency and amplitude can explain the observed 

phase shifts with rms error ± 16°. Westward secular drift

of the mean pole (0.00329"/y in the direction 78�2 W) is 

confirmed, being present also in modern data. The most 

probable period of Markowitz wobble 1s found to be 27.5y 

but its real e:z::istence is highly improbable; it is not 

present after 1962.0, when more re1 iable data are available. 

1) This paper is in print w1 th the European geophysical
journal Annales Geophysicae

2) Astronomical Institute of the Czechoslovak Acade:my of
Sciences, Budecska 6, 120 23 Praha 2, Czechoslovakia ... 

e 
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On the Comparison and Choice between the Formulas of the Earth Tidal 

Correction in Astronomical Time and Latitude Observation 

Xia Jiongyu 

'(Institute of Geodesy and Geophysics, Academia Sinica) 

Abstract 

This paper has given three formulas of the earth tidal correction 
in astronomical time and latitude observations. And it has also compared 
and calculated two of them, i.e. the formulas (2) and ( 3). The main 
conclusions are as follow:::: s 
1. The Wahr formula is more complete than the othe�,in theory and is
suitable for calculating the correction of each single wave.
2. The equilibrium tidal formula is fit for calculating the correction
af all tidal waves. The maximum er.rors in the equation (2) in this
article are ± O

s 
.00002 for time and ± 0" .0003 for lati tude respectively,

which satisfy the present requirement of 0 11.001.
3. The calculation of 11 main tidal waves shows that the earth tidal
correction in astronomical time and latitude observation is not the
same as the ocean tidal one, in tthio.h the sev.e.ra.l. main· wav�.a ar� only 
needed. It is necessary for the earth tidal correction to calculate 
as much as possible waves. Therefore. the equilibril:m tidal :f'ormula 
ma.y more sui table in pradti·ce. 
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On the Comparison and Choice between the Formulas of the Earth Tidal 
Correction in Astronomical Time and Latitude Observation 

1) Introduction

145 

With the improvement of astronomical observation and the development of 
theory of the earth rotation, the earth tidal effects on astronomical 
observation should be considered. BIH has corrected the lunar tidal 
effects on the classical results since 1971PJ In 1978, we proposed a 
formula for correcting astronommcal time and latitude observations due 
to the change in thc local vertical by the earth tidesI�J{)j Our formula 
has been used for reducing astronomical observations in China during 
MERIT main campaign. In 1981, J. Wahr also gave a formula for correcting 
colatitude and longitude when he investigated the earth tide for a 
elastic, oceanless, elliptical and rotating earth/�7 The Wahr formula 
may be adopted in reducing classical astronomical observations during 
MERIT main ca.mpaign by IPi·-iS /'5"l This paper has compared these formulas 
theoretically and choiced the one which may be the most suitable in 
practice. 

11) The Formulas

Due to the change in vertical by earth tides there are three formulas
yet used for calculating the effects of the vertical change on the 
observed time latitude results. 
1 • BIH formula 

In the annual report of BIH for 1971, adopting directly the results 
obtained by B. Guinot, who had analysed BIH data, a group of formulas for 
correction to time observations due to the change in the vertical by the 
moon were given. Actually the following formula has been adopted since 
1972 by BIH. 

�if = -o.'ooEbbA (l.ooq..5+0.16,u,59«)[(1-3s,;,1i4)S/n.l(t, -2CCS 2.f,P}•,,,iS c.c.st 
+ S,'nl.'(J C:.oS�� cc:, 2 t] ( 1) 

AU= - cl.00115"/J.6 7 A. ( /,ODl;.S +0./bS U)S ja)f-lJ'f Si'n�},a$,,.'n t --rC()S:a..�tl. 5,'nJt]

where 3, �4 and t are the mean anomaly, declination and hour angle of 
the moon respectively. .11 =1 +k-1, in which k and 1 are Love numbers, 
here the adopted value of 1+k-1 is 1.20. 

· 2. Our Formula
In 1978, we had proposed a formula based on the equilibrium tidal 

theory for standard spherical rigid earth. 

Jtp::::;12 (f )� ajC �); cosl
J
·S,·,,J; ��i +-A3{+e] b,(f ):'°(scoi;J,-1)S,nJ, Ce.SÄ, 

e J-1,i v' ,, " 

� (2) 

us,;du-1h (½e)t,,"l.C.i ( � ); lo.SJ� >inJ; Slt1Aj + Ai-te>2cl,(f) ,C.rt.csJ,- 1 )s,·11J .s;,,A,
where j=1,2 denoten the moon and the sun respectively.% =0.998332+ 
O .001668 cos :,,.cp is the ratio of the geocentric distance <.>and the equatorial 
radius at geographical lati tude <p. { Y,�• is the ratio of the mean dis­
tance and the instantaneous one from the tidal generating celestial 
body j to the earth. J; and A; are the zenith distance and azimuth of 
the celestial body j respcctively. A� and /13 are the eo-Love numbers 
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for the second degree and the third degree respectively. a•, b,, CJ and d, 
are the constants relating to the mass of the celetial body j and earth 
as well as R and C. Here a 1 =0".034768,aJ.=0."015967, b,=0".000288, 

s e s $ c, =0 • 002318, ci=O .001064, d1=0 • 000019. 
3. Wahr Formula 

In 1981 J. Wahr gave a formula for correcting astronomical co-latitude 
and longitude due to the change in vertical by earth tides. 

b e=-� 1-1;xw�[I_ATO osYt+tATt asi'l;:;+LATZ�9 �+LAT3-�e y,:J

5in0bA=-J<eJ/-1_;1xtlf[LONq-0�8 Y; +LONq I a� r,_: + LONfJ2 06' Ye:] 
(3) 

where 0 and A are co-latitude and eastward longitude. Y;t9�pe spherical 
harmonics. R(e)is the geocentric distance of a observed point, RW) 9o

­
ter,/3us�-t), r0

=6371km is the mean radius of the earth. e =0.00334 is 
the earth's ellipticity. Hf represent�the frquency-dependent tidal 
potential amplitudes in meters observed at the equator directly adopted 
from reference[7 J and [ 8] • The scalars LAT��, LAT1 , LAT2, LAT3, LON®, 
LONGI, and LONG2 are dimensionless factors and in general are frequency 
dependent. 

111) Comparisons

1. In Principles
Based on the equilibrium theory the formulas ( 1) and (2) are derived

from the changes in vertical due to the earth tides. In the formula (1) 
the moon upto 2 degree is only considered, and the ratio of the mean 
distance from the moon to the earth a.nd the instanta.neous one conta.insonly 
lo'>8a • But the formula ( 2) includes all the term� for the moon upto 3 degree 
and for the sun upto 2 degree. Although the formula (3) is also derived 
from the change in vertical due to the earth tides, it is based on the 
Wahr's model, i.e. a elastic, elliptical, ocea.nless a.nd rotating earth. 
In his theory the tidal generating force is expressed the sum of the 
spherical harmonics, therefore the formula (3) can directly calculate 
the amplitude of the variations of co-latitude a.nd longitude for each 
single tidal wave. And the dime,�ionless factors are in general frequency 
dependent. 
2. In Calculating Methods

Since the formulas (1) a.nd (2) both are based on the equilibrium tidal
theory, the calculating procedure of them are also the same. Thus the 
comparisons between the formulas (2) a.nd (3) have only been done below. 
The formula (3) originally gives the amplitude of the cha.nge�in 
co-latitude and longitude caused by the corresponding tidal waves. 
For the convenience of thc comparison the time factor e�w should be 
added. r-Iorever the formulao ( 2) and ( 3) are developed into the zonal 
term, diurnal term and semi-diurnal one. 
i. 1=2, m=O (zonal term)

In this case the values of each dimensionless factor is not frequency-
dependent, so the formula (3) for zonal term becomes 

<" ,0
2. 

oe
.z
�o = tiJij (1.1/J.4.{;./ 5/nl�-().0()/J.t s,•,, (l.0-(),()D„J.0"J0)f Hrw.-,�.sw,; 

bJ\.2,0= o 
Also for zonal term the formula (2) is 

("'4 )
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d'Pi.,o =A2 («� J fi;z C ad ( fJj (3��$} -1 Js-,-,,i ,p
d t.1.J.,o = o

( 5) 

i1. 1=2, m=1 (diurnal term) 
In the case each dimensionless factor is frequency-dependent, the 

formula (3) becomes 

,o� [ 
. l

147 

f e >- 1 = �<eJ � H(w,)(-o.77.2rs-l.ATOus26'-tJ.J.'!>6!itLATl(J�sUJ+t:cs.10,1
' 

( 6) 
-LATZ (tJ,ro7f.rJ-CD5lc9+tJ.�f',.771)-�11/.r4 fLAT3)�4'i]

� 

� J\l-,, =- ifi, 'Jf[Hr,A>,>(�tJ. 171srl.0NtrO-o,Jl/rlt.fLON6-2)c:gsuswi1 
The corresponding formula derived from (2) d1urnal term is 

df/1.,, ==-A2 (-He) ,7';� [�· (f)}�iSi ecsij·] 2ccs2'(>

d Ul,I =-A2(1e)fi';:l.[Cj( � t �2�· ��j] 2 11 (p ( 7) 

111. 1=2, m=2 (semi-diurnal term)
Like the zonal term each dimensionless is not frequency-dependent,

the formula derived from (3) for this term 1s 

·o
l. 

b02 2 = Rte>( ... o.�bf'J8�2e+-0,00117�1te) f,,..!(w;,>�(.J�
I 

1 

S)\}.,l. = -1,:} t),737�1. T Hlwi,}$,'nw;

The corresponding forrnula derived (2) is 

C 3 

d <Pl,2 = -A 1 (-fe-)
J
�J. [ o.j Cr�· ccs�· ccs lt(j 1 S"Jni f,"

d U1,2. = -11 � f %e )tJF,,,. [cJ ( -f-)J eo�'l�· s,-,,.1 ti] 

( 8) 

(9) 

From the formula (4) to (9) it seerns that the formula originally 
derived from the formula (3) contain more terrns than those derived frorn 
the formula (2), The additional term can be regarded as the modified 
terrn caused from Wahr model. According to Wahr's theory, LAT0 and L0NG0 
are corresponding to -(1+k-1) for 2 degree. The others scalars are 
small quantities, the values of which are between -0.008 to 0.005. Thus 
their effects can be neglected. The Tablelgives the modified amplitudes 
of the variations of lati tude and time for main tidal waves at observato�_�ies 
in China. The maximum modified amplitudes are 0 11.00048 for latitude 
and 08.000001 for time respectively. 

As we mentioned above, the formula (3) is suitable for calculating 
the corrections of single wave. And the adopted dimensionless factors 
are sometime variated with the frequency of the wave. In contrast with 
the formula (3), the formula (2) contains all term for the moon upto i3 
degree and the sun upto 2 degree and adopts in general the same values 
of 1+k-1 for the all tidal waves in the same degree. 
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3. Comparisons with Results 

In referencel�) the maxirnurn errors of the formula (2) were estimated,
which are :t 0" .0003 for la_p.tude and :!: Os .00002 för time respectively.

In order to know the differences between the calculated �orrections 

obtained by the forrnulas (2) and (3), several calculation hav� been 
finished in the year of 1983 at Wuchang Time Observatory. In calculations 

112=1.2148 and LATO, LAT1, LAT2, LAT3, LONGb,, LONG1 and LOHG2 are directly 
taken from reference[�J. The results are compared as follows : 
i. By using the formula ( 6), �c9i,, and bAl,/, included 22 main diurnal waves,
have been calculated. And c/{f,,, and d(h,1 according to the formula ( 7) have
been calculated for all tidal waves upto 2 degree. Then the maxirnum
differences between these at the same epoch may reach 0".0011 for latitude
and 03.0006 for time respectively. It is obvious that the differences 

are caused by the different number�' of the waves and the different values 

of the dimensionless factor.
ii,The latitudo .and time correctidns for M+S, Mf, K1 ,01 ,P1, Q1, Mm, 
M2, N2, S2 and K2 have been calculated by using two kind of formulas derived 
from the formulas (2) and (3). The maximum differences between the calculated 
results for each corresponding wave are listed in Table 2. The adopted 
ampli tudes of each wave ahd the differences between 1h and LATO, LONGO 
used för calculations are listed in Table 2 too. Table 2 shows that 
the maximum. differences caused by K1 wave can reach 0 11 .00031 for dtp 
and Os. 0000007 forduand are almost one order larger than the theoretical 
modified values listed in Table 1. The rnain rer-.:::ion is the different 
values of the corresponding dirnensionless factors adopted in the calculations, 
The maximum differences between the above 11 rnain waves by the formula 
( 3) and the all waves by the formula ( 2) may reach 0 11 • 0028 :för
latitude and Os. 00021 för time respectively. Both the diffarences
excess the present requirement of 0 11 • 001.

IV. Conclusions

1. The BIH formula, which the lunar effects are only considered, is fit
för BIH because the solar effects are absorbed in local seasonal correction
in BIH reducing rnethod. Although this formula is useful in practice for
BIH, it is not reasonable in conception.
2. The Wahr formula is more cornplete in theory and fit for calculating for
single wave. It can also consider the frequency-dependent of the scalars.
But it is not convenience even impossible for the large number of waves.
3. Our formula (2), the accuracy of which satisfys the present requirement
of 0 11 • 001, is convenience for all the waves involved. Adopting Doodson's
coefficients för the waves, it can also be used to calculate the tidal
effects on astronomical observations for individual wave, namely the
frequency-dependent of the Love nurnbers can b� considered.
4. As mentioned above, 1t is irnportant how to elect appropriately the
values of Love numbers.
5. According to our point of view, the earth tidal correction for
astronomical observations, is not the same as the ocean tides, should
need the tidal waves as much as possible. Thus our formula may be more
suitable in practice.
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Table 1 Modifi1ed Amplitudes units :0" .00001 (4"3 
08 

• 000001 f.pc/tA) 

Tidal Yunnan Wuchang Shanghai Purple Shaanxi Tianjin Beijing. Mountain Waves 
Ad(p .odu 4d'f .o.du .odcp .L>du .od<p .odu ..:>d'f .o.du 4d� .a.du .Ad.<p .odu 

M2 0.3 o.o 1 • 0 o.o 1 • 1 o.o 1 .3 o.o 1 • 7 o.o 2.5 o.o 2.6 o.o
S2 0.2 o.o 0.5 o.o 0.5 o.o 0.6 o.o 0.8 o.o 1 • 2 o.o 1 .2 o.o 
N2 0. 1 o.o 0.2 o.o 0.2 o.o 0.2 o.o 0.3 o.o 0.5 o.o 0.5 o.o • 

K2 o.o o.o 0 .1 o.o 0 .1 o.o 0.2 o.o 0.2 o.o 0.3 o.o 0.3 o.o
K1 4.o o.6 3.9 0.8 3.9 0.8 3.9 0.9 3. 7 1 .o 3 .3 1 • 1 3 .1 1 .2
01 2.9 0.5 2.8 o.6 2.8 0.6 2.7 o.6 2.6 0.1 2.3 0.8 2.2 0.8

P1 1 • 3 0.2 1 .3 0.3 1 .3 0.3 1.3 0.3 1 .2 0 .3 1 • 1 0 .4 1 • 0 0 .4 
Q1 o.6 0.1 0.5 0 .1 0.5 0 .1 0.5 0 .1 0.5 0.1 0.4 0.2 0.4 0.2

Mo+So 2 .3 - 3.2 - 3.3 3.4 3.9 - 4.6 - 4.8 -

Mm 0.3 - 0.4 - 0.4 0.4 0.4 - 0.5 - 0.5 -

Mf 0.5 - 0.7 - 0.7 0.1 0.8 - 1 • 0 - 1 • 0 -

Table 2 

Tidal H· 
..

D, " ..:i.dfP-mc.x. .6dumM /b-/LATo/ Ac jLONGof 

Waves ( m) ( 0" .00001 ) ( 08 .000001 )

M2 o.63189 0.90812 4 3 0.00?.2 0.0012 
S2 0.29400 0 .4?.;:>86 1 0.0022 0.0012 
N2 0 .12099 0.17387 1 1 0.0022 0.0012 
K2 0.07996 0.11506 0 1 0.0022 0.0012 
K1 0.36878 -0.53050 31 7 0.0478 0.0488 
01 -0.26221 0.37689 8 3 0 .0038 0.0048 
P1 -0.12203 0.17554 4 2 0.0148 0.0158 

Q1 -0.050?.0 0.07216 2 0.0028 0 .0038 
Mo+So -0.31455 0.73869 1 0.0002 

Mm -0.03158 0.08254 0 0.0002 
Mf -0.06663 0 .15642 0 0.0002 

1 
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OE Y'lli'.IE .B.JOO-iffilli roPt13UHTAJl.l:iil:U Iw:P� 
.llHTO�iPHWC 1W1T IlHI ü.BPABJ'.l'l{b; � B 
fJIOBAJlbHOi C.l!.T.ltl. rw� CTAfi4rffi (HA 

IlPHMEf>f!; I'WCC-PU) 

H.C.iil.µcKB, H.T.WlpOHOB

f.naBHM acTpOHOMHtlecsas o6cepBaTOpKH AH YCCP 

Summary 

Ya.S.Yatskiv, N.T.Mironov 

On reducing the effect of horizontal displacements of the 

lithospheric plates from the observations ca.rried out by 

global geodynamic network (on example the GEOSS-REA network).

1-' 
\11 
0 

P e 3 11 w e 

On the base of plate tectonic model RM2 by Minster and Jordan [1] 

the displacements of the lithospheric plates relative to the

EURA-plate are calculated. This modified relative model 1s cal-
Ha OCHOB8 M0�8Jlll T8KTOHKU IJJll(T /ZM2, npe,llJlOMeHHOß MKHcTepoM led RM2-REA. Relative changes of angular distances between the

K ,LJ,Ko�ow, onpe�eJleHbl IUlHeMa'l'KqecKKe napaweT{:1,1 µueHKA �KTO- stations predicted by means of the RM2-REA model are compared 
�pHblX IJJll(T OTHOCKTMbHO 8Bp03KaTCKOA II.lUITY (MO,IUfq>Jill.lKPOBB.HHWi with the observational data (Bm data and Doppler satellite data 
M0�8Jlb /?M2-REAJ. for the periods 1968-1982 and 1973-1983 respectively). 

&inoJIHeHo cpaBHeHKe TeopeTK'G18CRK npe,JlBYl,IKCJI8HHYX no aToA wo- It is shown that the RM2-REA model does not contradict to the 
�8JIK K3MeHeHKA yr�OBYX paccTO$lHKA MeA',Jly TO'IIICawK seMHOA nosepx:HOC- observations and could be used for the reduction purpose. 
TK C ,naHlililOI acTpOHOMKqecKKX K �OMepoBCKKX HaÖJlll,ll8HKR. IloKa3aHO, 

'GITO· M0�8Jlb RM2-REA He npoTKBOpeqKT �M Ha6JIJO,ll8HKß H MO:KeT 

KCDO�b30BaTbCH B KS'G18CTB8 Ha'GlaJibHOro npH6JUaetilUI npK yTO'GIHeHKK 

MO�e�K MrHOB8HHOß RHH8MaTKKH �KTOcql8pHblX MKT K yt;I8Ta ropK30HT�b­

HliX cwemeHHA CTaHLµ(ß B C8TK rWCC-PEA. 
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I. B.ö�µ,EH.111!;

ilocTpOeHHe MI'HOB8HHOH KHH8MaTllqecKOH MO,11.eJIK ,II.BillK8HHH Jlil'l'Ocq>ep­

Hl,IX IIJll('f 3aHHMaeT 4eH'fpaAhHOe MeC'fO B coapeweHHOA T8K'fOHHKe Il.llH'l'. 

äoro o6yCJIOBJieHo, C O,llHOA C'l'OpoHhl, 'l'eM, q'fO ,11.0 CKX nop He ycTaHOB­

JieH M8X8.Hll3M TeKTIIHllKK IIJIHT. C ,11.pyro0 CTOpOHhl, nepewe�eHKH JIK'l'O­

cq,epHbiX nJIHT BlilCeynaeT B poJIII „nowex" npK O6pa6OT1<e Ha(5Jll),ll.eHHH 

B ceTM onop.HHX reo,11HH�ecKHX CT&il\llH, npe,11HaaHaqeHHoü ,IIJIH ycTa­

HOBJieHKH 38MHOA CIICT8Mbl KOOp,IlltHaT, onpe,11.eJieHHH napaw:eTpoB B�8HIIH 

3eMJIH II 'f .n. 

B noCJie,lllille ro,lll,I o6�ee npK3HaHlle noJiyqKJIK wo,11.e.n:H a6coJIDTHhlX 

11 O'fHOCK'feJihHl:ilX nepewe�eHll0 llJl)l'f, llOCTpoeHHhle MilHcTepow 11 �op,11.a­

HOM / I /. WJlH npe�pHHH'l'bl MHOroqHCJleHHble llOmlTKH npoaepKH 3THX 

wo,11e.neA no ,11.aHHblM Ha6JW,lleHHA, a Taue HeaaaKc11Moro onpe,11eJieHiU! 

KKH8Ma'fJlq8CKHX napaweTpoB ,11BD8HIIH JIIITOcq>epHhlX 1111HT / 2-4 /. 

HcCJie,11.0BaHHH KHHeMa'l'IIICH IlJIHT HaTaJIKHB8.IJTCH Ha 3HaqH'feJlhHble 

'l'py,llHOCTII, o6yCJIOBJieHHhle CJI8,lly!)� O6CTOH'feJibCTBBlül: 

(I) npH llOCTpOeHIIK c�eC'l'Byl)l!IIDC MO,lle.n&A Kl4H8MaTHXII IlJIH'f npem,ry­

�8C'l'B8HKO KCllOJlb3OBaJIIICb reoq>K3Hq8CKKe CB8,118HiU! 0 ,llBHllt&HHHX

BdJIW311 rpB.H114 JIK'l'Ocq>8ptil:DC IlJI.IU', r,11.e woryT npoKCXO,llll'fh 3HaqH­

'f&Jlb.Hble JlOKaJlb.lilile ,lleq>OpMax.pül. B 'fO ll8 Bpe.lUI CTaH411H, B8,llyllPle

BYCOKOTOqHi,18 ac'1'pOHOM11qec1tK8 K reo,11eaK'118CICll8 HadJIJJ,lleHIUt, pac­

DOJIO.l[&.1,1!,i, KaK npaBIIJIO , B,llaJlil OT 'faKIIX rpaHHI.\;

(2) ,wia noJiy'!l&HHH 60Jiee weHee Ha,lle&Hl,IX O4eHox cxopoc'!'eA nepewe�e­

H•A IlJlil'!' npilMeHHeTCH ocp8,11H8HK8 ,llBHJteHHR 3a MHOrKe MHJIJlHOHhl

JI8T. BoaHHitaeT sonpoc o cooTaeTC'!'Blül Taxoro nOcpe,11HeHKoro"

,llBJIJt8Hlffl H COBpeMeHHHX MI'HOB8HHHX nepewe�eHIIA IlJIH'f;

(3) �lt'!'llBHlie rJio6a.n:h.lilile MO,lleJIH T8KTOHHICH IlJIH'l' woryT BltD])'llaTb

orpaHHlleHH08 'IIHCJIO dOJiallDIX JlHTOcq>epHblX DJIH'f, OTHOCHTeJlbHlile

,11.BK&eHIUI XOTO� C H8JtO'1'Op0H TOQHOC'l'l>I> OIIHCbl.Ball'l' ,llBHll8HH8

aceR 38MHO0 noaepxHOCTH. Ha CBMOM ,11.e.ne JlHTOcq>epa pa36KTa Ha 

3Ha'IIHT8JlbHO 6OJibWOe 'IIHCJIO MeJIKKX nJIH'l', nepewe�eHIUt KOTO"ftiX MO­

ryT cy�eCTBeHHO OTJlH'lla'l'bCH O'l' rJIOÖaJihHhlX; 

t4) B 6OJihlllHHCTBe pa6oT ,11.JIH npoaepKH MO,11.eJieA KHHeMaTHKH IJJIH'f HC­

IlOJlb3OBaJIHCb ,llaHHble 06 HaMeHeHHaX KOOp,llHHa'l' TO'lleK aeMHOH no­

aepXHOCTH, KO'l'Oµ,Je saaHCHT O'l' CTa6HJibHOCTH IlpHHH'l'OA CHC'l'eMbl 

oTcqeTa, yqeTa aexoaoro ,11aueHHH noJWca H ,11pyrHX CHCTewaTKqe-

cKHX ajxpeKTOB. H3YepeHHH yrJIOBblX paCC'l'OHHHA M8ll,lly C'f8.H4HSDO! 

Ha6JW,11eHHi, ,IIJlHH xop,u H 6a3HCOB npaK'1'�8CKH He KCDOJlb3OBaJIHCh 

,llJlH 3TOA 48JIH. '4.ro6H npeO,llOJle'l'b 3TH Tpy,llHOC'fH 6blJIH npe,11.JIOlleHW 

npoeK'l'bl nocTpoeHHH rJIO6aJihHHX ceTeä CTaH4Hä c 4eJihD Ha,llemtOro 

O6HapylleHiU! COBpeM8HHblX ropH3OHTaJihHblX nepewe�eHHA IlJIHT / 5,6 /. 

Ml,i npe,11.IlpHHHJIH HOByD IlOill,ITI<y cpaBHeHHH CYllt8CTByl)ll!8A MO,lleJIH 

KHHeMa'l'HKH nJIHT R M Z c ,llaHHHMH Ha6JIJ),ll.eHHA c 46llhl0 J:tiHCH8HIUt ee 

IlpHrO,llHOC'fH ,11.JIH yqeTa BJIHHHHa ,11BHJ!:8HHH IJJIH'f npH o6pa6OTK8 HSÖJil)­

,11.eHHA s ceTH onopHblx reo,llHHaMH�ecxwc CTaff4HA I'EOCC-PEA. aTa ceTb, 

OXBS'l'blB8.IJIIIWI BoCTOtiHyD &pony H A3Hll, BKJlllqaeT B ce6H Taue He­

CKOJlbKO CTaff4KM, pacnOJIOXeHHHX Ha Ceaepo-.AwepHIUUiCKOM H ,llpyl'HX 

IJJIHTax. Ha6JW,IJ.8HHH 3THX H ,11onOJIHH'l'eJibHblX CTaH4HR, 6y,11.yqH IlpHBe­

,11.81:iHHMH B 8,11.HHyJIJ CHCT8My C eapu.HaTCKMMH CTaH4HHMH, ,llOJlllHH odec­

netraBaTh JlytUDyl) odyc�oBJieHHOC'fh C.HCTeM ypaBHeHKA H paa,11eneHHe H8-

H3B8C'fHblX (napaweTµ,i Bpal!leHHH 3eMJUt, aJIEfMeH'l'bl op6HTH l4 ,11p. ) • 

2. .MO�lik.A1JJ1H 100-ill'wlA'IWIECKü.0, !il),1.1,Ellli � M 2

MO,11.eJih OTHOCHT8JlbHOro ,11BHJC8HHS JU4'1'0cq>epHHX MH'l' R M 2 , no­

CTpoeHHaH OOHHCTepoM H �Op,naHOY Ha OCHOBe 'fl!IST8JlhHO OTOOpaHHoro 

Ha6JW,IJ.a'l'eJihHOro .M8T8pHaJia, llO3BOJIH8'1' 3JieMeHTapHbiM nyTew paccGH­

'fblBS'fb JIHHeIDiyD CKOpOC'fb OTHOCH'l'8JlhHOro �BHlt8HHH ,llJIH npOH3BOJibHOA 

1-' 
\11 
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'l'OQKH paccwaTpHBae.MWC IIJIHT. TaK KaK Hac HHTepecyDT nepeMel!leHHa IIJIHT 

OTHOCHTe�bHO Eapa3HK, TO Ha OCHOBe RM2 HaMH 61,1Jia nocTpoeHa MO-

,IIHqlHJ.P!po BB.HHM KHHewa THll8CKaa MO,ll�b R M 2 - Je! E A (CM. TaC>JI • I) • 

IlpK 3TOM tapaaHaTCKM IIJIHTa CQHTMaCb H8IlO,llBUHOi, a OTHOCKT8JlbHOe 

nepeMel!leHHe OCTMbHWC IIJIHT no cq>epHQ8CKOA 3eMJie OilHCblBMOCb TpeMH 

napaye'l'paMH - KOOp,JlHH8.'l'l,I IlOJWCa BpallleHHa IlJlHT ( 4>1<. ./'\. �) K ee 

yrJIOBBJI CKOp0C'l'b Jl.. K 

B TaC>JIHqe l K no�e,UyJJIIIKX Ta6JIKL\ax npHHil'l'l,I coxpal!leHHble attr­

JIHicKHe OC>08Ha'tl8HHH OCHOBHHX JlHTOcq>epHLIX IIJIHT: .l!:Bpa3HaTCKM (EUl?A), 

'I'HxooxeaHCKM ( PC. I= C. ) , Ceaepo-&lepKKaHCKM ( NO A M ) , Dluio­

AwepHKaHCKM ( 5 0 AM ) , ilq>pKKaHCKM ( .A FR C ) , .r1H,TlHäcKM ( 1 tJ .D 1 ) , 

AH'rapKTHqecKM ( A tv r A ) , Koxoc ( c oco ) , Hacxa ( NA z c ) , KapH6-

cxaa ( CA R .e. ) K ApaBHitCKM ( ,A RA e. ) • 

Ta6JIK4a l 
.M0,11HipHI.lMp0BaHHaE MO,lleJJb R M 2. ( R M 2,- REA 

�: et> , A , 64, H 6 ,-.. B 
rpa,uycax 

J7.. H 6 .ll- B l · Iü6rpa,n/ro,u 

<:p k 

1 
6 q,

1
1 6.A 

! 

i d Jt. 1 1 /\ K !
! ..fl.. I<. 

1 1 1 
1 

1 
1 1 I 1 2 1 3 4 ! b 6 7 

Al=Rc 25.17 5.69 33U.00 l.7I 0.104 0.013
ANTA 16.27 l0.7I 109.03 3.41 0.070 ü.003 
ARAß 29.82 5.oü 358.33 9.48 0.357 O.O::l7
GARS -40.98 28.24 t:3U.33 19.25 0 •. 136 0.044
c.oco 21.83 I.56 242.66 2.05 l.424 0.050
INDI 19.?I 0.56 38.45 1.58 0.698 0.015 
NAZC 4U.75 6;60 260.84 3.53 0.577 0.037 
No AM -65.d4 13.55 312.48 I.31 0.231 0.016 

Ilpo,110JU1:eHKe Ta6JI.l 

--

l 2 3 ! 4 ' 5 ' 
6 

' 7
! ! ! 1 ! ! 

-60.64 ',j.57 Iül.07 I.30 0. 'if77 0.02�

-78.47 16.51 II5. 7ö 18.69 0.2tl8 0.012 

llpHMe'tlaHHe: IlpHfülTO, 'tlTO IIJIKTbl Bpall!8.l)TCE O'l'HOCKTeJibHO E l) � A 

npoTHB qacoaoi CTpeHKH. 

3. 3AfiliCW.OCTb M� � � l1
Kfili.EooA'IWIBCIDwill. flAP�'lP.AMH IJJlliT

J.i,eACTBK'l'eJlbHJ,IMH HJIH ipHK'l'HBHlilül Ha6Jll),llaeWMH BeJIH'IUIH8Jül, xapax­

TepK3YID!llKMH H3M8H8HKJI IlOJIOXeHHä TOQ8K 38MHOA noaepxHOC'l'H, HBJUD>'l'­

CH H8M8H8HHH reorpaipHlleCKHX KJIH npawoyrOJib� reo4eH'l'p1NeClOIX KO­

Op,ilHHa'l' CTaHJ.\HK Ha6Jlll,lleHHA, yrJIO!MC pacc'l'Omildi Mex,Dy C'l'a.HI.µUDül, 

,llJIHH xop,u H C>aaHcoa, coe,llKHJUllllKX paccwaTpKaaewe CTa.HLµIH Ha6Jlll,lle­

HHA. flyCTb � i , ..A-K i - reorpaipH'tl8CKHe KOOp,ilHHS'l'I,I {.. -oA C'l'aH­

QHK, pacnOJIOJC8HHOä Ha J< -oA IlJIHTe; <P.1<. , /\J< , Jll<. - KHH8Ma'l'H­
-qecKHe napaMeTpbl IlJIK'l'I,I. ti / 2, S J npHBe,lleHLI ipopwym, c:sa:,wBallll!Ke 

HSMeHeHHa: KOOp,llHHa't (.. -oa 'l'OQKH aa 8,11.HHilQY BpeMeHH � -t (,llJUl 

y,llO(foTBa npHMeM LI t = I) ; C KHH8Ma'l'Hll8CKHMH napaMe'l'paMH K -oA 

MH'l'bl: 
Atf.lK,t' = - Jl 1< cos <7>K s/� {AK -..A...K,.::) 

A.A. K,, = JZ K s /n. </)K _ .JZ.K co.s <tJx Co.S( /\ ,c-.A.K,i]1t/le,,,_ 

AHaJIOI'HQHLle !pOpMyJibl MOI'y'l' 6bl'l'b aanHCaHbl H JlJIH H3M8HeHHA npgwoyr�b-

HLIX KOOp,!lHHa '1' A X K ,· • ,4 .r K' K LI i! K ,· • IlpHHHMBJi BO BHJIMaHHe ' 

'tl'l'O B8KTOp Bpa0l8HKJI K -Oi MH'l'bl O'l'HOCK'l'eJibHO e -OA MH'l'bl paBeH 
- -,. � 
Jl K,t = .fl ,,_ - Jl.(., JieI'KO HaxO,JlHM COOTHOfil8HH$1 ,llJIE H3Jd8HeHv.l yrJIOBIJI 

pacCTOEHHA A. s,i MeJ(,lly C'l'afiLlHJD'H Ha6Jlll,lleHHA. 

J-1 
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�Srj" = .J1..l(e [Sih.(p,c,e Co!>.$ <f�c.cS 't\ $/h..,(.A.:-,lj) -
sin. S,j 

- co.s cl>t<,! 5;.,_fl c.os(fj s,n.. (Aw.,<:-..A.j)+

(2) 

� CD� ch:.e cos �;_ ...... <Rj 'j-i.-v (A ... ,e -A;,). 

I'/18 St'n S;; = Sti-z f arccos {'s;n �-s;n fij• -,.cos<f:·r"J 1;·�0:,(A.,-�-J]J 

o � s,i � 100
°

.

l13MeHeHHS .!I s,'i 11.0.ao Taue Bb1pa3HT.b 'Qepe3 HsweaeHHSI reorpaqime-

CKHX HJIH npswoyroJl.bHl,IJC reo4eHTpHQeCKHX KOOPJUllia'l' paccwaTpHaaewx 

'1'0'1181( 3elilllH. 3aBHCHM0C'l'.b H3M8H8HHS: ,llJlHH XOp.ll, coe,IUUUDllllHX / -yll 

H j -yr, C'l'B.HqlUI, 0'l' EHH8Ma'l'HQ8CIUIX napaweTpoB O'l'HOCH'i'e.ll.bHOI'O 

,JUIIUt8HHJl iJJJYX n.lJl'f JOl88'f BH,II.: 

Adi/ = (xi �i - e,-Zj) JZK, e cos 1Ke 5;n A 1e:.e +

+ (Xj t, - Xitf-j) JlK.,C Sin4J�e. -t-

+ (2.�J. - �i'-?:-j) Jl..1<.e cos<p"e c0� A1e:e.

(3) 

Ilo ,u.aHHl,IM TadJI.l H 41<>pwy.naM (1-3) .nerxo noJiyqHT.b TeopeTHt1ecKH 

ßpe.ilBWllHCJieHHhle K3M8H8HHS KOOp.llHHa'f C'faHIµIA, yI'JIOB�X paCC'l'OJIHHK 

MeJl',llY C'l'aHl.lHJDIH H XOp.ll. 
o o d

o 

CpaBHHBWl HadJlll,lleHHe 3Ha'QeHlUl .d <f , .6/\ 0, .6 S H .d C 

TeOp8'1'HQ8CKH npe,ll.Bl,lllHCJI8HHlilMH Ha OCHOBaHHH KHH8Ma'l'Htl8CKOA MO,Il8JIH 

'1'8K'l'OHHKH IlJlH'f, 11.0JDi0 CY/1H'l'b O npHI'O,llHOC'l'H MO,Il8JU1 ,llJlH. OnHCaHHH. 

COBpeweHHHX µueHHA IIJIH'f H, B npHH4HRe, yTOGHH'l'.b KHH8Ma.'l'H'48CBHe 

napawe'l'p,i IlJlHT. 

4. XAP.AKTEPHCTHKA �T.EllbHw( JJ,AHHW( OB
� IlüJlO.llG!lliiß 'I(Nlli 3�

ß xaqec'fBe HCXO,llHOI'O HaOJW,lla'feJI.bHOI'O Ma'1'8pHa.na HblMH B3H'l'li 

H3M8H8HHH. &C'fp0HOM14'118CKHX KOOp.llHHa'f C'f�HA, yqaCTBOBaBIIIHX B pa­

dOTe WEB B 1968-1982 rr., a Taue BHQHc.neHHlile no ,IlOnJiepocKKM HaO-

Jl!l,IleHWIM k1.C3 ,llBHllteHH.H CTafil.\H� sa I9'7:3-I9W rr. / /. 1fro Kaca-

eTCH. acTpOHOMHt18CKHX ,IlaHHblX, TO Mhl HCilOJlb30BaJIH '1'.H. KOajxpfillH8H'l'hl 

a. • npHHH.�e MBB ,l].Jl8: xapaxTepHC'i'HKH OTKJIOHeHHM KOOp,IlHHaT C'1'&{4H'1

0'1' CHC'l'eMH MEB I96ö I'O,Ila. I1pHMeHH.H. perpeccHOHHJiI0 aHaJU13 3'l'HX

KOsqxf)HqHeH'l'OB, HaMH ÖNJIH Hait,lleHbl H3MeHeHHH. KOOp.llHHaT CTaH4ffH MBB 

3a O,llHH I'O,Il. TaK KaK Ha �Bpa3Ha'l'CKOM IlJIH'fe Hax0/1H'l'CH. 60.n1:,woe KO­

JIHG8CTBO CTaff4KA Ha6JW,Il8HKH, 6NJIH HaMeHbl ocpe,llHeHHble no ÖJIOKaM 

( pasMepoM 3ü0x3ü0) H3MeHeHHSl KOOp�T Ll .A. 0 

H A <f O 

Bce C'faH-

qHH ÖNJIH pacnpe,IleH8Hbl no IlJIH'i'&! B COOTB8TCTBHH C o6�enpHHH.T!:lMH 

I'PafiH4aMH IlJIHT*). B TaOH.2 H 3 npHBe,JleHbl CBe,Il8HHH. 0 MaCCHB8X acT­

poHOMHGeCKHX H ,IlOMepOBCKHX ,llaHHl,IX, I',Ile "- 6 7 - cpe,I1Hee 3Ha'4e­

HHe cpe,11H8KB8.,llpaTH'4eCKOä OlllHÖKH onpe,IleHeHHSl CKOpOCTH nepeMe�eHHSi 

C'faH4HH no KB.E,llOH KOOp,IlHHaTe, Bblplm8HH08 B 8,IlHHHllax 1·106rpa,nycoB/ 

I'O,ll. 

Ta6JIHl.la 2. Pacnpe,IleHeHH8 MaCCHBa ac'l'p0HOMK"Cl8CKHX 
,llaHHl,IX no IlJIHTaM 

HasB&rne ! KOHHG8CTBO
IlJIH'fli 

! C'faH4Ht.i (HJIH 1 " 6 7 ,!l'f 
1 L.6 7.6 .A ! ÖJIOKOB) ! 

EUl<.A b :!:0.13 :!:u.60 

/J0,4M 4 0.50 0.60 

So AIVI 4 0.34 2.00 

KaK BH,llHO H3 Ta6.n.2 H 3, TOtjHOCTb onpe,IleJieHHH. CKOp0CTei ,IlBH­

EeHHA CTafil.\KA no ,IlODJI8p0BCKHM HaOJID,lleHHH.M npIDi!epHO B 'fpH pa3a 

BblWe no cpaBHeHIW c acTpOHOMHqecKHMH onpe11eneHHaMH 3THX /1BHE8HH8. 

*) B nepBOM B8pHaHTe H.IlOHCKHe CTatf4HH ÖNHH OTHeceHhl K EBpaSHaT-
CKOA. IlJIHTe, a BO B'f0p0M - HCKJIVG8Hbl H3 paccMO'fpeHHH. 

.... 
IJ'I 
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Ta6J1H4a 3. Pacnpe,ue;reHHe MaCCHBa ,ILOilJlepoBCKHX 
,ILaHHHX no IlJIH'l'aM 

HasBaHHe 1 KOJIHqecTBO 
L67A�1 C'l'aHJ.\HA (KJIH 1 

IlJLH'l'bl 1 6JIOKOB) 1 

ELJl2.A 4 ü.15 

/VOA M d ü.23 

/IV DI 3 0.12 

Pc F=C 3 0.10 

< 6) .<l.Ä. 

0.19 

ü.32 

0.15 

0.16 

flpHNeqaHHe: B O'l'JIHtme 0'1' pa6o'l'bl / 4 / B Ylli,!LHHCKyJO IlJIHTY 

6blJIH BKJillqeHbl CTS�HH, pacno.no�eHHhle Ha �KllHil­

nHHax H B ABc TpMHH • 

5. CP.Al3HEllliE HABJ�El:!HliX li TWPE'IWifilGi
�E;4Wtlli�illllitlXIlOID,ii.I!:JlliTIBWHIDUiIJ.ill1T
.r13iY!EliEHHß YrliOWX PACCTOl11-illi1 �
CTAHUl1fillli

Ta6J1H�a 4. Cpe,llHHe 3HaqeHHS:I KBa,ILpa'l'OB 
o o C) 

BeJrntiHH .a S;.i , H ( .a S;.
i - LJ 5,/ 

HaaBaHHe ' 
<'.'.:(AS/'- ) 2 ? ! ( 0 C. 2 

IlJIH'l'bl i 1 (LJSij -..1 Sij) )
1 J 1 

t,10 AM 0.632 

So 4M 3.086 

Ta6J1H4a 5. Cpe,ILHHe aHaqeHHH KBa,ILpaTOB 
0 0 

C..) B8JIHtlHH LI <;,/ H ( Ll S' ;j -11S,j 

0.606 

2.9ti2 

HasBaHHe 
1 < ( 4 S' (j ) z / 1.c ( .6 S ij - A S,j) z. )> IlJlH'l'bl 

WOAM 0.149 ü.155 
(0.082) (0.076) 

INDI I.206 ü.607 
(ü.d63) (0.502) 

PC !=C 0.300 0.266 
(0.0<J?) (0.332) 

B HSCTOJi11!0A pa60Te Mbl paccMaTpHBSeM CKOp0CTH HSMeHeHHR yr;ro- IlpHMetlattHe: tl CK06Kax yxasaH!:il 3Ha�eHHH,IlOJlytieHHble 
BblX paCCTOJiHHR MeJK,lly CTaHI.µUIMH, KOTOpble B OTJlHtlHe OT H3MeHeHHH no BTOpoM BapHaHTe (CTaHJ.\HH B MH,UaycaBe 
KOOp,ILHHaT He saBHCHT OT B1,160pa CHCT8Mbl KOOp,ilHHaT H ee CTa6HJibHOC- HCKJl�qetta). 
'l'H. KaK BH,ILHO 113 Ta6JI.4 H 5, yqeT BJIH.RHHH nepeMel!leHOH IlJlHT (Kl-

13 'l'a6JI.4 H 5 IlpKBe,ILeHbl cpe,ILHHe 3HaqeffHH KBa,ILpaTOB H3MeHeHHR ,IleJib R M Z, ) B ClOJlbll!HHCTBe CJlytlaeB yMeHbmaeT 3HaqeHHe cpe,ILHeI'O 
yrJIOBblX paccTOHHHft Mell,lly CTS�HHMH ,ILO H noCJie ytieTa KHHeMa'l'HKH KBa,ILpaTa yrJlOBb!X pacCTOHHHR MeJK,lly CTaHJ.\WIMH, T.e. MO,IleJib KHHeMa-

0 C 

IlJIH'f ( .d Sii - HSÖJIJD,11.eHHble B0JlH'l!HHbl, ,1 S ;j - Teope'l'HtleCKH npe,IL- THKH IlJIHT s cpe,ILHeM He npOTHBOpeqHT pesyJib'l'S'l'B.M COBpeMeHHhlX Ha6-
BbfllHCJleHHHe), HaR,IleHHble no acTpOHOMHqecKHM H ,ILOilJiepc>BCKHM Ha6JIIO- JIJO,ll.0HHH aa ,ILBHllteHID!MH CTaHJ.\HH. 
,Il0HHJD4 COOTBeTC'l'BeHHO. HB.MH npe,ILilpHHHTa IlOlli,ITKa yTOtlHeHM no yxaaaHHblM m,ime Ha6J1K>,I1a-

TeJibHblM ,IlaHHblM KHHeMaTHqecKHe napaMeT� ,ILBHJ!teHHH IlJIHT OTHOCHT�b­

HO EBpa3HH (CM. T8ÖJ1.6). 
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Tad.nHqa 6. IlonpaBKH K npHfül:TblM 3Ha�eHHm! KKHeMaTH�eCKHX 
napaMe'l'poB (MO,lleJib RN� ) H HX OlllH6KH. JIHTEPATYPA 

1. Minster J.B., Jordan T.H., Present-da;y Plate Motions, JGR,
lu�.., l ! 1 j 1 1

1 vol.83, N B11, 1978.Ha:,aaHHe I uc.uJW- r 1 ! ! :, l,neHHSi i cl m f6{u(J) ! d A 
I
I J((iA) 1 d J2, 1 o/'a'JZ) 2 Arur M G  and Mueller I.I. Latitude Observations and the Detec-n.nHTi» 

1 j 
r 

1 1 1 1 • • • 

NOAM .A5TR -50 ±145

3b 

100 

36 

10 

+131

59

±208 

76 

153 

64 

43 

-U.232 ±Q_4j4 tion of Continental Drift. Journ.of Geopbys.Res., vol.76,N 8, 

NOAH DOP Q _0_435 ü.l29 
p.2O71-2L76, 1971.

5 o A-M ,4-STR 86 - 74 o.415 1_167 3. Drewes H. A Geodetic Approach for the Recovery of Global Kine-

I N O I i)O P -22 -104 0_586 0_491 matic Plate Parameters, Bull.Geod., 56, 1982, p.70-79. 

Pc Fe. DoP -20 54 0_337 0_296 4. Anderle R.J. and Malyevac C.A. Plate Motions Computed from

�ilJ.lli: nonpaBKH xoop,IDIBaT no.nrea apa�eHHH B rpa,u.ycax, 

nonpaBK8 yr.nOBOA CKOpoC'l'H Bpa�eHHSi B l"lü6rpa,n/ro,n. 

H3 no.nyqeHHHX HBJIIH pe:,y.nbT8'1'OB MOJl'.HO c,ne.naTb c.ne,nyxi�e BHBO­

,ni.: 

I. Mo,ne.nb KHHeMa'l'HIUf 11JIHT R M 2, B np�e MOJCeT c.nyl!tHTb B Ka­

�ecTse HCXO,llHOro CTaH,llapTa npH o6padOTK9 Ha6JlJO,lleHHA B ceTH

r.EOCC-PEA K yTOqH9HHK KHHeMaT�ecKHX napaMeTpoB. 

2. AcTpOHOMHQeCKHe onpe,ne.neHHSi CKOpocTeft ,llBHlt8HHH C'l'aH4Hft ycTyna­

D'l' no TO�OCTH COBpeMeHHblM ,no11JiepOBCKHM onpe,ne.neHHSIM. Y1x npHB­

.neqeHHe ,ll.IlSi yTOqHeHHH napaMeTpOB TeKTOHHKH 11JIHT BpR,ll .nH qe.ne­

coo6pa:,HO.

3. ,/J,)IH ysepeHHoro onpe,ne.neHHSi KKHeMaTHt!eCKHX napaMeTpoa ,naHJ<eHHH

n.nHT He06XO,llHMO cy�eCTBeHHO IlOBblCHTb TOQHOCTb onpe,ne.neH.füi CKO­

pocTeH ,llBlilteHHSi CTattqHä tta6J1JO,lleHHH, HX yr.nOBblX paccTOHHHH H

xop,n(ripHMepHO Ha nopR,UOK no cpaaHeHHIO C HM8KlUlffMHCH ,llaHHblMH).

Doppler Satellite Observations presented at Symposiwn 2 of 

the XVIII General Assembly of IUGG, Hamburg, 1983. 

5. Drewes H. Design of a Global Geodetic Network for Geodynamics,

Proc.of the International Symposiwn on Geodetic Networks and

Computations, Munich, 1981. Ver6ffentlichungen der Deutschen

Geodätischen Kdlnmission.Reihe B, Heft N 258/11, 1982

6. Geodetic Monitoring of Tectonic Deformation toward a Strategy.

Panel on Crustal Movement Measurements. Washington,D.C.1981.
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fJIABHOE YIIPABJIEHJ1E I'EO,II,E3!,1!1 H KAPTOI'PNDHM IIPM 
COBETE Mv!HJ1CTPOI3 CCCP 

UEHTP.A.JibH!:M OP)LEHA "3HAI{ IIO<IETA" I-IAYT-Il-IO-MCCJIE,IIOBATRJI1Cfü1Ü 
MHCTI1TYT I'EO)lE3IB1, A3POC'LEMKM M KAPTOI'PM?HM 

HM. �.H.KPACOBCI{Orü 

0 IIPIDil1BHHX IIOIIPABKAX B I'EO)lE3Illi 

M.M.IOpKIIHa

IIPEJlCTABJIEHO 5-MY MEllQlYHAPO.IlEOMY CMM0:03MYMY 

"rEOl]E3liffi M �MSMKA 3EMJil1" 

Jh!TepaTypa 

Groten E. 1981. Reply to M.Ekman's "On the definition of 

gravity, remarks on "A remark on M.Heikkinen's paper "On the 

Honkasalo term in tidal corrections to gravimetric observa­

tions". Bulletin geodesique, 55, N 2, 169. 

Honkasalo T. 1964. On the tidal gravity correction. 

Bollettino di geotisica teorica ed applicata, 6, N 21, 34-36, 

Marzo. 

Zeman Antonin. 1981. Problem Honkasalovy opravy v teorii 

vysek. Sbornik reteratu z celostatniho seminare, konaneho ve 

dnech 20-24,10,1980 ve Zvikovskem Podhradi, dil I Geofyzikalni 

ustav CSAV. Praha. Geofyzika n.p. Brno. Brno, 81-83. 

Pes10Me: ßo Bcex TO"IllliX reo,n:esli'Iecrunc HSMepeHIIBX rrp:0: sa­
MeTHUX IIpl'IJIHB!illX BJIIOO!HJDC HeOOXO,n:HMO rrpHBe,n:eHHe K o,n:HOMY MO­
MeHTY BpeMeHH H.JIH IIOCTOmIBOMY BJI.IDllrn10 IIpPLJill:Ba. ÜOCYJK,ll;emre BOII­
poca 00 HCKJIIO�eHHH aToro IIOCTOID!HOro BO BpeMeHH rrpHJJHBHoro 
B.Jlli.ffHIDI HeOOXO,n:HMO Ha'lID!aTI, C aHa.Jrn3a OCHOBHHX 3aBHCHMOCTeH 
Teop:im MoJio,n:eHCKOro. Ec� rrpHJIHBHblli aj4ieKT 6y,n:eT HCKJIIO'IeH H3 
aHO� CHJßl TRJKeCTH H BOCCTaHOBJieH B CBJISH Bh!COTH KBasHreoH­
,n:a H B03MYl!la!Omero ITOTeHD;l!8Jla, STOT aqxpeKT He CJie,n:yeT HCKJl]JqaTI, 
ns pesym,TaToB reoMeTpH'!ecKoro mmeJIHpoBa.mm. Borrpoc o Ha�Me 
c�eTa Bb!COT He CBJISaH C BOIIpOCOM O qJHrype cpe,n:Hero ypoBH.R: MO­

Pff. 

Bo BJIIDilllil'DC Jiy-HH n Co.mru:a Ha 3eMJIIO n ee rpaBHT�OHHOe 
IIOJie MOiKHO Blil,Il;eJ!l'ITI, �eHH, KOTOpHe 3aBii!C.iiT OT nmpora MecTa li 
He 3aBHCHT OT BpeMeHH. Mx Ha3HBa!OT IIOCTOID!HHMH. MOJKHO C't!HTaTI,, 
�TO \P:IITYPa TBep.n;oii 3eMJIH, a He TOJThKO ypoBeHI, MOPff cqiopMHpo­
Ba.JrnCI, no.n; �eM aTIDC "tJJieHOB. 

MeJK,ICYHapo,n:HaH reo.n;es�ecKaH acco:o;l'r� Ha sace.n;aH:li!.liX B 
I{aH6e ppe B 1979 r. I!pHHHJia peme:ime o IIOJllIOM HCKJIJO'leHHH rrprunm­
Hb!X BJIH.mmil H3 ooex reo.n;es�ecrunc HsMepeHim. 

3To pemeIDie COOTBeTCTByeT TpeOOBaHHHM Teopmr qiHI'YI)H 3eM­
JIH, corJiaCHO KOTOpoli aHOMa.mm CHJIH TJDKeCTH ,Il;OJDKHH OTpa.JKa.TI, 
TOJII,KO aHOM8.JII,HH9 MaCCH BHJTPH 3eMJIH. Tor.n;a sa,n;a,zy 00 onpe.n;e­
JieHHH aHOMBJII,HOK �aCTH 39MHOro rpaBHT�OHHOro IIO.Jlli no aHOMa­
JIIDl'.M CHJIH TRJKeCTH 1/JOll!HO CTamil'I, KaK KpaeByx>. 

Bo3MYl!la!Om,'I:lt IIOTeHIJ,Han T MOlKHO orrpe.n;eJ!l'ITI, TaK 

T=W-P-U, (I) 

r.ne 'lU' - IIOTeHIJ;l'[aJI CHJIH TRJKeCTH � 3eMJIH, BKJlID�aIOlltli!fi IIOC­
TOJIHHHe "tJJieHH p BJIHHHilli Jiym,t H Co.mm;a, u - IIOTeHIJ;l'[an CHJIH 
TRJK9CTH HOpMBJII,HOI'O (oTc�eTHOro) aJIJilmCOH.n;a. IloTeHIJ,H8JI T oy,n;eT 
OT_palKaTI, TOJThKO rum:mme aHOMaJII,HHX Macc BHy-TpH seMHofi IIOBepx­
HOCTH, BHe 3TOH ITOB9pxHOCTH ITOT9HIJ;l'[8JI T Oy,n;eT rapMo�eCKOH 
�ym<UHe:ä: y,n:OBJI0TBOPff9T ypaBH9HHIO, Ha3HBaeMOMY HM9H9M JiarrJiaca, 
H Ha 6eCKOH9�0CTH peryJIHpeH (cTpeMii!TCH K HYJIID). Ha,imeM TerrepI, 
CBHSI, B03MYl!la!Omero IIOT9HD;l'laJia T H  BHCOTH KBaSHreon.n;a npH �eTe 
IIpHJIHBHHX �H.

1-' 

\J1 

DOI: https://doi.org/10.2312/zipe.1985.081.02



Mo�HO npe'ACTaBHTb 

Uh'\1J0
- J �d\,> (2) 

r}J.e '\l)o - IlOTe:mwa.n: cwm TmKecm B HCXO,Il;HOM n:yHKTe C'leTa Bhl­

COT, 
clh - sJieMeHTa,PHoe HHBeJIHilHOe npeBhlIIleHHe; Kpmio.mmeihmli 

HHTe:rpaJI }J.OJ!llteH 6HTI, BH'!HCJieH OT YTIOMfllfYTOro HCXO,IJ;HOro n:yHKTa 
}J.O HCCJie}J.yeMOH TO'!KH. BeJIH'Il!Hhl mo , g H dh CO}J.ep,KaT B 
ce6e IlOCTOmmHe BJI:WmI!l'.ß: .1IyHl:l H Co.mm;a. CorJiaCHO Teopmr MOJIO­
}J.eHCROro IlOJiaraeM 

-��dh::U(8,HQ)-Uo,

'U=U(B, 1-\ G)+ !� <';,

(3) 

(4) 

r)(e ß - reo}J.es:i;rq:ecitaJI umpoTa. IIocKOJII,KY BHCOTa H HalI. HOp­
MaJII,HHM SJIJmIJCOlI}J.OM He RSBeCTHa, IlOTeHIJ;:0:aJI u pa3JIO.llteH B 
plI}J. TeMopa, nepBm!: 1t1!8H Cnpa.Ba B IlOCJie}J.Heit 3a.BHCRMOCTH orr­
pe}J.eJieH pemeHHeM npe�ero ypa:mremui:, orrpe}J.eJimOOtero HOpMa.-
JI1,HYIO BHCOTY H

Q 
RCCJie}J.yeMo:lit TO"IICH. Crroco6H pememm 

STOro ypamremui: xopomo OTI)a60Ta.HH. IlPHCYTCTBHe B BeJIH'lll!Hax 
� R dh npwmBHl,IX BJmJm:Jm He npeIIliTCTByeT pememno, <; 

06osHa1W.eT }J.OIIOJIHeHHe HOpMaJII,Ho:lit·BHCOTH H� }J.O rrOJIHoa BHco­
Tl:l RCCJie}J.yeMOH TO"IICH Ha,It HO� SJDIIIDCOR}J.OM. ECJm BeJIH­

imHH s OTJIO.lltl'l:TI, no HOpMa..JIRM K STOMY SJIIDIIICOH}J.y OT ero no-
Be:pxHocm, KOHql,I 0Tpe3KOB °<; o6pasyioT llOBe_pxHOCTI,, Ha3-
BaHHYJ) MOJIO)(eHCKID4 KBaSHreOR}J.OM. 
3aMeTHB 

ou =-a 
oH (5) 

R IIO}J.CTamm 3a.BHC:3MOC'm (3) - (5) B HCXO,IJ;HOe BHpa,KeHHe no­
Te�a.n:a T, MOlmO Hruf'm 

z; = 1 _ m�1 u� + � (6) 

KpaeBoe yCJIOBHe MOJKHO llOJIY'IHTI>, npo.ICH@epeHin!l)OBaB 

HCXO,IJ;HOe BhlpaiKeHHe (I) no BhlCOTe 
oT o\lJ oP o u. 

3}J.eCI, 

--=------
01-i öl-\ o\-\ ol-\ 

om- =-2,ol-\ 

(7) 

(8) 

BeJI.lI'llflia oU 

öl-\ 
C He06XO,!l;IIMOH 3}J.eCI, TO'IHOCTI,10 He H3BeCTHa H 

OWITI, MO.llteT 6HTI, BHpa.llteHa C llOMOnp:,10 plI}J.a Teibropa 

au (ou) o'l.u o� 
oH = o� "+ 01l <; =-'5110 - 01-1 � · <9)

Q 

11:CRJIIO'IHB Bh!COTY <;" KBasHreoll}J.a c noMonp:,10 no.n:y,rnHHoro 
Bl:lllle Bbipa.11temn:i:, llOJI.Y'!aeM KpaeBOe YCJIOBHe 

oT T o� '\lJ0-Gtl0 on P oä o? 
01-1 -i oli - �+ t11Q O ol-\ + � cH - 011 '
r.n;e 

!: ==- tq =+0,0�l ( 1- 3 ��l ß) �O.A.

(IO) 

Kos�eHT sToft WOPMYJIH npHBe}J.eH 6es y-qeTa ynpyrmc )(e-
WOpMa.IJ;Jm TBep}J.o:11: 3eMJIH, T.e. pesyJII,TaT 1-\onkMoto 1964 
llO}J.eJieH Ha RCIIOJII,30Balllil:m ßM MHO.lltl'l:TeJII, I,2 sa ynpyrocn TBep­
.n;o:ä 3eMJm:. Ilo noBOlI.Y sToro MHOJ!!ll:TeJili CM. 1>,oh:1-1 I98I, 
r}J.e YJtaSrui:a JIHTepaTJI)a no o6cYlO]:aeMo:ä TeMe, R Hm!re. Ta.KHM 06-
pasoM, npH Bhl}J.eJieHHH RS uo-TemmaJia CKJIH TRJKecm 3eMJm: llPHJIHB­
Horo BJml!IDIJI, BOSHRKaeT KOCBeHHHH s@?eKT - npe}J.IIOCJie,n;mm 1t1IeH 
CnpaBa B (IO). 

lDreH, co.n;epl!iallllIB pasHOCTI> U)-
0 

- U0 , MOJRHO onpe)(eJIHTI, no 
acTpOHOMO-reo)(es:i;rq:ecKHM H cnyTHHKOBHM .n;a,HHHM, BCe OCTaJII,HHe 
'lJ!eHhl CnpaBa MOlKHO llOJ.IY'IHTI, R3 H3Mepemm H Bll'IHCJiemm:. Ilpe.n;­
CTa.BHB noTeHIJ;Ka.n: T pacnpe}J.eJieHHeM npocToro CJIM Ha seMHofi no­
BepxHocm, 'ITO B03MOlmO, IIOCKOJII,Ky STOT llOTeHIJ;KaJI C03.n;a.H pac­
npe}J.eJieHHeM ruJ:O.MaJII,HHX Ma.CC BHYTIJH 3eMJIH, MOiKHO llOJIY'IHTI, HH­
Terpa.Jll,HOe ypaBHeHHe TeOpHH MOJIO}J.eHCKOro. PemeHHe STOro ypaB­
Heiilffi onpe}J.eJI.lieT T. BH'!HCJIHB rro WOpMYJie (6) BHCOTY <; KBa3H- .... 

IJ1 
...:J 
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l'eOHM, MOJKHO Haii:TH IIOJIHJIO BHCOTY � Ha,ll; HOpMaJU>HI,IM T01JlCl'I 3eMHOH IIOBepXHOCTH Ha.D: OTC�eTHI,IM 3.JIJmIICOH,Il;OM .lD3.ID!eTCH 
�JIJmIICOU,Il;OM. 3.JieMeHTOM 'IBCTO reoMeTp�eCY.IfM n OT rpa.MTa.IJ;ffO!rHOro IIOJUI He 

B H3Me:pReMHe 3JreMeHrn IIOJIJI He06XO,Il;liMO BBO.n;HTI, rrorrpa:aro! 3a.BHCHT. Ilp.1'! o6omc IIO,IUCO� K yqeTy IIpHJIHBHl,lX B.7I.l'!RHHit 3Ta 
sa pa3HOCTI, .n;eil:CTBHTeJII,HOI'O IIOJIHOI'O BJIIDIHIDI J.fyHI,I lI Co.JIHIJ;a lI BeJIHl!HHa ,Il;OJVKHa IIOJ'IY'll{TI,Cff O,Il;lmaKOBOH. TaK .I'! 6y.n;eT, eCJIH 
COOTBeTCTBeHHl,lX IIOCTORHHHX �eHOB. I1MeHHO TaKJIO Iijl.l'!JIIIBHJIO IIOCJie,n;rora �eH gJOpMYJil,l (6) H COOTBeTCTBeHHOe BJIIDIIme B Be.IDI-
rrorrpa:aey peKOMeH,Il;OBaJI BBO,IJ;lfTI, B H3MepHeMHe BeJilPilflil,l CHJil:l TH- i:nme illo 6Y7IYT HCK.7IJD�em,r H3 CBR3H BI,ICOTI:l KBa3HreOHM H B03-
JKeCTH l-loV1ko10.Ro H B mrae.IDipoBrurn:e, CJie�H 1-\oli\ko.�ofo , MYJ!la.Kllllero rroTem:wa.ira H orneceHH K samrcHMocm (3). Ho B 3TOM 

1 e\'(\Q I'\ I98I. Truare IIpKJilillHI,Ie rronpa:aror II03BOJiffiDT Iij)HBeCm C.7IY'Iae pea.:,n,HI,IH ypoBeHI, MO:pR OKa.JKeTCH sa:ae.n;OMO 'HeypoBeHHOH 
BCe H3Mepemm K O,Il;lmaKOBOMY paCIIOJIOJKemno BHeIIIHIDC B03M.Yll(aIOIIlIDC lIOBepXHOCTI,ID H HeJII,3H 6y;n:eT pesym,TaTH reoMeTpJif'IeCKOI'O HHBe-
Ma.CC H KaK 6H K O�OMy MOMeHTy- BpeMeHH. B 3TOM �ae B pea- JIHPOBaHHH Henocpe.n;cTBeHHO HCIIOJII,30Ban. .1l;]IfI H3Y'ie!lliJI ypOBHeH 
Jil:,HOM IIOTeHimaJie CHJibl TJDKeCTH 3e.MJIH coxpaHHeTCH ITOCTOHHHI,Ill Mopeil:. HHJKe 6y.n;eT IIOKa3aHO, �TO B.7IIDllme IIOCTOHHHOI'O Iijl.l'!JJID3-
�eH BJIH.RHIDI J.fyHH Jif COJIHJJ;a, pesyJII,TaTH HHBeJIHpOBaHJifH MOJKHO HOI'O s@leKTa Ha pesyJII,TaTH HHBeJIHpOBa.HHH 3aMeTHO l! He c�-
6y.n;eT Herrocpe.n;crneHHO cpa.mnmaTI, CO cpe� ypOBHHMH MOpeil:, TaTI,CH C HHM HeJil,3H. COCTOHHHe TeopI:m yp0BHH MO:pR He II03BOJIJieT 
HO B aHOMa.Jil!f.lX CIDlH T.HJKeCTJif 3TOT IIOCTOHHHl,lli �eH 6y.n;eT HCK- B�CJIHTI, C ,Il;OCTaTO"!HOli TO'Il:IOCTI,ID COOTBeTCTBeHHHe rrorrpa:aKH B 
JIIO'l:eH .1'! Truare aHOMaJIHJif MOJKHO .l'!CIIOJII,SOBaTI, B Jif3BeCTH!,!X cI?OPMY- 3TOT ypoBeHI,. 
Jiax TeOpHH qi!;rrypH 3eMJm. ,I(o6a.BHB K BwmCJieHHOH IIO 3THM g)opMY- )lJr.H OD;eHKH IIOCTO.mmoro BJ!RiIIDIH J.fyHH lI COJIHI{a Ha pesym,Ta-
JiaM aHOMa.JII,HOli COCTa.BJifIIO!I1eH HeKOToporo 3JieMeHTa IIOJIJI COOTBeT- TH HlIBeJIJifPOBaHIDr MOJKHO BOCIIOJII,30BaTI,Cff pac�eTOM 1el'Vlo. VI 
CTBeHHoe BJIRmme HOµ.IBJU,HOro 3JIJIJifIICOHAa, IIOCTOHHHl,lli �eH BJIHH- I98I. O�axo rrpe.n;CTa.BJIE:eTCff HeIIpaBHJII,HHM JifCIIOJII,30BaTI, J:IIlH Ta-
mm J.fyHH H Co.JJHIJ;a, a rrpn JKe.Jia.HID! mc rrOJIHoe rurn:mme B orrpe.n;e- KOM pac�eTe co.n;eplli.9lll,m �CJia JBrna. MHO.litl'ITeJI:E, sa yrrpynre .n;e-
JieHHiiIH MOMeHT BpeMeHH, MO.lKHO II0.7lY'Illfi> HYJKHllli 3JieMeHT peam,HO- cI?o_pMa.IOilI TBep.n;o:ä 3eMJm, IIOCKOJII,R;y BBe.n;eHHe 3TOro MHOiKHTeJIH 
ro rpaBHTa.IJ;ffOHHOI'O IIOJIH 3eMJm. CJie�eT 3aMeTHTI,, �TO 3amICH- npe.n;mlJiaraeT RpaTKOBpeMeHHOCTI, .n;e:äcTBHH B03MYJna.KllleH cwm. 
111aH OT BpeMeHH �aCTI, BJIIDlJllili J.fyHH H COJIHJJ;a Ha reoMeTpJif'IeCKOe 3m yrrpyrne .n:ecI?o� 1elV\OV\ I98I OD;eHliJI B + 5, 7 CM Ha 
HHBe.IDipOBaHHe BeCI,Ma MaJia cpaBHHTeJil,HO C COBpeMeHHOli TO'Il:IOCTI,ID, 3KBaTope H - II,4 CM Ha IIOJIIDCax. CpaBHJifTeJil,HO c TO'Il:IOCTI,ID
HOCHT �a.mnm: xapaKTep Jif IIOTOMY, KaK rrpaBHJio, npeHe6perae- rpa.BHMeTpwi:ecror.x: Jif3Mepemrn:, Heo6xo.n;HMoil: .1l;]IfI pememm sa.n:a� 
Ma. TaKOH IIO,IUCO,Il; R yqeTy BJIIDJ'.Hlra J.fyHH H COJIHJJ;a Ha rpami:TaD;I:I- TeOpHH qi!;rrypH 3eMmr, COOTBeTCTBeHHiiie rrorpemHOCTH MaJil,l. O�a-
OHHOe IIOJie 3e.MJIH BIIOJIHe aHaJIOI'Jif'IeH IIIJHHHTOMY crroco6y HCKJIIO'Ie:HIDI RO OHR MOryT COCTaBJifTI, HeCROJII:,KO COTI,!X MPIJIJmraJia, T.e. 6HTI,
BJIJiIHHID! D;eHTp06eJKHOH CHJI!,! H3 aHOMa.JIKH CJif.Jil,l TJDKecm. BJIHHHHe 3aMeTHHMPI IIIJH COBpeMeHHoil: TO'Il:IOCTH rpa:aHMeTpwi:ecICHX H3Mepe-
D;eHTp06e:iKHOH CHJIH, KaK lI3BeCTHO, coxpaHHeTCH B pea.:,n,HOM mm. Eo.71:ee IIpaBHJII,HJ,!M rrpe.n;CTa.BJIE:eTCH C�TaTI, 3eMJIIO TBep.n;oil: :r:ij:M
IIOTem:wa.n:e CHJIH Tmi:ecm 3ewm, H, COOTBeTCTBeHHO, B HOpMa)Il,- pac�eTe paCCMa.TpHBaeMoro rroc�omrn:oro BJil!HHIDI H BBO.IJ:HTI, rrorr-
Hl,lX BHCOTax. 

3a,n:a.'T!y TeOpHH g)RI'Yl)H 3eMJIH MOJKHO pemHTI, II:PH IDIOM IIO,IUCO­
.n;e R yqeTy IIpHJil!BHJ,!X :B1IWIHH11. A HMeHHO, B COOTBeTCTBJifll C pe­

meHHeM MeJK,n;YHapo�OH reo.n;es�eCRO� aCCOIJ;i'ra.IJ;ffll MO.lKHO HCK.7IJD�Tl:, 
rrpwmBHl,lli scI?cJ?eKT Jif3 Bcex reo�es�ecrorx: nsMepemrll:, pemHTI, Kpae­
BYJO sa,n:a�, BHpa3HTI, HYJllllllli 3JieMeHT rpaBHTa.D;ROHHOI'O IIOJIJI lI B 
ReM BOCCTaHOBJifTI, IIpHJil'f.BHOe BIDrRHHe. IlOJIHaH B!,!COTa HeKOTOpnfi 

paBey TOJII,KO 3a COOTBeTCTBeHHOe CMe111eHHe ypOBeHHiiIX rroBepXHOC­
TeH. J3es yqeTa KO�eHTa sa yrrpyme .n;egJOpMa.IJ;ffll 3eMJm, Jif3
qio:pMYJI 1eMal'\ CJie�eT

6 \.l-=O,'lt ( <ä,Üt1 
ß-�"1 ßc) JJ. 

BeJIH'CmHa ! tH orrpe�eJIHeT pasHOCTl> rroTeH!l;liaJIOB P B :.rcc;re-
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,r:cyeMOH TO"t!Ke H HCXO.n;HOM ITJHKTe HKBe.IDIPOBOR. Ec.mr OTC"C!eTHYIO 
TO�y rroMeCTI:ITI:, Ha rro.moce, TO Ha 8RBaTope �� = 0,3 M, "C!TO 
B o6rqeM corJiacyeTC.fI c ou;eHROH \.\0V1k0,��� o • PacxoiK,IJ;emte eo 
cpe,IJJrnM ypoBHeM Mopsr rro.rryqaeTC.fI 3Ha"tIHTeJII:iHIDv'I. KaR yRasaJI 
IeW\(ÄV\ I98I, TaruIM o6pasoM, HarrpHMep, MOJKeT 6HTI> nceyccTBeH­

HO cos.n;a.Ha pa3HOCTI:, ypoBHeM EaJrTRHCROro H .A.zu)HaTWieCROro MO,PJI 
Be.JIKtmHOii OROJIO 7, 2 CM, "C!TO n:pemmraeT onm6IGI mIBeJmpoBalliUI 
Ha Ta.ROM paccTo.mnm. 

!IpH YCTaHOBJiemm 3Ha.Ra nonpamm CJie,rryeT RM0Tl> B mr,r:cy, "C!'I'O 
y�emre nocTomn-rax BJOOII-I.m1 JlyHu H COJIHIJ;a cmrMaeT �onOJIHHTe­
JIJ,HOe 8RBaTOpHa.7ThHOe B3,I(YTHe ypoBe.HHh!X IlOBe,PXHOCTeH Ha 3eMJie ll 
yBe.J]lfqlffiaeT pa3HOCTI:, BHCOT B TO"t!Ka.x, o.mra H3 ROTOPHX pacnOJio� 
JKeHa no.n; 8RBaTOpOM, a .n;pyrru:r - B cpe,zure:ä IlOJIOCe„ 

Bonpoo 06 H3y't!eHIDI OTHOCHTeJil>HliX ypOBHefi MOpeH C ITOMO­
l.IU>ID Iml3eJmpOBaH.ID:I He CJie,rryeT CMeIIIID3aTl> C BOITpOCOM O cpe,zureM 
ypOBHe MOP.f! RaR OTC"C!eTHOH IlOBepXJ:IOCTH. Ta.ROH OTC"C!eTHOM IlOBep­
XHOCTI:,IO reo.n;e3HCTH He IlOJil>3YJOTC.fI, HeCMOTpFI Ha yTBepJK,IJ;eIDI.fI 
y-qe6:mmoB reo.n;ean H B -qacTHocrn \..\o"kacaRo , BH6Hpru:r sa 
OTCtieTHyro corJiaCHO onpe.n;eJieHHIO EpYHCa TY YJ)OB0HHyro IlOB8,PXHOCTI:i, 
ROTOpruI IlpOXO.IU!T -qepes HCXO,:r::cHIDI Hy-JIJ, CtieTa BHCOTo 

�oV\kcv�o�o rrOJiyqKJI CBOM pesyJIJ,TaT ocpe.rmeHHeM sa 
I8,6 ro.n;a - o6opOT 'Y3Jia JIYHHOH op6HTN. )J,Jm CpaBHemm pe3yJII>Ta­
TOB rpa.BHM0Tpli"C!eCKITTC M3Mepemrn: - npIIBe.n;eHIDI HX R O.n;HOMY MO­
M0HTY BpeMemr BilOJIHe .n;ocTaTOtIHa IlOITpaBRa �O\'\ ko�a�o , 
TeM ciOJiee, -qTo npH B.WllICJiemm CM0filaHHOli aHOMaJIIDI CHJIH TJDKeC­
TH Heocixo.zu,rMO �OilOJIIDrTeJIJ,HOe Bht"C!HCJieHHe ROCB8HHOI'O �eRTa. 

IlpH H3ytieill!H ,n;BHiKeHIDI HCeyCCTBemmx crryTHIDWB 3eMJIH, 
BJrn.f!Hlle JlyHH H CoJIR'Ua .D;OJT.JKHO 6HTI:, npIDDITO BO BHllMalille Henoc­
pe.n;cTBemro. Kos�eHru paaJioJKeHH.fI reonoTeHD;HaJia no cwepn­
tiec:rmM (p.YHRIJ;LIH.M .wm .n;pyrne .D;a.HHHe O rpa.BHTa.IUIOHHOM ITOJie 3eM­
Jm .n;oJ.IJK.HH COOTBeTCTBOBaTI:i TOJil>RO peaJII:iHOH 3e.M7Ie, T.e. B 8TOM 
CJIYtiae HJ)K8H IlOTeHimaJI U + T = 'Ur - P. Ilpn corJiaCOBamm CilYT­
HHROBliIX ll Ha3eMH.hlX .n;aHHHX HYJKHO ITpmJ.fITI:, BO BHHMaHHe IlOTeHIJ;HaJI 
P.
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Analytical formulas are developed which describe the an­

elastic and viscous behaviour of solids by means of an 

absorption band as deduced frorn a Gaussian distribution 

of relaxation times. These formulas are applied to the 

Earth's mantle in order to explain post glacial rebcund 

data as well as various observations of anelasticity over 

a frequency range of more than seven decades incluäing the 

seismological band as well as free oscillations anä the 

Chandler Wobble. In fitting the parameters of the absorption 

band to the observations, the effect of compcsition, 

structure, phase transitions, pressure and temperature on 

the anelastic behaviour is accounted for by rnaking use of 

the empirical relationship 

f_G* = C 
So 

where G* is Gibb's free energy of a relaxation process, 1 

the seismic parameter, So ambient density and c a  constant 

which is only dependent on the relaxation mechanism itself. 

This relationship is shown to be well fulfilled for solia 

state self-diffusion in various solids like metals, haliaes 

and oxides including rninerals irnportant in the rnantle. 

Connected with the Gaussian absorption band it yields 

a theoretical model of inelasticity in the mantle 

which is in excellent agreement with current knowledge 

on transient and steady state viscosities as well as 

with attenuation and dispersion observations between 

1 sec and 435 days in period. Based on this model the 

Earth global Love numbers are calculated for different 

frequencies. It turns out that the Love numbers entering 

into Earth tidal and rotational problems are significantly 

different from those valid in the frequency band of 

seismology. The difference is an increase in the Love 

numbers of 2 to 3% if the Earth's short period tidal 

deformation is considered. It is higher for langer periods 

of loading and results in an 8 days lengthening of the 

Chandler Wobble period at 435 days. 
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