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A New Approach to Iterations in Solving Geodetic
Boundary Value Problems for Real Tepography

Petr Holota

RESEARCH INSTITUTE OF GEODESY,
TOPOGRAPHY AND CARTOGRAPHY

250 66 ZDIBY 98 / PRAGUE - EAST

CZECHOSIOVAKIA
1. Introduction

The solution of a geodetic (linear) boundary value
problem generally means to find a harmonic function in the
domain outside a telluroid which meets some conditions giv-
en on the surface of the telluroid. Following the definiti-
on, see (Krarup, 1973), (Hormamder, 1975, 1976), (Grafarend,
1978), (Brovar, Magnicky, Shimbirev, 1961, §34), the tellu-
roid (or the surface of the Earth in the first approximation
in Soviet literature) is about as irregular as the physical
surface of the Earth s body. However, almost all formmlas
which are used for practical representation of the solution
of the problem are valid for what is usually called a zero-
order approximation of the solution based on a formsl appro-
ximation of the real boundary surface (given by the tellu-
roid) by a sphere. This kind of a spherical approximation is
insomuch hebitual in the respective computations as it is
used even at the very cost of a high smoothing of the real
topography.

There is a belief that there exlsts a convergent itera-
tive (i.e. a comstructive) process, in fact an analytical
continuation in the interpretation by (Pellinen, 1974),
(Marych, 1973) or (Moritz, 1980, §46), which modifies the
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original boundery data in such a way that these, being used
as boundary data on the sphere, define a hermonic function
having the quality of an analytical continuation of the
solution related to the original data and the boundary given
by the rugged topography of the telluroid. However, it is
not quite obvious whether the necessary perturbation of the
zero-order solution which would represent an increment caused
by the topography is small enough (and in which functional
norm) to be determined by an iterative way as above. Anyway
the iterative process must be highly unstable (which is also
in agreement with the practical experience).

In this paper we will confine ourselves to the so-called
simple Molodensky problem

(1.1)
(1.2)

AT =4iv grad T = 0 in n ’

r T/r + 2T = - rAg on 41

where Ag 1is the gravity anomely, r = |x| and ) is an
unbounded domain with the boundary Jf2 which is star-shaped
at the origin of the system of coordinates Xy 0 Xy 5 X3 e
The simple Molodensky problem is the one considered in virtu-
ally all practical solutions of the geodetic boundary value
problem. The term has been introduced by (Erarup, 1973) and
is also explained in (Moritz, 1980, §%§42,43).

It is well known that for the solution of the problem
(1.1) = (1.2) the famous integral equation method has already
been used by Molodensky. The basic integral equation for the
unknown density is related to an irregular surface of the
telluroid. However, for practical reasons it was reformula-
ted and expressed as an integral equation of the second kind
given on a spherical surface. This makes it possible to con-
sider the integral operator involved as a perturbation of the
one that corresponds to (1.1) - (1.2) in case of 2 being
the exterior of a sphere. For the solution of the mentioned
perturbation problem a technique has been developed inspired



by a method based on an asymptotic series expansion of the
resolvent operator (with respect to a small parameter). The
convergence problem related to a Neumann series solution has
been investigated by (Moritz, 1973) and is an inspiring
topic for further research.

From an abstract point of view the above perturbation
problem can be taken for a consequence of a transition from
the spherical coordinates r (radius vector), #(polar

distance), J(geocentric longitude) to the new system of
coordinates
(1.3) T=r~-w,2) , 7= , i=2

where the function h describes the telluroid s topography
in relation to the reference ellipsoid. Following the con-
cept of the so-called spherical approximation, the reference
ellipsoid will be treated as a sphere of radius R (which is
often defined as the radius of a sphere that has the same
volume as the earth ellipsoid, i.e. R = 6371 km), for a
more detailed explanation cf. (Heiskanen and Moritz, 1967)
or (Moritz, 1980). In consequence (1.3) carries the surface
of the telluroid inte the sphere of radius R . However, it
is necessary to express the Laplacian of T in terms of
T, P, A

In this paper a slightly more general transformation

(1.4) r=r-w@n(sr,2) , #=0V , =3

will be used instead of (1.3) where « is a smooth and
suitably chosen function such that 0 = w(T) =1 +¢& ,
E>0, for R<T and «w(R) = 1 . The simple Molodensky
problem will again be solved by means of an iterative pro-
cess. The proof of its convergence will be based on an

a priori estimate of the solution of the problem, especially
on an a priori estimate for its second derivatives.

For an actual representation of the solution there will
be derived the so-called Green s function (more precisely

DOI: https://doi.org/10.2312/zipe.1985.081.02

the Green-Stokes function in this case) msking possible to
write an explicit expression for the solution of the Poisson
partial differential equation in case that it satisfies a
boundary condition of the following type

(1.5) Ju/dixl + 2u/R = £ for Ixl =R

which is well known in physical geodesy.

2. Laplacian

In spherical coordinates
of T has the following form’

r,t , A the Laplacien

T = 520/51° + (2/7) 3T/ir + (1/12) 3°%7/9+2 +
)2{72

(2.1)

+ (cosr/rPsinv) 3T/ + (1/r sin T/94° .

Passing to the coordinates T , # , 7 , according to (1.4),
we introduce, for any values of variables considered, the
new function

(2.2) u(r,#1) = (T +«(T)h,%1) = T(r,7,1) .

To express the Laplacian of u in terms of T , #, 7 ,
which are not an orthogonal system, we have to calculate
all the necessary derivatives:

(2.3) dT/dr = Jdu/dr IT/ir

(2.4)  3P1/gr? = PwatR( oF/ar )P + JAT FT/9r?
(2.5) AT/ = Ju/dT IT/dv + Ju/dvh s

(2.6) 321/052 = 3%0/3T2C 9T/ )2 + 2 JPu/IToR IT/Ir +

+ /9T %%/ % + PwiaEd



(2.7)  0%1/04% = Pu/aTP(aF/4 )2 + 2 GPWaT A T/ + (2.13) D = - (2/F sin ) 9F/dp =

+ QuIT PF/9A° + PulafE . = 2(w/F sin ¥ )(1 + how/oD) ! ow/ar
Thus provided that
(2.8) 0=AT = AF Jw/oF + lgrad 712 j2u/it? + (2.14) by dw/IF > -1 .
+ (2/72) 3%/3p FuloT 97 + (2/r%sin®F) 9T/A FwITIT + Here
+ T 2(5P/F? + (cos F/sin F) Ju/iF + (2.15) Ajh = sin” 4 7 (sinsdh/d» ) + sin~20 3%n/d 2
+ (1/810®?) Puw/a7?) . is the second and
After a small manipulation we obtain (2.16) | grad h 12 2 ( anw/dn )2 + sin~2 ( gb/oar )2
(2.9) Bu=0zgz7us=((2/7) - (x/T)20F) Ju/iF + the first Beltrami ‘s differential operator related to the
+ (1 - (r/i")z | grad 5_|2) azu/ﬁ_z _ unit sphere. Thus

A = 2 =2
- (2/F2)( 95/99 32ulaF IF + (1/8in®P) 95/04 Pusozai ) (21T Du=»adu iz +B0%wW7z° +

2. /= 9= o 2. /= 3 9% a7
and inserting from (1.4), we have +C °W/Tr T 7 + D FWT sin FIT 8]

(2.10) A = (2/F) - (z/F)2AF = Omitting terms multiplied by

- (21 = (1 + Baw/aE) ) + (2.18) (b dw/3F)? or by h Pw/iF

+ (w/F)(1 + Bow/3F) (A - 20 ) - ve get

- (1 + Bdw/oD)(E +w (B2 + (2.102) 4 = (2/F) 1 Jw/iF +

+ (w/P)? lgraa,nl?) n o2z + (0/F)(1 - ndw/oFNAm -2n)
(2.11) B =1- (/F)? lgrea 7I% = (2.112) B = - (w/F?)(2%h + wh?) +

= 1= ((F +w(FM/F(1 + how/iT))? - . +2((F + w(FL)/T)2how/iT -

- (w/F1 + Bow/3T)? I graan? - (w/P2(1 - 20 ow/3E) [graanl 2,
(2.12) C =~ (2/T) dT/Iv» = (2.12a) ¢ = 2(w/T)(1 - hiw/IT) db/dv .

= 2(w/T)(1 + hw/IT)™ In/or (2.138) D = 2(w/T sin»)(1 = hJW/FT) IW/dA .
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Moreover, we will suppose in addition to the introductory It can be simply verified that this may be achieved for

section that _
(3.4) dw(R)/IT = 1/R

(2.19) w(r) =0 for T =R, = const. > R .

In consequence the boundary condition (3.1) will be of the
Hence following form
(2.20) A=B=C=D=0 for ¥=R (3.5) RJu/dT +2u = - (R+h)lg , T=R

== e L]

Finally, extracting the dominant terms, we can put approxi- or
matively (3.5a)  Ju/dT +2w/R=- (1 +hb/R)Ag , T =R .
(2.106) A = (2/F) Baw/iT + (w/FP)An
(2.110) B = - 2WWF + 20 dw/iF - (w/T)? lgraanl 2
(2.12v) ¢ = 2(&//7) on/d» 4. Green’s - Stokes” function
(2.13v) D = 2(w/T sins”) dn/in . Our aim is now to find an explicit expression for the

solution of the following boundary value problem

(4.1) Au =g ’ Ixl >R »
3. Boundary condition (4.2) Juw/olxl +2w/R=¢ , IxI =R .

Besides the Laplacian it still remains to express the Following the general principles in conatructing Green s
condition (1.2) in terms of T , # , 7 . Inserting (1.4) function, we start with the fundamental solution
. -1
and following the notation (2.2), we obtain (4.3) T =lx -yl
== = _
(3.1) (R + B)(1 + hdw/9T)"" Ju/iT + 2u = of the Laplace differential equation. For |yl < [x| we
== (R + h)Ag for ¥ =R have
el
n n+1
since (4.4) J = % CIyl™/ 1x1777) P (cos ;ﬂn)
(3.2) w(R) =1 and
oo
_ n-1 n+1

according to the definition. For practical reasons it (4.5) 93/dlyl = g n( |y| /1x] ) Pn(°°s z"’xy)

Lo S COP PR LB N S where Pn is the usual Legendre polynomial of degree n

(3.3) (R + h)(1 + th/&f‘)'1 =R . and y/xy is the angle between the placement vector x and
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¥y . In case of |yl =R we obtain

-2 5 n+1
=R EJ (2+n)(R/ I xI) P (cos WW) .

A function H(y) which is harmonic for
|yl =R satisfies the condition

|yl > R and for

may simply be found as
H=2>_

n=0
where, after the insertion into (4.7), we get the following

equations for the individual surface spherical harmonics

(4.8) By, » By = (R/1yD)™T B G371y 1)

(4.9)  Hy = - BT (@42) (@) TR/ D B (com py )

except for

(4.10) By = Cay3y + 857, + 855, )1yl
with coefficients ay which can be chosen arbitrarily.
Putting
1< -1(52 1
(4.11) By =RT > (@+2)@-1)7RY/ Izl y )P B (cos Yag)

n=2
we will now define a function

(4.12)  G(x,y) =Jd -B=lx -y~ =B - H +8

and we will call it Green ‘s-Stokes function since its res-
triction for |yl = R (or, symmetrically, |x! = R) and
n = 2 yields the famous (extended)Stokes function S ,
it is known in physical geodesy. Thus

as

(4.13)  &(x,yR/Iyi) = - IxI7" - B, + s(x,5/151)

where
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(4.14) s(x,3/1y1) = R™1 >_ (2n+1)(n-1 )-1(R/lxl)n+1Pn(cos;1/ )
n=2 Iy

see (Shimbirev, 1975, eq. VIII.31) or (Moritz, 1980, eq.
IV.155). Following the principle of symmetry, we can finally
put

(4.15) 8y = cixi/R2Ix|3

to obtain

(4.16) > 3

4.16 H, = 1% e xyyy/CUxllyl)

where Cy i=1,2, 3, are arbitrary constants.

The function G(x,y) will enable us to express the
solution of the problem (4.1) - (4.2). The natural point of
departure is the formula

/ 6(x,y) Auly) ay -
|yl >R

(4.17) u(x) = - (1/4%)

- (1/4%) / (6(x,y)ou/alyl - u(y) dc(x,y)/01y! ) .S
lyi= R

which is a slight modification of the well known Green s

third identity for the exterior of the surface |y! =R .

It is valid for functions u that, besides satisfying the

general requirements for Green ‘s identities, satisfy certain

conditions at infinity, such as vanishing there. Since u

should represent the solution of (4.1) - (4.2) and

(4.18) dG/dlyl + 26/R =0 for Iyl =R

it follows, after inserting in (4.17), that

(419)  wlx) = - (1/4m) [/ Slay) 2 as -

lyl= R

/ c(x,y) &ly) ay
lyl>R

- (1/4%)

@



which is the desired explicit expression for the solution of
(4.1) - (4.2), provided that for our g the volume integral
converges, e.g. for g such that g(y) =0 for |yl = Re o
However, considering that G involves the arbitrary term

H1 , it is clear that u is uniquely determined only in a
quotient space with the zero vector given by & supplementary
space spanned by the first degree harmonics xilxl- B

5. Calderon - Zygmund Inequality

As it will be clear from Section 7, we need an estimate
"up to the second derivatives" for the second term on the
right hand side of (4.19), i.e. an estimate for the solution
u of

(5.1) Au=g , IxI>R
in case of
(5.2) Jdu/dlxl +2u/R=0 a.e. on Ixl =R

(a.e. means "almost everywhere" in the Lebesgue sense). For
this purpose we will use the so-called L2 - estimates for
Poisson’s equation which, in a certain sense, are an analogue
of the Schauder theory in the Holder spaces.

ILet N be & domein in R’ and g & function in the
classical Banach space L2(jl) consisting of measurable
functions on .. that are square integreble. The norm in
L,() 1is defined by

lull, = (/ lul? an )12
£

In addition, we will use the Sobolev weight space Wée)(Jl,R)
equipped by the norm

(5.3)
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(5.4) i3, = = @"'lotal,? -
J il = 2
=llull + R2||| grad u | |l 2 , g4 ::E:::llDiullz &
2 2 1l = 2 2
where
(5.5) plu = o' 1u/ord(x 92)E(x sin o)t

and i = (j,k,1) is a multi-index with components j, k, 1
being non-negative integers. The number il = jJ + k + 1

is called the length of the multi-index i . For the general
definition of Sobolev weight spaces see (Kufner, John,
Fugik, 1977, espec. sec. 8.10).

Recall now that the Newtonian potential of g is the
function w defined by the convolution

(5.6) w(x) = - (42?)_1J//| x-3! T ey ay .

n
The desired L2 - estimates are usually established
through a consideration of the Newtonian potential w .
the fundemental importence for the L, - theory is the
Calderon-Zygmund inequality. It has deep roots in the general
theory of elliptic equations and its proof, which is rather
haerd, goes beyond the scope of this paper. For that reason,
following (Gilbarg and Trudinger, 1983, Theorem 9.9), we
will confine ourselves, without proof, to

of

Theorem 5.1 (Calderon-Zygmund inequality). Let
g € L2(fz) and let w be the Newtonian potential of g .
Then w ¢ WéZ)(.ﬂ,R) , AwW=g a.e. and

= lil = 2

=

for

5.7y ol c llel,

where C = SfL can be a bounded as well as
an unbounded domein in R3 , consistently with the note
made in (Gilbarg.and Trudinger, 1983, p. 235). Note, however,
that here, for practical reasons, we have interpreted the
Calderon-Zygmund inequelity in a weight space and in spheri-

const. Moreover,



cal coordinates in contrast to Theorem 9.9 in (Gilbarg and Using Cauchy ‘s inequality and the obvious inequality

Trudinger, 1983).
) (6.7) (a+b+e) < (1+ Eq + 52)82 +

Considering now the Green-Stokes function (4.12), the
L, - estimate for the second derivatives of the solution of + (1 + /g + 53)'02 + (1 +1/¢, + 1/53)02 ’
(5.1) - (5.2) follows immediately from Theorem 5.1 and the

explicit formnmla (4.19). Thus with &, &, 53 being positive, we have

2
(5.8) I D% i , =~ const. fgll, . (6.8) 4 = k lgll;
Our aim is now to find a quantitative estimate for the where
Sobolev norm of u .
(609) k=(1 + 51 + 52)A00+(1 +1/£1 + EB)AO" +

+ (1 + Ve, + 1/5‘3)A02

and
6. Sobolev norm estimate >
(6.10) Agg = (3 = Hy)® dy ax
Starting with this section we will suppose that 0o
_ 2
(6.1)  gly) =0 for |yl=R, = const. > R (6a11) kg4 = // Hy &g dx
N L2
According to (5.4) we have to estimate the terms (6.12) Agp = // H§ dy ax
n
(602) A, = /( /G(x y) &(y) day)? dx . I
0 n 'n tJ » since G=4Jd HO H1 + HS -
2 2 To estimste AOO we, first, recall that for |yi< | x|
(6.3). 4, = (42R) | gred ul © ax 5
n _ o0
. (6.13) =1z ST (g ®ix®H P (cos yn)
(6.4) 4, = (4xRZ="__ Ilpull} n=1
1il = 2 and for Ixl</|yl
. oo
with G being the Green-Stokes function (4.12) and (6.14) J = lyl-1 . 21 (lxln/lyln+1) Pn(cos Vzv) .
n=
(6.5) n=0(x; R <Ixl <R,) : Consequently
to t the necess estimate
= == (6.15) oo = 2(8ggy + Aggp)
2 =2
(6.6) ||nl| 2'2 = (45:) ( AO + A1 + A2 ) where

for the solution of (5.1) - (5.2) in 2 .
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Agoq = / / (1x17" - B)? a5 ax =

(6.16)
2 R<lyl<Ixl
,/ /o anT - B)? oy ax -
£ IxI<IyI<Re
= (11/12) (4% PR - (28/11)(R/R) +
+ (24/1)(R/R)Z - (8/11)(Ry/RP + (1/11)(R/R)*)
and
(6417) Ann, = i 2
002 % 2 %@ (Jp+
+ 43> ((@=m)1/(aem) 122+ 52))
=1 b ° nm nm
with
Re 1x1
(6.18)  q = Gy®1x12*)21712 alyl1z12 alxl =
R R
e Te n, _ n+l\2,_ ,2 2
= / / (Uxt™/1g 17Tyl c diyl Ix1€ alxl =
R Ixl
= (1/4)(20-1) 7R ((20-1) (2043) T (R /R4 +
+ 4(203) T (R/R T _ gy,
(6.19) I, = / Pﬁ(cosz}) dw ,
&@r
(6.20) Com = / (P, (cos}) cos mA )2 aw -
w
(6.21) Spm = / (Pmn(cosu) sin md )2 dw
w

and dw denoting the surface element of the unit sphere.
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Here we have used the famous decomposition formule

(6.22) P (cos ]yn) = P (cos zx‘x) Pn(cos My) +

+2 §n: ((a=-m)!/(n+m)!)(cos mA , cos ln/\y +
m=1

+ sin m)x sin miy) Pmn(cos z}x) P p(cos zx‘y) 5

cf. (Hobson, 1952, p. 140) where an(cosr)‘) is called the
associated Legendre function of degree n end order m .
Naturally PnD = Pn . Since

(6.23) Iy = 4% /(2n+1)

(6.24) c,_ =5 _ =2%(a+m)!/(2n+1)(n-m)!

nm nm :

see (Smirmov, 1958, sec. 131), we obtain

(6.25)  Aggp = 304w )? > (n+1)2 .
n=

Approaching now the estimate for 4y, » We get, in

view of (4.16),

3 -
(6.26)  Agq = Zci(/xilxlsdx)2=
=1
N
= (4g/3)%@®r™T - R;‘)2 lel?
where
(6.27) 1e12 = ¢ 4 ¢2 4 &2

01 + 02 + 03 .

For 4y, (4.11) similarly yields
o
(6.28) Ay, = B2 nZ_g (n+2)%(a-1)"2RZ (32 +

i ' D22+ s2))
+ 4 = 1((n-m)./(n+m). om * Sam

with

Tt



R
R, = /e (R/r)28+2 22 gy =

(6.29)
R
= R (20-1)7Y(1 - (R/R )% )

Thus
(6.30)  Ag, = 34z )R > FP(m)(1 - (R/R)ZET)2

n=2 e
where
(6.31) N(n) = (n+2)/(n-1)(2n=-1)(2n+1) .

Quantitatively, N2(2) < 0.0712 , N2(3) < 0.0052 ,
§2(4) < 0.0011 , etce.

Combining now (6.9) - (6.12), (6.15), (6.18), (6.25),
(6.26) and (6.30), we obtain

(6.32) Ay < (4zR®2 ¢y Ngld
with
(6.33) Co =1+ &4+ £,)((11/6)(1 - (28/11)q +
+ (24/11)% - (8/11)8 + (1/11)dh) +
+ (3/2) I% (2n-1)""(2041)"2((2n-1)(2043) 7 ¢* +
+ 4(2043)7 (179?271 - 1)) 4
+ (1 416y + £300 = (1/a)20el/3R)Z 4
+ (1 + /ey +1/65) 3 n% F2(n)(1 -~ (1/q)%271)2
and
(6.3)  q=R/R .

In the next step we have to estimate Ay
(6.3). Using Green’s identity, we get

given by
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< / | grad ul 2 dx =

(6.35) / | grad ul 2 ax
2 IxI>R

(Ju/dlxl) uds - ulu dx .

Ixl =R IxI>R

u 1is a solution of (5.1) - (5.2) which yields

< (2/R) /u2 as - /ugdxs
Ix[=R n

However,

(6.36) / | gred ul 2 ax
N

< (2/R)
|xl=R

s 2p) /& ax
AL
where we have used the well known inequality

u? as + (7/2) /uzdx+
n

(6.37) ab < 7&2/2 + b2/27 » 7 >0 .

Since
2
(6.38) /uz ax < cr* llelz

according to (6.2) and (6.32), it remains to make an estimate
of only the first term on the right hand side of (6.36). For
this purpose we, first, put

(6.39) z(x) = z(Ixl) = 1 - (Ixl = R)/(R, - R) ,

R < Ix! sRe . Then

(6.40) /u2 das = - Rz/lxl-z( dz/d1x1) v ax -
1x!=R ¥/

- 32/1x|'22(x)( u?/31x1) ax <
Y

ct



gme-mﬂ//fax+a/quu)hmudaxg
A /A

$(Re-R)-1/u2dz+ 74 /u2 ax +
2 a

+ 1/ 9, /Ig:-adul2 ax
2

where we have used again the inequality (6.37) with 7> 0
instead of 7 . The last result inserted in (6.36) yields

(6.41) (1 -2/71R)/lg:radu12 dx =
1
< (@R, - R+ 2 pR7T 4 p/2) /u2 ax +
n

/ 2
+ (1/27)/ g< ax
S
for
(6.42) 71 > 2/R .

Returning now to 4, and combining (6.3), (6.38) and (6.41),
we finally get

(6.43) A, < @zr®c, |l gl
with
- 2
(6.44) Cy = (Co2R(R, - R)™! + 2 pR + R p/2) +

+R2/27)/(1 = 2/ pR)

and Cy given by (6.33) .

It remains to estimate the term A, given by (6.4).
However, we will confine ourselves to the qualitative esti-
mate (5.8) which involves the use of the Calderon-Zygmund
inequality. Accordingly,
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(6.45) A, <U4mRT)° c,ll g3
with C, which generally depends on R, R, and lel , i.e.

(6.46) C, = CZ(R,Re,IcI) =

Conclusively, the desired estimate (6.6) results now
from (6.32), (6.43) and (6.45). Hence

(6.41)  liull,, < RZu2 lgl,

where

(6.48) M = M(R,R,lcl, &5, 7, 74) =Cp+Cq+ c,

T. Iterative process

Resuming now the original purpose of this paper, we
have to find a solution u of equation (Z.17) under the
boundary condition (3.5a). For this purpose we use the Green-
Stokes representation formula (4.19) which, putting

(7.1) £f=-(1+h/R) Ag

and
(7.2) g =AJdu/dr + B %u/9r° +
+C 0%u/r drds + D %w/r sind Jr )
with
(7.3) A=B=C=D=0 for r =R A

e

in view of (2.20), changes into an integro-differential
equation for u . Our aim is to solve it iteratively. (For
simplicity reasons we are omitting here the bar-sign above

£1



the coordinates r , #, 4 .) harmonic components) in terms of boundary values of the

Using again the inequality (6.37), with y= 1, we get expresion

. . - (7.7 U(x) = Jdu/dlx! +2u/lxl
(7.4) lels < 4Clla Ju/irll 2 5+ I B o%u/drll5 +
which for Ix| = R 1is an element of the so-called Sobolev-

+ llc d%w/r aro’z}”g + 1D %W/ sins Jr il g) <  Slobodeckij space Wévz)(lxl =R) with fractionsl derivati-
ves. The last statement is a consequence of the fact that

< 4R'4(supess (Ra)? (R ll qu/dx | 2)2 + for functions from Wék)(_(l) » k is a positive integer,
£ there exists a precise characterization of traces on the
+ supess B2 (B2 gzu/jrzug)z + boundary J2 of 2 in terms of functions from wék)(ﬂ)

with k non-integr. E.g.:

2 (p2 92 2
cc (R 117 J I, +
+ supfezss ( uw/r drdnll , (7.8) U e wg")(g) <=> Tr(U) ¢ Wévz)(é’ﬂ)
2 2 2 2
+ supess D° (R° || 7“u/r sin# Jr i ||2) ) . see (Nedas, 1967) or (Kufmer, John, Fudik, 1977). Here

Tr(U) means the trace of U on J . Conversely, for £

(and thus also Ag) belonging to W(1 2)(lxl =R) the

(7.5) lell, < 2 R2 1L lu ||2,2 restriction to N of tl(xg)harmonic function V, is neces-
sarily an element of W;°’() . Accordingly,

Thus

i (7.9)  u € WP(a,R) = Ku € W2 (0,R)

.6 1L = max(supess RIA| , supess | B| , supess | C |
(7.6) I.)ﬂ. ? I:'Z ’ I.)ﬁ- ’ which is the property of K we wanted to prove. (Note

supess | DI ) " that we have applied the above statements related to the

1 characterization of traces of function from W(2 (n) to
the weight Sobolev space é )(IZ R) , bearing in mind that
52)(Q,R) and W( (n) =w, (2) (f2,1) are equiped with
the equivalent norms )

Treating now the right hand side of (4.19) with f , g
given by (7.1), (7.2) as an operator defined on WéZ)(_Q,R)
and denoted here by K , we can immediately deduce, under
a supposition that £ is a sufficiently smooth function,
that K maps the Sobolev space wéz)(n,n) into itself. In addition, combining (6.47) and (7.5), we can
Indeed, the second term of the right hand side of (4.19) simply deduce that
belongs to Wéz)(ﬂ,R) simply due to the estimate (6.47) and
(7.5). As regards the first term this is a harmonic function
in the domain |x|>R . We will denote it by V, for short. sfor u,v ¢ W(2)(Q R) . Thus K will have the quality of
Due to the Green-Stokes representation formula (4.19) any a contraction mapping from W(Z (n,R) into itself if
function u which is harmonic for | x| >R and such that its
restriction to N =( x; R<lix]| sRe ) belongs to W§2)(11,R) (7.11) M1/2 L < 1 ~
may be uniquely represented (apart from the first degree

(7.10)  lru-gvll, , < W21 lu-vl,,
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Onder the last condition there exists a unique solution

u e W§2)(12,R) of the integro-differential equation u = Ku
and thus also of the problem (2.17), (3.5a) since we can
apply the famous Banach fixed point theorem in the linear
space W, (Nn,R) which is complete, see (Lyusternik and
Sobolev, 1965, p. 43). Moreover, u may be obtained by
means of iterations

(7.12)

u = lim u_ = K
= Up ’ n Un_q

where uj € WéZ)(JZ,R) is a starting approximation.

8. Conclusion

The preceding results contain a number of parameters.
The preliminary estimates indicate that the condition (7.11)
is satisfied for realistic topography and the parameter Re
great enough to have Re -R = hmax - hmin « This is an
essentiel prerequisite for a reasonable iterative process.
Moreover, it is necessary to suppose that the constants cy
in the first degree harmonic function H1 are sufficiently
small since they are involved in the estimate for M .
A natural consequence of this requirement is a need of a
good starting approximation. However, the first term on the
right hand side of (4.19) can be taken in quality of this
approximation. It is formally identical with the famous
Stokes integral. Thus the Stokes approximative solution of
the simple Molodensky problem is imbedded in the sequence
of approximations of our iterative process as originally
desired.
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THE IRREGULARITY IN THE EARTH'S ANNUAL ROTATION AS
A CAUSE OF SYSTEMATIC TIME VARIATION
I. B. Ivanov

The Higher Institute of Mining and Geology,
Sofia,Bulgaria

Seasonal variations in the Earth's rotational velocity W were
established in 1937 by N.Stoykod] Since then, all the authors
who have discussed their causes have pointed out that they are
mainly causes of a meteorological character. There is a general
consensus, however, that the effect of the meteorological
factors, in the broadest sense of the term, although considered
very important, can explain only about half oh the observed
values of these seasonal variations, and at that with quite a
few reservations. Usually no explanation is given about the
other 50% or, if given, it is based on a variety of causes,some
of which run counter to the meteorological factors [2]

Here we submit an explanation precisely of the unexplained 50%
of the values of these variations in the Earth's angular
velocity. It is based on a transport of masses through the
equatorial plane established by us [3]

The angular moment of a rotational body is given by the
expression

m M=Ca

where C is the body's inert moment vs the axis of this rotation.

If the body is isolated, i.e. not subject to external effects,
this moment is constant.

As is known, if a rotational body has an equatorial plane, i.e.
a plane perpendicular to its rotation, in relation to which
plane the body is symmetric, when this symmetry is violated,then
its inert moment C increases. In our epoch, according to [4] ,
theoretically about July 2nd, i.e. summer in the northern hemi-
sphere, the Earth is closest in shape to the rotational ellip-
soid with which it approximates, and about January 2nd its shape
deviates most from this ellipsoid. As Kozai [5] established
from observation, these two dates deviate in reality from the
theoretical ones by about 20 days by retarding, as is natural
to expect because of the Earth's rheological propertieps. It
follows then that the Earth's inert moment C, when considerd

as a rotational body, is smallest about July 20th and biggest
about January 20th.

In all the investigations of the Earth's angular velocity, its
angular moment M is assumed to be constant. From (1) we have
(2) M = Cw = const

and consequently, when taking into consideration the above about
seasonal variations in the Earth's inert moment C, it follows

DOI: https://doi.org/10.2312/zipe.1985.081.02

from (2) that its angular velocity @ should be biggest about o
July 20th and smallest about January 20th.

Thus, theoretically, proceeding from the result obtained in [4]
one reaches the conclusion which Stoyko established with the ~
observings. At that,this conclusion is obtained only from

changes caused by factors which refer to the body of the Earth.

Bearing in mind the above about the discussions following

Stoyko's finding about the causes of seasonal variations in the
Earth's rotational velocity which, as all authors stressesd, are
meteorological in character, i.e. external to the Earth's body,

it naturally follows that the unexplained 50% in the change in
value of the seasonal variations in the Earth's angular velocity
w are due to causes within the Earth. In the light of this
deduction, the doubt may be expressed that meteorological pheno-
mena are responsible for 50% of the magnitude of these variations.
Comments. 1) On the basis of 7-year observations of the Earth's
Totational velocity, Belocerkovsky [6] added trimestrial varia-
tions in the Earth's angular velocity (3 to the annual and
semestrial known until then, nothing that they"apparently are
due to meteorological phenomena'. Moreover, an exact coincidence
of the phases can not be expected, because '"meteorological phe-
nomena recur but not at the same time'". If the diagrams adduced
in Belocerkovsky's article are examined, it can be seen that the
extrema in the change of the Earth's rotational velocity @ in
one year are about four typical points around the Earth's orbit:
perihelion, aphelion, vernal and autumnal equinox. The results
obtained refer to 17 stations on Soviet soil.

from [3]:

Let us analyze the third formula about T

Lz
x:_s M@ [,S_l[_j_ Qo5(CjL-(SZg)- -ég] S('M O()

tos (5, -Se)- =
S e

9f10 n 5 5(Mf)
(3 572 sin(0,- )
“SM [’_003(5 55)-—- ]wsawmg-

] Cosel Lol § -

Tov=-5Me [

Sar10 St ('é; éﬁ )C19> £.
5.
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(0C = (27T+ %W)g, t is recorded in parts of the year

(days) for a presentation of the algebraic projections of the
Sun's tide-forming force on the Earth in one geocentric
equatorial coordinate system (see Fig.). This projection is
responsible for the seasonal transport of masses in the direc-
tion of the Earth's rotational axis, i.e. perpendicular to the
Earth's equatorial plane, and it changes its sign in the pe-
rihelion and the aphelion, being annulled in the points of the
vernal and automnal equinox.

The 29-year observations on the Earth's rotational velocity of
the U.S.Naval observatory station , elaborated by Mihailov [7],
confirmed the existence of trimestrial variations for the
Washington station as well. It should be added, though, that
the trimestrial variations for this station are much smaller
than the corresponding ones in Belocerkovsky's diagrams.

2) For the station in Washington the maximum of &) is in May
and the minimum in October. This is obviously connected with
meteorological factors but the movement of the North American
plate probably interferes as well. Supplementary investigations
are called for.

Description of the magnitudes participating in the formulas(3)
and figure: - gravitational constant, M, - solar mass,
T ISE| - distance between points S and E, £ = |sL|
distance between points S and L, &, , § - deaiinations of
points L and E, &£ - angle of precession.=r 23°27, &£ - angle
connected linearly with the true anomaly ¥ . The last one is
supposed, for the sake of convenience, to change uniformly in
the course of a year, i.e. ¥ = 27T t, where t is recorded in
days (parts of a year).

Acknowledgements are due to Dr.G.M.R.Winkler, Director of Time
Service Division, U.S. Naval Observatory in Washington, for
kindly supplying the 23-year observation data.
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OCEAN TIDAL LOADING ALONG THE
"BLUE ROAD GEOTRAVERSE" IN FENNOSCANDIA

by

Gerhard Jentzsch*

Summary

Some results from gravity tidal measurements along the Fennoscand-
ian "Blue Road Geotraverse" are presented here. The residual
vectors for consituents Ol and M2 are compared to ocean tidal
loading, calculated for modified Schwiderski maps. The coherence of
the results for Ol shows the sufficient intercalibration of the
different gravimeters. The results for M2 indicatg, that an
improvement of the models for the spatial distribution of the
marine tide of the Norwegian shelf has to be applied to fit the
observed residuals near the «coast. Data acquisition_ of the
gravimeters, calibration, and data analysis are shortly discussed.

Zusammenfassung

Einige Ergebnisse der gravimetrischen Gezeitenmessungen entlang
der Geotraverse "Blaue StraBe" in Fennoskandien werden vorgestellt
und die Residualvektoren fiir die Partialtiden Ol und M2 mit den be-
rechneten Auflastwirkungen fiir ein modifiziertes Meeresgezeiten-
modell von Schwiderski verglichen. Die Ubereinstimmung der Ergeb-
nisse der Ol-Residuen zeigt die Glite der Eichung der beteiligten
Gravimeter. Die Ergebnisse fiir M2 lassen erkennen, daB eine Verbes-
serung des Meeresgezeitenmodells fiir den Bereich des norwegischen
Schelfs ndtig ist, um eine Ubereinstimmung der berechneten mit der
beobachteten Auflastwirkung zu erzielen. Weiterhin werden die Daten-
erfassung, die Kalibrierung und die Analyse kurz diskutiert.

1. Introduction

Between spring 1980 and autumn 1983 tidal gravity measurements
were carried out at seven sites in Norway, Sweden, and Finland
along the "Blue Road Geotraverse", which starts near the polar

circle at the Norwegian coast and leads nearly south - east through

* Institut fiir Geophysikalische Wissenschaften der
Freien Universitdt Berlin, Rheinbabenallee 49, 1000 Berlin 33



\ The aim of these measurements can be summerized as follows
\ (Jentzsch, 1983a):

1) Determination of realistic tidal parameters along this line for

5.21/146 <7 the correction of precise gravity surveys in addition to
31/77 ) the measurements which have already been carried out (Ducarme
& )ﬂ KE, \ and Kddridinen, 1980);
4 1.27/64 | .
Dﬂ 35170 | 2) Study of the interaction of ocean tidal 1loading and the
structure of the lithosphere in that area;
3.70/176 ; = _
/ 1.40/164 _ i .54/102 3) Development of an ocean tidal model of the shelf esp. for the
Vi E U . .27/130 constituent M2 in order to augment the respective global model
/ of Schwiderski (1979).
od HE QT 54/132 < sy
aJ'gn{“ Tab. 1: Stations, instruments, and recording periods
e W TA T
/ 2 ,;V oo 87/73 = 43/12 Station Instrument Period
/ S =" 12/142 _ 19/68 22/-100 4o
/ - R "‘ = 3713
‘RM32 14/-62 NESNA GS - 15/206 April 1980 - March 1981
P -~ 8 | .3
o e A o ik 0/447)3/3‘ HEMNESBERGET | GS - 15/206 August 1982 -  October 1983
Be 1.61/-132
El.uyy71 \\\\ ( 93/155 UMBUKTA LCR - ET 18 April 1980 - August 1981
0\51'_5]39//‘1%6 G=—==IF TARNABY LCR - ET 18 August 1981 -  April 1983
| STORUMAN GsS - 11 / BN 06 August 1981 -  October 1983
.80 5 VAAJAKOSKI GS - 15/210 April 1981 - July 1982
I 1274"]32" ﬁ l VIROJOKI GS - 11 / BN 20 August 1982 -  October 1983

2. Experimental problems and realization of the measurements

{5y

Fig. 1l: Tidal residuals already obtained in Fennoscandia in micro-
gals and degrees for M2 (upper) an Ol (lower), from Ducarme and
Rddridinen (1980); the dashed 1lines show the "land-uplift-lines" compared by recording at the Berlin Tidal Observatory (int. nr.
gg;viigeatzgaiigﬁise gfgx;ty i;zveygiu:heRg;gflesEdeSOtSeszgf ;Edai 0750) before and after the measurements on the profile. The LCR-ET
Hemnesberget, UM - Umbukta, TA - T&rnaby, ST - Storuman, VJ - meter served as a reference.
Vaajakoski, VI - Virojoki.

—

In this project five tidal gravimeters were used, provided by

different institutes (see tab. 1). These gravimeters were inter-

Only the ET 18 was already provided with analog and digital

Sweden and Finland (see fig. 1). The recording periods varied recording equipment; therefore the four Askanias could be equipped

between ten months and about two years (see tab. 1). The five with equal data acquisition systems. In order to apply the measur-

instruments used were calibrated by parellel recordings at the ing station to the field conditions along the profile new power

Berlin Tidal Observatory. supply units were developed including a power failure protection,
and a buffer circuit to attach and to recharge a storage battary.'s
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The components of the station are given in fig. 2: Directly to the
gravimeter output a preamplifier is attached for pre-filtering and
adjustment of impedance to recording equipment. The digital record-
ing system is based on a Datel cassette recorder.. After a suitable
alias-filtering and amplification the signal is sampled with a rate
of 30 sec, converted into 12 bit samples, and stored on the tape
cassette. A monitor output provided with an hourly time mark is

connected to a chart recorder.

|| Clock +
Control

Cartridge~
recorder

|
!

. | 1
: | [ |
= A | L= ,

| ‘z-v | | ot I Chart -

_— | I — T o el ol o

I L] T I mmmul
I '—qﬂ | |
| I i

Electranics

Power Heating
Failure
Protection

Powaerpack +

Aliasfilter Storage
Ampiifier Bottery

Q220 V ~

Buffer
Power Supply Circut

L - Jd

- e e e — - = - oy A= Elactronics
UV=
Profilter +

Praomplifier

Storage Batt, Heater
12V 135 Ah 6V=

ASKANIA
Gravimeter

Temperature
Sensor

220 V ~[>=—— Temperature —{  Fon +
Control Heoter

Fig. 2: Station components of the tidal gravimeter station
(from Asch, 1983)

Further, the measuring stations consisted of an insolated and
temperature stabilized gravimeter room (constant near 30° ¢).
Whenever possible this room was built up in a <cellar space which
was also temperature controlled to provide a fairly stable

temperature gradient, too.

The LCR - ET 18 was also provided with a buffer battary, but
according to the necessary adaption to the European system the
applied conversion of voltages caused energy loss due to waste heat
which could not be buffered over a longer period. The feedback
signal of the ET 18 was decoded by an angular decoder and converted

into a 14 bit data word. The resolution of the digital records is
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about 0.1 pgal; in the case of the ET 18 a dynamic range of 84 dB =T

is achived, and 72 dB in the case of the Askanias. For more details 10 F E §41
see Asch (1983). . /qé 1? E

Although special efforts concerning stable recording conditions 08F g ;
were applied, esp. with regard to stable temperatures and power g T g
failure, several gaps were introduced into the records. These gaps H
were caused not only by failures of electronic circuits, but also 06 [
by mechanical problems of the chart recorders. Later, when reading A -
the casettes, errors occurred due to the insufficient data security ok
of the incremental recording. The stations were maintained by 1local
people, who were very helpful, but only trained to do some proper - I :5232?:? zgnction T
manipulations. Regarding the stations being far away, and nearly 02F A& ratio of individual : 1
unreachable during winter within acceptable time, we got better | T tidal amplitudes J
data then expected. Only two stations out of seven (Storuman and 5?1 Qﬂ O; Mﬂ P1S]K1 Jn 0%1
Virojoki) caused difficulties; but here maintenance problems also 00 T . : B
met instrumental problems. Therefore the analysis of these records G083 FREOUE%geﬂN CPH s
is not yet finished.

= L

3. Calibration 10F [

Since the ET 18 as the most sensitive instrument was calibrated 0.8
very carefully before, it was used as a reference. With this instru- /’ g <Q
ment the tidal parameters of our Berlin Tidal Observatory were §
determined. There, all Askanias have recorded for at 1least half a 0.6 F j =’ }—Ké ,4\
year. In the case of the GS - 15/206 a parallel record with the B . g\{/ Y I~-Q_/I Hﬁv
ET 18 could be realized, and thus not only tidal amplitudes and H
phases could be compared, but also transfer function and coherence 04r specirum e
could be calculated. Fig. 3 gives the coherence and the phase = I transfer function
differences as well as the transfer function and transfer error. In 02%| 2 ratio of individual
fig. 4 sections of the continuous transfer function are compared ’ C) tidal amplitudes
to the ratios of the individual tidal amplitudes. The errors are i 2N2 N2 M2 L2 S2K2
small; esp. for the main tidal waves they are better than 0.5%, 0.0 E3 l_ H r ! i | ﬁzf
reaching nearly the 0.1% level. This provides calibration errors in 0075 FREQUEEEEPWQCPH 0,085

the order of 0.1 pgal and less for the amplitude, and less than

0.2° for the phase. Fig. 4: Diurnal (A) and semidiurnal (B) sections of the continuous
transfer function compared to the ratios of the individual tidal
amplitudes; error bars are given for both (from Jahr, 1984)

Due to the different drift properties of the two gravimeters (the
ET 18 nearly without any linear drift), outside the tidal bands the
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coherence of the spectra is small, and even the minor tidal
constituents show significant deviations from the smooth transfer
function expected within the tidal bands.

4. Results of the measurements and tidal residuals

Many efforts had to be applied in data preparation, filtering,
and analysis. Both the continuously and the digitally recorded data
were processed. Special attention was paid to the elimination of
disturbances, the separation of the drift, and the interpolation of
small gaps. Algorithms had to be developed and adapted to the
properties of the individual time series. The drift was removed
using physical models as well as spline - functions in order to
increase the signal-to-noise ratio, and to minimize filter
problems. The analysis was performed using a modified least squares
method. The errors calculated are referred to the Fourier spectrum

of the residuals. More details are given by Plag and Jahr (1983).

The results for the constituents Ol and M2 are summerized in
tab. 2. With Ao as observed amplitude, and the gravimetric
factor 50 the expected body tidal amplitude Ab is assuming

6§ = 1.160:

(1) Ab=5/5°AO
The phase denotes the difference
(2) @ =a, - ay

usually used. Thus, referring to the Greenwich meridian, a negative
phase means Greenwich phase lag, and a positive phase a lead. The
signal-to-noise ratio s/n referrs to the noise 1level of the
Fourier spectrum of the residual noise; the mean noise levels for
the diurnal and the semidiurnal tidal bands are used as errors.

The residual tidal vector TL with amplitude Al and
phase A denotes the observed loading signal, and is given by
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(3)

where

vector of the expected body tide from Ab

The record of Tarnaby is

L = Q =

(<]

is the

station conditions

results for the two stations Nesna and Umbukta, as given by Asch

observed tidal vector from A

and

—_
B

o !

and zero phase shift.

of very high quality due

to

a, and ? the

stable
a very keen maintenance. The priliminary
et

al. (1983) can be improved now. Differences are due to higher state

of data processing and longer time series available.

Tab. 2: Results for the constituents Ol and M2 (see text)
Station Ao 5 a s/n Ay Al A
[kgal] (%) (ngal] (ngal] (°)
ol
NESNA 26.253 1.143 1.11 362 26.636 .640 127.37
+ .133 + .005 + .16 + .133 + 11.91
HEMNES- 26.265 1.145 .65 157 26.621 .464 140.36
BERGET + .167 + .007 + .36 + .167 + 20.62
UMBUKTA 26.543 1.151 1.35 207 26.683 .643 103.29
+ .128 + .006 + .28 + .128 + 11.45
TERNABY 26.920 1.154 .68 846 27.053 .345 112.86
+ .032 + .001 + .07 + .032 + 5.25
VAAJA- 29.577 1.154 .54 132 26.728 .154 10.50
KOSKI + .227 + .009 + .43 + .227 + 84.56
M2
NESNA 11.289 .922 -=2.05 368 14.203 2.960 -171.04
+ .056 + .005 + .20 + .056 + 1.08
HEMNES- 8.592 .703 -4.68 113 14.182 5.662 -172.89
BERGET + .076 + .006 + .50 + .076 + .77
UMBUKTA 12.321 1.002 1.53 156 14.263 1.974 170.40
+ .079 + .006 + .37 + .079 + 2.29
TARNABY 13.358 1.050 1.08 1535 14.763 1.430 169.88
+ .009 + .001 + .04 + .009 + .35
VAAJA- 19.107 1.172 1.05 181 18.918 .397 62.02
KOSKI + .105 + .007 + .32 + .105 + 15.17

fe
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Fig. 5: The ocean cells of the shelf model separated into three
parts: south, middle, and north; the Rana fjord area (hatched) is
added using empirical data. .
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Although the stations in Norway are not far M2

differ much. This is due to different station elevations,
which causes varying Newtonian attraction of the marine load of +the

apart, their

residuals

adjacent seas (see also sec. 5).
5. Ocean tidal loading and observed tidal residuals

The response of the earth to tidal loading was calculated accord-
ing to Farrell (1972). The Green” s function for an appropriate
earth model was convolved with a model of the ocean tide

"Blue Road"
obtained by applying this method in a similar way as described by
Baker (1980) for Britain: The theoretical load, 31
point on the surface of the earth is given by

distribution. The results for the presented here were

gravity at a

— - - _)‘ _L—A’
(4) L(r) = »p G(lr -T|) B(r") aa
oceans
where r is the positioning vector,??G?) is the complex amplitude

of the ocean tide over a surface dA, usually approximated by a
spherical disk, and p is the density of the sea water. G(IEf- EP[)
is the

attraction effects of a point mass on the surface of the earth.

Green”s function describing the elastic and Newtonian

(BLC) as
kilometers, a

Different "Blue Road Crust"
derived by Lund (1979) with a Moho depth of about 45
model with a rather thin crust of about 20 kilometers (C20),
model with a Moho depth of more than 50 kilometers (C50). It turned
that the of the C20 fitted best to the
observations. Therefore in the following all
to this model.

earth models were used: the

and a

out, response model

results are referred

The the

patches

algorithm used to
integrate over different ocean
their individual
separated into three main parts:
fig. 5). The fijord

distribution derived from empirical data (Plag,
to
M2 - map of Hendershott

calculate loading vector allows to
to
signals. Thus, the Norwegian shelf was
~middle,

modelled using a
1982a/b).
obtained for Fennoscandia on the basis of the

(Jentzsch, 1983b) instead of Schwiderski’s

separately in order

determine
and north

south, (see.

Rana area was local

Compared

earlier results
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be stated, that now more realistic values are
Near the coast the calculated loading
but the of the results
increasing distance from the coast. This seems to
fact, that the table fits better
amplitudes. E.g. for the Indian Ocean Schwiderski

of

it
available.

here, can
is
with
the

ocean

of both maps
increase
to

similar, differences
be
to

gives

due
Schwiderski open
a maximum
amplitude 47 centimeters, whereas Hendershott (1973) calculates
nearly 1 micro-
the

both maps

138 centimeters. This produces a load amplitude of
but

comparing the results for

gal for Fennoscandia, 0.1 microgal in case of

Schwiderski”s. Generally,
M2 for distant
about 10 percent of the amplitude of Hendershott”s.

only
for

Fennoscandia, oceans of Schwiderski”s map provide

01 and M2
2). Wave Ol provides a test for the calibration of

and 7 contain the results for constituents
to tab.
the different gravimeters:
25.9

are

Figs. 6
(compare
Since the observed amplitudes of Ol are
and 29.6 microgals, the amplitude ratios to
~3.1.
the coincidence of the 01
Thus
and calculated M2 residuals are
fit the
7,

elevations

varying between
the observed M2
regarding the

varying between ~1.6 and Therefore,
of M2,

residuals

smaller amplitude

amplitudes, parameters and loading is
the

significant: Close

satisfying.
bétween observed
to the the
responses calculated with the original Schwiderski map (see fig.
"ORIG" and "OBS"). different
of the stations are responsible for the differences of the
in the
load vector Al = 2.62 pgal, A=
these

differences

sea observations never

vectors Near the coast the
signal:
area, at sea level we
173.7°;
to A

1
of 84 meters

For Hemnesberget, situated fjord

calculate a for an

elevation of 40 meters values

A= l79.3°, and for the station

a = A= -177.6°.

change = 4.10 pgal,

elevation we get

6.01 pgal,

load
is controlled by the adjacent seas. Thus, the middle section
60 total
part was subject to change in order to test
the load. The
20 respectively.
coherence is significantly improved by a shelf model

Further, the calculations show, that close to the ocean the
vector
of the Norwegian shelf covers more than percent of the
load. this

the fit of the calculated to

Therefore,
was
the
incorporating
In

observed phase

modified by plus and minus degrees, Since

a ~-20 degrees phase shift, this was repeated with =15 degrees.

]
AS, ]



Nesna Hemnesberget Umbukta
N N N
Tarnaby Vaajakoski
O1 - Residuals
o /”—‘\\\ ®— - observed with error circle
O @® - calculated
\\
\ \—/ 1pgal
Fig. 6: Observed tidal residuals for constituent Ol compared to

calculated load vectors; note different scale to fig. 7.

fig. 7 the results for "-15" and "-20" degrees are also given (see
tab. 3). Compared to the numerical tidal of the
shelf provided by Mathisen and Johansen (1982, see also Blanken-
1983), a significant difference The

are smaller by about 10 degrees with respect to Schwiderski’s

model Norwegian

burgh et.al., arises: phases

given
phases in that area.

—
This result leads to an investigation of the residual load R,

-

— —
R = Lo - L

(5)
which was already carried out by Baker (1980) for the marine load

around Britain, in order to improve 1local models for the spatial
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oBs C 250

Nesna Umbukta
ORIG
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- 41&\_

~20°

M2 - Residuals

Tarnaby Vaajakoski

15 ORIG HSORIG
OBS OBS
N

OBS O—- - observed with error Circle
CEK - calculated

ORIG -original Schwiderski table
-15° - shelf tides partly delayed
-20° by 15°and 20° resp.

1pgal

Observed vectors
and modified

of constituent M2:

vectors for original

residuals
load

Fig. 7: Tidal
compared to calculated
Schwiderski shelf tides.
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Tab. 3: Theoretical 1load of Ol and M2 for Schwiderski’s maps
modified at the coast ("ORIG", see fig. 5); "-15" and "-20" denote
phase shift applied to middle section of the Norwegian shelf
(height corrections applied, compare to tab. 2)
T

ol M2

Station ORIG ORIG -15 -20
(wgal]  [°] | [kgal] (°] | (wgal]l  [o] | [ugal] (°]

NESNA .45 138.7 3.29 168.1 3.16 =172.9 3.10 =-170.2
HEMNES- .58 138.6 6.01 =177.6 5.67 =-173.8 5.64 -172.4
BERGET
UMBUKTA .36 138.8 2.04 166.3 1.92 175.8 1.88 178.9
TARNABY .33 139.6 1.58 160.8 1.44 170.5 1.319 173.4
VAAJA- .19 143.4 .43 71.4 .39 70.3 not calc.
KOSKI

"Blue

study using

distribution of the marine tide. The results obtained for the
Road" be

available shelf models of that area.

seem to promising and encourage such a

6. Conclusions

(1) of ocean loading and the structure
of the lithosphere the responses to
to a detailed crust/mantle model for that
area. Nevertheless, a
of 20
greater depth (mountain root or even remnants of
of the
tidal residual by about 10% at sea
of ¥=1.160

would require a thinner crust.

Regarding the interaction

different crustal structures
develop

all calculations had to be referred to

are too small

crust
kilometers depth to fit the observations. A crust of

slab

about
a downgoing
would provide a significant amplification of the M2
The Wahr

provides smaller residuals, which

crust)

level. model as a

reference instead

Generally, this question could be answered better by tidal tilt
observations. But in that area the respective interpretations would
depend much more on the modelization of the ocean tidal input. Up
to now it seems to be impossible to provide a model of the marine
tide of the fjords which would fulfill these requirements.

(2) M2 and Ol ocean tidal charts were tested, using tidal
gravimeters in that area. According to the significant phase shift
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indicated, a further investigation of the response to 1local models

of the distribution of the marine tide seems to be promising.

(3) More realistic tidal corrections for precise gravity surveys
are provided by these measurements along the "Blue Road".
Generally, for that purpose a standard earth is sufficient for load-

ing corrections. But close to the fijords only tidal measurements
results incorporating the tidal admittance with regard
and the of the

sea or even to an inlet the loading signal

can provide

to the distribution of the water masses, elevation

station. Close to the

can be amplified by factor two or three or only by

This

even more,
is an individual property of each station. There-
fore overall calculations lead to wrong that To
due to loading the total tidal correction

attraction.

values 1in area.

avoid systematic errors

should be determined with an accuracy of one microgal or better.
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The first curve shows the variation of the total intensity of

On the influence of coupling torques between the Earth's core and the magnetic field at Niemegk, after a linear trend is being re-
mantle on parameters and components of the rotation of the Earth moved. Further in the figure the variations of the length of day
and of the amplitude and period of the CHANLULER-wobble are
by exhibited.

It could be objected that we have compared global phenomena
with a local variation of the magnetic field, but it should be

H. Jochmann

Akademie der Wissenschaften der DDR mentioned that there exist similar trends of the magnetic field
Zentralinstitut fiar Physik der Erde
DDR-1500 Potsdam, Telegrafenberg A 17 variations at all magnetic observatories, only the amplitudes are

guanary different as it should be. Relations between magnetic field

variations and variations of the Earth's rotation are produced by
The physical reliability of correlations between magnetic field
coupling torques between the core and the mantle.
quantities and components and parameters of the Earth's rotation was
As generally assumed and sufficiently proved the geomagnetic
investigated. It was found that only the correlations between

variations of the magnetic field intensities and of the length of
day are physically significant, while the correlations between the
magnetic field and parameters of the CHANDLER-wobble are dubious.

field is maintained by a dynamo process taking place in the liquid
core. Temporal variations of this process cause similar variations
of the magnetic field and coupling parameters. The magnetic fields
and currents of this process react with the conducting part of the
lower mantle and produce LORENTZ-forces which are the reason for

Zusammenfassung
torques
Die physikalische Realitdt von Korrelationen zwischen magnetischen = =
; L= /(rx(jxB))adv (1)
FeldgréBen und Komponenten und Parametern der Erdrotation wurde unter=- -

sucht. Es wurde festgestellt, daB nur Korrelationen zwischen den Va-

i d R, Peld dd T 15 —— and exciting variations of the rotation of the Earth.
riationen des magnetischen Feldes un er Tagesldnge sign ant sind,

. 9 9 9 9 Before considering the evaluation of this integral from magnetic
wdhrend die Korrelationen zwischen dem magnetischen Feld und den Pa-
field quantities we shall evaluate the amount of the torque
rametern der CHANDLER-Welle angezweifelt werden missen.

necessary to excite the observed variations of the length of day.

From the Eulerian equations emerges the relation between the

relativ length of day (uz) and the exciting component of the
Since MUNK and REVELLE (1952) proved that the decade fluctuations

torque
of the Earth's rotation are not excited by geophysical surface-~
phenomena, it is usual to look at the core for the excitation of L oy dug (2) !
that phenomenon. 3 o dt

The only indications of variations in the core or at the core-
where C is the axial moment of inertia and w_ the velocity of
mantle boundary are variations of the magnetic field and indeed, as e
rotation. For decade fluctuations a mean value
we see by Fig. 1, exist fairly good correlations between the magnetic

field intensity and the components and parameters of the Earth's 17

[ le ~ 10"/ Nm and a maximum value |L3| ~ 1018 Nm

62

rotation.
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were obtained.

To evaluate these values from the geomagnetic field, we must
know the field quantities and its variations at the core mantle
boundary. These values can be obtained by solving the induction

equation
1 3
curl (= curl B) = -B
AL

provided that a conductivity law for the mantle and a relative
velocity between core and mantle are known. According to STIX
and ROBERTS (1983) we applied a conductivity law of form

-
G-(r) =Oa (r/a)

3 i

(6, = 3 + 107w ~ e
velocity between core and mantle of -10

and o = 30) and a relative angular
-10 4/6 corresponding to
the westward drift of the magnetic field. Using a spherical
harmonic model of the surface magnetic field and its secular
variations we obtained by iterative solution of the induction
equation and applying equation (1) following components of the

electromagnetic torque

L, = 0.4

1 17
L2 = 0.1 * 10 Nm
L3 ==14,0

Although these values are first results, we can assume that
the correlation between variations of the magnetic field and
the length of day are physically significant.

Let us now have a 1ook at the variation of the CHANDLER=-
period. Applying an input-output-analysis using the annual
wobble of polar motion, I found that the variations of the
CHANDLER-period are much smaller than the variations shown by
the curve of Fig. 1.

To investigate this discrepancy we introduce a notation of
the torque given by ROCHESTER (1976)

L= (k+k TIgx) ('11-}3?3)-k'13I3 (3)
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where k, k' and k" are coupling constants. T3 is the vector of
unity nearly in the direction of the rotation axis and ¥ is the
relative rotation between core and mantle.

Assuming isotrope conductivity and magnetic permeability we
obtain

Ly = -ky (i - IS x) ¥ (4)

where kM ~ 1027 Nm Se

The influence of LM on the CHANDLER-period can be obtained by
analyzing an Earth model consisting of fluid core and solid
mantle. We shall apply an Earth model derived by POINCARE's
variational principle which was demonstrated by MORITZ (1982).
The version of MORITZ consists of a fluid core and an elastic
mantle. This model was modified allowing for viscosity of the
mantle.

To estimate the influence of the electromagnetic torque we
must investigate the eigenvalue solution of polar motion
equations. In first order approximation these equations are in-
dependent of the equation governing rotational variations.
Following equations are valid for the considered Earth model:

A +D - L

. 12%0 E
U -1 (0~ +46) u + 5209 (y + {iw V) = s
o A+011‘*’o o A+U11w0
(5)

& . Aot 022“’0;,+ N Cowy v = Le

Ag * Dipw, Ae * Dipwy Ag * D1p w4
where

Lg = ky (1 + 1) v (6)

are the equatorial components of the electromagnetic torque in
complex notation.

u are the polar motion components in complex notation,

v describes the polar motion of the core relative
to the mantle,
A, Ac and Cc are moments of inertia of the whole Earth and

the core respectively,



012. 011, 012 are coefficients depending on the elastic deforma-
tion of the mantle and the influence of these
deformations on the fluid core.

63 is the CHANDLER-period of an elastic Earth model
and

oL a damping factor depending on the viscosity of the
mantle.

The eigenvalue solution of (5) yields following frequencies
of the free wobbles:

- 2 k,
17 A (P Ren (1 - 1) (0 + 1)

(6)
(1 -1) (1+5))
[+

D22
oy = - (1 + x; (€ - ———‘d ) -

AMcu

Gi is the frequency of the CHANDLER-wobble and

of the diurnal free wobble. It is seen that damping and period

@, the frequency

of both wobbles are influenced by coupling torques, but we must
notice that in both frequencies kM
inertia of the mantle Aye Since kM/AM =~ 10
of both wobbles are not significantly influenced by electro-

is divided by the moment of

29 period and damping

magnetic core mantle coupling.

Similar dubious is the correlation between the magnetic field
intensity and the amplitude of the CHANDLER-wobble. As mentioned
before the equatorial components of the coupling torque are much
smaller than the axial component, but really the equatorial
components should be larger to excite a wobble comparable with

the observed quantities.

RUNCORN (1982) suggested to explain the excitation of CHANDLER-
wobble by acting electromagnetic torques which could be described

by DIRAC-functions. He assumed that the equatorial components
are of the same order of magnitude as the axial component. This
is in contradiction to our first results.

Regarding to the present state of investigation we can only
expect that the correlation between the variations of the length
day and of the magnetic field intensity correspond to physical
relations.
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Treatment of the Geodetic Boundary Value Problem by Contact-
Transformation

Wolfgang Keller

Technical University Dresden

1. Introduction

One possibility to study free boundary value problems for
elliptical differential equations is to use the searched func-
tion V for the definition of a contact-transtrormation. This
contact=transformation transforms the free boundary wvalue
problem for V into a boundary value problem with fixed boun-
dary for a coordinated function ¢ ,

This approach was intensivly studied by Kinderlehrer, Niren~—
berg [1] and Kinderlehrer, Nirenberg, Spruck [2]. The appli-
cation of this principle in geodesy goes back to Sanso' [3].
He applies the most simple case of a contact-transformation,
Legendre's transformation,

A new function ¢ , the adjoint potential, new co-ordinates

€1, i=1,2,3 and new impulses mi = 8¢/d&:s , i=1,2,3 are co-
ordinated to the old function V, the gravitational potential
of the earth, to the old Cartesian co-ordinates xi , i=1,2,3
and to the old impulses pi = 9V/dx: , 1i=1,2,3 in the following
manner :

¢ = x1Ey =V “n

& =p1 , 1=1,2,3 (2

Ty =x1 , 1i=1,2,3 3
Under the hypothesis, that Marussi's condition

det (B’:a:%rx_;(x)) 40 , xECexto 4)

rl
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is fulfilled in the exterior of the earth and the impulses
p:s , i=1,2,3 are known on the surface o of the earth, the ad-
Joint potential ¢ solves the following boundary value problem

Tr 82 - [Tr ]2 =0 , & €int = (5
o = 2k ®) &)
(Bagft = 0| =V G
t={Ef€R |3xeco: & =pu(x), 1=1,2,3) (7

Hence the linear free boundary value problem for V was trans-
formed into an equivalent boundary wvalue problem with a fixed
boundary tor ¢ . .
In the trivial case of a spherical earth with homogeneous mass
distribution, the solution of (5), (6), (6'), (7) is kmown:
$o(8) = n¥ |g| ¥ (8)
Evidently, ¢o is not differentiable in the origin & = O and
we can expect, that a singularity appears also in the general
case, As the cause of that singularity we have to consider
the fact, that Legendre's transformation maps the point at in-
finity onto the origin & = O,
Because there isn't any sense to spesk about differentiabili-
ty of V in the point at infinity, we can't expect differen-
tiability of ¢ in the origin.
Therefore the aim of this notice is, to find a new contact-
transtrormation, which also transforms the free boundary value
problem into a new one with a fixed boundary, but with the
point at infinity as a fixed point. In this way the mentioned
singularity is avoided,

41



2, Contact=transformation

A new function ¢ , new co-ordinates & , i=1,2,3 and new im-
pulses ®: = 3¢/3%: , i=1,2,3 are to be coordinated now to
the searched fumction V, to the Cartesian co-ordinates xi1 ,
i=1,2,3 and to the impulses ps = 9V/0x: , i=1,2,3 in the fol=

lowing way:
(l) = Iigi -V (9)
Ey = = Ll"p Tﬁw 9 i=1,2,3 (10)
Ty = ix Xx s 1=1,2,3 1
wix(E) = = B (81 = 3 21BE) | 5 1,23 (12)

&1 &2

Lemma 1: It holds:

db = @&1'mws = (=1) (aV - dxi-p1) 13

3. e., the transformation (9) - (12) is indeed a contact=trans-
formation.

If Marussi's condition (4) is fulfilled additionally, the
point=transformation (10) is even one=to-one, In this case, we
can interpret (10) intuitively :
If we use the rotationally symetric potential

Vo = w/|x|

as reference potential, we recognise :
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p (au*p,)
|p| ¥ (p¥2p-17)>

OO

= pi= gl_;(X) , 1=1,2,3

This means, that the point-transformation (10) maps every
point P of the surface o of the earth onto belonging point Q

of the gravimetric telluroid Z ,
=]

/ // o]

Q - X
Ir we suppose again, that the impulses p: , i=1,2,3 are known
on the surface of the earth, the gravimetric telluroid is a

known surtace. The function ¢ induces by (11) the mapping of
the known telluroid onto the unknown surface of the earth,

In the same way like in the case of Legendre's transformation,
we get ¢ as the solution of the following boundary value prob-
lem:

Tr 82 - [Tr ¢]° = y, &cext = (14)
® = (YiaYen gocdr - Bamedl) (15)
vie(® = = LB (oux - § fﬁf) , 1,521,2,3 (16)
Bunx() = - 2 E—i— (Besde + Buals + Suxte - § G20 (1)
(- 3 B3t - ¢>|2 =V (18)

The problem has an analogue strukture like the problem, which
arises from Legendre's transformation,
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Of course it is an exterior problem but this is only a pure
technical difficulty. We can overcome this difficulty by ap—~
plying the Kelvin transformation.

3, Linearization

Usually, the problem is to be linearized. The function

$o(E) = - 2u/|E| (19)
is assumed to be the adjoint reference potential, This refe=
rence potential solves the boundary value problem (14) - (18)
in the trivial case of a spherical earth with a homogeneous
mass distribution, In the opposite to (8)it does not appear
any sigularity in (19).

If we denote the adjoint disturbing potential by u = ¢ - ¢o,
we arrive to :

Theorem 1: The linearization of (14) - (18) is given by
- 0u(E) =0 =

E cext T (20)

21)

"
s

(_153'!1__ ) = TV -
Z 9Ty ~ Wy ( u/ltf-,l)Z

The linearized problem is an oblique boundary walue problem
for Laplace's equation. Theorem 2 descibes the solvability of
this problem,

Theorem 2: Let be the domain ext L belonging to the regula-

rity class C?>' and let it differ from the exterior of a sphere
only "a little", Then it exits three and only three real con-
stants oy , 1i=1,2,3 and one and only one function u, such that

-b0u(E) =0 , E €ext =

(= % §1%§; -u) 5 = ¢ + 21S1(&)
z
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u(g) = 0(1/1%|3%) for [g|»o

hold.
(Sy are the three linearly independent spherical harmonics of
degree one.)

With the help of the implicit = function theorem we obtain a
local existency- and uniqueness result from theorem 2,

Theorem 3: Let be fulfilled the same hypothesis as in theo-
rem 2, Furthermore let be

£ sup |D%p(x)|
|le|=1 x &

sufficient small.
Then exists three and only three real constants oy , 1=1,2,3
and a function ¢ , such that

Tr 3% - [Tr 8]2 =0 , ? € ext T

(—%éig%-‘b)\z =0 +ouSzlE

b = 0(1/I1E]*) for |E| » =

hOldo

Exept of this solution any other solution does mot exdst in
a neighbourhood of ¢o.

ye
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ON SHORT PERIODICAL VARIATIONS OF POLAR MOTION
AND UT1 - UTC

B.Kozaczek, A.Brzeziiiski, W. Kosek
J.Nastula, B. Sczoducha

SPACE RESEARCH CENTRE, PAS

warsaw, POLAND

ABSTRACT. The MERIT data of pole coordinates, UT1-UTC

and l.0.d. from the period between October 1983-July 1984
have been used for analysing spectra of their variations in
the short periodical part from 10 - 90 days by the Maximum
Entropy Spectral Analysis-MESA. A few short periodical varia-
tions detected by MESA in all series of data determined by
different techlques seem to be real short periodical varia-
tions of polar motion and UT1-UTC. Their amplitudes, which
are of the order of a few miliarcseconds only, are weakly
determined, and they can be changeable.

1. INTRODUCTION

Simultaneous observations made by different techniques
during the MERIT Carpaign have given the most accurate and
the most dense data for the Earth rotation study.

The MEKIT observational data from the period of ten months,
October 1983 — July 1984, have been used for analysing
spectra of the polar motlon and UT1-UTC in the short
periodical part, from 10 to 90 days, by the Maximum Entrop,
Spectral Analysls — MESA.

2. SPECTRAL ANAIYSIS OF THE MERIT DATA OF POLE
COORDINATES AND UT1-UTC

First, all time series of pole coordinates determined
by BIH-Astrometry, IPMS-Astrometry, DMA-DOPFLER, CSR-LASER,
NGS-VLBI as well as UT1-UTC determlned by BIH and l.o.d,
determined by CSR have been smoothed using a Gaussian filter
with 3 different Gaussian windows, whose width at hal:r maxi-
mum amplltude FWHM was 5, 30 and 50 days, respectively.
The series of smoothed data have been computed with dif-
ferent steps of 1, 2 and 5 days.
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In order to diminish the influence of long periodical
variations on short periodical part of spectra,differences
of each series of pole coordinates, UT1-UTC and l.o.d.
smoothed using a Gaussian filter with two different FWHM of
5 and 30 days as well as 5 and 50 days have been computed
and used for further spectral analysis. Transfer function
of such filters is shown in Figure 1.

Diagrams of power spectral densities of differences
computed with FwHM of 5 and 30 days of chosen series of
pole coordinates, UT1-UTC and l.o0.d. are shown in Figures
2a=-2c, respectively.

The short periodical part of spectra of pole coordi-
nates determined by BIH-Astrometry and DMi (44) -Doppler
are the most noisy. IZJMS-Astrometry data are very strongly
smoothed in this part of the spectrum. The spectra of varia-
tions of x coordinate determined by DMA-67 and CSR are the
most similar. It can be seen in the diagrams of logarithms
of power spectral densities presented in Figure 3. Most of
detected by WESA periods of short periodical terms appear
in three or four series of pole coordinates determined by
different techniques.

It is noteworthy to stress that the order of magnitude
ol' short periodical variation amplitudes is two times
smaller than in the case of Chandler or annual periodical
variations. implitudes of short periodical variations de-
tected by uZS4 in the range of periods of 10-90 days are of
the order of a few miliarcseconds, mostly 2-5 mas and are
comparable with the 1 mas order of their errors.

rerformed test, in which time series consisting of a
sum of several periodical terms with amplitudes of 2-5 mas
and the noise with & = 5 mas have been analysed by LESA,
revealed that INECA detects well such periodical terms
(Table 1) .

The list of periods and amplitudes of short periodical
variations detected by ¥ESA in the analysed time series of
pole coordinates, UT1-UIC and l.o.d. is given in Table 2.
Amplitudes and phases have teen determined by the least
squares method, on the basis of data of resolution of 1 day.

The accuracy of amplitude determinations increases with
the increase of resolutlon of smoothed data. In the cese of
srmoothing resolution of % days, conparaole with the reso-
lution of original data, accurac1es of emplitude determina-
tions are of the order of 1 mas. rhases are very weakly de-
termined. Errors of phases are usually of the order of tens
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of degree.

Amplitudes of periodical terms with periods longer than
60 days are considerably diminished by the used filter with
FWHM of 5 and 30 days, Figure 1. So, MESA of differences of
smoothed series of poie coordinates with FWHM of 5 and 50
days was performed, tooe. The results are given in Table 3.
Amplitudes of the periodical terms with periods longer than
30 days are greater than before, but their errors are
higher.

Periods of the most energetic periodical variations
and their amplitudes or power spectral densities are dif-
ferent in different series of pole coordinates, but these
differences are within the range of their errors.

Some most energetic short pericdical variations were
detected by MESA in each analysed series, although maxims
of power spectral density have different shapes of high
sharp peeks or of wider and lower peaks divided into two
partse. These periodical variations detected nearly in &ll
series have approximately the following periods: 75 or
longer, 55-60, 45, 35, 2T, 24, 18, 14, 12 days. Taking into
account the errors of the analysed data and of determined
parameters of short perlodlcal variations, we decided to
add power spectral densities of several series of x and of
y coordinates, separately, in order to increase the effects
of real short periodical variations of polar motion. These
variations of polar motion ought to have the ssme periods in
all series of the data determined by different techniques.
Combined spectra of pole coordinates of the mast accurate
techniques are presented in Figure 4. In combined spectra
there are the short periodical variations with the greatest
amplitudes detected in the single series of pole coordinstes,
and their amplitudes are greater. However, in the combined
spectra the maxima of power spectral densities for longer
periods like:24, 27, 35, 45, 50-60, 75 days are more in-
creased than in the case of a shorter part of these spectra.
It means that these periodical terms are detected by all
techniques, and can be real periodical terms of polar mo-
tion.

The data of UT1-UTC determined by BIH-Astrometry and
of l.0.d. determined by CSR-LASER have been analysed in
the same way as the data of pole coordinates. Spectra of
UT1-~UTC and l.o0.d., obtained by MESA, are presented in
Figure 2c. In both series of the data short periodical varia-
tions,with the following periods,have been detected: 60-70,
35, 27 , 19 , 15 , 13 , 12 days. Additionally, there are
high peaks for periods of 14 and 21 days in the case of BIH
data and for periods of 45 days in the case of CSR data.
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Amplitudes of these short periodical variations computed by
the least squares method are given in Table 2.

Short periodical variations with periods longer than
50 days are not so well determined on the basis of the pre-
sent MERIT data, due to the short period of observations.
Thus, we have analysed the longer series of pole coordinates
determined by BIH-Astrometry, CSR-LASER and DMA-Doppler in
the last few years between 1978 - 1984 (B.Kozaczek et al.,
1984). These data of pole coordinates have been used for
computation of an instantaneous velocity vector of a pole
-V for each 15 days.

. 2 2
v = flxgomg )2+ (y; - i)

In order to remove long periodical variations, differ-—
ences of instantaneous velocities and mean velocity values
for 60 days have been computed. The spectra of these dif-
ferences of pole velocities obtained by MESA for different
techniques as well as for combined spectra of all tech~-
nigues are presented in Figure 5.

Short periodical variations with the greatest amplitudes
have approximately the following periods : 75 , 60 , 40-35 ,
30 , 26 days, which are similar to the periods detected in
pole coordinates.

In conclusion we can say that the present accuracy of
pole position data and UT1-UTC allow to detect some short
periodical variations of polar motion and UT1-UTC, and esti-
mate the order of their amplitudese. This part of spectrum
of polar motion and UT1-UTC needs further careful investi-
gations.

ZFERENCES
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Paris, France.

Kotaczek B., King ReW., Brzeziriski 4., Kosek W.,
1984. Intern. Symposium "On Space Techniques
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Table 2. Amplitudes of differences of pole positions
determined by one technique and smoothed with FWHM of 5
days and 30 days and with the step of 1 day

Per. Ample. Per. Ampl. | Per. Ampl. Per. Ampl.
/days/ /mas/ /days/ /mas/ | /days/ /mas/ | /days/ /mes/
VLBI-X VLBI-Y CSR—X CSR-Y
97  4+0.4 77  4+0.4 77  6+0.7
74 5 0.4 50 2 0.4 54 5 0.7
62 5 0.4 41 2.0.4 28 2 0.7
36 3 0.4 32 2 0.4 22 2 0.6
26 2 0.4 24 3 0.4 14 1 0.6
18 2 0.4 18 2 0.4
16 2 0.2 14 2 0.4
12 2 0.4
DMA67-X DMA67-Y DMA44-X DMA44-Y
97 3+0.4 73 2+0.6| 99  3+0.4| T6  5+0.7
€2 5 C.4 53 4 0.5 65 3 0.4 54 3 0.7
44 3 0.4 38 4 0.5 48 3 0.4 43 2 0.7
32 2 0.4 28 4 0.5 33 4 0.4 34 2 0.7
24 2 0.4 23 3 0.5 16 2 0.4 25 1 0.7
19 2 0.4 15 4 0.5 14 1 0.4 19 1 0.7
14 2 0.4 12 2 0.5 1" 1 0.4 15 1 0.7
BIH-X BIH-Y UT1-UTC/BIH L.0.D/CSR
72 4+0.8 76 5+0.8 /ms/ / mg/
45 6 0.8 52 50.8| 59 6+2.2| 44  8+1.2
32 5 0.8 33 8 0.8 28 5 262 36 4 1.2
29 5 0.8 24 3 0.8 21 5 262 25 6 1.2
25 T 0.8 16 3 0.8 15 5 262 19 8 1.2
22 5 0.8 15 6 0.8 14 9 2.2 16 4 1.2
14 4 0.8 13 4 0.8 11 3 2.2 12 6 12
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Influences of systematic differences between different star catalogues on the results

of latitude end time determinationg with the PZT 2

by
M. Meinigi)

Summary

Systematic errors in the star catalogues, used for the reduction of PZT observations,
sffect directly the results of latitude end time determinations end therefore also the
Eerth rotetion parameters which ere being derived from these results. In the geodetic-
estronomical observetory of the Central Institute for Physics of the Earth the catalogue
PZT 80 is presently being used. This catelogue contains star places, which were improvkd
by own PZT results. The systematic differences between this catalogue and the catalogue
of northern PZT stars NPZT 74 are approximated by analytical expressions in dependence
on the right ascension. The influence of these differences on the latitude and time
determinations is presented for the observation series with the PZT 2 in the years
1981 - 83, The obtained results are compared with values calculated from data of the
Bureau International de 1l'Heure.

Zusammenfassung

Systematische Fehler in den Sternkatalogen, die bei der Reduktion der PZT-Beobachtun-
gen verwendet werden, wirken sich direkt auf die Ergebnisse der Breiten- und Zeitbestim-
mungen aue und beeinflussen somit die aus diesen Ergebnissen abgeleiteten Erdrotations-
parameter. Im geodétisch-astronomischen Observatorium des Zentralinstituts fiir Physik
der Erde wird gegenwértig der Katalog PZT 80 verwendet, der Sterndrter enthialt, die auf
Grund eigener PZT-Ergebnisse verbessert wurden. Die systematischen Differenzen zwischen
diesem Katalog und dem Katalog der ndérdlichen PZT~Sterne NPZT 74 werden durch analyti-
sche Ausdriicke in Abhdngigkeit von der Rektaszension approximiert. Der Einfluf dieser
Unterschieds auf die Ergebnisse der Breiten- und Zeitbestimmungen wird anhand der Beob-
achtungsreihen mit dem PZT 2 fiir die Jahre 13881 - 83 dargestellt., Die erhaltenen Ergeb-
nisse werden Vergleichswerten gegeniibergestellt, die aus BIH-Daten berechnet wurden.

When meking observations with photographic zenith teleecopes (PZT) special star
oataloguesmust be used for the reduction, since fundamental stars can hardly be observed.
In general, there exist individual star catalogues et the PZT stations. For standardiza-
tion of these catelogues end for adaptation to the system of the fundamental catalogue
FK4 an observation programme was carried out upon the recommendation of the Inter-
national Astronomical Union in the seventies according to which the stars of the PZT
stations on the northern hsmisphere were observed together with FK4 stars with meridian
circles. 10 meridian circles were involved in this programme. As a result of this inter-
national cooperation the catalogue of the northern PZT stars NPZT 74 was issued /1/.

The systematic differences between catalogue PZT 80 /2/ which 1is presently being
used at Potsdam for the reduction of the PZT observations end catalogue NPZT 74 are

TTAcadely of Sciences of the G.D.R., Central Institute for Physics of the Earth,
DDR-1500 Potsdam, Telegrafenberg
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approximated by analytical expressions in dependence on the right ascenaion and are
graphically presented in Fig. 1 and 2. The reaulting maximum amounts of the syatematic
differences are 0.09" for the declimation and 0.013% for the right ascension,

For the latitude and time determinationa with the PZT 2 of the geodetic-astronomical
observatory of the Central Institute for Phyaica of the Earth corresponding corrections
were calculated by groups for consideration of the syatematic catalogue differences.
The corrected data were graphically presented together with the uncorrected results
after smoothing of the data series for the years 1981 - 83 (Fig. 3 and 4). For
comparison the curves of the latitude changes and (UT1-UTC)-values calculated from
data of the Bureau International de 1l'Heure (BIH) were also plotted.

In Fig. 5 to 8 the differences between the individual curves are graphically
presented in a scaled-up manner. The differences between the curves obtained on the
one hand from the results with the Yasuda-catalogue (NPZT 74) and on the other hand with
our own catalogue PZT 80 show an annually recurrent periodic behaviour (Fig. 5 and 6).
The deviations vary between ~0.05" and +0.09" for the latitude and between -0.012% and
+0.008° for the time. For comparison, the differences of the results obtained in the
old system and in the new system of astronomical constants introdugedfrom 1., 1. 1984
for the period from the beginning of the MERIT main campaign till the end of 1983 were
also graphically presented. Although the differences mentioned last are smaller than
the differences between the two star catalogues considered, their influences are of
such a magnitude that they must be considered for the calculation of new star coordinate
corrections from our own observation results.

Further graphical presentations include the difference curves of the results obtained
with the Yasuda catalogue and our own catalogue, respectively, regarding the BIH syatem
(Fig. 7 and 8). These difference curves can be considered as local z-term for the
latitude and as local T-term for the time, respectively. The variations of the z-term
are within the limits of -0.10" and +0.09" for our own cataloque and within the limits
of-0.04" and +0.14" for the Yasuda catalogue. The T-term varies between -0.036°% and
-0.005°% for our own catalogue and between -0.033% and -0.003% for the Yasuda catalogue.
A constant portion could be split off from the T-term and eliminated by a correction
of the conventional longitude used for the reduction.

The graphical presentations show that the curve behaviour largely dependa on the
catalogue used. Therefore, it cannot be excluded that residual systematic star coordinate
errors still have an influence on the local z-term and T-term, respectively. Although
it would be formally possible to derive improvements for the atar coordinates from
the deviations compared with the BIH system on condition that the remaining local
terms of the latitude and time determinations are minimized, this procedure does not
seem justified, because then errors resulting from other causes (refraction, temperature
influences, instrumental errors) might falsely be transferred to the star coordinates.

The differences between various ayatema for the yeara 1981 - 83 were represented in
the analytical form
A= X, + Xy 8in 2Tt + X, cos 2Tt + X

sin 4t + X, cos 4Tt

3 4

(t = time in Besselian years). The coefficients Xoto X, were determined by the method of
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least squares and are given in Tab, 1, The quantity A = 42 xf also given in Tab. 1 is
a criterion for the mutual approximation of the =l compared systems, It
becomes evident that the results obtained with the catalogues PZT 80 and NPZT 74
respectively are in better agreement with the BIH system than the both catalogues

between ‘each other.
A decision upon which of the two catalogue systems (Potsdam PZT 80 or NPZT 74) is
better suitéd for the reduction of the observstion data of the PZT 2 cannot be taken

on the basis of the present investigations,

Tab. 1: pDifferences between various systems for the years 1981 - 83

Latitude 4
2
Xo X1 x2 x3 x4 A = ;; x1
PZT 80 - BIH 0,003" 0.002" 0.047" 0,010" -0.011" 0.2434 ° 1072
NPZT 74 - BIH 0.039 -0,055 0,022 -0.003 0.001 0.3519 =« 1072
NPZT 74 - PZT 80 0.036 -0,057 -0,025 -0.013 0,012 0.4187 - 10~2
Time
8 S ] 8 s -4
PZT 80 = BIH «0,0213 -0,0018 =-0,0043 -0,0039 -0.0001 0.3695 « 10
NPZT 74 = BIH -0,0211 -0,0057 0,0032 -0,0027 -0,0C27 0.5731 10'4
NPZT 74 - PZT 80 0.0002 -0,0039 0.0075 0.0012 -0.0026 0.7976 -« 10”4
Literature

/1/ vasuda, H.: Hurukawa, K,; Hera, H.: Northern PZT Star Catalog (NPZT 74).
Ann, Tokyo Astron, Obe., Second Ser., Vol. XVIII. No. 4 (1982), 367.

/2/ Meinig, M,: Verbesserung der Sterndrter des Potsdamer PZT-Katalogs.
Astron. Nachr. 305 (1984) 4, 195 - 202,
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Fig.3 Latitude variations of the Station Potsdam in the years 1981 - 1983
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INTERACTIONS BETWEEN OCEANIC ANO GRAVITY TIOES, AS ANALYSED FROM
WORLD-WIOE EARTH TIDE OBSERVATIONS AND OCEAN MODELS.

P. Melchior, B. Ducarme, M. Van Ruymbeke, C. Poitevin, M. De Becker
Observatoire Royal de Belgique
Avenue Circulaire 3, 1180 Bruxelles, Belgium.

ABSTRACT * *

The problem of interactions between earth tides and oceanic tides
is rather complex as it involves effects of newtonian attraction, loa-
ding and associated change of earth potential, tangential pressure and
friction on the moving ocean floor which are not always easy to evalu-
ate, principally for coastal or island stations.

This paper takes advantage of two facts :
(1) By the end of 1983 the International Center of Earth Tides has col-
lected and evaluated a considerable amount of data from 223 stations
including those of the Trans World Profiles developed by the same
group of authors (102 stations). This ensures, for the first time,
a World wide distribution including the tropical areas and the sou-
thern hemisphere.
In 1978-80, new oceanic cotidal maps of high quality, established
by E.W. Schwiderski, became available.

(2)

We have calculated, for the eight principal tidal waves, the cor-
relations between the observed gravity variations and those resulting
from a calculetion based upon the Schwiderski meps. This correletion is
highly significant.

At the level of accuracy of the best transportable gravimeters the
agreement is perfect except at a few places where effects of lateral he-
terogeneities in the mantle can perhaps be suspected.

These cotidal maps can therefore be safely used as working stan-
dards for other geodetic and geophysical applications.

INTRODUCTIDN

There are presently in geodynamics a number of problems where a
very precise correction (or prediction)} for tidal effects is needed :
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gravimetry, altimetry, VLBI, laser ranging to the Moon and satellites,

etc. As an example, in terms of the vertical component of gravity,

"precise” means 1 pgal (=108 ms~2), and, probably soon, better than

1 pgal (Melchior, 1983). A working standard to be used as a model for

such precise tidal computations is not easy to select because of the

complication of ocean-continent tidal interactions which consist in a

number of intricated effects. These are :

- the direct attraction of the periodically moving masses of water upon
the ground based instruments

- the flexure of the ground under the load of these masses

- the change of the earth’'s potential due to this load deformation of
the earth

= a modification of oceanic tide height due to the body tide of the
ocean's bottom.

These interactions can be predicted using Farrell's procedure
(1972) based upon Green's functions, provided that a good model of the
various oceanic tidal components is available. Their evaluation depends
upon the chosen rheological model of the earth's interior.

Thus, precision Earth Tide measurements carry much information
about the tides of the Ocean, about heterogeneities in the lithosphere
and mantle as well as about liquid core dynamics. All these informations
are to be extracted now.

At first sight we believed that a model composed of homogeneous
isotropic spherical layers is much more likely to be valid for the body
tide, having significant displacements through most of the earth's vo-
lume, than for the load tide whose displacements are appreciable only
in the lithosphere and upper mantle. Differences in lithospheric struc-
ture, as beneath ocean basins and continents, would therefore affect the
load more than the body tide.

Near the load the surface deformation is very sensitive to the pro-
perties of sediments. At larger distances from the load one has to take
into account structures down to generally a depth two or three times
the horizontal distance between the load and the point of observation.
Lack of knowledge of these lithospheric features is the reason why the
loading effects are presently not accurately predictable. Eventually
these features must be determined in order to produce correct tidal pre-
dictions for precision measurements.

However, the most recent results, derived from world wide tidal
gravity measurements, lead Melchior and De Becker (1983) to conclude
that some anomalies observed in specific tectonic areas could be due to
very deep lateral heterogeneities.

TRANS WORLD TIDAL GRAVITY PROFILES

There was a considerable handicap to the use of such a method of

14



investigation which was due to the complete lack of reliable observa-
tions in some 80 % of the surface of the Earth and particularly in all
the Southern hemisphere.

To fulfil these gaps in data the Royal Observatory of Belgium
(Bruxelles) and the International Centre for Earth Tides have jointly
organized measurements in Asia, Africa and the South Pacific. Starting
in 1973, a first tidal gravity profile extending over 17400 km from
Istanbul to Papeete (Tahiti) involves 36 stations. A second profile
from Cape to Cairo involves 20 stations in East Africa. A program in
East Asia involves 10 stations in China, 5 in Japan and 1 in Korea.

Transportable recording instruments (Geodynamics and LaCoste Rom-
berg gravimeters) were used, precise enough to reach a precision of few
tenths of microgals on the amplitude of the tidal waves after 4 to 6
months of continuous recordings which was, at each place the duration
of observations indeed but rather more extended measurements have been
made at Brussels, Canberra, Alice Springs and Wuhan. Before starting
the experiment all the instruments were first very carefully compared
at the Brussels station to determine their instrumental constants (Du-
carme, 1975). A check was made at Canberra and at Wuhan by comparing
again five or four of the instruments.

When this programme started - in 1973 - no one of the existing oce-
anic tide models fitted the earth tide observations. Therefore the ini-
tial objectives of these measurements were :

(1) To determine to what extent measurements in continental stations
1ike Urumqui, Lanzhou or Alice Springs are free from oceanic tidal
influence and can thus be considered as "load amphidromic points”.
To compare coastal station results with those from continental sta-
tions and to see if the tidal parameters (amplitude factor & and
phase difference a) exhibit any regional behaviour and what is the
extent of such regions.

To check if any one of the existing cotidal charts permit adequate
correction of the observed data so that one will obtain identical
tidal parameters at all the places, that moreover fit the Love num-
bers obtained by the integration of the fundamental equations of
the spherical elasticity when using the best models of the earth's
interior.

In the event that is proved to be impossible, to see if any impro-
vement or correction of the cotidal charts may be done or if another
geodynamical process or geophysical parameter has to be invoked to
explain the observed anomalies.

(2)

(3]

(4)

Since 1979, Schwiderski (1979, 1980a,b) has constructed new cotidal
maps for the nine main tidal waves Qq, 04, Pq, Kq, N2, M2, S2, K2, Mf
by integration of thg classical Laplace equations completed with terms
allowing for bottom friction, turbulent dissipation and tidal vertical
movements of the ocean bottom. This integration is based upon a 1°x1°
grid which means that most of the coastal areas are included.
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It consequently became one of our major ail 3
shorg gravimetric tide measurements with ihe ef?:czoczgzzi::e;hii:: th
Schwiderski maps (as well as with other available maps). We can ccmside
i?deed that a cotidal map which allows generation of computed attrac- °
tions and loads in agreement with :
be used with co
standard for height, tilt and strain tidal correct;Zi:egsetssaSpYDrtigg
neces%ary corrections to high-~precision measurements performed byynew
techniques 1like altimetry, very long-baseline interferometry (VLBI)

Moon and satellite laser ranging and absolute gravity. Such measure%ent
are extremely important for earthquake prediction by allowing to cont i
crustal uplifts, fault motions and stress-strain accumulation. "

To correctly control the minute
must be applied with a
to about 3 millimeters

he changes involved, tidal corrections
Prec1§1on of 1 pgal or better, which corresponds
in height. This is not an easy task.

SOIidDEa::: zzger :and valuabl? information about global oceanic and
the Tt es Zs been derived from satellite perturbation data over
i haveyearst y many authors (Melchior, 1983, ch. 15). Because
ey exactly the same frequencies, it is impossible to separate
n is way the individual contributions of the oceans, of the Earth
tide and of the interactions between ocean and crust [éveﬁ if a d =
gingios:dthe satelli:e orbit inclination is apparent). Therefore eze:et
measurements .
complement the satellitism:::5::;:it:? BESESS S SRaese ond shcuic

INTERPRETATION OF THE RESULTS BY A VECTOR DIAGRAM

In our previous papers we introduc i
ed the f ini
the "residual vector” 3 (B;. B5) ® Tollouwing definition of

B. cos .t = i
: (ml + BiJ {éi Ai cos (mit + ai) - 5i A; cos wit} f(¢) (1)
;herg i refers t? the tidal component considered (Q1, 01, P9, K9, N
r%'-dzé KZJ. Ai is ?he "theoretical” tidal amplitude calculated ;orzé
beg;g t:rt:izo?ei with the Cartwright-Tayler-Edden tidal potential wi
e a requency, a; the observed ph i *
i phase lag. f(¢) is the d -
gigci on t:§ lititude ¢ for the various tidal families, and § .snzpzljI
espectively the theoretical and the obs i h
[ allow the deformation of ifeert tot o e

" them : the
of the amplitude of the most important diurnal wave 8?11

In terms of Love numbers :
§ = .3
1 +h > k (2)

Equation (1) can be written

95



B-4-R

as shown on the figure 1, % (83A5, o4) being the observed tidal vector
and (62 Aj,» 0) the calculated tidal vector for an oceanless elastic
earth model with liquid core. The mean square error on the experimental
determination of R is represented by the error circle of radius e.

(3)

We also define the corresponding "load vector” L (Li, i) which
contains the periodic attraction as well as loading effects of oceanic
tides. This is calculated by the Farrell procedure (13872) based upon
Green's functions, on the basis of the Schwiderski cotidal maps.

Our computation program, written by M. Moens (Melchior et al. 1980),
is based upon the following principles.
(1) The Newtonian attraction is directly calculated taking the altitude
of the stations into account.
The load deformation of the ground is calculated by polynomial in-
terpolation in the Farrell tables without considering the altitude,
this effect being considered as negligible.
Mass conservation of oceanic waters has been ensured by two alter-
native procedures : (a) a uniform correction which consists in the
introduction of a sheet of water of constant thickness with a cons-
tant phase; (b) a correction proportional to the tidal amplitude,
which is thus larger in the coastal areas. Both procedures give the
same result at the 0.1 pgal level. Procedure (b) was employed rather
than (a).

(2)

(3)

There are about 45000 polygones 1°x1° in each Schwiderski cotidal
map but, for near-shore stations, the nearby oceanic 1°x1° zones have
been redivided into smaller and smaller squares up to 0.125°x0,125° in
size. When the centre of a small square is less than 10 km from a sta-
tion the corresponding effect has not been taken into account. This is
essential because if the observing station is very near to the centre
of such a square, the evaluation loses any physical meaning.

To compare the vectors E and f. we calculate the correlation of
B cos B with L cos A and the correlation of B sin B with L sin X aswell.
This is done for the eight main waves and, in each case, for three Earth
models which differ in the latitude dependence of the 6 parameter.

This latitude dependence results from the flattening of the Earth
as well as from Coriolis and centrifugal force. It was theoretically
demonstrated by Love (1911) and Wahr (1981) and experimentally establis-
hed by Melchior (1881), Melchior and De Becker (1383).

Ocean-continent tidal interactions have total amplitudes reaching
2-3 pgal in continental Europe but 5-10 pgal in Spain or the United
Kingdom. Around the Indian Ocean (East Africa and South East Asia) they
also reach 30 ugal, while up to 40 pgal interactions have been observed
in the Soutn Pacitic Islands (Melchior et al., 1981).
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A very important feature is that, as clearly shown by Fig. 1, the
correlation between B sin B and L sin X is not affected by the choice
of the Earth model, B sin B being independent of it on the condition that
the viscous phase lag of the Earth is negligible, which has been demons-
trated by Zschau (1978). This can provide a check for the instrumental
calibrations and/or for the oceanic cotidal maps.
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Fig. 1. Comparison of observed and calculated ocean-continent tidal
interactions. For the semi-diurnal M2 wave, the correct scale of this
figure should be : R = A = 40 (Europel}-80 (Equator) pgal; o« = 0- * 5°;
L =8 2 (Europe)-10 (South Facifig) pgal; X = D.E—S ggal; e = 0.5
(Europe)-1 (Equatorial zone) pgal (B = - - L = X

The essential result was that the recent Schwiderski maps (1879,
1980a,b) fulfil these requirements to a large extent, so that it seems
appropriate to use these cotidal maps as working standards to correct
Earth tide parameters (amplitude factors and phases) for the influence
of oceanic tides. The use of the same maps for all stations preserves
the homogeneity of the network.

B - U is then calculated :

A final residue vector X (X, x)

X, cos [mit + xi] = B, cos (wit + Bi] L, cos [mit + AiJ. (4)

This vector shown in fig. 1, contains the unexplained part of the
observed residual vector B. When ]il > ¢ it is suspected to contain the
following systematic effects :
Instrumental systematic errors :

Calibration (frequency-dependent)

Thermal influences

Barometric effects

Power supply, ground connection, dead band of the recorder

Drift.
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Geophysical effects
Lateral heterogeneity of lithosphere and upper mantle
Local distortions of the oceanic cotidal maps
Load barometric effect.
Computation errors
Map digitization, computer processing
Errors in coordinates, imperfections of analysis method.

An important result of our analysis was that the sire component
X sin x appears quite always smaller than 0.5 pgal while tne cosine
component X cos x may reach at some specific places up to 5 pgal. This
is reflected in the correlation coefficients given in the Table 1. One
may logically suspect therefore an effect of deep lateral heterogenei-
ties of the lithosphere and upper mantle (Melchior and De Becker, 1883).

TABLE 1

—— > >
Correlation coefficients betv=2z=n observec®residue B and oceanic loadingL

Wave N Cosine component Sine component
[A] 32 0.7786 0.702
04 175 0.5186 0.778
Pq 55 0.567 0.720
Kq 177 0.459 0.643
No 171 0.698 0.776
M2 180 0.848 0.929
n 179 0.717 0.634
Ko 53 0.723 0.770

Note that S, wave contains a non negligeable contribution from atmosphe-
ric tides.
N : number of ground based tidal gravity stations.

CONSIOERATIONS ABDUT SOME TYPICAL AREAS

A detailed analysis of the different areas where measurements have
been made is given in (Melchior et al. 1981). We will here restrict our-
selves to a few typical examples.

Europe
There is a very high density of tidal stations in Europe, occupied
with many different instruments from different institutions.

The observed residues E exhibit an outstanding fitting with the
loading effects T well under the noise estimation e (0.3 pgal). Six sta-
tions present however a X cos x residue of 1 to 2 pgal. These stations
are located in the two different areas of extreme lithosphere's thick-
ness existing on both sides of the Alps (Melchior and De Becker, 1983;
Melchior et al. 1983b).
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Indian Ocean

The considerable discrepancies between the Indian Ocean cotidal
maps proposed by the different authors were attributed by some of them
to the fact that this area is very near to a resonance with tidal fre-
guencies, so that slight changes or errors in the dimensions (which de-
pend of course upon the grid dimensions) displace the eigen-freguencies
and cause great differences in the results.

Schwiderski refuted this point of view. In his model the My tide
is only 40 cm in the centre of the Indian Ocean while it resches 138 cm
in the Hendershott model.

Our measurements around
the Schwiderski cotidal map.
which, with its geographical
km from the sea, is surely a
maps of this ocean.

the Indian Ocean fit in general quite well
In particular our station at Antananarivo
position in the centre of Madagascar, 150
strategic place for checking the cotidal

Far East (China, Japan, Korea)
This area is also interesting because of the complicate pattern of
the tides inside the gulf of Chihli and the Korea Bay.

With some 10 stations all around we have been able to show that the
Mo world Schwiderski map leaves a final unexplained residue of about
1 pgal but with a rather systematic negative phase. This is larger than
the noise. By introducing corrections from local cotidal maps of this
gulf, this residue reduces to 0.5 pgal while the phase got a large dis-
persion showing that it more or less represents noise.

THE DIURNAL TESSERAL WAVES IN SOUTHEAST ASIA AND INDONESIA

84

We expected that this zone would be the most crucial test for three

essential reasons.

(a) The South China Sea is a resonant diurnal system : the amplitudes

of the Kq and 04 tidal waves reach more or less 0.5 m in the area.
Because of obvious geographical reasons all our stations are more

or less coastal.

The diurnal direct Earth tide is extremely small as all our stations
are very close to the eguator.

This explains why our 0q, Kq and occasionally P1 load vectors amount to
1-3.5 pgal over all this area.

(b)

(c]

A first typical feature to be observed is that the phase difference
in the Kq and 04 load signals fits everywhere with the corresponding
difference in the neighbouring harbours, with only one exception in
Manila, as shown in Table 2. This shows evidently that the experimental-
ly obtained load vector is mainly sensitive to the near-sea tides.

An remarkable check is also offered by the wave P4 which, in gene-
ral, is difficult to extract from earth tide data, its period being



TABLE 2

South East Asia and Indonesia

TABLE 3
P4 wave. Observed and calculated loading and attraction effects.
Observed residues with respect to Molodensky Model I.
(A1l stations where B > 0.3 pgal are considered).

K,-0, residual phase difference in degrees @ (2) Observed with gravimeters; Observed Schwiderski Vectorial
1 (b) in the nearest sea. residue map difference
Station
(a) (b) Blpgal) B(°) L(pgal) A(°) X(pgal) x(°)
Southeast Asia 8304 Kerguelen (TAF) 0.40 -82 0.37 -106 0.16 -14
2460 Colombo (Sri Lanka) 18 28 2600 Guangzhou (China) 0.33 -84 0.40 - 92 0.07 87
2501 Bangkok (Thailand) -56 -43 2612 Shanghai (China) 0.38 -28 0.43 - 32 0.06 123
2551 Penang (Malaysia) -32 -58 2823 Kyoto (Japan) 0.60 -26 0.64 - 7 0.21 -118
2550 Kuala Lumpur (Malaysia) -46 -58 2847 Mizusawa (Japan) 1.13 4 0.76 5 0.37 4
2601 Hong Kong -15 -50 3019 0jibouti (Afar) 0.62 139 0.5 147 0.10 36
4010 Baguio (Philippines) -20 -40 3020 Mogadiscio (Somalia) 0.57 104 0.78 137 0.43 2
4011 Manila (Pr:éippines) -3 -41 4105 Banjar Baru (Indonesia) 1.57 -125 0.80 -115 0.70 -137
2555 Kota Kinabziu (Malaysia) -33 -50 4115 Kupang (Indonesia) 0.85 -116 0.92 -118 0.1 42
2701 Saigon (Vietnam -43 -20 4160 Port Moresby (Papua) 0.87 - 16 0.91 - 19 0.06 113
4203 Alice Springs (Australia) 0.28 -106 0.18 -{38 0.18 -27
Indonesia 4205 Armidale (Australia) 0.46 7 0.26 38 0.27 -24
4105 Banjar Baru (Indonesia) -36 -40 6004 Uwekahuna (Hawal) ™17 83 1.03 102 0.39 23
4100 Bandung (Indonesia) -34 -23
4110 Ujung Pandang (Indonesia) -13 -22
4111 Manado (Indonesia) -15 has a maximum amplitude of 8.5 microgals at the eguator. The residues
4150 Jaya Pura (Indonesia) -4 -21 reach a maximum of 0.5 pgal for Qq, 1 pgal for K,. Oespite these very
4160 Port Moresby (Papua) -36 low amplitudes their phases are in fair agreement which shows that the
4210 Darwin (Australia) -47 -23 noise in our measurements seems to be less than 0.3 pgal.

equal to 23h 53m 57s makes its frequency very close to the K4 and S
frequencies so that only very good instruments, carefully protected
against barometric as well as thermal disturbances, have been able to
isolate it (Melchior, 1978).

However, this tidal component, which is the third in amplitude in
the tesseral family, is of major interest for investigations of the 1li-
quid core hydrodynamical oscillations. It is with great satisfaction
that we can point out here that the load effects computed from the
Schwiderski Pq cotidal map are in close agreement with the observed P4
loads in all the thirteen stations where we could separate it from K4
and Sq and where, of course, this P4 signal was not too weak (see
Table 3).

SMALLER COMPONENTS @1 AND Kj

In a paper presented at the IAG Commission on Earth Tides, Melchior,
Ducarme and Chueca (1983a) show that a fair agreement is also found for
these waves between observed and calculated ocean-continent interactions.
01 wave has a maximum amplitude of 6 microgals at 45° latitude. Kz wave

DOI: https://doi.org/10.2312/zipe.1985.081.02

LOAOING AMPHIDROMIC POINTS

For many years it has been of interest to find points where the
oceanic effects are minimized, even possibly zero. The question is whe-
ther such points exist. If they could be discovered it would be worth-
while to install there the best gravimeter to investigate the hydrodyna-
mic effects of the Earth's liquid core. It is also interesting to look
at such points for absolute gravity measurements. However the geographi-
cal position of such a point will be different for each tidal component.

At a certain distance from a sea the direct attraction of its water
masses and their loading effect are equal and opposite, cancelling in
such a way that the effect of the ocean is virtually zero. This is true
only for the nearest sea and as the more distant oceans have a signifi-
cant effect it is not easy to predict where the effects of all the oce-
ans together will cancel. This not necessarily happens just in the cen-
tre of each continent.

We have calculated such maps for each continent (Melchior, Ducarme
1983). The M, map for Africa is given on the figure 2. It shows indeed

U
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o
that the minimum of attraction and loading is not located in the middle ©O
of the continent at all but in the Republic of Mauretania.

It is clear from our Trans-World Tidal Gravity Profile that one
o such point must exist in Australia for the M, wave, between Alice Springs
and Broken Hill, which is indeed confirmed by the Parke map (1979) (at
¢ = - 28°30', A = 137°30') but not by the Schwiderski or any other map.
The My Parke map indicates, moreover, that such points exist also in
Argentina, near Tucuman (¢ = -~ 28°, X = 297°) and in Texas, west of
Dallas (¢ = + 33°, A = 260°) while the My Schwiderski map gives amphi-
dromic points at ¢ = 33.5° N, A = 106.5° W in New Mexico and north-west
1, of Lanzhou (¢ = +37°, A = 103°30') in China.

With the 04 Schwiderski map we have not found any amphidromic point
in Australia even if the load is everywhere very small there. We also
found that over a broad area in China (between 25° and 35° N, 84° and
s . 92° E) the 04 load is nearly uniformly small as it does not exceed 0.1

pgal. The situation is similar in Africa (northern Nigeria, Tamanrasset,
Bangui).

CONCLUSIONS

4 y At the level of some parts in 10710 of g, we obtain a general agree-
ment between two completely independent methods of investigation i.e.
The mathematical construction of oceanic cotidal maps on one side and
the on shore tidal gravity variations observations on the other side.

It is time now to consider new refinements of both types of ap-
. proach. In the modelisation of interactions, we should introduce visco-
sity and lateral heterogeneities in the mantle and, as pointed out by
Schwiderski some contributions which have been discarded until now :
horizontal pressure of the sea on the shelf slopes, self loading of
earth tides and Coriolis force.

™ The world coverage of tidal gravity measurements has been conside-
rably improved since 1973 by the Trans World Tidal Gravity Profiles
(figure 3) but is still far from being sufficient. By the end of 1983
there are only very few measurements available on the American continent.
Our team starts measurements in Brazil just by the end of this year.
The great number of data already compiled required the organization of
an Earth Tides Data Bank (Ducarme, 1983). This Data Bank is extremely
flexible, allowing now the statistical investigation of different ocea-

Fig. 2. Tidal loading and attraction effects in Africa, Tidal wave My, N1C and earth tides models.

amplitudes, given in ugal, are peak to peak.
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(because of their high density in Europe, stations are not indicated in this areal.
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CAPACITIVE PENDULUM WITH INTELLIGENT DATA
COLLECTION

Gy. Mentes

Geodetical and Geophysical Research Institute
of Hungarian Academy of Sciences /GGRI/ Sopron,
Hungary

Abstract

In order to find new application fields for horizontal
pendulums in geodynamic measuring techniques their
improvement is very important. Conventional recording
systems are not very convenient for geodynamic
phenomena, therefore a new capacitive horizontial
pendulum with electric output and an intelligent
digital data recorder has been constructed. For the
reproduction of the original signal this latter also
uses logical decisions besides mathematical filtering
of the data. That is the reason why analog recording
can be abandoned and it is not necessary to store all

sampled data. The recorder can be programmed for various
kinds of tasks.

Zusammenfassung

Um neue Anwendungsmoglichkeiten fir Horizontalpendel in
der geodynamischen Messtechnik zu finden ist die Ver-
besserung von Horizontalpendeln sehr wichtig. Die her-
kommlichen Registrierungssysteme sind fir Registrierung
der verschiedenen geodynamischen Phidnomena nicht vollig
geeignet, deshalb wurde ein neues kapazitives Horizon-

talpendel mit elektrischem Ausgang und einem intelligen-
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ten digitalen Datenregistrierungssystem konstruiert. Um
das originales Signal wiederherzustellen benutzt das
letztere gewisse logische Entscheidungen neben den mate-~
matischen Filtersmethoden fiir Filterung der Daten, Aus
diesem Grund kann die analoge Registrierung weggelassen
werden und es ist nicht notig alle gemessene Werte zu
speichern, Das digitale Registrierungsgeridt kann fiir

verschiedene Messaufgaben programmiert werden.

1l, Introduction

Recently more and more data are needed for the study of
geodynamic phenomena. To acquire this mass of data with
the required accuracy new measuring instruments and
automatic digital data acquisition systems are to be
developed. The conventional horizontal pendulums with
photorecorder used for Farth tide recording do not
comply with requirements of modern measuring and
computation technique. This is the reason why we have
developed a horizontal pendulum with capacitive
transducer which supplies an electric signal and
therefore it can be easily integrated with digital data
acquisition and processing systems. The traditional
analogous pendulum records are read out manually or by
means .. a curve digitizer /indirect digitizing/ at
hourly time marks. In this case the quality of the
digitization is completely depending on the evaluating
person making a manual prefiltering of the tidal curve
which always contains some microseismic oscillations,

spikes, steps and gaps.

By sampling the output signal of the capacitive
pendulum by means of a simple digitizer at hourly time
marks the error of the digitizing can be very high
because of the above-mentioned properties of the tidal
signal. In this case an analog record is also needed to

verify the digital data. Another solution is the
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increasing of the sawpling rate what increases the
number ,f data to be stored /Jentzsch, 1981; Plag and
Jahr, 1983/.

To solve this problem we have developed an intelligent
digital data acquisition system which works with a high
sampling rate and is capable to prefilter tidal data by
means of mathematical filtering algorithms and logical
decisions. Therefore it gives out correct and reliable
tidal data at hourly time marks and need no large

storage capacity for tidal recording.

2, The construction and functioning of the capacitive

pendulum

Our horizontal pendulum is a metal pendulum and has a

Zollner suspension. Figure 1 shows the top-~ and profile-
-view of the pendulum. Its base /1/ is a right-angled
triangular plate which is rigid enough to hold the

whole pendulum with high stability. The base plate is
standing on a fixed foot /L/ which is placed in the
right angled corner and on two levelling screws /Ll; L2/
in the acute-angled corners. On the base plate there is
a bracket /8/ with clamps /6, 7/ for suspension wires.
The two wires clamped at points A and B hold the
pendulum beam /9/, in horizontal position. The wires

are made of tungsten and have a diameter of 20 um.

The sensitivity of the pendulum is depending on the devi=

ation of rotation axis AB of the pendulum beam from the
vertical, The deviation can be decreased or increased
by means of the levelling screw Ll denoted "sensitivity
screw", The smaller this angle is the more sensitive
the pendulum is. At zero angle the sensitivity is
infinitely high and the pendulum is in an instable
state. If the vertical changes perpendicularly to the
vertical plane of the pendulum beam the latter will

move to a new vertical plane containing the rotation
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axis AB i.e. the pendulum beam rotates around the axis
AB in the horizontal plane. The same effect can be
caused by tilting the pendulum around the axis
containing the top of the fixed foot /L/ and one of the
sensitivity screw /Ll/ by means of the "drift screw"
/Ly/ e

In this latter case the position of the rotation axis
AB is changed against the vertical. A capacitive
transducer is applied to measure electrically the
rotation angle of the pendulum beam. The capacitive
transducer is a differential plane condenser, the
functioning of which is based on the change of the
surface of opposite-standing plates. The moving plate
/11/ is fixed and electrically connected to the
pendulum beam because the output of the capacitive
transducer is led out via the suspension wires. That
is the reason that a glass plate is under the bracket

to insulate it from the base plate.

The standing plates /12/ of the differential condenser
are insulated from each other and from the console
/13/ by a glass plate, too. The differential condenser
connected together with two fixed capacitances of
equal value forms a capacitive bridge circuit. The
console holding the standing plates is adjustable to
balance the bridge at the middle position of the

pendulum beam,

Figure 2 shows the electric construction of the
capacitive pendulum. The bridge is supplied by a
sinewave oscillator of high amplitude stability. The
amplitude of the supply voltage is 20 V and the
frequency is 15 kHz. The output voltage of the bridge
is detected by the high input impedance preamplifier
/15/ placed near to the transducer under the console,

The input of the preamplifier is connected to the wire

(=2l
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clamp /7/ and its output voltage is transferred on a
low impedance via the comnector /16/ to the separate
electronical unit which contains all other electric
parts with the exeption of the preamplifier. The
preamplifier is followed by a selective amplifier and
phase-sensitive rectifier which enables the sign-
—-correct measurement of the deviation of the pendulum
beam from its zero position. The phase-sensitive
rectifier is followed by a third-order Butterworth
low=pass filter for filtering the self-swinging of the
pendulum. The output signal of the low-pass filter is
amplified by a DC amplifier, the output of which is

the filtered output. In most cases we need an
unfiltered output which is the output of a DC amplifier
amplifying directly the output signal of the phase-
-sensitive rectifier. 1If the capacitive pendulum is
inserted into a measuring system it is very important
to know its transfer function which is depending on the
eigenperiod of the pendulum. Figure 3 shows the transfer
function of the pendulum relative to the unfiltered

output at different eigenperiods.

3. The intelligent digital data acquisition system

Figure 4 shows the block diagram of the data acquisition
system. It is controlled by a microprocessor MC 6802
from MOTOROLA. The controller program is stored in the
EPROM memory. The RAM memory is used for calculations
and temporary storage of data as a buffer memory. When
the buffer memory is full, the sampled or preprocessed
data can be transferred in blocks into the exchangeable
non-volatile semiconductor memory which can be exchanged
as a cassette, or into the cassette unit, or the data
can be directly transferred via a telephone line to a

large computer.

DOI: https://doi.org/10.2312/zipe.1985.081.02

The exchangeable semiconductor memory is ofore reliable
under conditions of an Earth tide observatory than the
cassette unit which contains moving mechanical parts.
The storage capacity of the exchangeable semiconductor
memory is sufficient for about 15 days to store the
prefiltered hourly value of tidal data measured by a
pair of horizontal pendulums including the storage of
environmental parameters too. The digital recorder
system has 16 analog input channels, an analog
multiplexer, and a l2=bits analog to digital converter.
The sampling and converting of the analog channels is

controlled by the master processor.

The exact time is given by the real-time clock which
can be synchronized by means of a DCF-77 receiver. The
speed of the system can be increased applying a slave
processor which can be a high speed arithmetic or a FFT
processor depending on the desired filtering algorithm,
The data acquisition system has a keyboard and a display
too, for manual control and for input and display

parameters needed for data sampling and filtering.

On the one hand the intelligent digital data acquisition
system can be used as a simple digitizer. In this case
it samples and digitizes the analog input signals with
the given sampling rates and stores them in blocks on
cassette tape. This is advantageous if both the
preprocessing and the processing are to be made on a
large computer /e.g. recording of the free oscillation
of the Earth/. On the other hand the intelligent digital

data acquisition system can do the preprocessing.

That means in the case of Earth tide recording that the
system works with a high sampling rate /1-30 s/, filters
the self-swingings of the pendulum excited by
earthquakes or microseismic activity, then removes the

steps, using linear prediction and logical decision and
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af'ter a second f'iltering it stores only the hourly
values of the Earth tide /Fig. 5/.

The first and the second filtering method can be a
simple or a Fox-Schuller averaging for tidal records.
‘The microprocessor can execute these algorithms with
high speed.

Steps are removed as follows: the microprocessor
calculates after each sampling a new smoothed and step~
-corrected value s/n/, then from previous values

calculates a predicted value s/n/p, for s/n/.

Whenever |s/n/ - s/n/ | > S, a step is assumed and
s/n/ is substituted for s/n/ and the step correction
value is corrected according to the new step. The value
s/n+l/ will be step-corrected with this new correction
value., If there is no step, s/n/ is stored. Because
some parts of the above described system are still
under construction, the filter method was tested with
diff'erent sampling rates and limits S on a computer.
The simulated input signal is shown in Fig. 6. The
eigenperiod of the self-swinging superposed on the
"simplified" tidal signal /a sinus wave of one day
period/ was 50 s, the spikes and steps had half of the
amplitude of the signal. The accuracy of the method
depends on the quality of the linear prediction, the
sampling rate and the limit S. Table 1 shows the errors
of the method at different sampling rates and limits.
It can be seen that both parameters have an optimum.
When the limit is too low the error will be very high
because the program always substitutes s/n/ for s/n/P.
If the limit is too high, the program will not sense
the small steps in the input signal.

DOI: https://doi.org/10.2312/zipe.1985.081.02

Table 1.

Limit S Sampling period Avarage error of the J
s f'iltering in percentag

of amplitude with RMS
error

0.1 5 0.29 + 0.32

0.1 10 0.72 + 0.75

0.1 20 1.94 + 2.14

0.05 5 0.48 E 0.51

0.05 10 0.08 + 0.08

0.05 20 0.33 + 0.4o

0.02 5 0.19 + 0.07

0.02 10 0.07 + 0.08

0.02 20 0.57 + 0.63

0.01 5 0.37 + 0.11

0.01 10 0.25 + 0.10

0.01 20 0.60 ¥ 0,42

4, conclusion

The microprocessor techniques makes it possible to build
an intelligent digital data acquisition system which can
preprocess or process tidal data automatically
decreasing manual work. The above described system can
be very easily reprogrammed for recording other
geophysical phenomena, only the parameters /linear
prediction coefficients, limit, etc/ must be chosen
properly. This makes it possible together with the
capacitive solution for the pendulum to record free
oscillations of the larth parallel with continuous Earth
tide recording what is out of capability of conventional

pendulums and recording system.
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TO
' Research on the Computational Methode of
Gravity Topographic Effect
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Abstract

Tnis papsr dsals with all kinds of methoda for computing the gravity topographic
effect. These methods include: topographic correction solution C, MOLODENSKY'a series
solution G,, PELLINEN's formula G', analytic continuation solution 9, (including that
carried out stepwise end esparatsd-rings) and BJERHAMMAR'S& solution. The papsr proves
the interrelation between the formulas of topogf#aphic correction, derives the rela-
tion between the analytic continuation solution and BJERHAMMAR's solution and deducss
some of their naturss. In these methode, sach has a common opsrator L. Gsnsrally
spsaking, thsre sxists in them csrtein connections with each other, but they can not
be replaced mutually. The linear solution (or it may be called gradient solution)
of analytic continuation solution is respectevely the approximate value of
MOLODENSKY's series solution G, and BJERHAMMAR's solution. When solving with these
methods, the basic queetion endountered is the eame. The paper also pute forward that,
to use reduction of separated ringe may decrease difficulties brought about in
iterative computation,

I. Introduction

In the computation of geodetic gravimetry, the effect of topography on gravity can
not be neglected. Generally gravity topographic effect is classified into two parts,
i. e, effect on normal gravity and that on gravity anomaly. In the topographic correction
of gravity anomaly, there are topographic correction solution C, MOLODENSKY's series
solution Gl' PELLINEN's formula G', analytic continuation solution 9, (including that
carried out etepwise and eeparated-rings) and BJERHAMMAR's solution, etc. The analytic
continuation solution demands to compute the vertical gradient of gravity anomaly.
Wheter we operate on the baeis of linear reduction or not, we can divide it according
to linear reduction or nonlinear reduction up to 2nd order(l) (or n-th order(z)).
Owing to different data one used, three kinds of representation of gravity vertical
gradient may bs classified in accordance with gravity anomaly, height anomaly and
vertical deflections 36). But nonlinear reduction is resolved according to gravity
anomaly. When classifying them by using reduction surface, the surface gravity anomaly
may be sxtended analytically to the point-level, geoid or a certain sphere surface
within the earth.

In these methods, their starting points, forms of formulas and their results are
all different. G1 ie given out in accordance with MOLODENSKY's problem, the analytic
continuation eolution draws support from TAYLOR series and is solved in the way of
analytic continuation, and BJERHAMMAR'e solution is derived in line with poisson
equation., But we still pay close attention to the questions about the interrelation
of these topographic correction formulas, the advantages and disadvantages of each
method and their applicabilities.

II. Discussion abaout formulas correlation

In the topographic correction of gravity anomaly, all of the topographic correction

C, MOLODENSKY's series solution G1, PELLINEN's formula G'and analytic continuation
eolution 9, (n=1, 2, «e.) have a common operator. It will be seen here after that,
all formulas of topographic correction have something to do with gravity vertical

gradient L1 (A g)e. HENCE, this operator is expressed by L. It may be explainsd as

DOI: https://doi.org/10.2312/zipe.1985.081.02



7
vertical derivative. For example, the topographic correction solution ie expressed to
be

(1) C=5GER"] At o
(] 0
(2) ,=2Rsin ,

G is gravitational constant, ® , density of topographic masses, R, radius of the

earth, ¢ , spherical distance between the computing point P end moving point (sur-
face element) Q, and hp end h are relief heights of p end Q respectively. By using
the operator, it may be simplified as

(3) c=nGSL(A-A,)
Similerly, there are
(4) G1-L(h-hp)Ag (8) 6 =L (h-h) (Ag 'Agp)

(6) L, = L, (Ag)-L(Ag-ﬁgp)

As to the free-air anomaly in the mountain areas, owing to be proportion which
BOUGUER layer holde is much larger than the proportion which ths absolute value of

BOUGUER anomaly makes up, therefor it may be approximately assumed
Ag ~A G =
(7) g -A g, ~2mG & (h - h)

HENCE, under the condition that the free-air anomaly Ag hae linear correlation with
the height h, PELLINEN'e formula G' may be written ae

(8) G' = 2C

Therefrom we may conclude: (1) when there is short of gravity data, according to the
hypotheeis A g = ah+b, G’ may be obtained by computing C with data of topographic
height., (2) Avoiding the hypothesis of the crustal deneity & , topographic correction
solution C may be replaced by computing G*' directly.

As for Gﬁ HEISKANEN and MORITZ havs expressed it to be the sum of the following
(3

two terms

I'&_&d *2/:Iﬁag Al 4

g —....

(®) CT G(|+GB 2”

By using the opsrator L, it is written as

(10) Gy = = hpL (A g =A gp) + L (hAg - hpA gp) (11) Gyy= =~ h L (A g)

Here, G1) is the linear solution g, of the analytic continuetion of gravity anomaly,
which corresponds to the free-air correction carried out by reducting the gravity

anomaly from earth surface to the sea level. To do reduction lijike /this has to use
earth surface height of the computing point, but the phyeicel meaning of G12

is not clear.
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Taking notice of formula (7), it may be written approximately als

Gy= L (hrhp) (Ag = Agp) + L (hrhp) Agp

' A
= G +27.% LQ(AB)

However, by uaing formula (7), YOICHIRO FUJII(S) hae derived

(12)

(13) Gy, = Ge ¥ Gy ¥ 2G5 L (h=h )2 + L (h=h )A
%ZG-I-A hp hpsp
e L 80
In FUJII'e paper, G fi and G 15 were originally written as Gll' G12 reepectively.
Here, in order to avoid mixing up with the forementioned signs adopted by
HEISKANEN and MORITZ, the author adds an aeteriek to sach sign to differentiate them
from the original signs. In view of the approximation of BOUGUER layer, G 4 is twice

as much as the topographic correction solution C. The meaning of FUJII'e formula (13)
reets with that to make clear the physical meaning of G 1M and G 15

After comparing formulas (10), (12) and (13), we may conclude: (1) In all of the
formulae given by HEISKANEN and MORITZ, the author and FUJII, G, hae a bearing on the
let-order vertical gravient L of gravity anomaly. And the interrelation between G1
and the formulae of Ll' G* and C has been also given out. In quantity, G1 is equal to
the linear combination of gravity vertical gradient Ly with L (hAg - hp lhp) or with

PELLINEN'e solution G', or with topographic correction solution C) respectively.
(2) By using the same grid, YUKIO HAGIWARA(4) has computed Gy, Gy, and Gy,
ly for the gravity etations on the 35°30'latitude circle in Tanzawa mountain areae

of Japan. The resulte calculated ehow that, in the formula (10) of HEISKANEN and
MORITZ, though the amplitudes of G11 and G12 are not equal, and yet the waveform are
nearly alike., While according to FUJII's formula (13) and using the same grid, the
reeult obtained after computing Tanzawa mountain areas shows that, G 11 is much smaller
than G 15 Herefrom we may conclude like thie: G

respective-

1 is a quantity which is approximately

proportional to L1 ( Ag),

With the aid of TAYILOR series of the vertical gradient of the gravity anomaly

L (& g), the analytic oontinualtion solution can solve the gravity topographio effect.
It may be a linear solution (which is also called gradient solution) by taking into
aocount of lst-order vertical graient 11, and may be also a non=linear reduction by
giving consideration to neth=order vertical gradient Ln’ Generally speaking, to at-
tend to the second order L2 is enough, This way, when earth surface gravity anomaly
Ag 18 extended analytically to the geoid with TAYIOR series up to 2nd order, 1t

may be written as

(14) 8 g* =8g =hI, (Ag) +hl, (hl, (Ag]) = h°L, ( Ag)

where
fAg 92 A

L A =
——— o ( B88) _ﬁ_ﬁﬁs_

L, ( Ag) =

If earth surface gravity anomaly Ag is extended analytioally to the point level, then
1s) bg' = Bg =3L, B g) + 3L, [ 3L, (4g)] = 3°L, (4 &)

Ag 1t does not have the difficult to oompute defleotion of the vertical when using
MOLODENSKY 's series solution, so it is considered as the most wide-ranging and
ingenious method for solving MOLODENSKY 's problem, If Ag is extended analytically
to the point level and then to the geoid (or a certain sphere surface within the

earth), we may have stepwise and sepmrated-rings analytio continuation(5).

(16)  8g" = dg' =h L, (Ag) +h L3 L, (4 &) )+ n2 I, & &)
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Where, Ag' is gravity anomaly on the point level, h and hp are elevations of arbitrary
point and computing point respectively, Z is their elevation difference. Apparently,
when leaving out the 2nd order vertical gradient term, we get the gradient solution of

gravity anomaly continuationz' 3

(17) Bgs =4g' - hoL,(Ag) (18) Ag' =Ag -3L; ( 4g)

Under the condition of h_=0, i. e. when the point level and geoid are coincident, we
have & g* = A g*, This makes the method of continuation to the point level become a
special case of formula (16).

According to the description of this section and the next one, we can see that, all
the computing methods of computing gravity topographic effect on hand have a common
operator. Generally speaking, there exists certain relation between each of these
methods, but they are not replaced mutually. As to their differences in numerical
solution, they may be different depending on the kinds of regional topography.

III. Analytic continuation solution and BJERHAMMAR's solution

In analytic continuation solution, one of the most important questions is the compu-
tation of the vertical gradient of the gravity anomaly L1 ( A g). Under the condition
to use enough accuracy to carry out plane approximation about sphere and in the case
of projection of earth's surface to a plane with an azimuthal equidistant projection,
the integration of the earth's surface will be traneformed into one on the tangent
plane at the computing point. Now if let the computing point p be the origin and set
up plane polar coordinates and rectangular coordinates systems, then, the integrated

coefficients of L, ( A g) may be written a‘s)

Al = Ar
(19) Ky J{ ZIRETIY

A*H

n is the numbers of subblock in the ith circular zone, r; is the inner radius ot
this zone and ,2r is the width.

e A+ Y
(20) K“ ;f_},) d —JLIDE‘_{(:—

Xy Y:j are the plane rectangular coordinates of the corner point of the ith and

jth subnetwork. Thus we have
(21) L, (Ag) =2 K 435 (A g -Agp)

In order to avoid man-made hypothesis to be introduced during the course of computing
the disturbing potential, BJERHAMMAR presented out to extend downwards the earth sur-
face gravity anomaly to the equivalent sphere within the earth, and let

20 X_ 0%
S o e
Where

(23) f,—ﬁ- fp=R+4%,

(24) D-l- =/ 1+ #2-2{Cos¢

ﬂ:(R +2=2R(, Cos¢f ) 2
(25)

or it may be also written as

(28) Aj::ﬁép— g:;;&?z) ﬂ Ag{-_;;g X
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R is the radiue of equivalent sphere, hp is the distance from earth surface point to
the equivalent sphere.

As to the two arbitrary points on the earth surface, within a certain limit they

may be written 35(2)
(27) RS 2+(h-h)2
£ Lo p

Bssides, we have

(28)  [,2- B2 h (2Reh ) | hg ,n2
= = h - ~ ees
T - Atk " e O T g o)

on the tangent plane of equivalent sphere where the computing point lies, if the polar
coordinates system is chosen and the rest is eimilar to what the author did in paper(s)
then from the second term at the right side of formula (26) we may write:

(29) K —L<I 2R+_F—I)27[“ 14_(';': )21372'
i
"_(‘ 2/« 2R’)-( Lr’uﬁ'ﬂ,ﬂﬁ
—(I_JR 2/{*)'L[['4+‘*1’ ﬁ)] ~(FutE=£] }

apparently, when T- e , the integration constant C=0. So we obtain:

(50) 4 =4gy Ao LK (4%~ 25

Now, we shall make inferences as followe:

(1) In the downward continuation of gravity anomaly, BJERHAMMAR's solution may be
expressed as the sum of the gradient solution extended analytically to the same
spherical surface with the effects related to gravity vertical gradient of every sur-
face element and its topographic elevation difference.

Because of that, when expanding the right-hand side of formula (29) according to
the binomial theorem, we have

(31) <[5 (‘ 2) {
2R 2R . A-p
- 1p1 o 271
+‘Lf(m (ﬁ—g) ?JIZ(” (—r;;,‘—) }
= F ) 2m | [
e (' 2/3 2R ) B= Z(m)(ﬁ )pp ( rlm t LT t 22,
(s2) t r+ )

A.

n® is an arbitrary real number, where n'= - 5 ’( e)’<| HENCE, formula (30)
may be written as:

(33)  off=afpAipli- Jo L ef¥+ 2 L1y
(3a)  L(afH=E K49 K293 L,Ld-Kd(AJ* 29%)

While g? = 'hle () g*) is gradient solution, and the initial value of A g¥ is
AGe Now the proof is at an end.

(2) If analytic continuation solution and BJERHAMMAR's solution of gravity
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anomaly are not extended simultaneously to the same spherical surface, BJERHAMMAR's
solution may be expressed approximately as stepwise analytic continuation solution
extended to the same spherical surface.

All of us know that, when the distance h_ from sarth surface point to the equivalent
sphere is equal to 300m, h_/R = 4,7088 x 10O 5: even under the condition of hp- 10000m,
h /R = 1,5696 x 10-3 is still smallsr than the spherical approximate error
(ﬂ‘ = 3.352836 x 10°3). Generally speaking, Ly ( Ag) is about a magnitude of 1072,
Therefore, hp/R in formula (33) and the above each term may be generally omitted.

Let h_ be the distance from earth surface point to equivalent sphere with the
earth, h' is the distance from point level (or the geoid) to the equivalent sphere,
and z is the distance from earth surface point to point level (or the geoid), and if
h_ in (33) is replaced by n' + z, then the preceding two terms in (33) will become
(18) and (17). And the inference (3) shows that, so long as the value h-hp in the
central zone is far smaller than 250m, & D ijB will be probably smaller.

(3) In plain, plateau, hilly terrain and parts of low mountain areas, BJERHAMMAR's
solution may bs equivalent to the analytic continuation solution.

In absolutely ideal plain and plateau areas, i.e. under the condition of h-hp = 0,
formula (33) may be written as:

fsel = 4hp A1~ S+ T ieg

In areas where the topographic undulation is smaller, e. g. in plain, plateau,
hilly terrain and parts of low mountain areas (the elevation difference is about
250m), their value ( h — h ) . may be still smallsr than the spherical approximats
error. Because of that, at ;he place r = 4.,625km iway from the computing poiné and
when h-hp=100m, the magnitude of Gh _PhP'Jais 1077; when h-hp=250m, ¢ ; hp )

= 2.,9218 x 10'3. According t% ths definition, ws have

[
> = z
PaR e Pt i
HENCE, so long as the value h-hp in the central zone is smaller than 250m, Lyyj B
in formula (33) may be possibly smaller. This way, BJERHAMMAR's solution will be

equivale%f to the analytic continuation solution. Contrarily, in low mountain areas

(h=h) will be close to or greater than the spherical approximate error. There-
fore, the effect of topographic height on gravity topographic effect should not be

neglected.

(4) In the case to demand accuracy alike, no matter how far the radii of templet
circular zones of analytic continuation solution and BJERHAMMAR's solution we compute,
they may be the same.

We know that, K1§ shown in formula (29) is the integrated (templet) coefficiente
of BJERHAMMAR's solution. It is the function of elevation h_ of computing point, the
circular zone radii r ,pi +/ of templet and the topographic elevation difference
h-hp. When h-h_ = 0, Kgj obtained at the right~hand side of formula (29) is the
integrated (templet) coefficient of analytic continuation solution. As for any
circular zone, the coefficient Kig will decrease with the increase of
value h-hp. But as to different values h-hp, the difference value of Ki%
on a certain circular zone may still remain certain magnitude. For example, on the

circular zone apart from 30’ of the computing point, the difference value of K ?J
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of this circular zone may be taken as a magnitude of 1077 - 10'5 for the different
values of h-hp; on the circular zone apart from lo, the difference between their
8 -6

- 107",

ments of data unit and accuracy are definite, if we use different values of h-h

coefficients may have a magnitude of 10~ In the case of that the require-
for certain circular zone, then, the radius of this circular zone computed how far
may be identical. HENCE, the templet of BJERHAMMAR's solution may be the same as
with analytic continuation solution.

IV. The Advantages and Disadvantages of Every Method

In computation, all solutions such as the topographic correction solution C,
MOLODENSKY's series solution Gl' PELLINEN's formula G', analytic continuation solu-
tion gn(n =1, 2, ...) and BJERHAMMAR's solution 9g have a common operator L.
Judging from this, the problems such as the precise solution of integrated (templet)
coefficient Kij’ computation of central zone, the division of templets and how
far do we compute the circular zone radius of templet, etc., are all similar. HENCE
the difficulties encountered when operate them are also the same.

In the preparation of data, some méthods only require data of topographic height h,
for example, C; some requires gravity anomaly Ag besides topographic height, e. g.
Gl' G'; some only requires data of topographic height at the place of computing point
besides A9, €.9. 9., gg-

In these methods, they require separately the data of h-hp or Ag- Agp, or they use
both of them. In numerical values, h-h_is generally greater than Ag- Agp, or it is
even greater by a magnitude than it. Therefore, under the condition when the operators
are alike, the convergence (rate) of Ll' gg is fast; Gl' G*' take second place; and
owing to (h-hp)2 is greater, the convergence rate of C is the slowest. According to
the same reason, the circular zone radius of Gl' G' may be computed farther than that
computed for Li» 9g°

As to iterative computations, BJERHAMMAR's solution may be iterated to the n-th
order, e.g. in WUHAN area iteration requires 2-3 times, in WUDU area, it requires 6-7
times at most. In theory, analytic continuation solution may be iterated to the n-th
order. In application, to iterate 2 times is enough ([ 2), p.420). But the methods of
(&5 Gl' G' do not require iterative computations. From this point of view, it is their
advantage. The distinguishing features of geodetic gravimetry computation are: the
computing templet will be displaced witz the change of computing point, the scale of
templet and how far will be the circular zone radius computed are not altered with
the change of computing point. Thus, if the circular zone radius remains unchanged,
to do one time of iterative computation will require the data of 2¥ . So the problem
of iterative computation of BJERHAMMAR's solution is more prominent than that of
analytic continuation solution,

In BJERHAMMAR's solution, the value Ag*—Ag; will be gradually discreased after
doing every iterative computation, and at the first several times its reduced range
is greater. HENCE, when computing the idea of separated-ring reduction presented by
the author in literature (5) may be used. This idea is: according to the given
accuracy required, for different values of 8g - Agp the reduction may be carried out

by choosing different block distance (or circular zone radius). Here, we may
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consider the reducing range of Ag' - Ag; reduces one by one snd in unequal interval
the circular zone radius, and it may reduce it in equal interval.

By using it in BJERHAMMAR's solution in WUDU area, the result shows that, the
value Ag®* - Ag; after the first iteration is reduced smaller by 70 - 90 % or more
than the initial value; iterative computation is chiefly the first 2-3 times; to adopt
the principls of separated-ring reduction is reasonable and it may quicken the rate of
iteration,

V. Cqonclusion

To sum up all mentioned above, we may have conclusions ae follows:

(1) All the computing methods of gravity topographic effect now avsilable have e
common operator L, and certain relation between these methods may be found out. HENCE,
the value of gravity topographic effect obtained by using a certain method may be
transformed into a value got by another method. But, generally speaking, these methods
can not be replaced mutually.

(2) The linear solution (i. . gradient solution) of analytic continuation solution
is the approximate value of MOLODENSKY's series solution Gl and BJERHAMMAR's solution
respectively. C and G* are also the partial value of Gl.

(3) In the downward continuation of earth surface gravity anomaly, BJERHAMMAR's solu-
tion may be expressed as the sum of the gradient solution extended analytically to the
same spherical surface with the effect related to topographic height. If they are not
extended to the same spherical surface, BJERHAMMAR's solution may be expressed approxi=-
materly as the stepwise continuation solution extended to the same spherical surface.

In plain, plateau, hilly terrain and parts of low mountain areas, BJERHAMMAR's solution
maY be equivalent to the analytic continuation solution,

(4) Some basic problems we meet when we use all methods in computation are the same.
Let us axamine from iterative computations, Gl' G' are different from analytic continua-
tion solution and BJERHAMMAR's solution, and it is not necessary to operate iterative
computation; in the respect of number of times of iteration, the number of times of
analytic continuation solution may be less than that of BJERHAMMAR's solution; in the
respect of forced conformity, the latter is better than the former; in iterative compu-
tation, to adopt separated-ring reduction presented by the author is reasonable. It can
not detract accuracy, and may cut down many related data, furthermore, the rate of
iterative computation is fast.
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[IOTEHLMAJIOTPASMUECKAA 3AJAYA ¥ KOHUEIMIMA I'PABUTMPYRUX
IVCKOB

Memepsros I'.A. (CCCP)

8L

THE POT=NPTALCGR.PHICAL  PRUBLwik ANL THE CONCEPTION OF THE
GRAVITATING DISKS

/USSR/

ueshcheryakov G.A.

PE3IME. PaccMoTpeHo JBa MOmXONa K MOTeHIMalorpapudeckod samnave-[[3, APstmact. Iere are considered two approaches as to the potentialo-

Iof KoTOpo# NMOHMMaeTCA yEe OaBHO pemaeMad 3gnaua YHLOOHOIO aHaIMTHUeC—
KOT'0 IpelcTaBleHMS BHENHEero NOTeHIyMala [IPHTSXeHUA IuaHeTH. [lepBuit -
JIEeCKDUITHBHER; COOTBETCTBYDHHE eMy H3BECTHHe CIIOCOOH NpefCcTaBIeHHA
[IOTeHIMala JOCTaBNfAoT Pemenve npsmo#t [I3. Bropo#t momxom - KOHCTPYKTHB—
HHli; OH IPHUBOEMT K o6paTitM [I3, ABESOMUMCH HOBHM BMIOM OOPATHHX

3g1ad TEOpHH [OTEeHIMana.

O6cyxneHa nocTaHoBKa o6paTHoit [I3, B KOTOpOH M3BECTHHA HOTEHIMAl
[UISHETH [peICTaBlIeH CYMMO# IOTEHIMANOB IPOCTOrO M ABOAHOrO CIOEB,
PAClONOXEHHHX Ha 38JaHHON MOBEPXHOCTH BHYTDH ILIQHETH; WCKOMHMH
ABIADTCA NIOTHOCTb M MOMEHT 3TnX caoeB. YacTHW] caywa# Takoit 3apaun,
KOTAa CIOW MpeAnolarabTCi B 3naropmi.xbaoﬁ ILIOCKOCTH, NPHBOIHT K
KOHOEIIMH I'DaBUTHPyUmEX IHCEOB - HI'I.

CormacHo KT'J| moTeHiMan mmaHeTH IpelcTaBileH CyMMofl TOTEHIMANOB

Tpex ILUIOCKMX EPyT'OBHX ORHOLEHTPEHHHX OMCKOB: (ioranbHoro - Q&fi, Ges-
MaccoBoro MarepuanbHoro - EMJl u gunoapHoro - JH. @[ (c ueTHmMM
SOHANbHHMY TaDMOHMEAMHM) OTBedaeT HEaHeTe B IpefIONOXEHMM IMIPOCTATH-

"YecKs papHOBECHOro ee cocrosHmd; BMJl (C rapMoHMEaMi, YeTHHMM OTHOCH-

TeIbHO ILIOCKOCTH 2KBaTopa) M I (C HEeUeTHEMA-B TOM X€ CMHCJIE-I'apMOHM-

KaM) OTPAxXADT HErKJPOCTATHWHOCTD MNIAHETH: COOTBETCTBEHHO €€ CHMMEeT-
EWHYD H HECHMMETDHUHYD 4acTbh OTHOCHTEIBbHO 3EB&TOPMBI[bHOﬁ INAOCKOCTH.

Odcmemi ajlbTEepHATHBH B YCTAHOBIEHHH HODMARBHOI'O IIOXH Semnu.

YrasaHu MexaHuweckEMe npegumocwaxm K.
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graphical problem PP, under which we understand for a long time

a solving problem of convenient analytical representation of
external potential planet gravitation.The first one is descriptive
to which corresponds zmown methods of solution of direct PP. The
second is a constructive one ; it brings to inverse PP, which is
a new kind of inverse problems of potential theory.

Here is discussed inverse PP in which a known potential of
the planet represented as sums of potentials ol the simple and
double layers, situated on the given surface in the interior of
thé planet dunsity and moments of these
A particular case of this problem, when layers are supposed to be
in equatorial plane, brings to the conception of gravitating disks-—
CGD.

layers are to be sought.

According to CGD potential of planet is represented as the
sum of three potentials of the plane circular one-centered disks:
focal disks - FD, material, massless MVD and dipole disk - DD.FD
/with even zonal harmonics/ corresponds to a planet supposing kydro-
statics of its balanced state; MMD / with harmonics even as to
equator plane / and DD / with odd harmonics in the same sense /
represent a planet non-hydrostatically : namely its symmetrical
and non-symmetrical parts as to equator plane.

Here are also discussed alternatives in setting normal
Farth gravitation and given mechanical prerequesites of CGD.



Memepsakos I'.A.

(CCCP, JIpBOBCKMi® MOJUTEXHUUECKUA MHCTUTYT)
[IOTEHIMATIOTPASVYECKAS 3ALAYA Y KOHLEIMMA T'PABUTMPYIUYIX
INCKOB

§1. Hume Gymem paccMaTpuBaTh 3amauy yHOGHOTO AHAIMTUUECKOTO Mpef-
CTaBleHUS BHEmMHEr'0 MNOTEHIMala NPUTSIKEHUS TUIAHEeTH, COBEPHNEHHO He
CBA3HBafA ee HM C omnpefeneHueMm Gopmu nociaejHei, HM C ee BHYTPEHHUM

CTpOeHMeM. JTY 3a1auy MH Has3HBaeM noweﬂunanorpaéuqecxoﬁ*). OHa He

HoBa. BriepBue ee pemuy eme Jlariac, pasjOEMB MOTEHUMAN NPUTIREHUA
IIaHeTH B DAL MAapoBHX (QYHKIM, KOTODWH M NOHHHE ABIAETCHA OCHOBHHM
anmapaToM KakK [IpM TEOPEeTHUECKMX MCCJIEIOBAaHMAX, TaK M NPU DPEmEeHUH
pa3Hoo6pa3HHX NpaKTHueckux 3agau. OmHako npenjaralucb ¥ LpyTHe
fopMu omucaHusA noreHimana. U maxe B mocieiHee BpeMsA YCHIEHHO M3HC-
KMBamTCA HOBHE HETDPagULMOHHHE CNOCOOH ero npeicTaBlIeHKWs, MMEHHO
Takue, KOTOpDHE He TepsAf B TOUHOCTHM, MO3BOJANM OH 3(feKTMBHYD M
9KOHOMMUHYD peanusaimmp Ha OBM.

Hcropusa paccMaTpuBaeMoro BONpPOCa M €ro aKTyalbHOCTb BHHYRIADT
HOLONTM K HeMy C HEKOTOpHX oOmx mnosmimit. Ho cHauana oTmeTuM
KPaTKO MHOroo6pasue BO3MOXKHEX IMOJXONOB K HeMy. [amke Kiaccuueckuit
JallacoB PAQ MapoBHX (PyHKIMiA HoMyckKaeT pasjuuHHe MHTEepIpeTalyu
[I,Z,.'%u pasHHe (QOpMH 3amMUcCH ero [4,5] . A Kpome Hero pnaHH OHIM eme
OlIMCaHUA NOTEeHIpaJa 10 I'apMOHMKAaM CRATOr'0 SJUIMIICOMTA BpaleHud,
panamu no QyHxumsam Jlame, noTeHuMasoM MPOCTOT'O CJOf, CYMMOi NOTEH-
[MaJIOB TOUEUHHX MacC, NPy NOMOMY MyJAbTMKBAILPUKOBHX M ODPYTHX BULOB
QyHKImM, C MCIOJb30BaHWEM TaK Ha3HBAEMHX HENONBMEHHX LEHTPOB

(OHvMEX 1M xounnexcxux), xou6uﬂupoaanueu Pa3InUHEX Ccrnoco6oB ero

2 Jlexmua "OCpaTHHe 3afauM TeOpuM TeonoTeHupana", Npour-
TaHHad aBTOPOM Ha MEEAYHApOSHOM 3uMHE# mxoie "TeopeTHuecKne
ﬁxanepuueHTaanue BOIPOCH ILIAHETApHO! TeofMHaMMKM™ (2Y.1X-Y.X.1Y03,
ueB).
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annpoKCcHMalMy B OTHENbHbX 06JacTAX NPOCTpaHCTBa M [p., — M BCe
BTO, CKaxeM, — CYTb Da3HhHe MEeTOL:H DelleHMs MNoTeHuuarorpaduueckoi
3agau.0630p ¥ Oubauorpagua X MMeTCA B {?,é]‘

Kak BMOHO, HEKOTOpHE U3 MEpPEeWICIEHHHX METOLOB OTBEUAT HECK—
DUNTHBHOMY NOMXOALY: KaK HawlyumuM o6pasom (B KAaKOM-TO OIpeleieH-
HOM CMbiCJIe, HalpuMep, C MO3UUMHA Teopuy KBALpATHUECKMX NpUGIMKEHw)
onucaTh noTeHupan ( v mm'—(~ ) aHaJUTHUECKM — IIpY [IOMONM CIeLMalib—
HbX QYHKUMI MJIM pas3ioxeHMi B pAgH. TaKOMy MNOOXOAY CJIELyDT Ipef—
CTaBJIEHUA NOTEHIMaJOB PANaMM MO WapoBuM QYHKIMAM, [0 IapMOHMKaM
cxaToro aJumuncouga, no gyHkumaM Jlame, MeTOLOM KOHEUHHX B3JEMEHTOB
U HEKOTOpHe npyrue. Ecau uCxOOUTh Y3 NPMHUMIA TEOPUM HaKJIyumuX
KBaIpaTUUeCKuX NPUOIMKEeHM A, TO LJIA MOJYUeHUS YHOBIETBOPAKMEIO eMy
pemeHusa 3ajauv HEOOXOOMMO 3HaTb JOpMy NIaHETH Eq, M - B COOTBET-
CTBMM C OTMM — M3 TOJbKO-UTO YKa3aHHmX NpefcTaBleHU \ niepBHe
JawnT cTporoe pemeHue Lid [UaHeT cdepuueckodl fopmu, BTOpME M Tpe-
ThU - LA [UIaHET BJLIMICOMKAaNbHON fopmu (COOTBETCTBEHHO B BHIE 31—
JUNCOMIOB BpalieHWid M TPeXOoCHHX 3JUIMICOMTOB). McronbaoBaHue XOHeu-
HBX 3JIeMEHTOB IpelycMaTpuBaeT HauboJee MOJHOe OIMCaHMe NOTeHIMa-
Ja peajbHO# niaHeTH. Bce TH MOEXOZH OCYmECTBIANT MaTeMaTHUECKY®
annpoKCUMaLmio \ ; OyneM cuMTaTb, UTO OHM NOCTABIMANT pelleHue nps-
MO# roTeHiManorpajuueckodl sajaun.

Ho k omMcaHup NoTeHuuala peajibHO TUIAHETH BO3MOXEH M IpPYro#
NOXO0J, -~ KOMCTDYKTMBMHJ, KOTOPOMY COOTBETCTBYWT OOpaTHWE MOTEHIM-
anorpaguueckre 3afauM: Hafo OTHCKATb NOBEPXHOCTH A; U Ha He#t
PacloNOKUTh OBa CIOA - NMPOCTON M LBOMHONW (WIM OOMH M3 HMX), CyM-
Ma TOTEHIMAaJIOB KOTODHX Bhparala OW NOTEeHuMal IJIaHeTH ¥ JomyckKala
On 6oJiee NPOCTHE BHUMCIEHUSA ero, HexeJu TPaLULMOHHEM 06pasoM Mo
PALY wmapoBbX (YHKIMMA.

BO3MOXKHOCTb NIOCTAHOBKM TaKuX odpaTHux 3ajau BHTEeKaeT K3 Cle-
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Ayomux cooGpamenuit. IlycTh moBepXHOCT: G Tela KW3BECTHa, OyneMm
lnonaraTh, YTO OHA NPMHANNEXUT K KIacCy nopepxHocTeit JlanyHopa
(k HuM OTHOCHTCH HanpuMep, OrPaHNUEHHHE 3aMKHYTHE MOBEEXHOCTH

Kilacca c ). 1 IIyCTb Ha M3BECTHH 3HaAWeHMUA INOTeHiMala \/ )78

€r0 HOpPMaJIbHO# NPOM3BOIHON Sy,

. Torga, Kak M3BECTHO, BHEWHMit

~

NIOTeH1Ma Tega T

MORET OLTb NPEICTABIEH CYMMOJ MOTEHLMAIOB

IIPOCTOI'o M ,lI,BOﬁHOI‘\? CJoeB, pacnonoxcermmx Ha G :
GRS ’
V)= | 7l (Qes, Reo)
0

YkazaHHu# (aKT BOBMOKHOCTM NpENCTABIEHUA 0GbEMHOIO oTeHLMa~

V’?VLQ-
p

Ja cymmoit IIOTEHLKaJOB IBYX CICEB
\[: v +vll

MK [axe OLHOI'O0 M3 HVX, MMeeT OCHOBOTIOJarawmee 3HaueHUe B MaTeMa-

(2)

TUUECKO! (U3MKe NPU UCCIENOBAHMM ¥ DelleHMH KpaeB:X 3amay Teopun
NoTeHIMana. 3nech ke OGCYREAeTCs MHOM BONIPOC - BOINPOC O Pas3HO0G-
pasuu (OpM ONMCaHKA BHEIHEro 06bEMHOTO NOTEeHIMANA \/ 3Hauur,
uMes oGpaser ero BWpaxeHus B Bume (I) u ywTwsas HeNpepuBHOCTh
NOTEHIHaNIOB cioeB (NPOCTOTO M HBONHOTO) BO BHEWHEM MO OTHOWEHMI
K HUM NIDOCTDEHCTBE, MOKHO NPENIONOKUTb, UTO M3YuaeMut oTeHuuaI

NPENCTaBUM CyMMOi
V: K|V!+ K” ft
2

B KOTOpO# KoodduimenTn W' u «"

/ 1}
a TIOTeHLMaJ N V )78 V (MMeHHO, — MNOTEeHUMaJl NPOoCTOr'o ciod

V'(P): %fa (Ges, P¢5) (4)
< 45, (6es. p§§5> (5)

)L u MoMeHToM YV ) OTHeceHH k

(3)

— IIOCTOAHHHE MIM Jaxe IIepeMeHHue ,

¥ NOTeHuMan OBoiHOro cios

UGE

— COOTBETCTBEHHO C INIOTHOCTBW
‘
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Huil noTeHuman ( \Y wm | ) Tena

8

HEKOTOPO# OrpaH#ueHHO! TIiafkod gBYXCTODPOHHE! NOBEIXHOCTH f;

pacnosoxeHHo#t BHyTpu G U He umewmeidl c Heit oOmux Touek. IIpen-

TIOJIOEMM Takke, uTo cyima (3) BwpakaeT Ha O U B O6IACTH MEXLY
G u

|

ﬁg aHaJlMITHUeCKOe IPOLOJKEeHHe BHEWHero IOoTeHIala ( V

~

wiu ) BO BHyTpp Tena T , €CIM, KOHEUHO, OHO CYyWeGTBYEeT.
fcHo, uTO, ecau OIA 33gaHHOTO Tejaa T Msl CMOKEM KaKMM-TO
06pasoM pasielUTh ero HOTEeHIMal Ha [BE UacTv, KOTODHE XOTHM 3a-
TeM TPaKTOBaTb NOTEHIpalaMud cloeB (COOTBETCTBEHHO NPOCTOIO M
IBOMHOr0) , JexamyX Ha BHOPaHHO! ampuopu NOBELXHOCTH Ag , O6beM-

~

JeMoil moBepxHocTbD 6 Tesa T , TO OymeM MMeTb 3fech LBE TH-
NMyHee OGpaTHHe 3ajauy TeOpUM NMOTEHLMala C NPUCYIMA MM CBOHCT-
BamMy HEKOPPEKTHOCTH. [IpM ®TOM OlMCHBawmMe MX Bupaxewus (4) u
(5) - OTHOCHTENBHO IIOTHOCTEM Kou Y  aTHX Cl0oeB - ABIANTCA
MHTErpajbHEMY YPaBHEHWDs I poma ¢ HelpepuBHEMY AOpaMH; NpUUEM
YCIOBUA pPa3pElMMOCTH ITUX ypaBHEHMIl NOJNKHH HaTh Kak NOLTBEpRLE-
HMe NPaBUIBHOCTM BHOODA OBEPXHOCTH i;

!
v Ha uyacTu V )78 V”

O6paTHHE aafauy TeopuM IOTEHLMala, B KOTODHX 3a[JaHH BHEN-

TaK ¥ IIPaBOMOYHOCTbL IpH-

HATOrO pasleleHus
T Heu3BecTHOK fopMu, IDOAREH

OuTb NpeficTaBleH cymmoit (3), MH HasHBaem OCpaTMEMM TOTEHLEMANOTPa-

prueckmmm sagawamu. KoadduimeHTH «'n «' IIp¥ 3TOM MOT'YyT CUMTaTh-
cA 3gnaHHEMM. Eciu oguH M3 Hux paBeH O, a BTOpoft emuHMIE, TO IO-
TBHUMaJ NPENCTaBIAETCA TOJIbKO ONHUM CJIOEM - NPOCTHM WIM MBOMHEM.
[loBepxHOCTB :; : Hecymas B TakMX 3ajausX cjou (MmM cuoit) MomeT
CuMTaThCH JUO0 M3BEETHOI, JUOO mame Momilexameit onpenelieHHn. OTH
3afiawM oObeOMHANT B cefe DAL 381au, M3BECTHHX M3 NPAKTUKM reome-
aun. Hanmpumep, mpu «'=0 u «'=] MMeeM NpeCcTaBIEHMe BHEmHErO IO-
TeHIMala IUIaHeTH MOTEHIMalOoM NIPOCTOr'0 cXof: 3a S 30ech MOTYyT

OHTb NPUHATH DPa3MElMeHHHe BHYTPM ILIAaHEeTW IOBEPXHOCTb CHepH HIH



SJUIMNCOMUMa M3BECTHHX Pa3MepOoB, JHUOO NMOBEIXHOCTb, NapaLleNbHas
HEM3BECTHOM! NMoBEXHOCTM O IUIAHETH M HeXONAMAACH BHYTDHM IOCIEm—
Helt.

BaxrHo OTMETMTb, WTO NOTEHIMadorpafuueckue 3afaud MOTYT M3y-
"UaThCA B JUCKpETHO! mocTaHoBKe. lIpuBemeM npuMep. I[ycTh moTeHiman

V' samensercs [IOTEHIHANOM [IPOCTOI'0 CJIOA. ECIM BMECTO HENpepHB-
HO}t MIOTHOCTH J- 9TOrO CIOS MCKATH MACCH VM, €ro 3JeMeHTapuX
IUIOWANOK, CKOHLEHTPMPOBAHHNE B HEKOTODHX TOUK&X CJIOf, TO MPUIEM
K M3BECTHO! 3afaue NMOCTPOEHMS MHOT'OTOUEUHHX Mofeneil moTeHipaia.
3aaBmMCh NPM 3ITOM NOBEXHOCTBO CJIOS l; 6yOeM MMeThb JMHEMHyW
3allauyy O ompefeyeHMo Macc W . EciaM ®e NMOBE[XHOCTHL Cl0A CuM-
TaTh HEM3BECTHOM, TO RUCKPETHAs NOCTaHOBKa OGLAaTHOW TIOTEHLMaso-
rpapuueckoit samausm mpu « =I, «"=0 oxBaTwBaeT ofmmit ciyuail moc-
TPOEHMS MHOT'OTOUEUHHX MoOjfeJiefi NMOTeHIpana, B KOTODHX OnpeNeseHMO
nogJiexaT MacCH Wi, , Haxofsumyecs Ha NOBE[XHOCTH S , UWICIEHHO
onpenenrdeMoit ucxomuﬁu TOUKaM! KOHIUeHTpaiyu Macc ( dg=%f , 5{ ,

A; s R=comly | KoxkpeTHas mocTaHOBKa OOHOM Takoil 3amauy M peme-
HUE ee [aHH B &ﬂ.

3aMeTUM, HaKOHEll, UTO NOTeHupMalorpapuueckad 3afaua mpu W's=
= «" =I B OMCKpPETHO! MOCTAHOBKE NPX MCKOMO! NOBE[XHOCTH f; 0606-
jaeT NOCTPOEHME MHOT'OTOUEUHHX Mofeleil NoTeHIpala 3a CueT BKInUe-
HUS B WMCHO MCKOMEX [apaMeTpoB 9TUX MOfele#t IpaBUTAIMOHHEX IUIO—
ne#t, Ha60p KOTOPHX COOTBETCTBYeT MOTEHIMaly IBOKHOTO CIOA \]".

B MaTeMaTHueckoM CMuCJE TOTeHIpalorpaguueckas 3gpauva PacKphH-
BaeT MHOI0O0GpasHHe BO3MOXHOCTHM 38MEHH OObEMHOT'O NOTEHIMasa Tela
[IOTEHIMalamMi IPYyrMX BUEOB. IS reomesuy 3Ta 3afaua NO3BOJAET IO-
TEHIMa) NPUTAKEHUA IUIaHeTH (MOJHHiM -V , JU60 ero IIaBHYy® uBCTb
WIM BO3MYMAIOULY0 =T ) omucsears PasjJMUHEMY crocofaMi, Cpemyu Ko-

TOPEX MOXHO OTHCKATh HauGoiee MOAXOAANMe NS TeX WIM MHEX NPaKTH-
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yeckux uenefl. 3aMeTM, uWTO B CIydse NpenCcTaBIEHUS noreﬂunana‘\[
3emrn K‘;é Omu \A"# 0, asB cnynaeT— «'=0; maa THAPOCTATHIECKN
PaBHOBECHBX ILUIAHET NPU OMMCAHMM WX TOXHOrO moTeHiMaza W' =0.
BaxHo Taxxe, YTO moTeHmMalorpajuUueckas 3amadvs ZOOyCKAaeT JNC-
KPeTHYD NOCTaHOBKY, WTO, B UACTHOCTH, NPUBOAHT, X MHOT'OTOWEWHMWM

M TOUSUHO-IMIIONBHEM MONENfAM NOTeHIMalda; EpoMe TOoro, M camo
38JlaHKe NOTEHIMaNa IUIAHETH MOXeT OWTb B3ATO B AMCKPETHOM BNAG.
CymecTBEeHHO Takfe, UTO NOBEPXHOCTb f; , Hecymad CIOH, MOXeT
CUMTaTbCA MCKOMO! WIH MOEET CUMTAThCA 3apaHee 3afaHHo#. Bce arw
MOMEHTH [JOJEHH OHTb NPEfYCMOTDEHH NEeT&NbHO! mocTaHOBKON KaxjoR
KOHKDETHO! noTeHpanorpaguuecko# sapaw. Ho npexpge wem nmepexo-
OUTBb K TaKoBOM, clelaeM cIejyvmye 3aMeqAaHMAd.

OT nopepxHocTeMH (; » Ha KOTODHX AJf ONMCAHMA MOTEHOHana V
rena cymmoit (3)-(5) mpegnonaraeTcs MOMECTUTH MpocToit M OBOMROR
ciou, TpebyeTcs TORBKO BO3MOXHOCTD PasMEMERMd Ha HMX STHX CIOeB.
[locregHve MOJFHMN pa3BMBAaTh B OKPYEabMeM MX BHENHEM [DOCTDAHCTBE
[OTEHIMANH NPUTAKEHUA, 3HAYEHUSA KOTOPHX (M MX NMpOM3BOAHEX) B TOU-
Kax CJOeB IJf paccMaTpUBaeMoit 3amaur HecymecTBEHHW. [lo3ToMy HeT
Heo6X0gUMOCTH 6paTh IOBEIXHOCTH :; U3 Kracca noBepxHocTel Jiamy-
HOBa; MOM HUMM JOCTaTOUHO INOJPasyMeBaThb OI'DaHUMUEHHHE IIauKHe
IBYXCTOPOHHME TOBE[XHOCTM KJacca C s MMEHHO TaKue, KOTODHE MO-
TyT HeCTM Ha cebe yKa3aHHHE CJOM, IIpM 3TOM,HKaK yRe NOLWEepPKMBAJNOCH,

~

3TH NOBEPXHOCTH, OYNyws DacIOJOREHHEMM B ofjJacT¥ T ; He JOJIEHM
uMeTh oOmMX TOUEK C ee IpaHMuesl - moBepxHOCTHD O .

[loBepxHOCTHM é; MOTYT OHTb 3aMKHYTHMM ¥ MOTYT OHTb HE3aMKHY-
TEMM. BO BTOPOM Clyuae OHM HOJNAHH OHTb OI'paHMuUeHH OJHON WIH Hec-
KOJBKMMM 3aMKHYTHMM KDMBEMUA. [IpocTelmydy TaKiM¥ HE3aMKHYTHMM I10-
BE[IXHOCT MM S apasores obnactu HEKOTOPO# ILIOCKOCTH, HaIpUMED,

~

IUIOCKOCTH CEeueHUd Teja U . O!IEBM,II,HO, pacrnojiaras CJOM B IUIOCKOC-



R:\LS:C'%—&7

(6) 8

- Majasi BeJInuM-

TAX CEUeHH#, MMeeT ONpelesNeHHHH CMHCH BHOpPATh CEUueHMsd, MPOXOLs-

iye uepe3 LeHTP Macc Teja L , M comepxamye ero nuaMmeTp, TaK Kak roe ae SKBATOPUAJTBHHI PaNyyC IUIAHETH, a E>O

OHM - KaK CeueHus Teya - Haubojee IOJHO OTBEUART eMy B ILICJIOM. Ha.

B03MORHOCTDL MCHOJIb30BAaHMUA TaKUX IUIOCKMX CJOEB TNOoICKa3wBaeTca [loTeHuman V- [JIaHEeTH OTHeceM K Bpamatomeﬁc:{ BMecTe ¢ Heit

S2MEHATEIBHOMET R KTOBKOM [9] noTeHipata OnHOPOIHOrO JJUMMICOMIE € ppayoyronbHO# NEKAPTOBOK CHCTEME KOODNMHAT O\xzz , HawaJIo Ro-

bd =
nonyoca O >$>C NOTEHIMATOM HEONHODONHOTO SIIALTUUECKOTO CIOA TOPOJi COBMEmEHO C LEHTPOM MACC ILIAHeTH, a och U2 coBmajaer c ee

e 2 3
(mcka) ¢ nonyocmer Vot-c , V2! , pacnomomeHHOro B mIOCKOCTH, ocbo BpameHHs. Torma B COOTBETCTBMM C YCJIOBUAMM MOTEHIMATOrpadu-

OornpenesieMoy ocsMi 3JJIIMIICOMIA, MNEepPrNeHOMKYJIAPHEMH ero MaJloM OCH. ueckoit samawy BHpa3UM v cyxmov'x (3) npu K = K" =I, claraeMye

AB3) 48 :
Ver~tra-r

o) = 2V(5y) dS .
V(’n’z) £V( >

O6prcoBaB pa3HOOOpa3HHE BO3MORHOCTM BHOOpa NOBEPXHOCTEH S KOTOPO# CYTh

Vivgn)=

LA onucaHus OGbEeMHOT'0 MOoTeHLMala V rera T  cymmoit (3)-(5),mu

npencraBuM TaK IMOTEHIMad IUJIaHeTH, MCIIONb3YySA HMMEHHO IIJIOCKHEe CJIOH (7)

B e€e 3KBaTOpHaJIbHOM CEeUeHMM M KCXOoOfA MNpM 3TOM TakKke M3 TOr'o, UTO

ILIOCKOCTDb 3KBaTOpa fABAACTCA LJIA I'MOPOCTATHUUYECKM pPaBHOBECHRX

Tyt 2 ) @)

IIIaHeT eCTeCTBEHHOW IINIOCKOCTHhD VX CHMMETDHH. 3mecr X \é , 2 - KOODOMHATH HpOMaBOJIbHO]?! TOURK P BHe

-

TIaHeTH; 3 , ) - KOOPNUHATH TeKymeil TOWKM @ mrockok o6ractu§ 3
U=p(3 ,m)u p=y (g »¥) ) - COOTBETCTBEHHO IIOTHOCTH

NPOCTOr'O ¥ MOMEHT IBOMHOrO CJOEB, npenrojaraeMue IpuHaLJIexamyMA

§2. PaccmoTpiM Temepb OAMH BamHH/ UACTHHI Clyuail MoTeHuMaiorpa-
¢uueckoit 3anaum.

Bynewm nop, ,S MOHMMATh IUIOMANb JJUIMIICA MIM Kpyra, JexXamyxX B
K Kknaccy QyHKumit If; .

[lpy HanMcaHuM PTVX MOTEHLMAJOB MCHOAb30BAHH fopMynH (4) u

SKBaTOPMaJIbHOﬁ TUIOCKOCTH IUIAGHETH M MMenlMX LEeHTP B LEHTpe MaccC

TIaHeTH, BO3MOXHO Hau60JIbINX pasMepoB, MMEHHO TaKyx, UTO MX

KOHTYDH, OOHaKO, He KacawTCS KOHT¥pa SKBaTOPWAJBbHOT'O CEUeHHd (5), npuuyeM B rnocyeqHe# 3a MOJOXUTENbHOE HanpapleHHe HODMaJH w

IuiaHeTH (CUTyamus, aHaJoruuHad TaKoBO¥ Npu BBemeHuM chepn Bpep- K S B3ATO OTpULATEJbHOE HalpaBlIEHHEe OCH 02 . (3anemm, wro gop-

xamMapa). [Jpyrumu cioBamy, 3a S NpMHMMaeM jajee [omanb akBaTo-  Myaw (7) u (8) mpu R—> e M IpM 3a0aHHEX Ha B C e # IUIOCKOC—

PM&IBHOT'O CEUeHMSA IUIaHETH, OGOCmEHHYD 3JIMICOM MIN OKPYRHOCTBD M
"cxaTyon" HEe3HauMTENbHO K LIEHTDY, MMEHHO, HacTOIbKO, UTO OI'PaHMUM-

Bapmue ee 3AJIHUIIC HIM OKPYEHOCTBP CTaHOBATCHA "nouru" BIMCEHHHEMM B

.'ru dyHKIMAX }A (; ,WZ )u VY (% ,’t? ) OaDT COOTBETCTBEHHO Deme-

HMe 3agau [lupuxiae u HeliMaHa mna ypaBHeHus Jamraca B ciyuae

TOJYTIPOCTPaHCTBa ) .

3To ceueHe. W xoTA musa HekoTopux ruiaHeT (Mapc,3emns) mog S BH- [IpocToit cioit, npegnosaraeMuit HaxonsWMMCH Ha TUIOMAamM Epyra S B

T'OOHO TNOHMMATDH IUIOWAanb aJmMnca,Gy,uen BCe Xe jajee-B NeJaX OINHCaHuA SKB&TOPMaJIbHOﬁ IUIOCKOCTH IUIAQHETH H# paasnnannmﬁ BHE ee K Ha ee

rao6anbHoro (o6meIUIaHeTapHOTO) T'PaBATALMOHHOTO MOJA IUIAHETH ¥ Pamy¥ NOBEXHOoCcTH noTeHuymana (7), GyneM HA3WBATbH MACCOBHM MATEDMAIbHHM

YTPOmWEH!A BHUMCIEHWH — NpPUHMMATbL 3a S Kpyr pamuyca nuckom MMI B cBA3M c TeM, uWTo Kpyr (miu aJjummc) ,S - nusa co3-
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! \,‘
JaHMs MM B OKpyXamlleM ero MpocTpaHCTBE NOTEHLMala \/ - npwxo- BE[XHOCTb, TO NPUXOJMTCA NOH¥MATh TOJ NMOTEHIMaioM V B TaKoH

JHTCA CUMTATb HArPyXE€HHMM IOBEPXHOCTHMMK MACCaMH TUIIOTHOCTH TOUKE €r'0 aHaINTWUECKOE IPOJIOXEHME WM3BHE BO BHYTDPb NJIaHETH, KOHEU-

HO, NpM YCJOBMM €r'0 CymEeCTBOBaHHUA.

}\ (Z ») ), ofmasd Macca KOTOPHX paBHa Macce ILIaHETH.

JBoitHoit cuoit, 06pa3oBaHHH CIUIOMHEM 06Pa30M PAaCOJOKEHHHMH
Ha JIMNOJAMM,, OPMEHTUPOBAHHEMA NEPNEHIMKYJISAPHO K ero niocKoc-
TH M pa3BMBaDLMMA B CBOEH COBOKYNHOCTM BCDIY BHE ero (3HawiT, u
Ha TNOBE[XHOCTHM IUIAHETH) noTeHiman (8), Gymem MMEHOBATh QUNOJb-
HilM MCKOM I Ha OCHOBaHMM TOI'0, UTO CBOWCTBa 3TOro NoTEHUMala
- KaK NoTeHIyMaja JBo#HOro ciof - o6ycAOBIEeHN (QyHKIMeR pacrnpenene—
HMA MOMEHTOB gmurioneit Y ( % ,Y ), cospgawmux Tako# HHUCK.

B Takoit npemyaraemoit KOHKpeTHO# noTeHmManorpaguueckoit sagaue
TpeGyeTCs ONpele]uTb [UIOTHOCTb ] M MOMEHT )V yKa3aHHWX I'DaBUTHU-

!
PyomMX HOUCKOB.

OTMeTHM cHaualla OCHOBHWE cBolicTBa moTeHmmanos (7) u (8) armx
JONCKOB.

I-e. [lmowane ,g I'paBUTHPYOI¥X OMCKOB BHOpaHa Tak, CM.YCJIO-
pue (6), uTo noTeHiMalbHHe FYBKLMK \f’(,x S Y ) u \f'(a »Y ,2 )
¥ MX. YaCTHHE NPOU3BOJHHE JOOMX MNOPANKOB CYThb (QYHKIMM, HENpephwB-
Hhe BCOAY BHeE f; 3 3HAUMT, OHM ¥ BCE MX NPOU3BOIHAWE HENpPEPWBHA
He TOJBKO BO BCEM BHEIHEM MPOCTPAHCTBE OTHOCHTENBHO IJIAHETH, HO
4 Ha ee noeepXHocTu O .

2-e. Ua dopMyn (7) n (8) moTeHLManoB OMCKOB, B CYMMe BRpaxap-
QyX BHEMHWA NMOTEeHuMan 3eMIX, BUOHO, UTO noreHmman MMJ, T.e;vl(F))
yeTHasa QyHKIMA, a noreHuman L[, T.e.\/"( P ) - HedeTHas QyHKIMA
OTHOCHTEJbHO 2 . JpyrmMM ciloBamy, NOTEHLMAIM \/,H.Vm rpaBUTHDPYD-
QX JMCKOB - 3TO CYTh UETHAA M HeueTHasd YacTH NoTeHLMala nia-
HETH OTHOCMTEJNBbHO €€ 3IKBATOPUANbHO# MIoCKOCTH. B ToM ciayuae, Kor-
Ia OAA KakoW-Iu60 BHEmHEH TOuKu E) (x, 9 ,2 ) HeT el cuMMeTpuu-

Holt, TouHee, mMoclemHAA MoNagaeT BO BHYTPhb [UIAHETH WIM Ha ee Io-
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3-e. BcrnomMHas pasHuif xapakTep yOWBaHUSA NOTEHLMAIOB CJIOEB

no Mepe ymaJeHus OT HUX, OTMETMM, YTO B JNGOH BHEmHe# Touke

V(P> V),

Jamum npubiIMzeHHOe pEelBHHE paccMaTpuBaeMoil noTeHuManorpagu-—

yeckKofl 3anaun.

Bynem nosaraTh BHEwHMit noTeHImaml N[ NJIaHeTH 3aJaHHWM Ha6opoM

CTOKCOBHX TOCTOSHHREX

\/ = Cs?ﬂ

Lo Hekoroporo mopsika V/ . Ha ocHoBamuu cBoficTBa 2-r0 3anumeM:

-l . nm_

\/ :V'z,,m ) V T V. o

rae \/qe'r.M \/HGQ.
V

TeHipaia OTHOCHUTEJIBHO 2 MJIM OTHOCHUTEJbHO CV)? s e

— COOTBETCTBEHHO UEeTHaf KW HeyeTHad uyacT# Io-
NOJAPHOE pacCTOfHUE BHEUHEeH TOouKu P . 3HAWMT, MCXOOHON MHPOpMa-
meit o kM, fABnferca sesas yacTb ypaBHeHus (7), samaHHas HaGopoM

napaMeTpoB

) (Wi=0,T,2,5:5.) (9)

V= { C...S.

a gia [l - neBasd yacTb ypaBHeHua (8) ¢ Ha6opOM CTOKCOBWX MOCTO-

V'=4C,,..S
- w2 5 T

N

wim=dn

AHHBIX

. (10)
W+ =,2\,\‘+ i
IIo'remmaJI TJIaHETH COOEPEMT B YyCEUEHHOM 10 ‘N-I‘O rnopsAnka

pAne Na mapoBuX (yHkimi ( f/+I)2 CTOKCOBWX MOCTOAHHHX. Jlerko

€8



]
[IOACWATaThb, UTO YCEUEeHHW! pAn \4, noreHiyana MM umeer B cBOEM

i
cocrase % ( N+ I)( N+ 2) [OCTOSHHEX , & B pAfe \{‘, noteHmmana [
uX ofmee KOJIMUECTBO PaBHO j—- N (N+1).

2
MaBecTHo, uro BCAKAA QYHKUMA NBYX NEPEMEHHHX ( ( i ,W? ) Eig
Lad J060ro PMKCHPOBaHHOTO N nMeeT % (N+I)(NV+2) crenenmsx wmo-

Q.= kp(g;\.z);"vﬂd S, ( P < N).

[
3HaunuT, Ha6op (9) CTOKCOBHX MOCTOAHHMWX, OIpEIeJIA0mui \[N 5

MEHTOB
(I1)

LOCTaBIfAeT BCE CTENEHHHE MOMEHTH },\M wioTHocTH MMJ, moaToMy ero
ILIOTHOCTD }A = }»\ (% »1 ) MomeT OWTb BOCCTAHOBJIEHa DeleHMeM yce-
ueHHo#t (g0 N -ro HOpAnKa) CTENeHHO! NpoGieMd MOMEHTOB, KOHEU-
HO, DI BHITIOJHEHMM YCIOBUH ee paspemuMOCTH.

MoMeHTH }xm mIoTHOCTH MMJl OZHOBHAUHO BWUMCISDTCH [IPU 3TOM

!
MO NOCTOAHHMM Q. X gm 3TOr0 JMCKa BHAa

| ]
=g (e mwh ¢ (12)
d nw Y &‘g\A\M)\
b
i f S
(2, No- NOJAPHHE KOODAVHATH TOUKK Q ( g > ) BMCKa B ero

MOCHOCTM), KOTOpWE, B°CBON Ouepenb, JErko MnojJy4aoTCA II0 COOT-

BETCTBYUIM CTOKCOBMM I10CTOSAHHMM Cm u u3 ux HaGopa (9)

him
NyTeM CpaBHEHHs KO3(PJUIMEHTOB pasJOXEHUA NOTeHOMala Vl( P ) MMI
B DAN MapoBX (yHKIMHA C ueTHMM! (B cMHcie Wi =2K ) koadduip-
eHTaMy JannacoBa pAga NOTeHIpMana V ( £

[louTy aHANOTHMWHO HaxoIMTCA U MoMeHT V ( 3 ,'V/ ) IMIIONBHOTO
I¥cka. OTINUMe NPUOGIMXEHHOr'o pemeHUs ypaBHeHuA (8) oT omucaHHOH
nponeAyps TaxoBoro maf MM]] sawipgaeTcd B TOM, UTO TakuM xe 06-
pas’oM BBOAMMME M TIOJyYaeMwe [OCTOAHHME Qv'.",, 2t ghu , MMEeDpmHe
ug (I2), Ho, 6e3ycnoa’§-xo, ¢ dynxipeit V (Z ,'VZ ) BMecTO }»\(E " )
W VHMMY MHOEMTENAMW,/1,,. , BWPAXADTCA ~ C TOWHOCTbD HO KOIPPurm-

DOI: https://doi.org/10.2312/zipe.1985.081.02

€HTa, 3aBUCAumero or 1 u Mm

n S

W+l w

, — YRe uepe3 CTOKCOBH II0CTOfHHHE

"
. Taxuu oGpasoM, pasioxeHHe V;J "pouTHBaeT"

hei,w
B cels CTOKCOBH IIOCTOSHHHE IO (N+I)-r'o NopAgKa BKIDUHTEIBHO.
3a cueT 3TOro OFHO3HAUHOCTb DEMEHUA YCeueHUA CTeneHHOR mnpobreu
MOMEHTOB 1aa fyHximu Y (z N ) 1o N -ro mnopsgka TpebyerT
yueTa CTOKCOBHX NOCTOAHHHX IIaHeTH L0 (N+ I)-ro nopsanka. OpgHao
OTMeyeHHOe Bume 3-€ CBOMCTBO NOTEHLMAalOB I'DaBUTUDYDIHMX OMCKOB
noAcKka3HBaeT Leleco06pa3HOCTb IPM MX COBMECTHOM NPUOIUXEHHOM
NOCTPOEHMM YUNTHBATH BCE CTOKCOBH IOCTOSHHHE 3eMIM N0 3apaHee
HaMeueHHOr'0 NopAnKa N 'y Haxomd IpU 3TOM ILIOTHOCTH ].k (g 'Y )
MM #3 pemeHus yceueHHO# 3amaum HO N -ro mnopsngKa, a MOMEHT
3% (f » M ) Il - 3 yceueHHOH 3agawu 10 (/V— I)-ro mopsanxa.

[lonquepkHeM ONHO JNOGOMHTHOE OOCTOATEIbCTBO. Kak M3BECTHO,

o6paTHad 3ajaua TEOpMM NOTEHuMala, B KOTOPO# [0 M3BECTHOMY
BHEMHeMy NOTeHuMaly IUIaHeTH, TOuHee N0 Ha6opy ee CTOKCOBHX
HNOCTOAHHHX JO HEKOTODPOro mopsAnka N , MmeTcs ILIOTHOCTH ) pac-
npefeleHus ee MacC, OJHO3HAUHOr'O DemeHUs He ¥MeeT. [Ipu cBeneHUM
3Tof 3ajauM K TPEXMEepHO# creneHHo#t mpolieMe MOMEHTOB, YyCEeUeHHOH
Io N —ro nopsngka, LAf o6ecneueHUs eNUHCTBEHHOCTH ee DeleHMT He
XBaTaeT g-_vl( W~ 1) MOMEHTOB Ha Kaxgui N -HA mopsmok (nz> 2),
Bcau ®e MCKaTh ILIOTHOCTH )4 U MOMEHT Y TIpaBUTMPYOOMX IHCKOB
MMI » I aroit niaHeTH, pacrnojaraf napaMeTpaMM ee BHENHEero Moxs
TaKke J0 N -ro nopsnka, TO, kak GHIO [OKal3aHO, 3TH “ILIOTHOCT-
HHe" XapaKTepUCTHMKM IUCKOB MOT'YT OHTH OIpefeleHH ORHO3HAWHO B
xnacce atorouteHos  /V -ro u (N‘ I)-ro nopggkoB. X xoTs aTH
rpaBUTHDYOmMME IOUCKM - CYTb aOCTPakKTHHE KOHCTDYKIMM, paccMoTpe-

HUE ¥X OKa3HBaeTCAd HeOeClOJe3HHM.

§3. 113 06CY®TEHHOr'0 MACCOBOI'0 MATEpUaJbHOro gmcka MMJ[ rmaHeTH

MOXET OHTb BHIEJIEH MeHbmMit no pasMepaM (oranbHuit guck Dll,orBewan-



muit aTolt IUlaHeTe B NpENNOJOXEHMM HAXORLEHMA ee B I'MIpocTaTudec-
KM DPaBHOBECHOM COCTOSHMH.

Jna NoJTBEpENEHMA 3TOr'0 CHadala BCIOMHUM K}dl, uTO pasioEe-
HUEe B DAl MapoBMX (QYHKIMHA NoTeHIMana \J* I'MOPOCTATUYECKHM DPaBHO-
BECHOi IIaHeTH, BHEMHAA ypOBEHHas MOBEXHOCTb KOTOpPO# cyTb che-
POHMI, colepEMT B cefe TOJNbKO UEeTHWE SOHalbHWE IapMOHMEM. C Ipy-
ro# CTOpOHM, B DAf TOYHO TaKOr'o Xe BUa paslaraercd M NOTEHIMal
HEOOHOPOJHOI'0 3JUIMIICOMIA BpameHUS C SJLIMIICOMIANBHO~CICUCTOR
CTPYRTYpo#, EOS(PPHUIMEHTH KOTOPOI'O 3aBHCAT OT 3aKOHa M3MEHEeHMH
IJIOTHOCTH NpM Iepexofe OT CJOS K CJIOn {;il. 3HauMT, COXpaHAs BHe

ainpacouga, ob6eemnomero cdepous, MOTEHUMAT \/*rnnpocwawuqecxn pas-
HOBECHOR TIaHeTW, T.e. OTOENECTBIAA yRa3aHHWE BuWIe JBa pAfa MO
UeTHMM 30HANbHMM MapoBhM GyHKIMAM B ux olme#t o6racTu cXoguMMoc—
TH, MOXHO NOTEHIMal 3TO# ILIaHeTW TPaKTOBaTh MOTEHIMAIOM 3JLIMICO-

uia ¢ HajjexamuM 3JUIMICOMNANbHMM OTPOEHMEM.

[lparTHUecky CEasaHHOe pealusyeTcs cleAynmuu ob6pasoM. CHauwana,
3aJlaBmMCh JMHEAHMM MacmTaboM NOCTpPOeHMHA, cuMTad, HanpuMep, 3alaH-
NOJISAPHKIA paguyc chepoupa, HalmeM ero mo-

napaMeTpaM BHEmHEer'o I'PaBUTAaIMOHHOI'O IOJA

HWM 3KBaTODHaNbHMHA WM
BEXHOCTb 110 M3BECTHMM
IIaHeT =—

¥ jl“ 2K,O(
HUS ¥ NPU COXPAHEHMM MAcCH IIaHeTW. YKasaHHOe MOKHO ciexaTh Ju6o
[0 METOIMEE EZ,II;} , Ju6o no popmyram (27,8), (3I,7) us {IO], rue,

=3. 3aTeM Ha OCHOBaHMM

=0,I1,2,...), ee yraoBo#t ckopocTd (V Bpame-

npaBfa, NoclegHye NPUBEIEHH TOJbKO L0
NoIXonAmero KpuTepus {;4,15,I§ﬁ annpoKcUMMMpyeM Hal{ieHHu: chepout,
"o6meniaHeTaPHAM" 3JIMIICOMLOM C Maccoli, ecTeCTBEHHO paBHO# Macce
rwraHeTH. [lonaraeM,HakoHel,, UTO 3TOT SJJIMICOMI Pa3BUBaeT BO BHEm-

HeM INPOCTP2HCTBE TOT Xe INOTEHIMal, UTO K czbepou,n, T.€. ca/iTaeM

S e P
j :’“CM , (W:-QK, k=04, ., nsN)

W
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-1,
rge C:: - CTOKCOBM IOCTOSHHME DealbHO! IaHeTH, a HaACTPOWHEE
CHMBONW 3 ¥ Cfp. - O3HA”YapT 3WIMNCOMA ¥ cepoupy. ITvM caMuM BBe-
IEeHHOMYy KBasMOOMEe3eMHOMy JIIMICOMAY NPMIIMCaHA 3IUMMICOMNAILHO
cIOMCTa® CTPYKTypa, KOTOPAL ONKCWBAETCH GopMyTaM1 (5.67) ua E[i_\ .
BWpaRaADOUMA KO3(PUIMEHTH iLK gepes ero IIOTHOCTh, Bompoca O (ax-
TUUECKOM HaXOENEHWM KOTOpoi 3fech He CTaBUTCH.

O6cyRneHHad npoueAypa NO3BOAAET ONpefeluTh NapaMerps TAaEOro
KBa3uoOMeNIaHeTapHOT0 2JUIMIICOMAA, 'eOMETPHYEeCKHEe NapaMeTpd KOTo-
POr'0 NMpaKTHUUECKM He OTIMYADTCHA OT TAKOBMX OGNMEIIaHeTapHOrO SIIHAMI-
couga. Ho aror ammmncouy - HeypoBeHHa, OOHaKO, BO-NEDEMX, OH JO-
BOJIbHO TIOJHO XapaKTepuayeT I'MAPOCTATHUECKH DaBHOBECHYD ILIaHeTy,
M60 ero moTeHIpal COLE[XUT BCE YUYTEHHMWE X0 N -ro [OpHRRA SOHalb-

Hue NapaMeTph ILUIaHEeTH jiu:— , TNOJAYUEHHME I10 Pel3yAbTaTaM Hal-

2,0
IoieHn#t (HeueTHWe 30HAUbHWE M BCe TeccepalbHWe TapMOHMEM ero HpH-
HATH DaBHHMM HYJND): BO-BTOPMX, ero ¢opMa ¥ pasMepe HasUrydmeM oG-
pPasoM B ONpeleleHHOM CMWCIE ONMCWBADT cHepoum; B-TPETHEX, pacnpe-
IelieHne DOTEeHIMala Ha ero MOBE[XHOCTM MIBECTHO: OHO BWpaxaeTcs

#*
yCeueHHnM DANOM \a- [0 YeTHHM ToJMHOMAM Jlexasnpa ¢ KoSyfumpeHTaMK
J.
TO BNWICIAETCS M pachnpejeiieHue CUIM TAXECTH Ha 3ToM JJIMNCOMIE;

s BEIBOAVMBIMM M3 DPE3YyJIbTaTOB HadJmneHnﬁ; IIp¥ 3TOM O4YEeHb IMpoC-

B - UETBEDMX, NOTEHIMal ero COoCTamlfgeT IMIaBHYD 4acTb NOTeHIMama
PeasbHO! IIaHeTH.

CeoficTBa BBOAMMOI'0 TaK KBasuoOmenjaHeTapHOI'O 3JUIMIICORKA AaDT
BO3MOXHOCTb NPHMHATH €ro 3a HODMAJbHWR BJIMICOMA IIaHeT. Bce xe
NOBTODMM €me pas: 3TOT 3JUIMICOMT - HeypoBeHHuA. Ho, yWMTWBas ak-
TYyaJbHOCTb BONpOCa O BWOOpPE HOPMANBHOI'O MOJA, YROBIETBOPADMErO
PasHoo6pasHEM 3ampocaM reofU3uKH, reofie3vu ¥ HeGecHo# MeXaHWER,
Mu ofpamaeM 31ech BHMMaHMe Ha Taxof BO3MOXHEW, albTepHaTHBHLI

K NPMHATOMY, MOAXOH K €ro pemeHms. HamoMiuw opu 9ToM, UTO OTESS

S8



OT YPOBEHHOI'O HOPMAJBHOI'O 3JUIMICOMIA B TeopuM GUIypm 3emin yxe
6w OJHAEIH NpPEeIMETOM BCECTOPOHHEr'o OOCYXINEHHU: (;é]. He yray6as-
fCb B PacCMOTpEHMe 3TOr'0 BaxHOT'O BOIIpoca ¥ He Ipefpemas BWOopa B
IaHHO# aibTepHaTHBe, OyLeM lalee B3aMeH HOPMAaJIbHOI'O YPOBEHHOTI'O
3JUIMNCOMIA NOJNb30BATHCA ONMCAHHEM 3[€Ch KBaldMOOLEe3eMHRM 3JIMICO-
MOOM, TOHMMAaf TOJ NOCHEOHMM 3JLIMICOMI, HaulyumuM o6pasoM allllpoK-
cuMMpyDmUA chepoun ¥ MMewIUiA 3JIUICOUIANBHO—CIOUCTYR CTDPYKTYDY .

[loreHupan kBaauoOME3EMHOr'0 BJIMICOMAA MOKHO 3aMEHUTb B COOT-
BETCTBUM C KIacCUUYecKo# Teopueit NpuTameHMSA COPOKYCHBX 3JLIMICOMLOB,
cm.[?,léﬂ, TIOTEHIMAJIOM IUIOCKOI'O CIOf, PACIOJOXEHHOI'0 B 3KBaTOPU—
aJbHOM TUIOCKOCTM Ha Kpyre :;* C IIEHTPOM, COBNaJawiM C LEHTPOM
3JUIMIICOMIA, ¥ C PauuycoM, PaBHOM MOJOBMHE PaCCTOSHUA Mexny (oky-
caMi MEpPUEMAHHOT'O 3JUIMICOMIA, T.€. JUHEeHHOMYy 3KCLEHTDUCUTETY ce-
MeiicTBa COOKYCHHX 3JUIMICOMLOB. OTOT IUIOCKUA CIOR - (oKasbHHIA
ACE 9]l - MMeeT NepeMEeHHYD NOBE[XHOCTHYW ILIOTHOCTH F¥==rf %,%) 5
3aBUCANYD OT 3aKOHa MA3MEHEeHMA 06beMHON IUIOTHOCTM CJIOEB, clarao-
@MX 3JUIMIICOMI; Macca 3TOro ngcxa paBHa Macce IUIaHeTH.

[LnoTHOCTE 3] y%%q) é;;is* MOKET OHTb HajfmeHa aHaJIOI'MuHO
ILIOTHOCTH ]A ( z,’ﬁ ) MMI, T.e. Tamxe M3 DEMEHUS NMPOGIEMH MOMEH~
TOB, HO IIpM NPMPaBHMBaHWM HYID BCEX CTOKCOBHX [OCTOSAHHHX IJIaHETH,
KpoMe ero onpefelsb@X UYEeTHHX 3O0HAJbHHX :LK JO HEROTOPOI'0 amnpuo-
P¥ DIPMHATOI'O MX nop&nxa.Af .

Bupensa us MMJl ocHoBHYD wacTb 3Jl, Hallo Temephb eme y4ecTb €ro
ocrapmyncA YacTh - TY, NOTEHIMal KOTOpo# B CyMMe C NOTEHIMaIOM
@]l cocTaBnsieT BCp YETHYD 4acTh NOTEHOMasa ILIaHeTH. JTo# ocTaBmei-
cd YeTHOo# uacTM COOTBETCTBYyeT 9QQE29992§EJ§§32§3£2§§2~E§EE - BRI
¢ IIOmafbo é; ! ero noTeHmMal XapaKTepU3yeTcs BCEMU WeTHHMKM
(B cMhcie  W+W =geT.) CTOKCOBHMM NMOCTOSHHEMM [LIAHETH, KpOME 4eT-

HRX SOHANbHHX, YYTEHHHX noreHipanoM O, — ¥ STO LOARHO OWTbH INIPU-—
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HATO BO BHMMaHME NP DPENEHMMM POOJIEeMH MOMEHTOB, LOCTaBIsmmER o
ILIOTHOCTB Takoro BMI.

WTak, KOHIENIMA IPaBUTUMPYLIMX OMCKOB 3aKIDUaeTCA B TOM, UTO
NoTeHUMan iaHeTH (wiu ee "npuTsmeHne") saMeHsAeTCA CYMMOA NOTEH-
imanoB (MM "IPUTEEEHMIA") TPEX KPYrOBHX KOHIIEHTPUUECKUX IMCKOB,
HaXOoNAMUXCA B IUIOCKOCTM 3KBaTopa IuiaHeTH - OI, BMI u LI, cBoit-
CcT8a M METONMKa MNOCTPOEHMA KOTODHX OHIM BHIE ouepueHH. [loguepk-
HeM Juib, uTo JJl XapaKTepusywT ILIaHETy B NPEHNNOJOXEeHMHM ee THUILpO-
CTaTUUECKM DaBHOBECHOI'O COCTOAHMA, BMJ| oTpazaeT HermgpocraTuuec—
KMe CBOHCTBa MIaHETH, OOGYCIOBICHHHE €€ CHMMEeTDUUHOCTHD OTHOCHUTENb-
HO IUIOCKOCTHM 3KBaTopa, a [l — aHTHCHMMETDHUHYD YacTb €€ HEeruapoc-
TaTUUHOCTH.

Jo6aBuM eme, uTO NapaulelbHO C aHANUTHYECKHM DEMEHHE 3ajauv
0 NPUOIMEEHHOM IIOCTPOEHMM I'PAaBUTUDYOMMX IUCKOB MOXET OWTb JaH M
UWICJHEHHH! MeTOol VX KOHCTDPYMPOBaHMA, NPUBOLANMIA K TOUEUHO-JUIIONb-—
HHEM MOJEJNfM NOTEHIMala IJIaHeTH.

I'paButupyomue muckd BMJl u Il BBeneHH, kaxeTcsd, BIEpBHE, a
sHaueHre Q]| B Teopur ¢UIrypH 3eMiu OoTMedueHO OHIO B paboTe [;él,
rje NoKasaHa BOSMOKHOCTb OObSCHEHMS MOTEHIMala IIPUTAEEHHWS yYDOBEH-
HOr'O 3JUIMIICOMIA paclpelelNeHMEeM MacC Ha 3TOM Jucke. 3Hech XZe OH
UCIIONB30BaH JJIA OObSCHEHUSA MPUTAXECHUSA I'MAPOCTATHUECKM DaBHOBEC-
HOHM IJIaHEeTH M HEeYPOBEHHOI'0 3JUIMNCOMAA C 3NIMUINCOKXAANBHON BHYTpPEH-
Helt cTpykTypo#t. OfHago HauGolee e€CTECTBEHHO HEeoOXOAMMOCTB Ero
BBEIEHUA BHTEKaeT U3 CICyDnmuX MeXaHWdecKMX coobpaxeHuA.

[IpursaxeHne cepuueckd ~ CUMMETDUUHOR ILIaHeTO# BHEmHeR TouxM
MOXeT OHTb 3aMeHeHO, KaK yCTaHOBMI HbDTOH, NpUTAXEHWEM MATepUalb-
HO!t TOUKM, PacCHOJOEEHHO! B IEHTpe MacC IJI&HEeTM — CKaXeM MACCHMBHO-
o map¥Ka HUUTOEHOI'O pajguyca. A OIA IUIaHETH SAMKICOMBanbHOi (op-

MH C 3JUIMICOUAANBHO-CIOMCTON CTDYKRTFpPOA Tako#f mapuk, odeBHOHO,



IoIEeH OWTb CIUIDMEH B MACCHBHEHA "siuncoumuk™. Us Teopemu Maxio-
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VARIATIONAL PRINCIPLES FOR EARTH ROTATION
Helmut Moritz

Institute of Theoretical Geodesy
Technical University Graz, Austria

Abstract

Hamilton's principle of least action, in the form of Lagrange's equations,
was applied to the rotation of a rigid earth, e.g., by Woolard (1953) and to
the rotation of an elastic earth with a 1iquid core by Jeffreys (1949) and Jeffreys
and Vicente (1957a, b). In the form of Hamilton's canonical equations it was
applied to a rigid earth by Andoyer (1923, 1926) and, most recently and accurately,
by Kinoshita (1977).

Poincaré (1910) modified Lagrange's equations, using non-holonomic group
variables, and applied it to the rotation of a rigid mantle with a homogeneous
1iquid core. Finally, Moritz (1982a) applied Poincaré's equations to the rotation
of the earth model of Jeffreys - Molodensky (elastic mantle and liquid core),
which results in extremely simple equations derived in (Sasao et al., 1980)
in a different way.

Since the rotation of a rigid earth is well-known, the paper reviews the
classical approach by Jeffreys, using holonomic variables, and, in more detail,
the recent approach through Poincaré's equations using non-holonomic variables
related to rotation groups.

1. Lagrange's Equations

The principles of classical dynamics are treated in any course of theo-
retical physics. Standard treatises are, e.g., (Goldstein, 1980) and (Lanczos,
1970); (Arnold, 1978) can be recommended as an excellent synthesis of the
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classical treatment and the modern approach through the language of exterior
differential forms.

Let the motion of a dynamical system (e.g., a system of point masses which
are free or linked to each other, or a rigid body) be described by n (generalized)
coordinates or parameters q , q2, ...» Q , where n is called the number
n

of degrees of freedom of the system. Their time derivatives

” dq
r

qr_?t_ (1_1)

are called (generalized) velocities.

Denote the kinetic energy of the system by T , and its potential energy
by U. Then T is a quadratic form in the dr

T-a qa_ (1-2)

rXrs r s

summation over twice repeated subscripts is implied as usual (Einstein summation
convention), and the coefficients ars will in general be functions of the
coordinates:
(1-3)

a =i

rs ars(q1, qz’ CU0O¢) qn) -

The potential energy U 1is a function of the coordinates:

= (1-4)

U=Ulg, ay, ===» q)

(and possibly also of time t ; this possibility will be disregarded here).
Hamilton's principle. The equations of motion may be derived from the following

principle of least action, or Hamilton's principle. We introduce the Lagrangian,

L , by

or Lagrangian function,
L=T-U (1-5)

as the difference between kinetic and potential energy, and define the action
A by the integral

(1-6)



of L along the trajectory from the initial point (time t1 ) to the end point
(time t, ) of the motion.

Then the principle of least action states that the motion is such that
£ )
A= J Ldt = J (T-U)dt = minimum
& &
Lagrangian equations. Using well-known methods of the calculus of variations,

the condition (1-7) leads to Lagrange's equations

s

(1-7)

oL _
i

r

(1-8)

a system of n ordinary differential equations of the second order for
q,=q,.t) .

The geodesist knows the relation between a variational problem and a system
of second-order differential equations from ellipsoidal geometry: a geodesic
line, being the shortest connection between two points (on the ellipsoid or

rotational symmetry (B = A) . The potential energy U expresses the effect

of sun and moon, the lunisolar attraction.

For this case, Lagrange's equations (1-8) can be formed and, after some
transformations, neglecting small terms, lead to the well-known Poi$son equations

S

O'CELZ 3

(1-11)

u:sinE!:-c%L1 s
whose solution gives precession and nutation in longitude ¥ and obliquity
8 ; @ is a constant average value of the earth's rotational speed, and L1

and L2 are appropriate components of the Tunisolar torque.

These brief remarks are only intended to convey a general idea how Lagrange's
equations can be applied to earth rotation in a simple but important special
case. The case of a rigid earth is well known,being treated in many textbooks,
cf. (Plummer, 1918; Schneider, 1981; Melchior, 1983; Moritz and Mueller, 1985).

on any other smooth surface) satisfies the condition of least arc length, analogous The most detailed and accurate treatment is Woolard's (1953), which has served
to (1-7), and is also a solution of a second-order system of differential equations,as an official standard in astronomy until 1979.

analogous to (1-8); in this case n =2 .

Rotation of a rigid body. The position (or rather orientation) of a rigid
body rotating around its center of mass may be defined by three Eulerian angles
¢, 8, ¥ . Then

q; = ¢, que’ q3=¢ (1-9)
are the generalized coordinates describing the rotation of a rigid body such
as a rigid earth; hence n = 3 in this case.

For a certain specification of the Eulerian angles, the expression for
the kinetic energy has the form

T = 3 AGB%i%sin%) + 5 C+icose)® (1-10)
which serves as an example for the general expression (1-2). The constants
A and C denote the principal moments of inertia of a rigid earth, presupposing
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Hamilton's canonical equations constitute a very elegant reduction of Legendre's

system of n second-order differential equations to a system of 2n first-order

differential equations. Hamilton's equations use the 2n canonical variables

ql’ q23 "'9qn ;pl, p2a OO0t ) pn with
9
Py = '1L' H
39,

they have the simple form

© _ oM aH
B, P EE= ,

Bpr aqr
where the Hamiltonian H is defined by
H=T+U

as the sum of kinetic and potential energy,

68



The Hamiltonian approach has been introduced by Andoyer in 1911, cf. (Andoyer, be the vector describing elastic (and possibly rotational) displacement of any

1923, 1926).
the most accurate theory of precession and nutation presently available for

Recently, Kinoshita (1977) has used Andoyer variables to derive

a rigid earth; cf. also (Moritz, 1980b; Moritz and Mueller, 1985). In general

books on mechanics, the Hamiltonian approach to the rotation of a rigid body
is hardly found, an exception being (Arkhangelsky, 1977).

We shall not discuss the Andoyer-Kinoshita method in this paper as we shall
restrict ourselves to the more realistic earth model consisting of an.elastic
mantle with a rigid core, which so far has not been treated by Hamiltonian methods.

2. The Method of Jeffreys and Vicente

The first to treat the rotation of an elastic earth with a liquid core
by Lagrangian methods was Jeffreys (1949). This approach has been perfected
by Jeffreys and Vicente (1957a, b). In what follows we shall try to outline

this method in a simple way, at the risk of oversimplification because the details

are enormously complicated.

A basic principal difficulty consists in the fact that the mechanics of

an elastic earth is problem of continuum mechanics for which the number of degrees

of freedom is infinite. In fact, a general continuous function requires for

its complete description a countably infinite set of parameters, e.g., its Fourier

coefficients or its spherical-harmonic coefficients, as the case may be.

The lunisolar potential, which is responsible for tidal deformation and

also for precession, nutation, and forced polar motion, can be expanded in such
an infinite series of spherical harmonics. Fortunately, this series converges
very rapidly, so that itcanbe truncated after degree 2 or 3 , reducing the

problem to one of a finite number of degrees of freedom which can be treated
by the methods of classical dynamics.

Kinetic and potential energy. Let

u = (u, uy, uy) (2-1)
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material point of the body; it is the vector leading from the "undeformed" to

the "deformed" position of that material point and will be assumed small. The

displacement u is different for different points x = (x , x , x ) , so that
. . : . - 1 2 &)

it will be a function of position

U= ulx, X, xJ) s (2-2)
this function is assumed to be continuous.
Then the kinetic energy is expressed by
-] 22, 02,22 :
T [[fptaiadide (2-3)

p denotes the density, dv the element of volume, and the integral is extended

over the earth. The expression may be considered a continuous analogue of (1-2),

the integral corresponding to the sum implicit in (1-2) by Einstein's convention.

The potential energy is given by
2 a(v +v))
=] 3"V e 1

. Z'JJprax.ax. Uity Y T i

- i3 i
(2-4)
U, au, U,
¥ ai—v {uiﬁl T Yy aTl] " TPy aTl:l e
j i i S

Here V denotes the gravitational potential of the (undeformed) earth, Ve the
Tunisolar perturbing potential, V1 the change of the gravitational potential
V because of elastic deformation, and pi. the stress tensor. The summation

convention applies to i, j running from 1 to 3.

We shall not attempt to derive (2-4); cf. (Jeffreys and Vicente, 1957a).
We point out, however, the analogy to "small oscillations" well-known from classical

dynamics, for which U is a quadratic function of q

1
. Zz brsqrqs : (2-5)

with constant coefficients brs . In fact, (2-4) is quadratic in the displacements

O
o



u; » and the integral in (2-4) again corresponds to the sum implicit in (2-5).

It is important to note that so far we have regarded the earth as ponrotating,

in order to simplify matters and make the situation more transparent. Rotation

will be taken into account later.
Truncation. The dynamical system defined by

e
[(F-v)at -

t

minimum (2-6)

with (223) and (2-4), has infinitely many degrees of freedom as we have mentioned

above.

The corresponding generalized coordinates q would be the coefficients
of some spherical-harmonic expansion of the components u.
vector
be linear functions of the qr =

By an appropriate truncation we can achieve that we have only a finite

number n of such g , so that u; will be a linear function
r

n
- = 4 (2-7)
ui_ Z cirqr cirqr
r=1
where u . and c but not q_ , will befunctionsor position and time:
i x
u, = u(x,, x_, x_, t)
ot it 2 3 4 (2-8)
Cip = € (Xpn Xpo X5 B)
whereas
- (2-9)
a =q,.(t)

js a function of time only. The stress tensor is linearly related to u by

the well-known elastic stress-strain relations (Hooke's law), the known externa]

potential also has a truncated spherical-harmonic expansion, and v1 b?1ng
the result of a small deformation, is also related linearly to ui . Taking
all this into account, we can perform the integration in (2-3) and (2-4), ob-
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of the displacement

u . Since such an expansion is linear in the coefficients, the ui will

taining a kinetic energy of form (1-2) and a potential energy of form

U=5b qq +ca_ (2-10)
rs r s r T

with constants b and ¢ , which obviously is of form (1-4). The Lagrangian
rs 5
equations (1-8) then give a system of linear ordinary differential equations

of second order for the q (t) .
r

Consideration of rotation. This barest sketch of the basic idea must now
be made more precise and more concrete. First of all, we must introduce a rotating
frame of reference, since (2-3) and (2-4) refer to a non-rotating inertial frame.
We select a frame of reference which rotates with uniform angular velocity @ around
an x3-axis that has a fixed direction in space; a properly "earth-fixed" reference
frame will deviate little from this uniformly rotating frame. Jeffreys describes
the transition from one frame to theother by a rotation matrix. It is known that
every rotation matrix depends on 3 parameters (e.g., three Euler angles).
Jeffreys denotes these three parameters by <£', m', n'; they can be supposed
small since the rotation matrix relating the "earth-fixed" frame to the uniformly

rotating system will deviate little from the unit matrix, but they will depend
on time.

Similar to (1-9), we may put

q,(t) = 2", q,(t) =m', qy(t) =n (2-11)
for the first three Lagrangian parameters describing the rotation of the earth
as a whole.

Another set of three parameters, denoted £, m, n , will describe the rotation
of the 1iquid core with respect to the mantle, so that

q4(t) = £,

gg(t) = m, q6(t) =n (2-12)

Elasticity of the mantle. We are yet to specify those parameters qr that
enter into the expansion (2-7) of the elastic displacement vector u and that
correspond to a truncated spherical-harmonic expansion.

Because of the enormous distance of sun and moon from the earth, and since

16



the spherical harmonics of degree 0 and 1
of degree 2 will be dominant; cf. (Moritz, 1980a, sec. 55). Furthermore, for
earth rotation, only the order 1

are to be disregarded, the term

is relevant (the so-called diurnal tides,

cf. Melchior, 1983, p. 26). Thus, only terms proportional to

Rzl(e,i) P21(cose)cosx ,

(2-13)

S (e,A) =P__(cose)sinxa
21 21

will be relevant. Here 6 (polar distance) and A (longitude) are spherical
coordinates, and the Legendre function P21 is defined by
P21(cose) = 3sinecose (2-14)
Solving the partial differential equations of elasticity for the mantle,
taking into account appropriate boundary conditions at the earth's surface and
at the core-mantle boundary (Melchior, 1983, sec. 5.5; Moritz, 1981, secs.
7 and 8; Moritz and Mueller, 1985, secs 4.3 to 4.5), we can express everything
in terms of the radial displacement u, at the earth's surface and at the core-
mantle interface, expanding into spherical harmonics and retaining only the
terms (2-13):

u (R) = q,(t)R, (8,2) + qa(t) Szl(e,x) 5
(2-15)

u (R) =qg(tR, (8,2) +q,,(t)S, (6s2) -

dere, R =6371 km and R_ = 3485 km denote the mean radii of the earth and
the core, respectively; the coefficients q7(t) through qlo(t) furnish the
desired generalized "coordinates" describing mantle elasticity.

It is not difficult to see that exactly 4 parameters are needed to describe
mantle elasticity. It is well known that the solution can be expressed in terms
of three Love numbers h, k, £ (cf. Melchior, 1983, sec. 5.5; Moritz, 1981,
p. 96). However, h, k, and £ satisfy a linear relation which expresses the
vanishing of the tangential tension. Thus we are left with two independent numbers
h and £ , which, apart from a known factor, are nothing else than radial and
tangential displacement at the earth's surface, ur(R) and ut(R) . Instead
of ut(R) we may also take ur(Rc) , which leads to (2-15).
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Lagrange's equations. Using the "rotational” parameters gq (t) to q6(t)

and the "elasticity" parameters q7(t) to qlo(t) we get a Lagrangian

L = L(q,, 9 «--5 4 ) (2-16)

10

for a dynamic problem with
the q, and can be shown to have the form

10 degrees of freedom. L will be quadratic in

94 -dg , (2-17)

rsrs rr

= 21' arsqrqs - % brsqrqs *e
where the summations go from 1 to 10 . The coefficients a , etc., are
constants but depend on the model assumed for the internal stﬁﬁcture of the earth
and must be computed accordingly. The presence of the "gyroscopic term"
crsqrqS is due to the rotation of the earth (cf. Goldstein, 1980, p. 354;
Lanczos, 1970, p. 122).

Finding these coefficients constitutes the main difficulty, which is enormous
indeed. After that, matters are straightforward. Using (2-17), Lagrange's equations
(1-8) give immediately

a_q_ + (csr-crs)qs + brsq5 + dr =0 (2-18)
The further treatment of these linear differential equations is standard. Using

complex combinations

9, +1ig, =Q, ,
q4 + 1q5 = 02 s (2—19)
q7 + iqa = 03 E]

9 + 1955 = Q,

(with an appropriate choice of rotation parameters it is possible to disregard

n and n' ) we are able to reduce (2-18) to a system of four complex linear
differential equations for Q. (k = 1,2,3,4) , and "transforming to the frequency
domain" by

Q (t) = Qle™* (2-20)

-]
n



we get a system of four linear algebraic equations to be solved for Q: -

The Lagrangian approach of Jeffreys and Vicente has a conceptually simple
structure: once the Lagrangian (2-17) has been established, everything else
follows in alogicallystraightforward manner. Nevertheless, the details of the
computation of the coefficients a s etc., for a given earth model are enormously
complicated, and only a man of the physical insight and mathematical skill of
Sir Harold Jeffreys could have devised such an approach and lead it to a success-

ful conclusion.

In view of these difficulties, Jeffreys and Vicente (1957a, b) considered
only two greatly simplified earth models: the central particle model, consisting
of a homogeneous core and a central mass point representing the solid inner
core, and the Roche model using a continuous density distribution in the core
according to Roche's law. For the same reason, beginning at an early stage,
computations were performed numerically instead of analytically, so that the
physical interpretation becomes difficult. Thus this approach, though logically
very elegant, is physically not completely transparent.

Therefore, Molodensky (1961), wishing to use more realistic earth models,

gave up the variational approach and instead used the partial differential equations

of elasticity and hydromechanics. A particularly simple and elegant solution
of Molodensky's problem was provided by Sasao et al. (1980), and it turned out

3. Every rotation matrix has an inverse A~! which again is a rotation
matrix.

Furthermore, the inverse of a rotation matrix is simply its transpose:

ATl=aT , (3-1)
so that

AAT=ATA=1 (3-2)

The matrix

dr = A1 dA = ATdA (3-3)

is skew-symmetric, which immediately follows by differentiating (3-2). Thus
it has the form

that these equations can be derived and physically interpreted by another variational

principle which goes back to Poincare (1901).
It is not surprising that, after 35 years of efforts, we now understand

the problem better, but this would not be possible without the pioneering work
of Jeffreys and Molodensky.

3. Poincaré's ‘Equations

The rotation group. It is well known that rotation matrices A form a
group, so that the following properties hold:

1. The product of two rotation matrices A and B is again a rotation
matrix C=AB .

2. For the unit matrix I we have AI=1A=A
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0 -dﬂ3 dn2
di= |dr, 0 -dn (3-4)
_-d'n d1r1 OJ
On introducing the matrices
0 0 0 0 -1
Eq = 0 -1 » E;=[0 0 » Eg= 1 0 0f(3-5)
0 0_ -1 0 0 0 0
this may be written
dn = E,du, * Epdm, + Egduy = Ejdm, . (3-6)

The term §1d“1 obviously represents a rotation by the infinitesimal angle

dr, around the x, axis, and similar for the other terms.

1 1

It is immediately verified that the matrices Ei
commutation relations

satisfy the basic

€6



[:El’ Eg] _E.3 »

(E, 53] =E (3-7)
CEyEJ=E
The commutation symbol [] stands for
(3-8)

(e £ 7B, - EK, -

EE

EE, being the

usual matrix product of Ei and gj .
Eqs. (3-7) are a special case, for the rotation group, of the general
commutation relations

E (3-9)

[Es» BT = cgnky »
valid for a general continuous group, or Lie group; cf. (Smirnow, 1971) or
(Choquet-Bruhat et al., 1982). The C,. are constants, called the structure

jk
constants of the group. For a general group, they run from 1 to n,

again the number of degrees ot treedom. By (3-8), the interchange of i and
Jj means a change of sign, whence
= - -10
€54 15k (3-10)

have in particular

(3-11)

all other c. .
1

3 ° 0 .

The ¢

i5c are zero for commutative (Abelian) groups.

The angular velocity component wg along the Xy axis may be considered

a change of dn1 with respect to time t :

dr,

1 -
o, = o= (3-12)
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n being

Given w_, one cannot, however, integrate (3-12) to obtain coordinates since

i i
the dwi are not, in general, perfect differentials. Nevertheless, it is useful
still to regard the dm

ol
nates, which make sense only in the infinitesimal domain; cf. (6rafarend, 1975).

as some kind of coordinates, called anholonomic coordi-

The important property of the dn is their group-invariance, whereas

holonomic coordinates for the rotation group, e.g., the three Euler angles,
are not group-invariant; see below.

The torque L = (Ll, L2, L3) is related to the rotational potential energy
U by

-dU = leﬂl + de"z + L3d‘n3 = Lid"i , (3-13)
so that we may write formally
T -
Li S Br, 3 (3-14)

which is analogous to the relation between force F and potential V :

F=-gradV or F =- L (3-15)

X

%)

Vv
i
the minus sign being conventional in both cases.

Poincaré's equations. Starting again from the principle of least action
(1-7), but using anholonomic coordinates dn  and velocities  , we find
b 1

Poincaré's equations of motion:

8L _ L

1% du_ am g (3-16)

d (sl
Hfaw.

L

They differ from Lagrange's equations (1-8) only by the middle term, containing
the structure constants ci,k ; for holonomic coordinates (possible in the case

of commutative or Abelian groups), they even reduce to Lagrange's equations.

A derivation of (3-16) can be found in (Moritz, 1982b, c), or in (Moritz and
Mueller, 1985, sec. 4.6.2).

Eqs. (3-16) were given by Poincaré (1901) explicitly with a view to application

°
»



to the problem of earth rotation, but this paper remained practically unknown

to mathematicians. This is the more surprising as otherwise his work in dynamics
is highly recognized by them.Recently the topic, motion on a Lie group, has
become quite fashionable, cf. (Hermann, 1968; Abraham and Marsden, 1978; Arnold,
1978); none of them quotes Poincaré's paper. Nor does (Whittaker, 1961), who
uses general non-holonomic coordinates (not restricted to Lie groups).

We take into account L =T - U and the fact that the potential energy
U does not depend on the velocities w;

1
only on w; so that aT/am; = 0 . Then, using (3-14), we may write Poincaré's
equations (3-16) in the form

. We furthermore assume that T depends

_Bl] oG i (3-17)

d
at 5w
1

there is no danger to confuse the torque components Lj

with the Lagrangian L

Application to Euler's equations. As an example, consider the rotation

of a rigid body. Then the group under consideration is the three-dimensional
rotation group, whose constants are given by (3-11).
we have the simple equation

For the kinetic energy

2 2 2
T =% (Awy + Bup + Cu3) (3-18)

where A, B, C are the principal moments of inertia, and the coordinate axes
are the principal axes of inertia. Then (3-16) immediately gives

Aél + (C‘B)mzm =L »

3 1
852 + (A‘C)m3m1 = L2 s (3-19)
C&B + (B'A)wlwz = L3 s

which are the well-known Euler equations for rigid-body rotation.

It is instructive to compare the approaches of Lagrange and Poincaré. In

the Lagrangian approach, using holonomic coordinates ¢, g, ¥ , the kinetic

energy (1-10) depends on the coordinates q in addition to the velocities
by

q , whereas in the present approach, (3-18) depends only on the velocities
r

w. - Eq. (1-10) is a quadratic form in the velocities with variable coefficients,
]
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whereas (3-18) has constant coefficients. Furthermore,’(3-18) has a very simple

and symmetric form, expressing group symmetry or group invariance.

Thus the essential feature of Poincaré's approach consists in the fact
that, using anholonomic variables, the group symmetry can be fully exploited.

4. Rigid Mantle and Liquid Core

Poincaré (1910) considered an earth model consisting of a rigid mantle
enclosing a homogeneous liquid core. Both the earth's surface and the core-
mantle interface are regarded as concentric and coaxial ellipsoids of revolution.

Poincaré uses two different approaches which both lead to the same result:

1. The core movement is treated by the equations of hydrodynamics.

2. The core movement is considered a "simple motion", reducing to a rotation
of the core after an affine transformation of the ellipsoidal core-mantle inter-
face into a sphere.

The first approach is appealing on physical grounds and is, therefore,
also treated in the textbook literature; cf. (Lamb, 1932, p. 724; Melchior,
1983, p. 125). The second approach is considered by Poincaré himself simpler
and more elegant; it will be briefly sketched here; for more details cf. (Moritz,
1982¢; Moritz and Mueller, 1985).
The kinetic energy is given by

2 2 2
+ A + B + +
cxl cx2 ch3)

+ lexl + Gu)zxz + Hm}]x (4-1)

3 ]
generalizing (3-18) because of the rotation of the core with respect to the
mantle (angular velocity components Xpo o Xpo Xg ). Here A, B, C and Ac,
Bc, Cc denote the principal moments of inertia for the whole earth and for
the core, respectively. Because of symmetry we have

(4-2)
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furthermore it may be shown that, to a sufficient approximation,
(4-3)
We ngw wish to apply Poincaré's equations (3-17). We here have six degrees

(("i)

(x3) . Thus the whole six-dimensional group relevant

of freedom: three for the rotation of the earth as a whole and three
for the core rotation
for the present problem consists of two independent rotation groups. The structure

equations (3-7) for rotation groups give

ES, EC) = - Ec
[ER 21 - &S

- Ec ,
-1

(4-4)

[

m

N, 0

|m

¥q
1

E,E]=E_, ¢, E9) = - EC
(E,EJ-E, » [ESED=-Eg
where EC denotes E for core rotation. Note the difference in sign due to
=i =
the fact that the second rotation is with respect to,the mantle whereas the
first is a rotation of the mantle with respect to inertial space. Any rotation
Ei commutes with any rotation ES since the two rotations are independent of

1
each other, whence

[E.E]=0 (i and j =1, 2, 3) (4-5)
LY
The six quantities w_, w_» w_> X.» X_» Xs may be identified with , , & »
cswg and ELELELESES,ES With ELE, ..., E_ according to’(3-9).

The corresponding structure constants c = are all

o (4-4) and (4-5). .

0, 1, or -1, according

Thus Poincaré's equations (3-17) with i, j, k running from 1 to 6 ,
give

d (aT aT 3T

Ef(awl] “3%. *Y9 e Tl

d (aT) . 2T LI y

qE [awZ] w3 5 "‘u)3 3“’1 L2 s (4-6)

d (eT)_ , 2T , 2T .

@ (5w, Y2 %30, Y1 % 3 !
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d(aT] 2T 3_7_0

T 5l x50 " x = >
8)(1 33)(2 23)(3
d (5T aT ol _ (4-7)
18 0
t 3x2 13)(3 38)(1
é%[jl]+x LI S
3)(3 28)(1 13)(2

The right-hand side of (4-7) is zero since the lunisolar torque L acts on

the whole earth; there is no external torque which would effect a relative motion
of the core with respect to the mantle. This relative motion is caused purely

by the rotation of the mantle which, through the ellipticity of the core-mantle

interface, acts on the core through "inertial coupling" (which, e.g., also renders

the rotational behavior of a raw egg different from that of a hard-boiled egg).

The further treatment is straightforward. We substitute (4-1) into (4-6)
and (4-7), taking (4-2) and (4-3) into account. Then, after some algebra and

neglecting small terms, the third equation of (4-6) gives, with L =0 because
of rotational symmetry,

wy =@ = const. (4-8)
and the third equation of (4-7) has the solution

x3=0 . (4-9)
Introducing the complex quantities

U= o+ im2 5

V=g tixg (4-10)

L=L1+1'L2 n

the tirst two equations of (4-6) can be combined into one complex equation,
and the same can be done with the first and second equation of (4-7). The result
is

AU + Ac\'/ -i(C-Aleu + iAav = L

(4-11)
Ad+ AV +iCav =0 ,
[o] [o] [+]

96



which are Poincaré's equations. By a transformation to the frequency domain,
putting

u = uoeif’t "

v=velt | =|elot, (4-12)
o [=]

these equations can be reduced to a system of algebraic linear equations for

two unknowns and thus easily solved, if the lunisolar torque L is given.

The physical meaning of the two equations (4-11) is different. The first
is a consequence of the well-known angular momentum equations

qrrexi=L, (4-13)

which holds for an arbitrary body (rigid or not), in a system rotating with

angular velocity w ; the vector H denotes angular momentum. The second equation,

however, can be interpreted only in terms of the hydrodynamics of the liquid
core.

Formally, however, both equations (4-11) are very similar; and the present
derivation from a variational principle explains the similarities as a simple

consequence of the two basic rotations, wy and X, %

5. Elastic Mantle and Liquid Core

Kinetic energy. The velocity of a particle in the mantle can be split up

as follows:
1=y—mantle=£x£+xm . (5-1)

where wxx denotes a rigid rotation and v , a small deviation from rigid

rotation due to elastic deformation. In a similar way, we have for a particle
in the core
£ (5'2)

i Sexx e xxx+

v v
—core —

where, in addition to the rotation w of the entire earth, we have a relative
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rotation x of the core with respect to the mantle and a residual deformation

vV .

c

The kinetic energy of a mass element is % lsz and hence for the whole
earth we have

T- %m M .

The substitution of (5-1) for the mantle and (5-2) for the core leads rather
directly to the expression

(5-3)

T=l¢ (5-4)

1
+ (¢ + 5 C© :
5% Y% S0 x, g LOoxoXx

ijJ 173 i3"i%

For a rigid body, using principal axes of inertia, the inertia tensors
Cij (whole earth) and Czﬂ (core) are diagonal, and (5-4) reduces to (4-1).
For an elastic body, however, we must allow for small time-dependent deviations
from diagonal form, putting

A 0 0 c11 c12 c13
G =10 A 0 -
: lj] 0 0 ¢ 12 “22 Cx : (5-5)

Cc C C
= 13 23 33

(the last two being principal

C c
moments of inertia for the core) are constants. As regards the residual inertia
tensors,

and similarly for the core. Here A, C, A, C

c..=¢. (t), ¢ =ecSt) ,

ij ij ij ij (5-6)

we only retain those which are related to nutation and polar motion, namely
€130 Co3s cf3, and c§3 . Other terms do not influence these phenomena and can
be disregarded without harm. Then (5-4) takes the final form

1 2,2 1,2
T = 5 A( + + o Cws + C +C
Al fp ) g Gt e wugt e uw

1 2 2 1 2
g AZugxy H g Zux, txg) + g Cc(2w3x3 * )t

+ ¢ _(uw,x (5-7)

+ + + ¢ (s +w
Talogxg * wgxy * xx;) =2 g

+ )
23 273 3%y T XX -
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Potential energy. For the total potential energy U we now have to consider U 1 (5-11)
-_— = + -
elasticity, so that Ued e 4
U=U +U + Ud : (5-8) for the combined energy of elastic deformation, so that the total potential
e
? energy becomes

Here U_ 1is the gravitational potential energy related to the lunisolar torque;
it is the same as U in sec. 4. Now, however, we have two additional terms u=u + U (5-12)
related directly (U ) and indirectly (U ) to elastic deformation. More precisely,
e

U represents the energy of the elastic forces which are a reaction of the
e N s . .
earth (including its 1iquid core) to the external forces, and U  represents for the present problem. Just as in the rigid-mantle problem discussed in the
the change in gravitational energy due to elastic deformation. preceding section, we have two rotation groups, given by the six velocities

Wys Wys Was Xgs Xpo Xg ot In addition to these rotational variables, the kinetic

Application of Poincaré's equations. First we have to find the variables

U_ s relatively easy to derive; we find energy (5-7) also contains the time-variable products of inertia c__, c__,
d

cf3, c;3 ; and also the potential energy depends on these variables; cf. (5-9)
U =q(c f +c_f) , (5-9) and (5-10). Thus we have four additional degrees of freedom, which describe
da 131 23 2 i . . .
the elastic deformation. They are ordinary (holonomic) variables q7, qe, q .,
where f_ and f_ represent the given external (lunisolar) potential; cf. Qg » SO that the usual Lagrange equations (1-8) hold for them. (This also fits
eq. (5-20) below. into the group-theoretic scheme, with LN instead of a, for i=7,8,9, 10,

the corresponding subgroup being Abelian with zero cijk 5))

Then Ue can be found using a theorem given in (Love, 1927, p. 173): "The
potential energy of deformation of a body, which is in equilibrium under a given
load, is equal to half the work done by the external forces, acting through have two independent rotation groups as in sec. 4. In addition to these six
the displacements from the unstressed state to the state of equilibrium." The resultequations we have

The Poincaré equations (4-6) and (4-7) finally remain the same since we

is

=1 2 2 2 2 3(T-0) i =
U = c c =0 , i=7,8,9,10 ,
S Q[En(cn * )t Elelyt v g 3q;
+2E12(c13c°3 " C23cc3ﬁ (5-10) which follows from (1-8) since T-U does not contain the corresponding d; g
1 2
Since only Ued , but not Ug , depends on these qi , this reduces to
where the Eij are constants only depending on the internal structure of the . U aT 3U
d
earth model under consideration; they can be expressed relatively easily, e.g., 3c . ace > 3 . T aced >
) 13 13 23 23 (5-13)
through the standard functions yl(r), yz(r), y3(r), y4(r), ys(r), y6(r) of oT U I Al
(Alterman et al., 1959). < =_2d : ac - id %
3C13 3c13 3C23 3023

A detailed derivation of T and U can be found in (Moritz, 1982b, secs. The 10 equations (4-6), (4-7), and (5-13) relate and determine the 10
6and 7) or in (Moritz and Mueller, 1985, sec. 4.7). quantities w ., wys wys Xys Xy» X3» €130 €530 c§3 » and c§3 :

We finally put We note that the torque components Li are the same as in sec. 4, namely

purely gravitational: since Ued does not depend on the rotational variables,
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we have
3U
.Y __ %9 -
Li am, am, * (6-14)

representing the usual components of the lunisolar torque.

The rest is straightforward. We substitute (5-7) into (4-6) and (4-7).
The third equations of the two systems again give

Q = const.

g
"

(5-15)
X3 =0

The complex combination of the first two equations of each system yields

>

Al - i(C-A)qu + Ac(0+1gv) + q(é+igc) = L

. . ) . (5-16)
Acu + Acv + 1Cc9v + Qcc =0 ,
with (4-10) and
- s - o] :.C
h C13 +1C23 2 Cc - C13 & 1(:23 x (5-17)

The complex combination of the results of (5-13) gives with f = fl + 1f2 .

u = E11C + Elzcc + f

(5-18)
v = E12c + E22cC .
which may be inverted to yield
c = Dll(u-f) + Dlzv Y
(5-19)
¢, = D1z(u_f) + 022v

The four equations (5-16) and (5-19) determine the four complex unknowns

u, v, c, c_ in the usual manner. We finally note that f 1is related to the

given Tunisolar torque L by
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f = iL/(C-A)Q (5-20)
Discussion. Eqs. (5-16) and (5-19) probably constitute the simplest formulation

of the Jeffreys-Molodensky 1iquid core problem. They are due to Sasao et al.

(1980), who derived them using the equations of elasticity and of hydrodynamics,

corresponding to "Poincaré'sfirst method" as mentioned at the beginning of sec.

4. For a rigid earth, with cij = 0 , they reduce to Poincaré's equations (4-11)

as they should. The remarkable achievement of Sasao et al. (1980) was to show

that the generalization of (4-11) to an elastic mantle can be made in such a

simple way. That means, the resulting equations were simple, but their derivation

was rather complicated and difficult.

The present approach, corresponding to "Poincaré's second method", tries
to conform to the useful guideline that simple results should be derived in
a simple way. The logical simplicity is expressed by the fact that the equations
of hydrodynamics are not needed and both equations (5-16) are derived in a unified

way.

The internal structure of the earth only enters through the coefficients

D.. or E..
1] 1]
cients in the elastic energy (5-10), can easily be expressed by means of standard

which, besides permitting asimple physical interpretation as coeffi-

functions and computed for arbitrary (basically radially symmetric) earth models
featuring a heterogeneous 1iquid core and even a solid inner core.

With respect to the Lagrangian approach of Jeffreys and Vicente outlined
in sec. 2, the simplification is achieved by using non-holonomic rotational
variables and, as elastic variables, the products of inertia Cy35 Cp3s cf3 and

c§3 instead of the radial displacements according to (2-15).
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A. Poma* and E. Proverbio®**
Woolard, E.W. (1953): Theory of the rotation of the earth around its center

of mass, Astron.Papers for the Americal Ephemeris and Nautical Almanac,
XV, 1, Washington, D.C. Abstract. The existence of secular and low frequency variations
in the spectrum of polar motion has been reported in a large
number of works and discussed by several authors.

However, the reality and the geophysical and/or meteorologi
cal causes of these phenomena are still a matter of discussion
chiefly because the only long series of pole coordinates are
essentlially the ones based on the results of the five ILS sta
tions.

The comparison of classical series (ILS and BIH) of polar
coordinates with those derived from Doppler observations lead
to the emphasizing of some characteristic features in the se

cular polar motion in accordance with the crustal motion model.

1. Introduction

The observed Earth's polar motion emphasized the existence
of free variations (The Chandlerian wobble) primarily caused
by the complex internal structure of the Earth and its elastji
city, and forced variation (annual and short term fluctuations)

due to the mechanical interaction of the solid Earth with 1its

* Stazione Astronomica Inter. di Latitudine, Cagliari, Italy
*® Istituto di Astronomia e Fisica Superiore, Cagliari, Italy
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atmosphere and hydrosphere.

The evidence of secular and long term variation in polar

motion has been from time to time denied or explained by means

Therefore the existence of

of kinematic and dynamics models.
similar secular motion shown in the ILS since 1900 and BIH sin

ce the 1956 polar coordinates (Poma & Proverbio, 1976) seems

to testify to the reality of such a motion.

A plausible geophysical mechanism of polar motion drift |{is

based on the possibility of changes in the products of inertia
of the Earth due to large scale mass displacement like the degla

clation of polar cup effects and concomitant sea level changes

(Dickman, 1979; Nakiboglu & Lambeck, 1980); but tne difficulty

of deriving in such a way the amplitude of secular drift calls

for further research in this direction.

The comparison of the mean BIH pole of inertia with the

mean pole derived from C21 and 321 by GEM 6 and GEM 8

the existence of secular variation in very poor agreement (Poma

the difficulty of the analysis

shows

& Proverbio, 1979); it confirms

based on the measurement of the Earth's pole of inertia and

urges the furthering of studies in this problem.

On the other hand the motion of the Earth's crust according
to the plate tectonics theory causes secular variation in lati

as has been

tude and longitude of the astronomical stations,

In the

put in evidence by Proverbio & Quesada (1974). fact

existence of single movements in the continental plates does

not disagree with the existence of a global movement in the
Earth's crust.
Though the changes in the products of inertia of the Earth

due to tectonic global movement do not influence secular polar

DOI: https://doi.org/10.2312/zipe.1985.081.02

motion by more than 10% of the observed value (Han-Shou Liu et
al’'., 1974), variations in the zenith of the stations caused by
global crustal motion could simulate the secular and long temrm
variations observed in the coordinates of the pole of the Earth.
An attempt to explain the observed motion of the pole by taking
into account the Eotvos weak force, tending to move the conti
nent toward the equator, was made some time ago by Mikhailov
(1971) and the results confirmed the possibility of applying
such a model to try to explain the observed drift of the Earth's

pole.

2. Analysis of the observed secular motion

One of the critical questions in the discussion of whether

the observed secular and long-period terms in the polar motion

are a real phenomena or whether these variations are only a

consequence of the local effects in the mean latitude of the

observing stations essentially concerns the data set: most of
the results were based on the observations of the five ILS sta

tions, a number which often has been considered to be too small

to allow reliable conclusione.

About ten years ago, an attempt was made (Poma & Proverbio,

1976) to derive secular polar motion starting from the data of

the polar co-ordinates supplied by the BIH, pratically indepen
dent of those from the ILS.

By comparing ILS and BIH values over the period 1956-1974
an evident similarity of the drifts of the ILS and BIH pole

was shown. Considering the large number of instruments opera

this result was, in

ting in the BIH collaborating stations,

our opinion, reliable evidence of the reality of secular polar

the non-homogeneity in the BIH system before

motion. However,

[
o
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and after 1962.0 caused doubt about this conclusion. Table 1.

For these reasons and since we have now at our disposal homo Annual means of the p?lar co-ordinates (x, y) after smoothing
= with a F60 filter (unit: 0O%001)

geneous data of 22 years from BIH a new analysis 1is here under

taken.
BIH IL -
The source of data are: Year g R
X y X y X y
for the period 1955.9 - 1961.9 BIH values are from Bulletins 1959 + 59 + 185 + 67 + 196 - 8 - 11
Horaires (series 4-5) of BIH taking into account the corrections 60 48 194 65 200 17 6
which refer these results to the 1968 BIH systeam given in Annual 61 33 202 60 203 27 1
Reports of the BIH; later values for 1962.0 to 1984.0 are from 62 20 215 50 209 30 + 6
the BIH Annual Reports (values for every 1/20th year). 63 8 224 41 217 33 7
64 -1
ILS values are from the Annual Reports and the Monthly Notes e323 37 222 38 11
65 -
of the IPMS. 4 eBe <o 226 34 12
66 - 4 240 23 233 27 7
In order to remove the Chandler and annual components the
67 0] 243 19 241 19 2
ILS and BIH co-ordinates (x ) have been filtered with F60
; ) D 4 68 + 1 241 17 243 16 - 2
six - year running means) which eliminates or strongly redu
iod £6 Th 1 A f the 11 -d i : cad 2 247 20 8
ces per 8 years. e mean annual values of the tere
. = . ( . R ) o) 70 6 246 32 251 26 5
co-ordinates x F60 and y F60 (barycentres of the polar wobble
71 10 251 43 252 33 1
are given in Table 1 and plotted in Fig. 1, where an averaged
’ 72 15 251 56 250 41 + 1
L3 -
value of 02037 1s removed from (x FGO)ILS. the BIH values befo 73 17 250 » . 47 5
re 1962.0 are joined by hatched lines. The annual mean diffe
= 74 21 253 66 250 45 3
rences between BIH and ILS pole positions are also listed in
75 23 255 67 250 44 5
Fig. 1 and shown at the top of Fig. 2.
76 24 256 66 251 42 5
A visual examination of these diagrams clearly suggests some 77 24 261 75 257 51 4
considerations: 78 24 268 92 264 68 a4
79 27 275
a) there is a significant similarity in the variation of the
80 27 279

BIH and ILS y-coordinates;

b) the trend in y appears fairly to be a linear drift with

superimposed oscillation of 1little amplitude
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c) there 1is no evidence of discontinuity in the BIH y-coordina

te before 1962.0

d) the x—coordinate shows the existence of long term fluctuation
whereas there is evidence of the existence of little secular trend.

Points (b) and (d) are in agreement with a former analysis of

et al. 1971).

the ILS data over the period 1902-1960 (Proverbio

These conclusions are also supported by numerical results.

Solutions for a linear rate of drift by least squares give for

dy/dt

dy/dt dy/dt

(0" .001/yr) (0".001/yr)

1965 - 1978 BIH 2.0 ILs 2.0
1959 - 1978 BIH 3.5 ILS 3.3
1959 - 1980 BIH 3.5
1965 ~ 1980 BIH 2.4
1965 - 1978 BIH-ILS 0.0
1959 - 1978 BIH-ILS 9.2

The formal uncertainty is about 0" .0002

It must be noted that these estimates concerning the y-coor-
dinate couldbe slightly affected by the presence of systematic
variations superimposed upon the linear drift. It is interesting
to note that, when the linear term given before is removed froe

the BIH data, residuals suggest the existence of additional pe-

riodic terms.

there can be little doubt that this linear variation
If this secular motion does not

However,

represents a real secular drift.
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exist it might be expected that the ILS pole should move with
respect to BIH pole. No evidence for such a motion over a long

period is shown in our results.

Systematic differences between the y-coordinate of the BIH

and ILS systems exist, but they are small.

A comparison with other systems of polar coordinates further
confirms our conclusions. Markowitz (1982) has estimated the ra

te dy/dt from the IPMS from the 1962 to 1981 and finds

dy/dt = 0".0026/yr

+ .0004

We have also computed the drift between the y-coordinates of

the BIH and DMA systems. The latter are the coordinates of the

pole obtained by the Defense Mapping Agency from Doppler observa
tions of Transit satellites. By using the annual mean BIH-DMA
differences published by BIH (Annual Report for 1980) and plot

ted in the bottom of Fig. 2 we have:

(dy/drt) = - 0".0016/yr

Bl1H-DMA
over the period 1971-1980.

Taking into account the value found by Markowitz (1982) from

DMA data from 1970 to 1981

(dy/dc)DMA = 0".0055/yr
+ .0008

we may conclude

~

prift y(ILS) ¥ Drift y(BIH) < Drift y (DMA)
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However, a much longer series is necessary to have a significant

estimate of the DMA drift.

On the contrary, the x-coordinate shows large and apparently

systematic variations. wWe shall discuss this point later.

Bearing in mind the trend in x shown in Fig. 1 and Fig. 2,

it is difficult to obtain a reliable value for a drift because
the estimate of the apparent rate of drift depends upon the pe
riod in which the data are computed. Moreover it may be seen
that the BIH-1LS differences are larger in x than they are in
appears, there 1is

y. However, even if no conspicuous evidence

a discrete similarity between the pattern of the BIH and ILS

x-coordinate.

3. Conclusions.
According to available literature the mean rotation pole as

determined for many years by ILS, has an apparent drift (see

e.g. Markowitz, 1982).

dx/dt = 0".0009/yr,
dy/dt = 0".0034/yr,

However, the reality of this secular motion has been and

still 18 questioned and often attributed to the local non polar

effects of the ILS stations,mainly Ukiah (Jatskiv, 1981). In

particular, several attempts have been made recently to calcu
late the possible apparent displacement of the mean pole due

to the drifting of the stations as a consequence of plate tecto
nics (Dickman, 1977, Soler and Mueller, 1978) but whithout great
the

success, all the models generating an apparent drift of

rotation pole a magnitiude smaller than the observed value.
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Table 2 shows, for example, the results obtained by Soler

and Mueller.

The apparent displacement (ﬁ&x. Ny) of the mean pole over

70 years has been derived from the changes in latitude and lon

gitude of each station of the ILS and IPMS network, computed by

using eight absolute plate velocity models of Solomon et al.

(1975).

Several conclusions follow from the tabulated results:

a) The computed drift of the mean pole is generally greater

in the direction of the x-axis than along the y-axis.
b) All eight models provide, for the ILS and IPMS pole, prati

cally the same Ay displacement.

c) If the number of the observing stations increases as 1is the

case of the IPMS network, the displacement of the mean pole

along the x-axis 1is reduced.

After comparing these results with those obtained by us in
the above section we believe that the preponderance of eviden

ce fairly suggests that secular motion is a real phenomenon

quite free from the influence of local effects.

Such effects, of course, exist and are almost certainly

less important in the BIH and IPMS network because a large

number of stations tends to average them better.

Local effects may play a role in the observed fluctuations

of the x-coordinate. It should be investigated better. But they

cannot have significant effect on the secular motion since the
observed drift chiefly occurs along the y-axis and agreement

between ILS, BIH, IPMS and DMA observations as regards the y

component 1s good.
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Table 2

Apparent displacement (in meters) of the mean pole over 70

years from ILS and IPMS obeservatoires for different absolute

plate velocity models.

Model

A3 Uniform drag coefficient
beneath all plates

B3 Drag beneath continents only

B4 Continents have 3 times
more drag than oceans

C3 Drag opposing horizontal tran
slations of slabs, oceanic
subduction zone only

C4 Same but including Arabian
and Himalayan trenches

D1 Maximum pull by slabs
plus plate drag

E2 Drag beneath 8 mid-plate
hot spots

E3 Drag beneath 19 hot spots

The models of plates are described in (Solomon et al.,1975)

The values of the apparent displacements 1§x and /\y of the
1978)

Ax

ILS 1IPMS

1.59 1.00
0.75 0.23
1.23 0.65
1.7 1.17
1.60 1.00
0.65 0.12
0.53 0.96
0.97 0.48

mean pole are taken from (Soler and Mueller,
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Ay
ILS 1IPMS.
0.25 0.28
0.50 0.50
0.35 0.37
0.12 0.13
0.10 0.16
0.12 0.13
-0.34 -0.30
0.11 0.11

It may be of interest to recall the results’ reported by Yumi
and Wako (1970); by the adoption of local drifts at Mizusawa
and Ukiah they computed the resulting motion of the ILS pole
and found a reduction of about 1/2 in the x-component and only

20% in the y-component.

It is also noticeable the agreement found by McCarthy (1972)
between the observed secular trend of the latitude of Washington
and the change in the same latitude derived from ILS secular

motion.

Again, this reasonably agrees with our conclusions because
the Washington latitude is very sensitive to the variation of
the pole along the y-axis.

Therefore, unless new techniques (such as Laser, VLBI, etc.)
give results very different in the near future, the reality of

secular motion of the pole cannot, in our opinion, be dismissed.

As discussed in Section 1, however, the discovery of the origin
and the physical mechanism causing this motion remains a more d1£

ficult task. Further details are given in an article being prepared.

We thank Mr. Vincenzo Gusai for drawing the figures and

Mrs. Rosanna Lepori for typewriting the manuscript.
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ON THE CONVERGENCE PROBLEM OF THE SATELLITE DERIVEﬁ SPHERICAL HARMONIC
EXPANSION OF THE GEOPOTENTIAL AT THE EARTH'S SURFACE

Lars E. Sjdberg

The Royal Institute of Technology
Department of Geodesy

S-100 44 STOCKHOLM, Sweden

ABSTRACT

The problem of downward continuing a satellite derived series of spherical
harmonics of the Earth's gravity field to the surface is considered. An error
formula is derived, which agrees with that given by M.S. Petrovskaya and N.I.
Lobkova. Despite of Ch. Jekeli's extensive numerical study it is concluded
that the error of a high degree harmonic expansion (N > 300) is not yet
satisfactorily known.

1. Introduction

During the last 15 years several geodesists have discussed and attempted to
solve the problem of convergence of the spherical harmonic expansion of the
Earth's external gravity field. Outside the minimum sphere bounding all mass
of the Earth (the atmosphere is neglected) the convergence of the series is
doubtless. The problem occurs when applying the exterior type of series with-
in the bounding sphere and, in particular, at the surface of the Earth.

A "proof of divergence" of the series was given by Morrison (1970). However
the proof was based on the erroneous statement that the series of spherical
harmonics diverges if its subseries of zonal harmonics diverges.

A “proof of convergence" of the series was given by Arnold (1978) for a very
general topography of the surface of the Earth. See also Arnold (1980). How-
ever, it is easy to find a counter-example to Arnold's very general result. For
example, the radius of convergence of the exterior harmonic series of the
potential of a homogeneous, oblate ellipsoid equals the focal distance (see

for instance MacMillan, 1958). If the focal distance (ae) exceeds the length

of the semi-minor axis (b) there will be regions on the surface of the ellip-
soid around the poles where the radius vector r satisfies b < r < ae. In these
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regions the external type of spherical harmonic expansion diverges in contrast between the exterior and inner harmonic series) to degree 300. These errors

to Arnold's proofs of convergence.

Another example of a divergent series was demonstrated by Sjdberg (1980). For
a homogeneous ellipsoid with a disturbing spherical mass (M) in its interior

attained RMS values from 0.3 um to 0.4 mm (and 0.02 puGal to 4 pGal, respec-
tively) in areas ranging from near the equator to the vicinity of the pole.
From this result Jekeli drew the conclusion that "the estimation of point
or mean gravity anomalies and geoid undulations (height anomalies) using the

it was shown that the exterior type of harmonic series does not always convergeouter series expansion to degree 300 anywhere on the earth's surface is

at the surface. At points located within the geocentric sphere through the
centre of M (the sphere of convergence) the series diverges.

Moritz (1978) paid attention to the approximation theorems of Krarup-Runge
and Keldych-Lavrentiev. See also Colombo (1982). These theorems prove the
existence of a potential regular down to an internal sphere and approximating
the potential of the Earth in its exterior arbitrarily well. "As a practical
consequence we recognize that it is always possible to consider the earth's
external potential as a 'convergent potential’." (Moritz, ibid.)

Although we agree with Moritz' statement, this does not prove anything about
the convergence of the actual harmonic series of the exterior geopotential.
Thus we prefer to formulate the relevant problem as follows (Sjdberg, 1980):

"Given a spherical harmonic series Vy (truncated-at degree N) of the earth's
external gravitational potential (V), it is required to reveal whether there
is an optimum degree of expansion of Vy, for which degree |VN - V| is a mini-
mum. Only if |Vy - V| is negligible and the minimum of this error occurs at a
very high degree, beyond practical limits, we may regard the series VN as
'practically convergent*."

In Freeden and Karsten (1982) and Jong (1982) methods are given of how to
determine approximacing potentials regular down to an internal sphere in
accordance with the approximation theorems. A1l methods are based on surface
data. However these methods do not solve the above stated problem.

In Sjoberg (1980) the divergence was shown for a very simple Earth model. The
minimum IVN - V|/y < 1 mm occurred at 200 < N < 400 (Y = 978 Gal). Jekeli
(1981, 1982) has studied the problem in a much more refined Earth model based
on elevation elements of resolution 0% (= 67 km). Based on a method given by
Petrovskaya (1979) {cf. formula (2.12) below} he computed the downward con-
tinuation error of the height anomalies and gravity anomalies (the difference
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practically unaffected by the divergence of the total series". This conclu-
sion appears to solve the downward continuation problem of the harmonic series.

Below we will approach the downward continuation problem following the line

of Sjéberg (1977). In the final discussion we will return to Jekeli's result,
and we will also give a numerical example.

2. Formulas for solution of the problem

The Newtonian potential of the Earth in an arbitrary point P is

N
v
where
v = volume of the ‘Earth
p = G; G = Newton's constant of gravitation
p = density of mass
L = (r% + rz -2r r; cos w)]lz
r; = geocentric radius of the current point (P;)
r = geocentric radius of P
Y = geocentric angle between P and Pi

At an arbitrary point outside the bounding sphere of radius R (i.e. for r > R)
the reciprocal distance z'] may be expanded {Pn( ) = Legendre's polynomial}

n

A (;;) P, (cos ¥) (2.2)
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Inserting this series expansion into (2.1) and changing the order of summa-
tion and integration we obtain

n

n;=:°0 m u(;‘) P_(cos ¥) dv (2.3)

For points inside the bounding sphere (r < R) the series (2.2) does not con-
verge and the validity of (2.3) is doubtful. A general series expansion for

-
i
S| —

r <R is
. roen Ts n+l
Vo nEO [J [£ ”(7;) + J u (gi) ] P, (cos ) dv (2.4)
r

where e is the radius of a current point at the surface of the Earth
(r< r; < rs) and o is the unit sphere. Thus the possible error of extending
formula (2.3) inside the bounding sphere is given as the difference between

(2.3) and (2.4) (Cook, 1967; Levallois, 1969; Sjcberg, 1977):

N T's p. N n+1
VN =7 £ Ilu [(—,3) - (F:) ] Pp(cos ¥) dv (2:5)

g

where N approaches infinity. In practice, however, we know the spherical
harmonic coefficients corresponding to (2.3) only to a finite degree (N).
Subsequently the "downward continuation error" of a series expansion (2.3)
to degree N may be represented by (2.5). If for an arbitrary € > O there
exists a number N0 such that

[8V(N)| < e  for N >N (2.6)

then formula (2.3) is convergent. Even if this is not the case in the strict
sense, we define (2.3) as "practically convergent" if the minimum of |SV(N)|
is negligible and N0 is beyond practical Timits.

Let us assume that the density (u) is constant for each latitude and longi-
tude (i.e. independent of ri). Then formula (2.5) may be rewritten (cf.
Sjoberg, 1977 and 1980)
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N o
SV(N) = ¢ JJ wI(r, ro) P (cos y) do (2.7a) o
n=0 &
where
0 if rarg
2 (rs/r)n+3 -1 (rs/r)_(n_z)—] _ore<rg
I(r, r) =r - — if . (2.7b)
5
(rs/r) -1 I} e
- an(r_/r) if
e n=2

Formula (2.7) was recommended by Sjoberg (1980) for investigation of the
convergence of §V(N) with N for a known topography. As the density of the
topography is not known in detail, u was assumed to be constant for the
entire topography (above the sphere of radius r).

It was shown in Sjoberg (1977) and Jekeli (1981) that the "downward continua-
tion error" representation according to (2.7) is unlikely large for small N

and decreases for increasing N. As this formula is the difference between two
series of very different nature, the exterior and the inner series, it is
possiblethat it includes also some contribution that vanishes when N approaches
infinity. If 8V(N) - 0 as N » = the series (2.3) is strictly convergent.

We will now exclude the always converging parts of (2.5), extracting a possibly
divergent formula. From the notations

r.=r+H
1

we obtain the series expansions

n+2

(;;) =1+ (n+2) (%) + (n+2) (n+1) (%)2 + (n+2 xn+1 n (2)3 v ... (2.82)



and

n-1
(ﬁ%) =1 - (n-])(%) +{n-)n (g)z _ (n1 xn n+1 (2)3 ‘. (2.8b)
Inserting these expansions into (2.5) with
dv = r? dH do
we arrive at
sv(N) = sv(O Ny + sv(T () + sv@(ny + ... (2.9a)
where
H
sv(0 (N - H I uH 8(¥) dH do (2.9b)
g O .
sviNn) = 1 H I uHZ 8, (v) cH do (2.9¢)
o0
and
2) ¥
( = 3
sv(@) (N ;ZLI Iouu Qy(¥) dH do (2.94)
where

N
GN(W) = I (2n+1) Pn(cos v)
n=0

and

=

o) = % I (2e) (141) Py (cos ¥)

Let the spherical harmonic expansion of a function f be convergent. Then it
is easily shown that
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&[] 7@ s\tup) g fB) L W (2.10)

a -

If the point of computation (P) is located on or outside the surface of the
Earth, then

H
f(P) = I uH di =0
0

and
H

£(P) = I WHZ dH = 0
0

and it follows that (2.9b) and (2.9c) vanish as N approaches infinmity:

sV >0 and ow(lN)y+0 as N=+w
Thus we are left with (2.9d) and higher-order terms (see 2.9a) as the possible
divergent downward continuation error. Assuming that the density of the

topography is constant (2.9d) may be written

@ = L7 [[ o) 0 2.
g

Except for the sign the formulas (2.9d) and (2.11) agree with formulas (15)
and (24) of Petrovskaya and Lobkova (1982) derived from Brovar's integral
formula. Furthermore they presented the following formula (with opposite sign)

V) = 2 [[ 29 oy @

g

(2.12)

where Ag is the gravity anomaly at the surface of the Earth. Jekeli (1981,
1982) gave a similar formula where Ag is replaced by a surface density (in
practice derived from surface gravity anomalies).
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3. Some numerical results and discussion

Petrovskaya and Lobkova (1982) derived a closed formula for the function
Q(¥):

2
Py (8) = Pk + B ((ns2) By(t) - NPy, (0}

(2.13)

2 QN(W) _ 2(N+1
(1-t)

where

t=cosy
(Note that we have slightly corrected their formula.) =
Finally Petrovskaya and Lobkova (ibid.) gave the formula

0y(0) = N(N+1)2(Ns2)/4

This formula is given in Table 1 for some N.

Table 1. Qy(0) = N(N+1)2(N+2)/4

500
1.58 x1010

200 400

4.08 x108

N 100 300

0(0) | 2.60:x107

2.05 x10°| 6.46 x10°

In Figure 1 we illustrate Qu(w) sin p for N = 100 and 300 and for comparison
we give also F(y) = 1/2 S(y) sin ¢, where S(y) is Stokes' function. From the
figure we conclude that F(y) is much smoother than QN('#). which fluctuates
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more and more around the y-axis as N increases (the period is approximately
2w/N). This effect and the roughness of argument H4 of (2.9d) and (2.11) or
Ag H3 of (2.12) implies that the result of a numerical application is very
sensitive to the size of the used blocks or compartments for the numerical
integration. Jekeli (1981) used the block size 0%. Some of his results are
given in Figure 2. He suggested that the reduced downward continuation error
at the degree 300 is a consequence of the different nature of the exterior
and interior series of expansion. On the contrary we believe that this result
is a smoothing effect due to too large blocks (096) for this high degree ex-
pansion. In addition one has to consider that the topographic data was actual-
1y limited to 1° block size and that within this Timit down to 0%6 the data
was artificially generated.

Jekeli's excellent work is certainly the most extensive contribution so far

to solve the downward continuation problem. However from the above concerns

we conclude that the size of the error of high degree spherical harmonic ex-
pansions (N > 300) is still an open question.

4. An Example

A disturbing point mass M is located outside the mean earth sphere of radius
Ry (see Figure 3).

o
n

6373 km Ry = 6371 kn
= 6.334x 1010 g

=
|

2 km

”//’/,,,’~”"_ 24.6 km

Figure 3. Molodenskii's mountain.
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In an arbitrary point P(r, y) outside M (v = spherical distance from the
center of M to'P, r = geocentric distance to P) the disturbing potential
originated in M is given by:

T=wR +r? - pry/2 5 y = oM (4.1)
where
= constant of gravitation
R = geocentric radius of the center of M
t =cos vy

Let T be represented by the following truncated series of Legendre's poly-
nomials:

(;)n+] P (t) (4.2)

and the downward continuation error becomes TN - T. The computations for r < R
show errors oscillating around the zero-axes with a typical minimum of its
envelope at some high degree. These minima are given in Table 2 for various
spherical distances (y) to the disturbing mass. The table shows that the
external spherical harmonic representation of this model within the bounding
sphere has serious limitations.
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Table 2. Numerical results with formulas (4.1) and (4.2).
Nopt = optimum degree of truncation of envelope.
Yy = 978 Gal.
v | T/y [mm] Nopt [Ty-TI/T [%)
10' 23.0 1896 44.4
13! 17.8 1458 51.3
15! 15.5 1265 49.2
17 13.7 1749 46.1
20' 11.6 1487 42.3
25' 9.3 1620 38.0
30 7.8 1710 34.8
19 3.9 1575 24.6
% 1.3 1605 14.2
59 [ o.8 1647 11.0
10° [ 0.4 1632 7.7
20° | 0.2 1626 5.5
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On the comparison of the results of two different E-W=strainmeters

operating at Tiefenort in the period 1978 - 1984

Simon, D.x)} Karmaleeva, R. M.; Latynina, L. A.XX)

Summary
The paper contributes to the possible application of tidal strainmeters for measure-
ments of recent crustal movements.

The records of two E-W=strainmeter of different type were analyzed. The instruments
are measuring since 1978 simultaneously at the Tiefenort station, 5 meters distant
from each other.

The first result of the comparison between the corresponding tidal, thermoelastic and
secular components of the records of both the strainmeters was that there are no essen=-
tial instrumental falsifications. It seems that the use of laser interferometric cali-
bration methods and the good protection of the instruments against meteorological in-
fluences allows the neglection of the instrumental disturbance components in the first
approximation.

As the second main result of the simultaneous strainmeter records at the Tiefenort sta=-
tion must be regarded the detection of significant local components induced by the cavi=
ty effect and the pressure of the overburden.

By measurements with two strainmeters operating in the vertical direction it was shown
that the amplitudes of the above mentioned local components can be diminished distinctly
by an optimal choice of the measuring places.,

In this connection are to consider several regulas resulting from the model calculations
of HARRISON /1976/ concerning the cavity effect in tunnel-like galleries and from the
calculated loading pressure situation around such tunnels,

It was shown in the case of the vertical strainmeter measurements carried out at the
Tiefenort station that the consideration of such regulas leads to B decrease of the
local components (cavity effect and loading influence) of about one order of magnitude.

x) Akademie d, Wiss., d. DDR, Zentralinstitut flir Physik der Erde
Potsdam, Telegrafenberg

XX)Akademie d, Wiss, d. UdSSR, Institut flir Physik der Erde, Moskau
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Zusammenfassung

Die Aufzeichnungen zweier Strainmeter unterschiedlichen Typs, die seit 1978 an der
Station Tiefenort 5 m voneinander entfernt in E=W=Richtung aufgestellt sind, werden
analysiert. Es zelgten sich keine wesentlichen instrumentell bedingten Storungen, da
die Gerdte gut gegeriiber &duBeren Einfliissen geschiitzt sind und mit einem interferome-
trischen Verfahren mit Hilfe eines Lasers geeicht werden.

Mit zwei Vertikalstrainmetern konnte gezeigt werden, daB der EinfluB lokaler Strain-
storungen durch eine geeignete Wahl des Aufstellungsortes um etwa eine GroBenordnung
reduziert werden kann, In diesem Zusammenhang sind die Ergebnisse der Modellrechnungen
von HARRISON /1976/ beziiglich der Hohlraumeffekte und die Einfliisse der Luftdruckbe-
lastungen zu beachten. :

Certain errors of the measurements of recent crustal movements are difficult to detect
since the data were received from measuring campaigns which differ very much in time.

There are no informations concerning the processes which run down in the time between

the measuring cempaigns. As a consequence several authors propose continuous tilt and

strain records in special test areas.

It seems that long-basic watertube tiltmeters are suitable instruments for such a pur-
pose, since the results of tilt measurements at the Konigstein station are in a good
agreement with the correspondend datas of the precision nivellements (LORENZ /1984/).

Concerning the possible application of tidal strainmeters for measurements of recent

crustal movements there are no experiences., In the most papers the strainmeter records

are to short for a determination of the secular oomponents (VARGA /1984/). For the

estimation of the secular strain rates and

= the instrumental errors

- the meteorological strain components

= and the influences of the local cavity distribution, geology and topography, respecti-
vely

better founded informations are to receive from simultaneous records of strainmeters of

different type.

In the present paper aere used for this purpose the records of two horizontal E=W-strain-
meters of different type operating at the Tiefenort station in 1978-1984. The instruments,
a wire strainmeter with a length of 24,99 m and a quartz tube one of 26,30 m are installed
5 meters distant from each other. The first part of the records of the quartz tube strain-
meter was excluded from the analysis, since as a consequence of certain irregularities

of the records R, M, KARMALEEVA found a crack in the quartz tube and changed a part of

it in May, 1980, Since the repair the instrument works normal.

Both the instruments are calibrated by magnetostrictive lengthenings of the measuring
normals, The amplitudes of the magnetostriotive impulses were determined by laser
interferometric measurements with an accuracy of about + 2 %. The aoccuracy of the rela-
tive calibration reach + 0.5 %. A digital output of the strainmeters in short time steps
allows the elimination of heating influences of the calibration coil and the small tidal
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variation in the time of calibration.

First informations concerning the amplitudes of the instrumental and local strain com-
ponents induced by the cavity effect were deduced from the observed parameters of the
tidal strain waves. For this purpose are used the harmonic constants of the lunar diur-
nal and semidiurnal waves O1 and M2, which contain only emall meteorological consti-
tuents.

Table 1 shows that the difference between the observed amplitudes of the large O1 waves
is smaller than the error of the absolute calibration.

The little amplitudes of the M2 waves are a consequence of a zero amplitude of the cor-
responding body strain wave appearing in the geocentrical latitude of 51.3° N, calcula=-
ted for the Earth model of WAHR /1982/. The latitude of the Tiefenort station is about
50.8° N, therefore in the observed M2 wave the ocean loading component dominates.

On the other hand the ocean loading component of the observed 01 wave is very small
since in the Atlantic the ooean tides with the period of the 01 wave reach only 1 % -
10 % of that of the corresponding M2 waves., Consequently it is possible to estimate
the amplitude of the local component of the 01 wave by a comparison of the observed
and the theoretical "in phase" components of 01. The observed amplitude is about 7 %
larger than the calculated one.

This amplitude difference was interpreted mainly as an influence of the cavity effect.
Since the instruments are installated between the walls of the gallery and near the
end of it (fig. 2), where according to the model calculations of HARRISON /1976/ the
cavity effect usually has a relatiye maximum,

On the other hand the influences of the local geology and topography are considered as
to be small since the salt deposit near the station is homogeneous and the relief of the
Earth surface near the station is rather small.

Fig. 1 shows the long periodic components of the strainmeter records. Here as before
in the case of the tidal waves the outputs of both the instruments agree very good.
The main components of strain variations in the period range of half a day to several
years was measured by the two strainmeters of different type with comparable amplitu=-
tes and phases. Therefore, if we analyse these components, it seems to be possible to
neglect the instrumental errors of the records in the first approximation.

In fig. 1 at the first sight are to distinguish two different components of the long
periodic strain variations: the first one has a period of about one year, the second
one seems to be a linear component.

In order to explain the yearly period measurements of rock temperature begun in June
1982 at 7 different boreholes located inside and outside of the station. The drill
holes are 40 cm deep and equipped with reading thermometers having a graduation of
0.01° ¢ or 0.1° C, respectively. The locations of the measuring places are shown

in fig. 2.

DOI: https://doi.org/10.2312/zipe.1985.081.02



118

Two different streams of fresh air flow along the boundaries of the station, which is
protected against the air streams by thick walls and double doors. During the period

1982 = 1984 inside the station no variation of rock temperatures were measured within
+ 0,01° C, But outside of the station at the measuring places No. 1 and 7 located at

distanoes of about 300 m or 400 m respectively, from the entrance of the station, the
double amplitudes of the yearly temperature variations reaoh about 6° C or 9° C, re~

speotively (fig. 3).

These differenoes between the temperature waves are oaused by the different distances

of the measuring places to the corresponding shafts. Inside of the amplitude differences
the temperature waves are very similiar., For instance in the very hot and long summer
1983 the rook temperature was higher over a period of about 4 month than the maximal
temperature in the last rainy summer. And in the winter 1983/84 the rock temperature

was lower during 3 month than the oorresponding minimal temperature of the winter 1982/
83. These phenomenas are measured analogously at both the measuring places 1 and 7.

Such seasonal differences from one year to the next one are important for the interpre-
tation of long periodio strain variations.

In fig. 4 the horizontal strain variations are compaired with the rock temperature
curves measured in both the boreholes number 1 and 7. For the explanation of the ob-
served strain variations the rough drawing on the right hand of the figure is used.

In the cold season = here between November 1983 and March 1984 = the rook are cooling
and contracting consequently the salt rock in the stations area not withZTstanding the
constant rook temperature here must expand. The strain velocity is proportional to the
heat transfer or to the temperatur differences between salt rocks and the air masses.

Additional measurements of two vertical strainmeters confirm this explanation. The
first instrument is installated between roof and floor, the second one in a bore hole
drilled in the ground of a gallery. A rough drawing in the lower part of fig. 4 ex=
plains the situation.

According to our idea a horizontal expansion of the stations area in the wintertime
must produce a diminishing of the distanoe between roof and floor of the cavity and
a vertical dilatatfon in the ground of it, since the floor moves upwards.

Such movements are visible in fig. 5. For the comparison of the reoords of the ver=
tical strainmeters it was necessary to exolude from the record of the floor = roof
strainmeter a linear oomponent induced by influences of the pressure of overburden.
This loading component has a velocity of about 2-10'6/year. After that the records
of both the verticel strainmeters and of the horizontal one are in a good agreement
with our model,

For instance in the last winter - between November 1983 and March 1984 = the horizon=-
tal EW strainmeter and the borehole instrument have measured expansion movements,

but the floor-roof vertical strainmeter a oompression. The thermoelastic components

of the records of both the vertical strainmeters are quite symmetrioally with referen-
ce to the time axis.
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The records of the vertical strainmeters and the rock temperature data are unseful for
an exact elimination of the thermoelastic components of the horizontal strain records.
This work is not yet finished.| Therefore fig. 6 shows only a rough approximation of
the non-thermoelastic component of the horizontal strain variations. It seems to be

a linear component with a yearly strain rate of about 2 -10‘7 (dilatation).

The observed velocity of the secular strain component agrees good with the mean strain
rates, which were calculated for adjoining regions, for example for the Sexonian one,
Here THURM|/1974/ calculated a mean strain rate of about 3 -10'7/yenr for the EW direc-
tion, using the results of two trigonometric measuring campaigns which differ in time
by about 60 years.

As a consequence of this and due to the good agreement between the records of two paral=
lel instruments of different type operating at the Tiefenort station during a period

of about 4 years tidal strainmeters may be suitable instruments for measurements of re=
cent crustal movements too. For the determination of the yearly strain rates of recent
crustal movements from strainmeter records shorter measuring periods are necessary

than in the case of trigonometric measurements (for instance 6 years instead of 60 years).
There-fore a continuous control of the strain velocity in special test areas by means

of such instruments seems to be possible.

Furthermore the measuring results of both the vertical strainmeters have shown that
essential improvements of the regional representativeness of the measured strain rates
and the tidal parameters may be reached by changes of the measuring places.

Both the instruments differ only in the location and in the manner of installation; their
measuring systems are quite the same.

The records of the floor-roof vertical strainmeter are disturbed by large local loading
and meteorological components., These effects are diminished in the case of the bore
hole instrument as follows

1+ the mining loading strain is diminished by a factor of K1 2 10 (Bsee fige 4)

2, the barometric pressure effects (loading and instrumental ones) are diminished
by a factor of 8 (absolutely) or 3, relatively, '

3. the cavity effect seems to be smaller than 1 %, since the first harmonic analysis
of a record of 110 days results a M2-Amplitude of

obs -10
e . (M) = 35,66-10 H

the corresponding theoretical amplitude was calculated according to the Earth
model of WAHR

N\
e® (M) = 35.93.10

rr

N

=10 .

Analogows improvements of the regional representativeness of the measuring results
are to reach in the case of horizontal strainmeters too. For this purpose we must
consider several regulas resulting from the model calculations of HARRISON /1976/
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Table 1. Station Tiefenort/GDR
Tidal reésultp of the EW strainmeter 1978 - 198A

year record. e,a (04) wire ' e, (01) tube record.
month | A x 10710 = Ax 10710 5 month
1978 12 72.184  0.97°
1979 12 71.643  1.16°
1980 12 71.872  2.95° 72,213 1.16° 6
1981 12 72.338  3.83° 70.645 1.74° 12
1982 12 74,220 3,75° 74,624 2,24° 12
1983 12 72,300 1.51° 71.798 1.97° 12
1984 6 72,571 2.51° 71.637 0.85° 6
72,590 2.38° | 72,183  1.59°
e 0.762 1.,19° 1.481 0.57°
WAHR model 67.368 0° body strain wave
P e e e = e e e e
year record. Y (Mz) wire e\ (Mz) tube record.
month Ax 10710 % Ax 10710 4 month
1978 12 5,042 -64.82°
1979 12 4,708 -68,62°
1980 12 4.921 -56.48° 4,912 -64.48° 6
1981 12 4.665  -66.99° | 4.827  -58.53° 12
1982 12 4.897  -64,23° 4,372 =56.44° 12
1983 12 4,500 -58,23° 4,394  =59,52° 12
1984 6 4,980  =59,47% | 4.558  =62,46° 6
4.816 -62.69° 4,613 -60,29°
mean 0.195 4.65° 0.247 3.19°
WAHR model 1,557 0° body strain wave
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concerning the oavity effeot in galleries or tunnels of elliptic cross-sections and
the loading pressure situation around such tunnels,

The amplitudes of the looal strain components induced by loading influenoes and the
cavity effect have a relative minimum at measuring places in the floor and near the
symmetry axis of the gallery and distant from its ends.

Fig., 7 shows the old and the new manner of installation of the horizontal strainmeters
at the Tiefenort station,

The first instrument is installed about 1 m above the floor between the walls of the

gallery and near the end of it. The second strainmeter operates in an artifical cleft
with a depth of about 80 cm drilled into the floor near the middle axis of the gallery
and distant from its end.

Two NS instruments installed in the old and the new manner record simultaneously since
the autumn of 1984. For the determination of the amplitudes of the different local com-
ponents a recording period of about 1 year seems to be necessary.
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List of figure captions

Fig. 1. The longperiodic components of the EW strainmeter records
W wire instrument; Q quartz tube instrument

Fig, 2, Map of the station and its surroundings
4. fT@8h alir streams
T1, ... T7 measuring plaoes of the rock temperature
EW I, EW ITI (tube) measuring places of the horizontal
VI, VII (borehole) and vertical strainmeters

Fig. 3. Results of the rock temperature measurements 1982 ~ 1984 in the
boreholes T1 -« T7

Fig. 4. Lefthand: comparison between the records of the EW strainmeter EW I and
the results of rock temperature measurements in the borehole T1;
Righthand, upper part: model of the horizontal strain variations inside and
outside of the station during the wintertime;
Righthand, lower part: model of the vertical strain variations inside the
station during the wintertime

Fig. 5. Comparison between the longperiodic components of the records of the horizon=-
tal strainmeter EW I, the vertical strainmeter VI and VII, respectively

Fig, 6. The linear component of the long periodic strain variation in the EW
direction 1978 - 1984 (instrument EW I)
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Planets around Barnard's star? =)

by

Klaus-Gunter Steinert 2)

Summary

From Analyses of long-focus observations unseen objects may
be found from perturbations in the proper motions of a star.
The question is discussed under what conditions it should be
possible to detect planets around the nearby Barnard's star.

Zusammenfassung

Aus Untersuchungen von photographischen Beobachtungen an lang-
brennweitigen Instrumenten kdénnen aus den Stdérungen der Eigen-
bewegungen eines Sterns unsichtbare Objekte gefunden werden.
Es wird die Frage diskutiert, unter welchen Bedingungen es
méglich sein sollte, Planeten um den benachbarten Barnardschen
Stern zu entdecken.

1. Introduction

In 1844 F.W. Bessel pointed out that irregularities in the
proper motions of stars indicate the existence of unseen
companions. Indeed some decades later companions of Sirius
and Procyon announced by Bessel were found by Clark in 1862
and by Schaeberle in 1896 resp. with visual refractors.

The history of discovering the planets Neptune and Pluto is

very similar.

1) Mitteilung des Lohrmann-Observatoriums der TU Dresden Nr. 52

2) Technische Universit&t Dresden, Sektion Geod&dsie und Karto-

graphie. DOR-8027 Dresden, MommsenstraBe 13
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By means of long-focus photographic astrometry 50 years ago

the first unseen companion of a star, that means the component
of a visual binary (Ross 614) was discovered from series of
observations and analyses of the perturbation in proper motion
over nine years. Twenty years later the object was seen and
photographed in its apastron. The next one was VW Cephei. Since
this time the method of discovering double star companions by
long-focus photography in astrometry was developed and there is
no doubt about the usefulness of it. Systematic search began
already in the middle of the thirties at several observatories.
Intensive work in this field was done at the Sproul Observatory
Swarthmore, Pennsylvania, using the well known 61 cm refractor
with 10.93 m focal length.

As the amplitudes of unseen astrometric companions of the ex-
plored binaries are about 0.1", the determination of period,
excentricity and periastron passage is very accurate. To deter-
mine the perturbations of a star's proper motion in principle
Schlesinger's method of dependences is used. To avoid effects
of magnitude equation it is necessary to select reference stars

having magnitudes of the same order as the objects (field stars)

to be investigated. The period of observation depends of course
on the period of orbital motion of a star and its companion
around their common barycenter.

In the case of faint nearby visual binaries as a rule this
astrometric technique 1s quite valuable and

fully developed (v.d. Kamp, 19B1).

may be regarded as

2. Barnard's star

Besides this it should be possible to apply this method of fin-

ding companions of stars from perturbations in their proper mo-
tion for the discovery of planets around nearby stars. It is
evident that in this case the necessary accuracy is the larger
the more distant the star and the closer the planet is to it.,
Of course the demanded accuracy also depends on the mass ratio

of star and planet.
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The smallest stars have about 0.07 times the solar mass.Smaller tradiction by other authors. Especially W.D. Heintz (1980) from

objects are according to our present knowledge black dwarfs,
and if smaller than 0.005 solar masses planets, that means
objects which are not able to develop nuclear energy, Compared
to this Jupiter's mass is 0.001 solar mass.

After W.,D. Heintz (1980) it is necessary to secure an accuracy
in determining the perturbations of proper motions, and to
derive the existence of a perturbing body better than 0.01*
over a long period of observations. 8ecause the orbital period
of a presumed planet is previous unknown, the series of obser-
vations must be extended over some decades. In the case of
Barnard's star Peter van de Kamp (1981, 1983) has used obser-
vations with the Sproul refractor started in 1938. That means
for his latest results v.d. Kamp (1983) could use the material
of 1200 nights from 44 years (1938 - 1982), each night with

Sproul observatory negates absolutely the reality of the plan-
ets found by v.d. Kamp. His main contra-arguments are:

- v.d. Kamp's curves mentioned above reflect instrumental
errors which can also be found from observations of other
stars made at the Sproul refractor

- a systematical accuracy of 0.01" can not be reached from
photographic plates over a field of 20*', as it was used
by v.d. Kamp with the Sproul refractor; that means 10-5

relatively
- proper motion and parallax of Barnard's star are very
large compared with the presumed perturbations.

These contra-arguments are to be compared with P.v.d. Kamp's
results and discussed to consider some facts for clearing up
the problem, because it is of cosmogonic importance and in-

about four plates, each of them with up to 5 expositions. Since directly it is connected with SETI.

1975 v.d. Kamp made some analyses for finding planets around

Barnard's star from the perturbations of its proper motion. The 3.

results obtained by him depend on the boundary conditione
considered by van de Kamp. With the following dates for
Barnard's star: Red dwarf; apparent magnitude 9.5m; spectral
type M 5; mass 0.14 solar masses; parallax 0.547"; distance
6.0 light years; proper motion 10.31 "/year v.d. Kamp (1983)
got from the analysis of perturbations in proper motion the
following results: there are existing two planets around
Barnard's star, having radii of circular orbits 2.7 and 3.9
astronomical units resp., masses of 0.6 and 0.4 times the mass
of Jupiter resp. and orbital periods of 12 and 20 years respe..
Representations of the perturbation curves of Barnard’'s star

Conclusions

In the opinion of the author there
contra the results as well of v.d.

are some facts pro and
Kamp as of Heintz.

An accuracy of 10_5 can be reached in photographic astrometry.
2-m-Schmidt in the Lohrmann-

program. Main condition for this is of course a long-time con-

That was proved with plates of the

stancy of the instrument's adjustment.

Such a constancy may be doubted for the Sproul refractor, be-
cause there were some changes in the construction and adjust-
ment of the instrument. The dates of these events were 1941.82,
1949.21, 1957, and 1966. It is very likely that they have in-

caused by these presumed planets are to be found in v.d. Kamp's fluenced anyhow the results of v.d. Kamp's analysis of the

publications (1981, 1983). The curves having a semi-amplitude
of 0.01" or 0.5
are calculated from so called normal points, i.e. mean values

pm in the focal plane of the Sproul refractor

of alpha and delta over one year.

This interesting result of P.v.d. Kamp is not without con-
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proper motion of Barnard's star in spite of reductions because
of variations of the instrumental equation connected with these
events. The simultaneous variation in both coordinates alpha
and delta also point in this direction.

Using different time intervalls of Sproul observations lead to
different results for the presumed planets as is shown in v.d.
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Kamp's book "Stellar Paths* (1981),

Barnard’'s star moves very fast. Its distance from the sun
becomes smaller. Therefore proper motion and parallax are
changing. To avoid systematic influences accuracies of 0.2 %
and 4 % resp. are necessary, what is possible to be reached as
mentioned above,

The fact of using only four reference stars for the determina-
tion of the perturbations of Barnard's star is an other weak
point for deriving the existence of planets around it,
particularly because of the altering of a reference star’'s
influence to the position of the field star. Barnard's star
changes his position at the plate relatively to the tangential
point of the Sproul objective for 5 mm per 10 years.

The author agrees with P.v.d. Kamp (1983) and with w.D. Heintz
(1980): it is possible to find planets around nearby stars
with the photographic method. However there must be fulfilled
all conditions to avoid systematical influences from the in-
and from the measurement

strument, from the reference stars,

of the plates,

And indeed it seems there are not yet series of observations
with the quality needed and having the necessary length.
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GEODYNAMIC EFFECTS DUE TO EARTH’S DEFORMATION

82t

Jir{ Tre¥l
Geophysical Institute, Czechosl.Acad.Sci.,
Summary Bo&ni II, Spofilov, CS - 141 31 Praha &
Some geodynamic effects arising due to deformation of the Earth
are investigated. In undeformed state the Earth is replaced by a sphere
with radially depending density. Its deformed state is described by
displacement vector field. Corresponding density disturbances are
expressed in terms of the density and displacements. Further, displace-
ment vector field is decomposed into irrotational and solenoidal parts.
Gravitational changes on the Earth’s surface are composed from:
i/ the changes due to density disturbances inside the Earth
ii/ the changes due to deformations of the density interfaces
iii/ the changes due to radial displacement of the observational poimt
Mathematical expressions are derived for the deflections of the
vertical, the displacements of the principal axes of inertia, the
changes of Earth’s rate of rotation and its centre of gravity in terms
of the density disturbances,

1. Introduction

The mass distribution in the Earth’s interior and the shape of its
surface depend on working of external and internal force fields.
Generally, it is changing with time. However, such changes evoke
a number of geodynamic effects: the variation of the gravitational
field and rate of rotation, the displacement of the principal axes
of inertia and the centre of gravity.

From external disturbing factors, the tidal effects due to planetary
attraction are most important. The study of this phenomena has long
history and forms an independent part of geodynamics [1] .

In this paper, we will study the geodynamic consequences of Earth’s
deformation. Solving this problem, we choose a kinematic approach
(the deformations are considered given a priori). As a result, we will
derive expressions, describing above mentioned geodynamic effects
in terms of the density disturbances arising from deformation.



. Density disturbance
2. Displacement field in spherical geometry 2 i Bt et ol

Let us consider a volume element d‘t’ and corresponding mass
element dm. In reference state before deformation is

%) dm = F (?)d=,

According to fundamental theorem of veetoranalysis, any displace-
ment vector field'g'may be resolved into irrotational and solenoidal
parts

. >
=a, +u,, rotd, =0, divd, =0, . .
where Fo(r) is density in a point with position vector r. In

disturbed state after deformation it holds
‘Eqs.(1) will be satisfied by putting

N = dm - F(F+d)de’
- 8 m = r+u/dv
(2) u4 = grad (F, = T'Ot A 5 ( ) ’
where U is displacement vector and d?"deformed volume element.

—3s
The titie (f A are lled lar d vector potentials. Intro-
s T sca’lar amw P In view of U is small quantity, we can write

ducing spherical co-ordinates r, ¥, we can expand (P in the follow-

B S . o F(7+2) - F,(2)+ $(2) + G.grad F (7).
) Plrva) =2 > F)P (z)[an cosma + b, sin rna],

n=0 m=o0 Here f is density disturbance, which is supposed to be small. The

change of a volume element is given by expression [3]
LD
(10) d‘t"= ('1 + div u)d‘t.

From the condition of equality of right-hand sides of Eqs.(7),(8)
with a view to (9),(10) we arrive at

where P:(z) are associated Legendre polynomials and z= cos ¥V .

The solenoidal part of the displacement field can be written as
—>S

s - — - -
(4) uzzrat(Ar+At)=rotAr+rotAt=u tu,

where ?, respe. K) is vector potential in direction of the position
5 t - -»> S : Fe
vector r, resp. in direction perpendicular to r. Therefore,we may put (11) F = - (u.grad F + F(; d,v U) = - dIV E, u/,
—> - —> -> — o
s) A =Tr A - rot(Sr)=gradS xr.
r / t This formula gives density disturbance as a function of reference
density and displacement.

We will suppose radially dependent density in the reference state:
>
Fo(r) = Fo(r). Then, with a view to (1),(2) Eq.(11) reduces to

Here so-called toroidal and spheroidal defining scalars [2] T, S
can be again divided into their spherical harmonics components

62t

[ ' m m y
==(uF + Fa%?

@® |Stwa)| = o [Se()| o |{Cn d, a2y f=-(u.F, N ),

i Z P" (2) gosma o L ‘where the prime indicates a derivative with respect to radial co-

T(r‘v‘)‘) nromTe T (F) e:‘ F J ordinate r. Further, in spherical coordinates holds [h] CF
n n : a
= 1 (2 ) I7'+ 9 ( 3 ) K
03) 8= Fsinv f /) sin 9o
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Finally, after expression of the radial displacements from Egs.(2),(4),
(5) we arrive at

s f =ZZ [ o (r)(a, cos ma + b, sinma) +
e m-o (r)(cmcos ma + dmsih ma )J P:(z) =

i [oc ()Y (v,0)+ B,()Y, (va)]

n=
where radial functions 01 (I') 8 (I‘) are dei‘ined as follows

as) «,(r)= —[n(n+1)<f’ (250)] F, Cf
(16) Bn (r) - n(rff‘+1) E) Sn -

4, Gravitational effects due to density disturbances inside the Earth

(19) baY (B,A) - (2n+1) II Y (5,0 P (cos¥)sin dvrdan.

Qo
Then, after integration of Eq.(17) we obtain

0t

o T,(P) =4mcni—)’(1—(j'é‘3_,
where R R
(21) = Y:jo(,,(r)rnzdr + Y JB (")'"Mzdf‘
The change of gravitational acceleration is "
(n+1)Y,(6,1)

(22) Sg:, (P) gR = 4‘"9‘; (2n+’) Rn+2 .

Finally, changes in the direction of the vertical are

: T Lhare < 9Y,(6,A)
Let us suppose Earth s model according to Fig.l. Here outer surface (23) eﬂ,(P) - 1 Z 7 i
P(RGA) r=R corresponds to Earth's surface and gRge g =0 (2"+")R 20
v r=R, corresponds to core-mantle boundary. (24) 97; l/mc [ ’QY,,(GI/‘)
/4 Bearing in mind that defermations are e ( P) = - = - e
confined to solid part of the Earth, 1 gRsm@?A S’""e n=9 (2"+4)R gA
” we can write the expression for disturb-s5, gravitational effects due to deformation of the density interfaces
Y ing gravitational potential
Our density model F (r) contains two clean-cut density interfaces:
core-mantle boundary r=R, and Earth’s surface r=R. Clearly, there are
jumps in the reference densityA";(R;)=6,' andAF;(R)=6 . We will in-
vestigate corresponding gravitational effects by means of simple layers
Fig.l with surface densities

R % 2%
(17) T (P) Ijj {(Q)? r sml?‘ drdt?’du\
R; O

where P denotes a fixed point at the Earth’s surface and Q current
point of integration. From the theory of spherical harmonics are known
following formulae [5]

0 rﬂ
= T

Pn(cosq’), FSRI

(18)
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o el ({0

where u_ denotes radial component of the displacement. Further, at the
interfaces we can use developments in surface spherical harmonics

o R T

2 )
S nzm [(BZF)(U,.A)].



The potential arising from the deformation of Earth’s surface
T2

(27) 'T(P) 26R “ (Rva)? !Simg- drdaa.

Now, we must separate two cases.

is given by

First, if the observational point
P is rising, then its radial distance rp> R because ur(P)> 0.
In this case

P (cost),

(28) T "2
SRCRRCY)
(29) IT (P) 471’286Z W
On the other hand, for sinking point P is r <R, u (P) < 0 and
(30) = =Z —E (cas "[’)
L "Unlo. )1y
1) T,(P) - ‘/mcdz )R

Finally, for unchanged point P /u_(P) = 0/ Egs.(29),(31) reduce to
0

Un(B,4)
o) T,(P) = 4mabR2 55 -

The derivative of Egs.(29),(31) with respect to (—rp) and putting

R give
rP g s

(33) Sg (P) = lrmcKZ 2 n(e'/\),
() 8g,(P) =—‘fmcdz 557 Un 6,7),

The changes in the direction of the vertical are found from (32)

n+4

u,(P)> 0,
u.(P)< 0.

( ‘/7!3:6 © U,
(33) €, P) - — % (2n+4}96) ,
(36) _ harxd U, (6.1)
€, (P) - g 8inQ ,,Zm (2n+1) IA
In the similar way, the potential arising from deformation of
Earth’s core—mantle boundary is given berj ( R
0,:6,4) K
(37) T(P) L/7’3°6RZ on+1 ! ° &% -
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From this expression we immediately obtain

3 X nt2 pni+1
(38) Sg,(P) =4 m2e6; 2_ 9 ﬁ U.:(BA),
liW?C6,' 2 nt2 'aUm- (O,/\)
09 e (P)- g—zﬁ (Zo+1) 90 '
i _ 47’3€5 n+2 ?Un; (e’/\)
4o0) e (P - gsmG Z Gre) IR

6. Gravitational effects due to surface deformation at the
observational point

Owing to radial displacement, the observational point P(R Go A)
is shifted inP(R'l'U 9 /\) Corresponding disturbing potential will be

T,(P) = - (2 - - g4
Sk r!
where M is the mass of the Earth. Disturbing gravitational effect is

9T. 2 M 2
(42) ggs(P)- 9R3 Sl =~ =T 5

(41)

= R3 r R
The changes in the direction of the vertical, resulting from a
surface deformation at the observational point are

du, 2 90, (G,/\)
@s) e, (P)=- w6 R N
(44) Qu,_ 4 °° U, @, A)

TRun03A  Rsm@am A

7. The disturbance in the Earth”s rate of rotation

Assume the Earth in the shape of a rotational ellipsoid, in the
centre of which, O, we shall place the origin of rectangular co-or-
dinate system xyz. The z-axis is identical with minor axis of the
elipsoid (positive direction to the north). The x-axis is defined
by the intersection of the equatorial plane and the prime meridian
and the y-axis makes up the clockwise system.

1€t



In the reference state before deformation the: Earth rotates about

(1% ¢

4
8%
z-axis with angular rate of rotation W, . The principal moment of (52) SC = 4_5 6R {5 u, U, ),
inertia with regard to z-axis is Co. If the displacement field is axi- . 8 4
T ¢-R. =
symmetric it holds (53) §C3 = F 6. R. (5 Uoi “2:‘).

ws) C=C,+ dC, w=w,+8w, §C«C,, S «aw,

8. The displacements of principal axes of inertia

According to third Euler”’s equation [6]

(46) (CCO) - O CCJ = const. In the reference state before deformation are co-ordinate axes
X,Y,z identical with principal axes of inertia. The tensor of inertia
Then, with a view to (45) we arrive at Ty =~ A ) 0
Sw oC (s4) T, =
(47) 3 - . 13 OF E s 4O
@o Co 0 O Tyz=C
33™

It is sufficient to calculate small quantity SC in a spherical
approximatioxh according to formula @929

ws)y oC =S[Sf(r,17)r sin 4T + jjgu (RV)R sm17c]S +

contains only diagonal terms. If the mass distribution becomes axially
asymmetric, then will be

T .= A T = -F - -]
R; 00 11 12 Ty3= —E
IR (55) T, = T..= -F T_ = A" T..= =D
A 13 21 22 23
+ j[&uﬂ? U)R smU(}S = §C1+SC2+SC3, .
T31= —E T32= —D T = C
b 35
where 2(' To the first order accuracy, for directional cosines .§ 0 72 ’ g of
dt r dar the new principal axis of inertia z then holds [7
=|R* |sinv-dud
wo) [4S | =|R: |sin A E 7 - D C =4
. 6 S (e s - =1
dS.] | R o) 5 C-A ¢ C-A "
Clearly, 49 expresses the influence of density disturbances
in Earth’s mantle, whereas SCz and C3 are resulting from de- The products o Eeotiajnaviteicatenl ated pfnen
COS L
formations of density interfaces. According to Eq.(14), the zonal (s7) E = SS[ f(r.‘l?'u\) l’ sinUcosU” de +
part of density disturbance is given by D Sin O
R;0 0
t
50 v [3 o (r) +cC, &) (r)]P (2) @ 2® cosa
(50) F( ) Z + Sgu (R, .)',.,\)GR sinUcosv | . R dv +
sin
Taking into aec;ou‘%mt develoFments (2‘63) Ere obf;'a(i}n after integration :(;.R & cos o JS -
(51) SC <= S [300( r] + Co r]r r = + g[ “r(R.: u\) R sinJ casy N b
E Qo
@-5 [320( (l‘) + C, 2(r)]r dr. . E1 + Ez + E.3 .
15
R: D, | D, D,
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With a4view to well-known formula [8] 10. Conclusion
+

_—

= 2(n+m)!
(58) P1 (z) Pn (2) dZ = q—ﬁ et n The model analysis we have carried out indicates that gravitational
-4 (‘-nJ"')'an-- changes can arise mainly due to local deformation at the point of
where gkm is Kronecker’s_symbol, we obtain from (57) observation and at its near surroundings.
‘lﬁ‘ ad 4 C4 4 On the other hand, the displacement of the principal axes of inertia,
(59) 1] =2 e i Sdz(f)l' dr + "; jez(r)r dl" . the changes of Earth’s rate of rotation and its centre of grawity
D,, 5 bz 2 g may occur only due to planetary deformations of global character. Some
By substituting (26) into (5'7) we get after int’egration“ estimates for[t}ie cise]of deformation of Earth’s core-mantle boundary
1 4 A are given in |9 10} .
E l LT 6 . u, E3 be £.R Yai ’
(60) | =2| = — 6R |72/, =0
2 | 5 V2 3 Vai
REFERENCES
. h it
o e T [1]  P.Melchior: The tides of the planet Earth. Oxford 1978.
In the reference state before deformation, the centre of gravity [2] E.C.Bullard,H.Gellman: Homogeneous dynamos and terrestrial
is located in the origin of co-ordinate system xyz. After deformation magnetism. Phil.Trans.Roy.Soc.London, A247 (1954),213.
a
it is Shiftedka;;d its new position vector is r_ (x_,y ,z,). It holds [3] L.D.Landau,E.M.Lifschitz: Lehrbuch der theoretischen Physik.
1 > Bd.VII: Elastizitatstheorie. Berlin 1975.
(61) L = S ”?(r,oa)r do+ — jju,(R,zT,u\)6r dS +
° M R-0 0 M ko [4] Ch.B.Officer: Introduction to theoretical geeophysics.
"qox Berlin 1974.
-2 R e
+ i 55(4'. (R;,O,'u\)s.- rc‘S‘- = roa + roz + ?03 P [5] W.A.Heiskanen,H.Moritz: Physical geodesy. San Francisco 1967.
M 0o [6] W.H.Munk,G.T.F.Macdonald: The rotation of the Earth.
where M is the mass of the Earth and ?(x,y,z) the position vector Cambridge 1960.
of densit 3
Sty disturbafice. After integration NERanTive at [7] P.Melchior: Physique et dynamique planétaires (vol.l).
3 Bruxelles 1971.
—>
(62) rM = [( ., a )jd (l’)l’ dr+ (C‘ll 4/c1 je‘l(r)r Jr], [8] G.Korn,T.Korn: Mathematical handbook for scientists and
F R R; engineers. New York 1968.
— 6 A4 4 uo) —r:> - 3 6 (u V1- 0.) [9] J.Tre3l: The effect of the irregularities of the shape of
(63) Fyp = —I?" (“u Var“a/, 31 F F 4s Tais Ty the Earth’s core-mantle boundary on the observed acceleration
_ of gravity. Studia geoph.et geod.,25 (1981),5.
where F is mean density of the Earth.
[10] J.Tre3l: The effect of the irregularities of the shape of

the Earth’s core-mantle boundary on pole wandering.
Studia geoph.et geod.,25 (1981),124.

€ET

DOI: https://doi.org/10.2312/zipe.1985.081.02



veT

1. Introduction

Spherical-harmonic expansions of the topography, the rock-equivalent topography,
the topographic-isostatic reduction potential and the gravity potential of the Zarth now

exist complete to degree (N) and order 180.

On the Long-wavelength Correlation between Gravity and Topography The coefficients are of varying quality. But it is difficult to know how good or
how bad the sets are. "Good" or "bad" also depends an for which purpose one wants

to use the coefficients.

2 An important application is in the area of gravity field modelling, where the
contribution from either the potential of the (isostatically compensated) topography or
C.C. Tscherning from the expansion of the gravity potential in subtracted from the observations. In both
Geodatisk Institut cases a considerable smoothing is expected, which if achieved should facilitate the use
nggsgfhér.i;ﬁ;ﬁund of various approximation or prediction techniques.
Danmark A necessary, but not sufficient, condition for a large smoothing to be achieved

is the occurrence of a strong correlation between the various spherical harmonic coeffi-
cients. If the correlation is below 50% no smoothing is achieved. A small correlation
also indicates inconsistencies between coefficient sets, which in principle should represent

the same information. This is used as an indicated for the quality of the various sets.
Abstract:
Spherical-harmonic expansions of the topography, the topographic-isostatic Since a strong correlation may exist even in cases where two sets differ by a
reduction potential and the gravity potential of the Earth (OSU78, OSUS8L, GEM10C) large scalefactor, so-called smoothing coefficients are introduced. These quantities are

now exist complete to degree (N) and order 180. used to describe quantitatively the smoothing per degree achieved. Furthermore, the

A correlation analysis of the various fields by degree has been made. While o d d . imal depths of . defined he depth:
the general correlation between gravity and topography for the sets OSU78 and 81 SRR CECR LR C i D oGl S RS S SR REET e s Tl ACEH T HESRI N AC 5 24 1
is around 50% for N > 15, the correlation with GEM10C is considerably lower for where the largest smoothing is achieved.

N > 36. This indicates that this set is unreliable above this degree.

The topographic~isostatic reduction potential may be computed either rigorously
by integrating the topography and its compensation or by condensating the topography
and its compensating masses. In the last case the spherical harmonic coefficients of the
isostatic reduction potential are related in a simple linear manner to the spherical har-
monic coefficients of the expansion of the topographic heights.

An optimal depth of compensation for each degree has been determined by
requiring the reduced field to be as smooth as possible. Depths between 35 and 15 km 2
were found for N > 20, which are much lower than the values found earlier by Rapp °
using another optimal depth principle.

It was found that the correlation between the primitive condensated topographic-
isostatic potential coefficients showed a higher correlation with the OSU78 and 81 sets
than did the rigorously computed coefficients derived at Technische Universitdt Graz.
Since this is opposite to what should be expected, the quality of these coefficients
must be in doubt.

Correlation and smoothing

Let us regard the spherical harmonic expansions of two functions with fully nor-
malized coefficients (Cnm’ Snm) and (an, gnm)’ respectively.

The correlation by degree is then

(= - - -
Ocnm Anm M Snm Bnm)
(2(A, B) oZ(C, S)T

n
Z
m=

(1)
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with the degree-variances
Similar phenomena, exposing less reliable coefficients, can be seen when regarding

the smoothing coefficients, Fig. 1 - 9. However, the level of smoothing obtained when

n - -
c;(C, S) = mz-o(cr:m* S;m) (2)

- subtracting the potential of the isostatically compensated topography depends on the

n - - adopted depth of isostatic compensation, D.
ox(A,B) = T (AL +B ) (3)

s The degree-variances obtained from the potential of a topographic expansion with

It is obvious, that the correlation may be high, even if the two sets differ coefficients Anm e Bnm and its isostatic compensation are (Lambeck, 1978, p. 592)

by a scala factor, so the correlation is not necessarily a good measure for an

# .. . . 3p
2 £
agre.ement or disagreement b.etwe,n two sets. In ..act, it is o.f m.ore importance in c;(D) - (S n1+1 . [1- (R_D ) ¥ o2 (A,B) (s)
physicai geodesy to know which degree of smoothing we obtain, if we subtract one P 2 ) R N

set from the other.
A measure for the smoothing per degree is

g ((A._-C_ ) +(B__-S ) where Pe is the average crustal density, p the average Earth density and R the mean
m-0 n nm nm

Sn = ":-J‘(A, B) oo (4) Earth radius. The square-root of this equation gives basically the relation between the
o individual coefficients.
The correlation between various potential coefficient sets are shown in Table 1. This has been used by Rapp (1982) in order to find compensation depths, so that
Here OSU78 is described in Rapp (1978), OSU81 in Rapp (1981), GEM10C in Lerch
et.al.(1981), "rock eq" in Rapp (1982) and "topiso" in Grasegger and Wotruba (1983). dnz(D) x o2 (c, s),

We should naturally expect a very strong correlation between the coefficient sets
for the spherical harmonic representation of the gravity potential, W, since the expan- (where the Cnm ) Snm set was the OSUS1 set).
sions have be computed using very much the same data. But this is not the case. The result was rather large depths of 50km. However, if we instead suppose that
OSU78 and 81 seems to be in agreement, but GEM10C shows little correlation with the the optimal depth is attained where the smoothing is largest, then the results in Fig. 10
two OSU sets for n > 40. and 11 are obtained. Here more realistic depths of between 15 and 30km are obtained
We would also expect that a good gravity potential coefficient set should show for N > 15. In general the estimated values will be too smalil, due to the large noise
a strong correlation with the expansion of the potential of the topography. This is in both coefficient sets. (The depths were found by linearising eq. (5) and solving for
clearly the case for the two OSU sets, but the topography and GEM10C shows very little D in a least-squares adjustment with one unknown).
correlation by degree. From this one may conclude, that the intermediate wavelength In general it is surprising to see that the smoothing coefficients are close to or
(40 < n <120) information in the two OSU sets is the most reliable. For the very long larger than 1, indicating no smoothing. This is reflected in the results given in Table 2,
wavelength coefficients, we know that GEM10C is identical to GEM10B, which has given which show the variation of the geoid undulations and gravity anomalies before and after
excellent results for all types of orbit computations (S. Klosko, private communication)). the subtraction of the potential of the isostatically compensated, but condensed, topo-

Furthermore, it is interesting to see that the in principle rigorously computed graphy.

coefficients of the isostatic reduction potential show less correlation with the OSU78
and 81 sets, than the coefficients computed based on the attraction of a condensated
topography. It may therefore:be suspected that the former set of coefficients contain

numerical errors. That this is possible has been admitted by our Austrian colleagues

SET

(Stnkel, 1984, private communication).
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3. Conclusion Table 1. Correlations between sets of potential coefficiergs for varying degree, n, in % 3o

w
The analysis of the correlation between various sets of potential coefficients Coeff. OSU78 OSU78 OSU78 OSUS1 GEMI0C OSU78 OSUS81 topiso o
or expansions of the potential of the topography shows unexpected low values and also |S€t n OSU81 GEMI10C topiso topiso topiso rockeq rockeq  rockeq
large variations in the values as a function of the degree. This points at some sets
. . 2 100 100 - 44 -43 -43 44 43 99
as being of lesser quality than others. 4 100 100 45 46 30 47 47 99
6 100 100 34 33 32 46 45 97
The variation of the smoothness coefficients as a function of adopted depth of 8 99 98 43 42 37 36 34 96
compensation shows that it may be useful to use varying depths of compensation for 10 97 94 65 68 68 66 68 97
varying degree. However, the smoothing achieved by subtracting the effect of the 12 97 92 2 4 8 2 8 94
topography (to degree and order 180) is very small for the geoid and also rather small| 14 91 79 55 56 52 54 60 94
£ . li This is i 1 brained in 1 1 h 16 91 84 47 52 45 50 60 96
or gravity anomalies. 1S 1S 1n contrast to results obtalne In local areas, where a 18 92 78 65 66 59 55 59 93
25% smoothing generally is obtained by subtracting local topographic effects. 20 90 75 53 56 48 57 62 91
22 90 78 51 46 42 49 49 91
24 91 81 62 53 39 61 52 93
26 89 67 64 68 59 61 67 95
28 89 75 61 60 50 70 67 92
30 86 55 59 59 28 59 62 95
35 91 65 60 61 38 57 56 91
References 40 92 72 59 62 47 58 64 91
45 93 77 60 63 47 61 63 90
50 95 85 58 64 52 54 59 88
; 55 95 78 58 57 49 58 57 88
Grasegger, J. and M.Wotruba: Geoidbestimming, Berechnung an der
TU Graz, 1. Teil. In: Das Geoid in Oesterreich, pp. 117-124, 2(; gz ;3 (55; gg 22 gf g; gz
Geod. Arb. Oesterreichs Int. Erdmessung, Neue Folge, Band III, 1983. 70 95 70 0 62 44 sg 61 85
Lambeck,K.: Methods and geophysical applications of satellite geodesy. gg gi gg ‘;g ;g ‘212 gg gg ;g
Reports on Progress in Physics, Vol. 42, pp. 547-628, 1979.
. 85 91 65 44 46 34 50 50 78
Lerch, F.J., B.Putney, S.Klosko and C.Wagner: Goddard Earth Models for 90 91 53 35 37 28 47 50 75
Oceanographic Applications (GEM 10B and 10C). Marine Geodesy, Vol. 5, 95 91 52 51 59 38 52 58 74
pp. 145-187, 1981. 100 90 49 50 48 31 50 54 66
. . . 105 92 49 56 57 39 60 62 73
Rapp, R.H.: A Global 1 deg. x 1 deg. Anomaly Field Combining Satellite,
Geos-3 Altimeter and Terrestrial Data. Dep. of Geodetic Science Report 110 91 50 53 53 31 60 60 73
No. 278, The Ohio State University, Columbus, Ohio, 1978. 115 91 55 43 43 24 50 50 60
120 91 45 46 50 24 50 57 72
Rapp, R.H.: The Earth's gravity field to degree and order 180 using 125 90 39 56 54 20 58 57 66
SEASAT altimeter data, terrestrial gravity data, and other data. 130 88 36 41 42 20 49 54 58
Reports of the Department of Geodetic Science and Surveying No. 322, 135 86 30 33 42 2 47 49 57
The Ohio State University, Columbus, Ohio 1981. 140 87 27 47 49 9 55 56 62
145 86 19 35 36 6 49 47 57
Rapp, R.H.: Degree variances of the Earth's potential, topography 150 82 30 36 42 7 40 52 49
and its isostatic compensation. Bulletin Geodesique, Vol. 56, No. 2, 155 83 19 34 33 6 41 41 55
pp. 84-94, 1982,
160 80 10 31 32 6 46 50 51
165 86 6 37 38 3 56 52 57
170 83 12 26 24 0 40 44 48
Table 2 - page 143 175 84 6 31 33 -3 47 52 43
176 80 5 28 30 10 39 42 52
178 80 9 43 43 1 45 48 56
179 81 5 43 45 0 48 54 56
180 82 7 32 41 8 40 48 55
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Fig 1. Smoothness coefficients Sn based on coefficients {Anm’ Bnm} =

{osvu 81} and {cnm, snm} = {0SU 78}. Note the jump at degree 30
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Table 2. Mean sq. variation of geoid heights and gravity anomalies from various

sets of potential coefficients complete to degree and order 180, or Polar Motion Between 1900.0 and 1984.0 as Determined

computed from differences between such sets.
by Different Technigues”

Coefficient set Mean square variation derived from
(1) (2) set (2) set (1) ~ set (2)
Geoid Gravity Geoid Gravity by
mx*2 mgal**2  ar*2  mgalx*2
OSU1978  none 9159  551.6 3. Vonarék?)
top.-iso., D=30 15.4 125.4 933.9 441.1
rock eq., D=20 10.5 115.4 925.2 431.8
rock eq., D=25 16.3 167.6 930.8 434.8 SUMMARY
rock eq., D=30 232 226.8 937.7  446.7 -
rock eq., D optimal 110.9 143.6 805.0 408.0 Polar motion between 1900.0 and 1984.0 as determined by
OSU1981 none 9215 sghs classical astrometry (till 1973.0) and the BIH combination
0SU1978 915.9 551.6 3.5 82.0 of classical astrometry and modern techniques (after 1973.0)
top.-iso., D=30 154 1254 938.7 4607 is studied with stress on periods equal to one year and
rock eq., D=20 10.5 114.4 930.0 446.2
rock eq., D optimal 113.1 166.1 808.3 419.7 longer. Carter’s hypothesis on the frequency modulation
of Chandler wobble is supported; non-linear relationship
GEM10C none 920.9 467.6
0SsU1978 915.9 551.6 7.7 307.2 between frequency and amplitude can explain the observed
top.-iso., D=30 15.4 125.4 940.0 445.7 phase shifts with rms erxror ¥ 16°. Westward secular drift
top.iso.  rock eq., D=30 0 925 of the mean pole (0.00329"/y in the direction 7892 W) is
confirmed, being present also in modern data. The most

probable period of Markowitz wobble is found to be 27.5y
The set rock eq.. is the coefficients of the potential of the rock-equivalent topo-
graphy, condensed, and with its isostatic compensation at the depth D. D optimal but its real existence is highly improbable; it is not
means that the different compensation depths have been used for different degrees,

so that the best agreement with the coefficient set (1) was obtained. present after 1962.0, when more re'iable data are available.

1 This paper is in print with the Buropean geophysical
journal Annales Geophysicae

2) Astronomical Institute of the Czechoslovak Academy of
Sciences, Budedskd 6, 120 23 Praha 2, Czechoslovakia
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On the Comparison and Choice between the Formulas of the Earth Tiddl

Correction in Astronomical Time and Latitude Observation

Xia Jiongyu

‘(Institute of Geodesy and Geophysics, Academia Sinica)

Abstract

This paper has given three formulas of the earth tidal correction
in astronomical time and latitude observations. And it has also compared
and calculated two of them, i.e. the formulas (2) and (3). The main
conclusions are as follow:
1. The Wahr formula is more complete than the other\in theory and is
suitable for calculating the correction of each single wave.
2. The equilibrium tidal formula is fit for calculating the correction
aof all tidal waves. The maximum errors in the equation (2) in this
article are t 0°.00002 for time and + 0".0003 for latitude respectively,

. which satisfy the present requirement of 0",001,

3. The calculation of 11 main tidal waves shows that the earth tidal
correction in astronomical time and latitude observation is not the
same as the ocean tidal one, in which the sevéral main waves are only
needed, It is necessary for the earth tidal correction to calculate
as much as possible waves. Therefore the equilibriuvm tidal formula
may more suitable in pragtice.
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On the Comparison and Choice between the Formulas of the Earth Tidal
Correction in Astronomical Time and Latitude Observation

1) Introduction

With the improvement of astronomical observation and the development of
theory of the earth rotation, the earth tidal effects on astronomical
observation should be considered. BIH has corrected the lunar tidal
effects on the classical results since 19711“J In 1978, we proposed a
formula for correcting astronommcal time and latitude observations due
to the change in the local vertical by the earth tides 2181 Our formula
has been used for reducing astronomical observations in China during
MERIT main campaign. In 1981, J. Wahr also gave a formula for correcting
colatitude and longitude when he investigated the earth tide for a
elastic, oceanless, elliptical and rotating earth!*J The Wahr formula
may be adopted in reducing classical astronomical observations during
MERIT main campaign by IPiisJS5] This paper has compared these formulas
theoretically and choiced the one which may be the most suitable in
practice.

11) The Formulas

Due to the change in vertical by earth tides there are three formulas
yet used for calculating the effects of the vertical change on the
observed time latitude results.
1. BIH formula

In the annual report of BIH for 1971, adopting directly the results
obtained by B. Guinot, who had analysed BIH data, a group of formulas for
correction to time observations due to the change in the vertical by the
moon were given. Actually the following formula has been adopted since
1972 by BIH.

2P==000866A(1.0045 +0. ,Mcosg«)[(/—jslh‘Sd)SM{p —2¢05 2051028 cost
+5Sin2¢p cos*§gcos2t ] (1)
au=-000/ 15467 A(1.0045 "0-/"5‘0520‘)’:'79” sin zgasf'n t +cos*3qSin2t]

where ,Saand t are the mean anomaly, declination and hour angle of
the moon respectively. A =1+k-1, in which k and 1 are Love numbers,
here the adopted value of 1+k-1 is 1.20.
2. Our Formula

In 1978, we had proposed a formula based on the equilibrium tidal
theory for standard spherical rigid earth.

de=1, (—,%‘é)‘%’1 7y (—,‘:)j Cosf; Sing; cosAj + /s (-,%Le])b, (-,E’):L(nas’(], -1)Sind, CeshA

3 . 20 e \¥m 2y Vel Co
QS‘Pduzﬂl(T%)j%,zCJ (-,-C;)J- C°534' S‘mgd' Smﬁj */13(‘%;)0’,(7},35053. ')5‘03 1SinAi
where j=1,2 denotes the moon and the sun respectively.@%% =0,998332+
0.001668 coS29® is the ratio of the geocentric distance "and the equatorial
radius at geographical latitude ¢, (5{)‘ is the ratio of the mean dis-
tance and the instantaneous one from the” tidal generating celestial

body j to the earth. §; and A; are the zenith distance and azimuth of

the celestial body j respectively. ,, and ,; are the co-Love numbers
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for the second degree and the third degree respectively. a., b,, c;and g,
are the constants relating to the mass of the celetial bod& J and earth
as well as R and 5 C. Here a, =g".034768,a;=0.“015967, b, =0".000288,
¢, =0%. 0023185 ¢,=0°.001064, d,=0". 000019.
3. Wahr Formula

In 1981 J. Wahr gave a formula for correcting astronomical co-latitude
and longitude due to the change in vertical by earth tides.

§6=r@ My ¥ LLATO Ao Yy HLATI Qo+ AT 25k Y+ AT Vo )
5in® SN=RgHp (P LONG0 225 Vg +LONG | 3o Tpon* LONGZ O ') ]

where A and A are co-latitude and eastward longitude. VQ&QPre spherical
harmonics. R()1s the geocentric distance of a observed point, R(g)=rs~
Ser(3ws¥®4), r,=6371km is the mean radius of the earth. e =0,00334 is
the earth's ellipticity. HT represent? the frquency-dependent tidal
potential amplitudes in meters observed at the equator directly adopted
from reference[7] and [8)] . The scalars LATN, LAT1, LAT2, LAT3, LONGR,
LONGI, and LONG2 are dimensionless factors and in general are frequency
dependent,

(3)

111) Comparisons

1. In Principles

Based on the equilibrium theory the formulas (1) and (2) are derived
from the changes in vertical due to the earth tides. In the formula (1)
the moon upto 2 degree is only considered, and the ratio of the mean
distance from the moon to the earth and the instantaneous one containsonly
tosde . But the formula (2) includes all the termsfor the moon upto 3 degree
and for the sun upto 2 degree. Although the formula (3) is also derived
from the change in vertical due to the earth tides, it is based on the
Wahr's model, i.e. a elastic, elliptical, oceanless and rotating earth.
In his theory the tidal generating force is expressed the sum of the
spherical harmonics, therefore the formula (3) can directly calculate
the amplitude of the variations of co-latitude and longitude for each
single tidal wave. And the dimenionless factors are in general frequency
dependent.
2. In Calculating Methods

Since the formulas (1) and (2) both are based on the equilibrium tidal
theory, the calculating proccecdure of them are also the same., Thus the
comparisons between the formulas (2) and (3) have only been done below.
The formula (3) originally gives the amplitude of the changes in
co-latitude and longitude caused by the corresponding tidal waves.,
For the convenience of the comparison the time factor eW should be
added. Morever the formulas (2) and (3) are developed into the zonal
term, diurnal term and semi-diurnal one.
i. 1=2, m=0 (zonal term)

In this case the values of each dimensionless factor is not frequency-
dependent, so the formula (3) for zonal term becomes

2
$620="Tie)( 116441 5026 - 000188 Sin 49 =0.00020 IO T H (w;) o5 L0;
87\2,0 =0 o)

Also for zonal term the formula (2) is
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d6,0 =4, (Re) _,lfa ( )J‘J(B%‘a;-t)s;'nzgp

C{UJ,o =0
ii. 1=2, m=1 (diurnal term)

In the case each dimensionless factor is frequency-dependent, the
formula (3) becomes

80:2,1 = ey

(5)

~02360ULAT I (co3 40 + €05 26)

(6)
-ZA T2 (0.007755 0520+0.484773) =038 JLAT3) Sen i)
2
SA 2,1 = ﬁL(ogT ?[H (wi)(~0.77285LONG O —0. 3454 740/*/@2)0?9&:::»;]

The corresponding formula derived from (2) diurnal term is
3
dlﬁz,l —Az(Re)‘u3 (_') S—MZEJ cost JZCOSlP (
" T
dua =-MalFe) 5 ijfF'y Sin 28 Sty ] 24 )

i1i. 1=2, m=2 (semi-diurnal term)
Like the zonal term each dimensionless is not frequency-dependent,
the formula derived from (3) for this term is

. Al
Sez,z = ',-?'f,‘j (-0.66838 5 26+0.0011 75 £B) f"/('wc ) coe W,
2
B = ey 0.93742 F H (Wi)Sin s (8)

The corresponding formula derived (2) is

dsp =M rﬁ;y‘i [o; () cos’sj cos st ISim2gp
dUz,z—"/] (Re ~I1 ( )Co.s sz’éj

From the formula (4) to (9) it seems that the formula originally

derived from the formula (3) contain more terms than those derived from

the formula (2), The additional term can be regarded as the modified

term caused from Wahr model. According to Wahr's theory, LATO and LONGO

are corresponding to -(14+k-1) for 2 degree. The others scalars are

small quantities, the values of which are between -0.008 to 0.005. Thus
their effects can be neglected. The Tablelgives the modified amplitudes

of the variations of latitude and time for main tidal waves at observato:ries
in China. The maximum modified amplitudes are 0".00048 for latitude

and 0°.000001 for time respectively.

As we mentioned above, the formula (3) is suitable for calculating
the corrections of single wave. And the adopted dimensionless factors
are sometime variated with the frequency of the wave. In contrast with
the formula (%), the formula (2) contains all term for the moon upto ¢3
degree and the sun upto 2 degree and adopts in general the same values
of 1+k-1 for the all tidal waves in the same degree.

(9)
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3. Comparisons with Results

In referencel8) the maximum errors of ghe formula (2) were estimated,
which are * 0",0003 for latitude and * 0 .00002 for time respectively.

In order to know the differences between the calculated gorrections
obtained by the formulas (2) and (3), several calculation hawd been
finished in the year of 1983 at Vuchang Time Observatory. In calculations
/Ay =1.2148 and LATO, LAT1, LAT2, LAT3, LONGD, LONG1 and LONG2 are directly
taken from reference[4] The results are compared as follows:
i. By using the formula (6), %62,1and §A,,, included 22 main diurnal waves,
have been calculated. And.dvbdeuuiduL.according to the formula (7) have
been calculated for all tidal waves upto 2 degree. Then the maximum
differences between these at the same epoch may reach 0".0011 for latitude
and 0°.0006 for time respectively. It is obvious that the differences
are caused by the different numbers of the waves and the different values
of the dimensionless factor.
ii,The latitudc .and time corrections for M+S, Mf, K1,01,P1, Q1, Mm,
M2, N2, S2 and K2 have been calculated by using two kind of formulas derived
from the formulas (2) and (3). The maximum differences between the calculated
results for each corresponding wave are listed in Table 2. The adopted
amplitudes of each wave and the differences between /; and LATO, LONGO
used for calculations are listed in Table 2 too. Table 2 shows that
the maximum differences caused by K1 wave can reach 0".00031 for d
and 0°. 0000007 forduand are almost one order larger than the theoretical
modified values listed in Table 1. The main re«son is the different
values of the corresponding dimensionless factors adopted in the calculations,
The maximum differences between the above 11 main waves by the formula
( 3) and the gll waves by the formula (2) may reach O". 0028 for
latitude and 0°. 00021 for time respectively. Both the differences
excess the present requirement of 0", 001.

IV. Conclusions

1. The BIH formula, which the lunar effects are only considered, is fit
for BIH because the solar effects are absorbed in loeal seasonal correction
in BIH reducing method. Although this formula is useful in practice for
BIH, it is not reasonable in conception.

2. The Wahr formula is more complete in theory and fit for calculating for
single wave. It can also consider the frequency-dependent of the scalars.
But it is not convenience even impossible for the large number of waves.
3. Our formula (2), the accuracy of which satisfys the present requirement
of 0", 001, is convenience for all the waves involved. Adopting Doodson's
coefficients for the waves, it can also be used to calculate the tidal
effects on astronomical observations for individual wave, namely the
frequency-dependent of the Love numbers can be considered.

4, As mentioned above, 1t is important how to elect appropriately the
values of Love numbers.

5. According to our point of wview, the earth tidal correction for
astronomical observations, is not the same as the ocean tides, should

need the tidal waves as much as possible. Thus our formula may be more
suitable in practice.

DOI: https://doi.org/10.2312/zipe.1985.081.02



149

Table 1 Modified Amplitudes units:0",00001 (a9

0% . 000001 du)

Tidal Yunnan Wuchang Shanghai sunple Shaanxi Tianjin Beijing.
Waves Mountain

ad@ odu adyp adu e odu edp adu adp odu adp adu 4de adu

M2 0.3 0.0 1.00.0 1,1 0,0 1,3 0,0 1.7 0.0 2.5 0.0 2.6 0.0
s 0,2 0.0 0.5 0,0 0,5 0.0 0.6 0.0 0,8 0,0 1.2 0.0 1,2 0.0
N2> 0.1 0,0 0.2 0.0 0,2 0.0 0.2 0.0 0,3 0,0 0.5 0.0 0.5 0.0
K> 0.0 0.0 0,1 0,0 0.1 0,0 0.2 0,0 0,2 0.0 0,3 0,0 0,3 0.0
K1 4,00.6 3.9 0.8 3.9 0.8 3.9 0.9 3.71.0 3.3 1.1 3,1 1.2
01 2,905 2.80.6 2.8 0.6 2.7 0.6 2,6 0,7 2,3 0.8 2,2 0.8
P1 1.3 0.2 1,303 1.3 0.3 1.3 0.3 1.2 0,3 1.1 0.4 1,0 0.4
Q1 0.6 0.4 0.5 0,1 0.5 0.1 0.5 0.1 0.5 0.1 0.4 0,2 0.4 0,2
Mo+So 2.3 - 3,2 - 33 - 3.4 - 39 - 46 - 4.8 -
Mm 0.3 - 0.4 - 0.4 - 0.4 - 0.4 - 05 - 0,5 -
Mf 0.5 - 07 - 07 - 07 - 0.8 - 1,0 - 1,0 -
Table 2

Tidal H; D, 24P mox. adu,,,, /2-|LATo| A,-|LONGo|
Waves  (m) (0".00001) (0°,000001)

M2  0.63189 0,90812 4 3 0.0072  0.0012

S2  0.29400 0.42286 1 1 0.0022  0,0012

N2  0,12099 0,17387 1 1 0.0022  0.0012

K2  0,07996 0.11506 0 1 0.0022  0,0012

K1 0.36878 -0.,53050 31 7 0.0478  0,0488

01  -0.26221 0,37689 8 3 0.0038  0.0048

Pl -0.12203 0.17554 4 2 0.0148  0,0158

Q1 -0.05020 0.07216 2 1 0.0028  0.0038
Mo+So -0.31455 0,73869 1 = 0.0002 ®

Mmn -0.03158 0.08254 0 = 0.0002 -

Mf  -0.06663 0,15642 0 = 0.0002 -
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0B YUYKTE BUMHHNAR T'OPM3OHTANLHWX [LPhMElRHAA :
JATOCREPHEX [LUMT 1P OBPABUTHE HASEHA B Summary

TUOBAIEHOR CETH I'SOMAAMAYACKAX CTAHLMM (HA
[IPYMEPE, ['EOCC-PEA)

Ya.S.Yatskiv, N.T.Mironov
On reducing the effect of horizontal displacements of the
#H.C.dukus, H.T.MupoHOB lithospheric plates from the observations carried out by

global geodynamic network (on example the GEOSS-REA network).
lnapHas acTpoHoMuueckas of6cepBaTopua AH YCCP

On the base of plate tectonic model RM2 by Minster and Jordan [ﬁ]
Pe D Me the displacements of the lithospheric plates relative to the

EURA-plate are calculated. This modified relative model is cal-

LIM M
Ha ocHOBe MOReIM TERTOHKEM T K/M2, npeproxentoll Mucrepou led RM2-REA. Relative changes of angular distances between the

N /XDEAAON, OHPSASAGHN ERHCMATUGSUMUS DRpUMBTLH. IRENCHUA ITo— stations predicted by means of the RM2-REA model are compared

CPePHHX IAMT OTHOCUTENLHO BPOIUATCKOA MIMTH (o, huriupoe y with the observational data (BIH data and Doppler satellite data
mopenb KMZ-REA) . for the periods 1968-1982 and 1973-1983 respectively).

Bunoxreso cpaBHeHWe TEOPETWUECKM MpefLBLuMCae L B It is shown that the RM2-REA model does not contradict to the

AeRM: MAMCROHM, YHIGREX pacerodill MCKDY ZOURBME SOMAOA NoRepKHOCS observations and could be used for the reduction purpose.
TH C [AHHHMK ACTPOHOMMUECKHMX MW [OIJIepoBCEMX HaGapfeHuii. [lokasaHo,

4TO MOAeNb KAMZ2-REA He NPOTUBOPEUMT AAHHHM HaGIOAEHWII M MOXET

MCNOJIb30BATbCA B KaueCTBe HAU&IbHOI'O NPHOIMEEHUA NPH YTOYHEHMM

MOJICIM MIMHOBEHHOH KMHEMATMKM AMTOCHEpHHX IUIMT M yyeTa I'OPM30HTalb-

HHX cMeueHHi craduui B ceru ['tOCC-PEA.
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I.BoeybEHUE

[locTpoeHre MI'HOBEHHOM KHHEMATKUECKON MOJeNH ABWXEHHS IMTOChHep—

HHX IIMT 3aHMMaeT LEHTDalbHOE MECTO B COBPEMEHHOH TEKTOHHMKE IMT.

JTO OGYyCJOBJIEHO, C OAHOA CTOPOHH, TEM, UTO A0 CMX NODP HE YCTaHOB-

JleH MeX8HM3M TEKTRHMKM IUIMT. C Apyro#i CTOPOHH, NEpPEeMEmEeHHs JKTO-

cpepHHX IMIKT BHCTYNaeT B POJM wIOMEX" mpu o6paboTke HaGlAEHHi

B CETH ONOpHHX I'E€OAMHAMHUYECKHMX CTaHLUi, NpefHa3HAUEHHO# AIsA ycTa-

HOBIEHMs 3EMHOM CMCTEMH KOOPAMHAT, ONpeflesieHMsA NapaMeTpoB BpameHMs

SewIn M T.0.

B nocnegHue roan ofmee NMPU3HAHME MOJYUMJIH MOAEAM aGCOJOTHHX
M OTHOCMTENbHHX NepeMemeHMii [UIMT, NOCTpOoeHHHe MuHCTepoM M uxOpLa-

HoM / I /. BAIM DpeAnpMHATH MHOTOUMCIEHHHE NONETKM NPOBEPKM DTHX

Mojlellef MO JaHHNM HaGINJAEHHH, & TaKKe He3aBUCHMOI'O onpejeleHHs

EMHEMATHYECKMX NapaMeTpOB ABMEEHMA JUTOChepHHX maut / 2-4 /.
HccnepopaHnsa KMHEMaTHEM ILIMT HATAIKWBANTCA Ha 3HauUMTElbHHE

TPYAHOCTH, OCYCAOBJIEHHHE CJIEAYyDUMMH OGCTOATENbCTBAMH :

(I) mpM MOCTPOEHMM CYymMECTBYDIQMX MOJENe} KMHEMATHKM ILUIMT IpeiMy-—
MeCTBEHHO MCNOJb30B&IMCh I'eO0PU3MUECKME CBEJOHHA O [ABMESHMIX
BOJIM3M I'paHMl JUTOCHOpHHX IUIMT, I'ie MOI'yT NPOMCXOAMTH 3HaUM-
TeNbHHE JOKaJbHHE JepopMauuu. B TO Xe BpeMA CTaHI|MM, BEAyQME
BHCOKOTOUHEE aCTPOHOMHMUBCKH® M I'e0jile3MUeckue HalJibieHuA, pac-—

TNOJIOXKGHH , K&K INpaBMJO, BA&IKM OT TaKMX I'DaHMl],

(R) ana noayyeHus Colee MeHee HaJIeXHHX OL[EHOK CKOpPOCTeH NepeMeme-
HMJi NIMT NPUMEHAETCA OCPEJHEHHWEe [BMECHHH# 38 MHOI'ME MMWIIMOHH
JeT. BosHMEKaeT BONPOC O COOTBETCTBHH TAKOI'0 wOCpPEAHEHHOro"

JABHEEHHI X COBDEMEHHHX MIHOBEHHHX MNEpEeMemMeHMi ILIAT;

(3) apperTmBHHE riaoGanbHhHe MOAENM TEKTOHMKM ILIMT MOI'yT BKIDYATh

OI' PAHMYEHHO® WHCJIO [o]e3:9% 100 JIKTOC@GPHHX NINT, OTHOCHTEAbHHE

ABHECHMA KOTOPMX C HEEOTOPOW TOWHOCTBD ONHCHBADT ABMEGHKE
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BCEH 3eMHOJ MOBEPXHOCTH. Ha camoM mele aurocpepa pa3bura Ha
3HAUMTENBHO GOJIbMOE UMCIO MEJKMX IUIMT, NepeMemeHMs KOTOPHX MO-

IyT CyNECTBEHHO OTAHUATBCA OT DJOGAIbHHX ;

(4) B GOXBUMHCTBE PadOT IS NMpPOBEPKH MOfjeNeff KMHEMAaTHMKH IUIMT MC—
NOAb30OBAIKHCD JaHHHE 00 MSMEHEHUAX KOOpAMHAT TOUeK 3EMHOM Io-
BEPXHOCTH, KOTOPHE 38BHCAT OT CTaCWIbHOCTH MDHHATON CHCTEME
oTcuera, yuera BEKOBOI'O JBMEEHMA MNolica M APYTHX CHCTEMaTHye-

cknx 3gpexToB. /3MepeHMsA YIJIOBHX PACCTOAHMA MOy CTAHUMAMY
HaGlnOeHU#, AINH XOpL ¥ 6asMCOB NPaKTHMUECKH He MCHNOJb30BalHCh
JUIA 9TOM LeJu. YTOGH NpeoioleTh ITH TPYAHOCTH OHAM NpeloXeHu
NPOEKTH NOCTPOEHUA I'IOGalbHHX CETel CTaHLMA C LieJbo HajieEHOro
OGHapyXEHUsI COBPEMEHHHX I'OPM3OHTalbHHX nepeMemeHu# muur / 5,6 /.
My npelnpuHAA¥ HOBYD NONNTKY CPABHEHMA CYMECTBYDHEH MOAEIH

KMHEMATHKM MUIHT ARAM 2 C JaHHEMM HaGJIeHMH C LieNbl BHSACHEHMA ee
NPUIOJHOCTH ANA yueTa BIMAHMS JABMEEHUS ILIMT Np¥ o0pafoTke HaGlo-—

JIECHHA B CETH ONOPHHX IeodMHaMuueckux cTaHuui ['HUCC-PEA. ora ceTb,

oxpaTHBabmes BocTouHyo kBpomy M A3mo, BKINYaeT B celA Takxe He-

CKOABKO CTaHLMK, pacnoloXeHHHX Ha CeBepo-AMEpMKAHCKOH M JADYTMX

nIuTax. HaGumoeHMs 3THX M JONOJIHHUTENbHHX CTaHLMKA, GYyAyudM NpuBe-—

JeHHHM! B ©[MHYD CHCTEMy C €BP@3MATCKAMHM CTAHLMAMM, JIOJIXHW odec-

neuxBaTh Jyullyd ofyCAOBIEHHOCTb CMCTEM YDaBHEHHMH M pasfelieHue He-

H3BeCTHHX (mapaMeTph BpameHHA 3eMJi, SIEMEHTH OPOMTH M Ap.).

2. NOUMDUHALI KMHENATVUECKUA MOARIM RM 2

Mopenb OTHOCHTENbHOI'O ABMEEHMS IMTOCPEpPHHX ILIMT RM2Z , NO-
CTpPOEHHas MMHCTEpPOM M JXODA&HOM Ha OCHOBE TMATEJbHO OTOGpaHHOIo
HabJmiaTelbHOI'0 MaTepuala, [03BOAAET 3JEMEHTApPHHM IIyTEM DacCuM-

THBATb JHHEAHYO CKOPOCTb OTHOCHTEAbHOI'O IBMEEHHUs AJIA NPOM3BOJbHOMH
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TOUKM pacCMaTpMBaeMHX IUIAT. Tak KaKk Hac MHTEepecylT NepeMemeHMs ILMT [lpoponxenue Tada.I o
OTHOCHTeabHO Eppasuu, TO Ha OCHOBE RM2Z HaMu OHJ& IOCTPOEHa MO- 5 S P
IMPULMPOBAHHAA KMHEMaTHUEeCKas Mofenb RM2- REA  (cM. Tadxn.I). I : 2 : 3 ; 4 ; 5 ; 6 3 7
[lpy aroM lppasuMaTckas MIAKTa CUMTANAcCh HENOABMEHON, & OTHOCHTEIbHOE -60.64 3.07 I0I1.07 I1.30 0.977 0.02<
nepeMemeHKe OCTalbHHX IUIHT MO CPepHuecKoi 3emie ONMUCHBAIOCh TpeMA ~78.47 16.01 1I5.7v 18.69 0.288 0.012
napaMeTpaMd — KOOPAMHAaTH Noioca BpameHua MT ( P A ) U ee
yrJoBas ckopocth JU . . lipumeuanue: [IpMHATO, UTO MIMTH BpamamTCA OTHOCHTEAbHO EUVURA
B rab6auye I ¥ noclefyomuX TaGiHUaX NPUHATH COKpalleHHHEe aHI'- IPOTHB YaCOBOK CTPEIKH.
JMHACKHE OCOSHAUEHHA OCHOBHHX JUTOCPEpHHX ILIAT: LBpasuarckaa (EURA), :
TuxookeaHckasa ( PCFc ), Cepepo-AmepuraHckags ( NOAM ), KxHo- 3. 3ABUCKMMOCTDL MEMYY HABIQUARMuNIA Brlid4itiAdd 1
AmepuraHckaa ( SOAM ), AppukaHckaa ( AFRC ), HHpuitickas (IND1L), HUHEATYMECUL APAUKTPAMM [UMT
AHTapkTHueckaa ( AMTA ), Hokoc ( €Oco ), Hacka (MAZc ), Kapuo-
ckags ( CARB ) y Apauitckag ( ARAR). HAEACTBATEAbHHMY WIX QUKTHBHHMM HaCJDAAeMHMM BEIMUMHAMHM, XapaK-
Tadmuua I TEPU3YDTHMHA MSMEHEHHS NOJOXEHHH TOUEK 3EMHOJ NOBEPXHOCTH, SABIADT-
MoaupuumposaHHas Mogenb RM2 ( RM2 - REA ) CA MSMEHeHMA reorpapuuecKux WIM NPAMOYTOJbHHX IEOLEHTPUUECKMX KO-
Bpgmum: ¢ , A , S HSA B OpAMHAT CTaHUM} HaGIRIEHWH, YIAOBHX DPACCTOAHMH MeXLy CTAHIJMAMH,
rpapycax JUIKH XOpA M GasSHCOB, COEAMHADIMX pacCMaTpHBaEMHE CTaHUWK Hadamue-

A udns 115 a1/ron .
S P Hui. IlycTb {ﬂm- . /Lg,j - reorpapuueckue KOOpAMHATH ¢ -OK CTaH-

: ; ; 1 f : UMM, DaCNONOKEHHOH Ha K —Off MIHTe; (Pi s Ak s Lk - KUHEMATH-
Do éq, I Ak { 3. 12 « | Sqa uecKHe NapeMeTpd MIKTH. B / 2,5/ npupefieHs GOpMyiH, CBAWBADIHE
' .
1 2 3 4 5 7 v WSMEHEHUS KOODAMHAT ¢ —Oft TOUKM Sa eMHMIly BpeMeHH a4 T (mug

AFRC 25.17 5.69 338.80 1.71 0.104 0.0I3 yAoScTea npuMeM A7 = ]); C KHHEMATHYECKMMH HapaMETpaMH K —Oj
ANTA 16.27 10.71  109.03 3.41 0.070 0.003 TS
ARAB 29.82 S5.00 358.33 9.48 0.397 0.037
CARB -40.98 28.24 88.33 19.25 0.136 0.044 aAke = M S Pu - S <cos Py COS(/\K-/(*{")‘?%,L
Ccoco 21.83 I.56 242.66 2.05 I1.424 0.030
INDI 19.71 0.96 38.45 1.58 0.698 0.0I5
NAzZC 48.75 6.60 260.84 3.93 0.977 0.037
No AmM  _65.04 13.06 3IR.48 1.31 0.c31 0.016

29k, =~ fUi cos Pu Sin (Ax-Aw i)

AHanoruurne QOpMyJH MOryT OHTb SalMCaHH M IS MSMEHEHHH NPAMOYI'0Jdb—
HHX KOODAMHAT A, , ajm' U 4 Z4. . llpusuMas Bo BHWMAHHMe,

YTO BEKTOP BPAMEHMA & —Oif MIMTH OTHOCHTENbHO <€ -OH MIMTH paBeH
jzu =7L.<- J—Z:, JIeKO HaxOjMuM COOTHOMEHMA JUIA K3MEHeHKHK yrJonamkt

PacCTOAHHUH 4 S{/' MexXiy CT&HLMEMM HaGIDIEHHH.
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ASr‘j = ‘r‘L"e [sin @recos Pieos @ sin(A-Aj) — (2)
sin 5{/_ cos dr.e sin fi oS ¢ sin (AK.C"J{j)f-
+ cos dre cos PLsin®) sin (A e-AY)
re Sin Si; =5in Jarcees [5in $isin 6'1"(05%‘(01’}"‘2’(1{‘" /)}}

0 < S5 <I80°.
HsMeHeHMA 4 S/, MOXHO TakEe BHPaSUTb Uepe3 MSMEeHeHMs reorpajude-
CKMX MAM NPAMOYI'OJABHHX IEOLEHTPHUECKHX KOOPAMHAT pacCMaTpHBaEMHX
ToyeK 3eMiu. 38BUCHMOCTD M3MEHEHMA [UIMH XOPA, COCRHHADMMX ¢ =YD

 § / -=Y0 CTaHIKH, OT KHMHEMaTHYEeCKEX apameTpoB OTHOCHTEIbHOI'O

JBMECHHE JBYX LEMT MMeeT BMA:

.- c 2. .- Xy e Srnn Nl +
ady = (X[ F 2,%;) STk, oS Px

(3)
+ (x) (‘7{‘: _I"#J') SLwe 5in@re +

s C20Yj - ¢i2)) Sue cosPxecos nue

Ho padruM Tabx.l ¥ gopmysam (I-3) XIEerko MOJYUHTH TEOPETHUUECKH
NpeABNAUCIECHHHE W3MEHEHHA KOOpAMHAT CTaHUMR, yIJIOBHX pPaACCTOAHMMH
MeXy CTAHUMSMA U XOPH.

CpaBH#Bas HaOADLeHHe SHaueHHA 4 ¥ ° sa° as°uad”’ ¢
TEOPETHUECKH NPEJAENUMCIECHHEMA HA OCHOBAHHYM KMHEMATHUECKOH MOAENH
TEKTOHHKM ILIMT, MOKHO CYAMTb O NPUIPOAHOCTH MOAENHM AN ONMCaHHKA
COBDEMEHHHX [BMEEHWH [LDAT M, B NpPHHUMNE, YTOUHHTH KMHEMATUUECBHE

napameTpd ILIMT.

4. XAPAKTEPMCTMHA HABUQUATENbBimX LAHHHX OB
WAMEHFHANA TONOMEHAA TOYEK kM

B kavecTBe MCXOAHOI'0O HEGJIDAAaTEIbHOI'O MaTepuala HHMM BSATH
MSMEHEHHA ACTPOHOMMUECEHX KOOpAMHAT CTaHUME, yUYaCTBOBARIMX B pa-

Gore MBB B I968-I9&R rr., a Takxe BHWMCIEHHHE MO HOILIEPOCKMM Hal-
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aopenuam MC3 aBumenus craHumuit sa 1973-1985 rr. / /. 4Yro kaca-
ercA aCTpPOHOMMUECKHX JaHHNX, TO MH MCHNOIb30B&JIM T.H. KOSPHHUMEHTH
Q , npuHATHe MBB Mia XapaKTEepUCTHKM OTKIOHEHM)H KOODAMHAT CTaHLMMH
oT cucremu MEB 1965 ropa. [IpuMeHsii  pEerpecCHOHHEI aHaJH3 3THX
ko3dpuMEeHTOB, HaMM OHJIM HapJeHH M3MEHEHMA KOOpAMHAT cTaHuui MBB
3a oauH roa. Tak kak Ha KLBpasMaTCKOl [UIMTE HaXOAMTCA GOJBMOE KO-
JUYECTBO CTaHIMA HaCJOAEHWii, OWJINM HaileHH OCpelHEeHHHe N0 GJOoKaM
(pasmepom 30°x30°) MSMeHeHHT KOOpAMHAT aAd® uwaP° . Bee cran-
uuM OHJIM pacnpefieieHH M0 IIMTaM B COOTBETCTBMM C OGWENPUHATHMM
PPaHHLaMH rum-rx) . B Ta6n.2 u 3 npuBeleHH CBelleHMA O MacCHMBax acT-
POHOMMUECKMX M JOILIEPOBCKMX RAHHWX, rae £&7 - cpefsHee 3Haue-

HHUE CpelHEeKBalpaTHUEeCKOl OMMOKH ornpeaesyieHHA CKOPOCTH IepeMemeHus

CTaHLMKM 1O KaEIOJ KOOpAMHATE, BHDE&XEHHOEe B eAMHMLax I'IO6I'pa,11ycos/
ron.
Tadauua <. PacnpeneneHue MaccuBa acTpPOHOMMUECKHX
JAHHHX 10 MIXTaM
1 ! T
Hassanpe : t{o.nuuec-r?o ![ }
! cra "
TUIATH ! GHO%? i ! ( é7d\f '| <é 75/\
| i ]
FEL 5 *0.13 *0.60
NOAM 4 0.50 0.60
SoAM 4 0.34 2.00

Hak BMJOHO M3 Tabl.Z M 3, TOUHOCTH ONpefelieHHA CKOpocTeld MBH-
EEHHWA CTAHMUMI MO [AOIUIEPOBCKMM HalJDIECHUAM NPUMEPHO B TPU pas3a

Enlle N0 CPaBHEHHUD C aCTPOHOMWUUECKHMMHM OINpeficlIeHWAMM 3THX JBUEEHWH.

%) B nepsoM BapuaHTe ANOHCKHME CTAHUMM OHJIM OTHECeHw K Eppasuar-
CKOJ. [UIUTE€, & BO BTOPOM — MCKJIOUEHH MS PaCCMOTpPEHMs.
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Ta6anua 3. PacnpepeseHre MaccuBa [AOILIEPOBCKMX TaGauua 4. Cpeanue SHaUEHHS KBaJpaToB .
J8HHHX 10 TLIATaM BEMUHH A4S/, K (4 Sip—AaS;, D)
H | & | i B H ! ]
aspaHKe OJIHUECTBO ! aspaHKe ! o2 ° < 52
| crammg (un | < &2 ! 2 UIATH | L(as;)e> 1 <(8Sij —a55)° >
T | Gzoxos) | I G ! ‘ i b
EVRA 4 0.15 0.19 NO AM 0.632 0.606
NO AM g 0.23 0.32 So am 3.086 2.982
Sthd 3 0.12 G-1 Ta6nuua 5. CpepriMe 3HaueHHA KBaIpaToB
PcFc 3 0.1I0 0.16 BEJIHUMH A g‘./‘? u(a g‘.j “4557)
llpmeuanne: B orauume or paGotw / <4 / B MHAM{CKYD LIMTY - I
HasBarne H °5\2 1 e < 2
OuJIM BRIDUEHH CTAHMM, pACNOJOXeHHHe Ha $umun- o j <4 Sjle> 1<(ASi;-45; ;072
NMHax ¥ B ABCTp&IMH. ! !
NO AM 0.149 0.150
(0.082) (0.076)

5. CPABHEHNE HABWUEHHHX ¥ THOPETVYECKU IN DI 1.206 0.607
[IPELBHYMCILEHRNX [I0 MOARIA TEKTOHURA [UIAT (0.063) (0.502)
MU3MEHEHUA YTUIOBHX PACCTOAHMA MEMpY :

CTAHMriNiA PCFC 0.300 0.266
(0.097) (0.332)

B Hacrosme# paGoTe MH paccMaTpHBaeM CKOPOCTH M3MEHEHHH yrio- [lpMmenanme: B CKOGKAX YRASAHH SHATCHMS,MNONyqEHHHE

BHX D&CCTOSHHM{ MEELY CTaHUMAMH, KOTOPDHE B OTIHUME OT M3MEHEHH ;
P . Y ? 3 i IO BTOPOM BapHaHTe (CTaHUMA B Mugsycabe

KOODAMHAT HE SaBHCAT OT BHOOpa CHCTEMH KOOPAMHAT M ee CTabWIbHOC- MCKINUEHA) .

LT Kak BumHO 3 Taba.4 M 5, yuer BIMAHWA NEpPEMENEHOH IUMT (@o-

B ) 3
Ta0a.4 ¥ O NpMBEEHH CPEAHHE SHaUEeHMA KBalpaTOB M3MEHEHHi nexb RM2 ) B Goabmuctse Q6B yMEHBIAET SHAUEHHE CPEHETO

YIZOBHX PACCTOSHHME MEXLY CTAHUMAMM JI0 M NOCAe yueTa KHHEMaTHKH KBADATA YTVIOBHX DACCTORHWA MEKLY CTAHLAMM, T.€. MOJSND KHHEMA-

o <
. o A28 - .
e (4 5’/ HaGXmMIeHHNe BeXHuHiH , Sf/ TEOpeTHUeCKH NPEA~ yrypu miur B CpejiHeM He NPOTHBODEUHMT PeSyIbTaTaM COBPEMEHHHX Hal-

JD—
BHUKCJIEHHHE) , HAJleHHHE N0 &CTPOHOMMUECKHM M JOIUIepPOBCKHM Herxd IRLEHK 38 ABMAGHATMA CTAHIH.

AEEHIK | CODTBOACTREHHO . HaMM npeanpHHATA NONHTKE yTOUHEHHA MO YKA3aHHHM Bume HaGioaa-
TENbHHM J8HHHM KMHEMATHUECKME NAapameTps ABMACHHS IUIMT OTHOCHTENb-

HO LkBpasuu (cM. Tabn.o).
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Tagauua 6. llompaBXH K NPHHATHM 3HAUEHHAM KMHEMaTHUECKHMX

naparerpoB (Mogenb RA2Z2 ) ¥ MX OmHUOKM. IJHUTEPATYPA

1. Minster J.B., Jordan T.H., Present-day Plate Motions, JGR,
vol.83%, N B11, 1978.

Hassanne }Hadnn-

NIATH jAsHan

T ] 1

1 1
3(dp) | A ic?(o’A) | oS

! !
NOAM  ASTR 50 X145 +I3I 08 -0.232  0.434

o P o)

Arur M.G. and Mueller I.I. Latitude Observations and the Detec-

e

1
1
!
!

—r—n oo o—f

tion of Continental Drift. Journ.of Geophys.Res., vol.76,N 8,
p.2071-2176, 1971.

Vo AM popP 0 36 59 76 -0.435 0.129

So AM ASTR 86 100 - 74 153 0.4I5 1.167 3. Drewes H. A Geodetic Approach for the Recovery of Global Kine-
|~ DI Do P -22 36 -104 64 0.586 U.491 matic Plate Parameters, Bull.Geod., 56, 1982, p.70-79.

Pc ec Do P -20 10 54 43 0.337 0.296 4. Anderle R.J. and Malyevac C.A. Plate Motions Computed from

Doppler Satellite Observations presented at Symposium 2 of
Epmuumip: nonpaBkM KOOpAMHAT MOJNCA BpameHMsa B Ipajycax,

the XVIII General Assembly of IUGG, Hamburg, 1983.
6
nonpapka yrJioBo# ckopoctd BpameHMs B I°10°rpaa/rom.

5. Drewes H. Design of a Global Geodetic Network for Geodymamics,

U3 nomyyeHHHX Hawmu pesyJbTaTOB MOKHO clejaTh ClelyolMe BHBO-
Proc.of the International Symposium on Geodetic Networks and

iR
I. Momenb xuHEMATMEM NIUT RM 2 B NpaHUUNE MOXET CIYEATb B Ka-

Computations, Munich, 1981. Very§ffentlichungen der Deutschen
Geod¥4tischen Kommission.Reihe B, Heft N 258/11, 1982

YyecTBe HCXOMHOI'0 CTaHAapTa Nnpu 00padoTKe MaGARAEHHH B CETH
6. Geodetic Monitoring of Tectonic Deformation toward a Strategy.

['E0CC-PEA ¥ yTouHeHMM XuHEMaTHUECKHMX NapaMeTpoB.
Panel on Crustal Movement Measurements. Washington,D.C.1981.
2. ACTpPOHOMHUECKHE OIpelielIeHHA CKOpOCTEN [BMXEHMit CTaHLUMii ycTyna-

DT O TOYHOCTH COBpPEMEHHHM JOMJIEPOBCKMM ONpEAeJeHMaM. JX npuB-

JleueHHe JUIg yTOUHEHMA NapaMeTpoB TEKTOHMKHM IUIMT BDPAL JM Lieje-

coof6pasHo.
3. Jig yBEPEHHOrO onpefelleHMA KUHEeMaTHUeCKMX NapaMeTpoB QBUKEHMA

IVIAT HEOOGXOJMMO CYMECTBEHHO MOBHCHUTH TOUHOCTb ONpEAeNEeHUs CKO-

pocTell [IBAREHUs CTaHUWHA HAGJONEHMHt, MX YTJIOBHX DPacCTOAHHHE M

Xopn (OpUMEPHO Ha MOPAMOK M0 CPABHEHMO C MMEDUMMUCH AEHHHMH) .

6at
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TTARIOE JIIPABIEHVE TEONESIM M KAPTOTPARMI ITPU
COBETE MYIHKMCTIPOB CCCP

UEHTPAJIEHH] OPIEHA "SHAXK IOYETA" HAYYHO-UCCIENOBATENECHUL!
VHCTUTYT TEONE3M, ASPOCTLEMIM U KAPTOTPAGHI
mM. 3.H.KPACOBCKOIO

0 IIPIWIVEBHHX TOIIPABKAX B TEONEGMH
M.U.Oprara

IPENCTARIFHO 5-vy MEKIYHAPOIHOMY CUMIOSUIMY
"TEOIESNA 1 QU3UKA SEMII"

Jlureparypa

Groten E. 1981. Reply to M.Ekman's "On the definition of
grevity, remarks on "A remark on M.Heikkinen's paper "On the
Honkasalo term in tidal corrections to gravimetric observa-
tions". Bulletin géodésique, 55, N 2, 169.

Honkasalo T. 1964. On the tidal gravity correction.
Bollettino di geofisica teorica ed applicata, 6, N 21, 34-36,
Marzo.

Zeman Antonin, 1981. Problem Honkasalovy opravy v teorii
vysek. Sbornik referatu z celostatniho seminére, konaného ve
dnech 20-24.10.1980 ve Zvikovském Podhradi, dil I Geofyzikalni
ustav CSAV. Praha. Geofyzika n.p. Brno. Brno, 81-83.
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Pe3iome: Bo BCeX TOUHMHX I'e0ne3UYeCKUX H3MEepeHUSIX IIpE 3a-—
METHUX OPIIMBHHX BIDLAHUAX HEOOXOIMMO IpHBEIEeHHE K ONHOMY MO-—
MEHTY BpPEMEHH WM IOCTOAHHOMY BUIMIHYN npmmBa. OCCyRIEHUe BOI-
poca 06 HACKINYEHURA 3TOIO IIOCTOAHHOT'O BO BPEMEHH IIPAJIABHOTO
BIMAHUA HEOOXOIMMO HadMHATE C aHaum3a OCHOBHHX 3aBHCHMOCTelt
Teopum MosomeHckoro. Ecau mpmnuBHHE 3fdeKT CyIeT HCKIOIEH H3
aHoManuil CHJIM TAXECTH M BOCCTAHORIEH B CBA3M BHCOTH KBa3WI€OH—
Ia X BO3Mymawmero NOTeHIMala, 3TOT 30IeKT He cjelyeT HCKINYATh
U3 Dpe3yJbTAaTOB I'€OMETPHYECKOT'0 HMBEJMpOBaHEA. Bompoc O Hadaie
cueTa BHCOT He CBA3aH C BOOPOCOM O QHUIype CpelHEeI'O YDPOBHA MO-

pA.

Bo mmwmmax Jiyun ¥ CosHna Ha 3eMIp I ee TDaBHTAIMOHHOE
IOoJle MOXHO BHISJMTH WIEHH, KOTOPHE 3aBHCAT OT IEPOTH MecTa U
He 3aBHCAT OT BpeMeHH. lIX Ha3HBawT OOCTOSHEHMM. MoEHO cHHMTarTh,
gro ¢urypa TBepmoif 3eMmm, a He TOJBKO yPOBEHH MODA cdOpMIpO-
B&JICEH IIOL RIMAHNEM JTUX TIEHOB.

Mexnyrapomras reome3WdYecKas acCOoNEallda Ha 3acCelaHHsaX B
KanGeppe B I979 r. OpWHANa DelleHMe O NOJHOM HCKIDYEHMY IpIAEB-
HHX BIESHEE I3 BCEX T'eOle3WIECKUX M3MepeHimd.

OTO pelleHFEe COOTBETCTBYET TPeGOBAHNAM Teopdy (ETypH 3eM—
JII, COTJIAaCHO KOTODO# aHOMaIMZ CILIH TSRECTH IOJIKHH OTDAaEATH
TOJIbKO aHOMAJbHHEe MacCH BHyTpm 3emnx. Torma 3amauy ol ompene-—
JeHEM! aHOMAJBHOX 9acTH 3eMHOTO T'DAaBHTAIMOHHOTO IOJA IO aHOMa-
JMAM CIJIH TSRECTH MOXHO CTABETEH Kak KpaeByD.

Bosmymanmgit moTermman T MOFHO ONDENEJHMTE TakK

T =W-P-U, (1)

Toe W - DOTEeHLWA] CIIH TSRECTH Semmu, BRINYARUE} DOC-
ToAHrHe wieHH P pmammit Jyen n CoxEna, U - NOTEHIEAN CIUMH
TARECTH HODMAIBHOTO (OTCUETHOTO) sJummncomma. llorermman T Gymer
OTpPa%ATh TOJIHKO BIAAHWE 2HOMAJIBHHX MacC BHYTpH 3eMHOt moBepx-
HOCTH, BHe 3TOlt NOBEDXHOCTH NOTeHI@an T OymeT rapmMoEMdYecKoik
dyHKDieli: ymoBNeTBODPAET ypaBHEHHP, HasHBaeMmoMy mMveHem Jlamiaca,
7 Ha GeCKOHEUHOCTZ peryJsapeH (CTpeMATCA K HyJam). Haitmem Temepsb
CBA3b BO3MymMawmero mDoTeHMasa T I BHCOTH KBasHI'€OUHA IPH yueTe
OPAIABHHEX BIAAHWIL.
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MoxHO npepcTaBUTH

W=0,- [gdh, (2)
TIe ‘IDQ - OOTeHIaJ CHIH TAXEeCTA B HCXOIHOM IOYyHKTE CYeTa BH—
corT,
dhW - sireMenTapEOe HEBEJIMPHOE IpEBHNEHFE; KDWBOJHHeMHHit

FHTErpaT NOJXEH CHTH BHYACIEH OT YUOMAHYTOT'O HCXONHOTO LYHKTA
0 mccaexyeMmoit Tourd. Bemromu W, , z dh CozepxaT B
cede noCTOaAHHEHE RMAHES JyEH X CouEma. ComiacHO Teomm Mojo-
IeHCROTO IoJiaraeM

-ggo\h=u(8,He)—uo , (3)
U=U(B, Ho)+ S (4)

rne B - reomesmwecras mmpora. Ilockomeky BacotTa H mHam mop-
MAJBEHM SJUTANCORIOM HE W3BeCTHa, moTeHmEan U  pasJoReH B
pan Teitmopa, mepBH# WIeH copaBa B mociermHelt 3asmcmMocTE onm-
peliefleH pellcHAeM OPEIHIymeI0 yYpAaBHEHWs, ONpeleslTrmer0 HopMa-—
neHyp BHCOTY Hq Hccaemyemo#t TowRE. CmOCOGH pemexas
3TOI'0 YPREHEHHd XOpOmMO OTpadoTaHH. [IDECYTCTBEE B BeJMIWHAX

9 =z dh OWIEEEHX RMAHAA He OPENATCTBYeT DeleHmD, &
06o3HavAeT NONONEEHAe HopMAMEHOE BHCOTH Hg Mo momof BHCO-
TH XCCIeLyeMof TOYKA HaX HODMATEHHM SJUIROCOALOM. ECJHE Beym-
HH § OWIOKATH OO HODMAIIM K STOMy SUMINCOZAY OT €ro Io-
BE[XHOCTH, KOHOH OTPESKOB ¢  0Cpa3ywT OOBEPXHOCTh, Has3-
BaHEYD MOJIOZEHCEAM KBaSHTEOHIOM.
3amMeTEB
ou _ =—7
OH
¥ moicraems 3ammcmMocTE (3) - (5) B ECXOIHOe BHpaxeHHe IO-

regi@ana T, MOXHO HaltTm

T wb Un P (6)
+ -—
STy %
KpaeBoe yCHOBEEe MOKHO OONYIMTEH, IPOIA(DepeHUMpOBaB

(5)
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mcxomHoe Bupaxemme (I) mo BuCOTe
BT = @E —_ EE =5 b_u 2 (7)
BH O dH dH oM

31ecs

oW __
w3’ (8)
BeJIFIUHA %% C HeOOXOEMO# 37IeCh TOUHOCTBD He M3BECTHA X
ONATH MOEET GHTEH BHpa®eHa C IOMombb pafa Tefiropa
W BU) '61 [
M (bH H?Lg Hc TR (9)

MCIUHO‘IEB BHCOTY &  KBaSWTEOMNa C IOMONBK IOIYYEHEOTO
BHIlE BHDaReHUd, OOXYIaeM KpaeBOe YCJIOBHE

Wo-Us 315 POt _3f

—mi—=- — (10)
WOy w LTy WY
TIe o

%—{ == 8% =+0,031 (1~ 33in?B) uran.

KoadduuzenT sTo#t dopMysH mpmBelleH Ge3 ydeTa yupyrmx Je-
dopMarm# TBepmo#t 3eMmt, T.e. DE3YILTAT Honkasalo 1964
monieJieH Ha HCIOJIB30BAHHMI M MHOFETENH 1,2 3a yOPyTOCTh TBEp-
ot 3emm. II0 DOBOLY 3TOTO MHORATENI CM. Groten 1981,
TNe yKasaHna JUTepaTrypa oo o6cyxrmaemoi TeMe, W EmEe. TakmM 06—
pa3oM, OPE BHIEJIEHAW U3 OOTEHIMAaNIa CIWIH TAEECTH 3eMIX ORRIAB-
HOTO RIMTHAA, BO3HAKAET KOCBEHHMI 3@PEeKT — OpeImoCaemEdi WIeH
copasa B (I0).

Qren, comeprammit pasHocTs W), - U, , MOFHO ONDENENHTH IO
aCTpPOHOMO-TeOJe3WIeCKIM X CIy THEKOBHM IAHHHM, BCE OCTAIEBHHE
9IeHH CIpaBa MOXHO IONYIHTh X3 H3Mepermit m BHUMCIeHmit, Ipen-
CcTaBEB ODOTeHIMaT T pacHpefesIeHHeM IODPOCTOTO CJIOL Ha 3eMHOE mo-
BEPXHOCTH, 9YTO BO3MOEHO, HOCKOJIBKY 3TOT HOTEHLHMAN CO3IaH pac-
opellesIeHEEM aHOMANBHHX MACC BHYTPH 3eMIH, MOFHO IOIyIATEH HH-
TeTpajbHOE yDaBHEHWE Teopha:H MOIOLEHCKOIO. PemeHme STOIO ypaB-—
HeHHs ompexesseT T. Buumcme mo dopMyne (6) BHCOTY < kBasm-
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‘TeoMNa, MOXHO HaiiTE moHyo BHcoTy  H
DJUIATICOMIIOM .

B m3Mmepsgemue 3JIEMEHTH IO HEOCXOIMMO BBOIMTE IIOIDABKA
3a DPa3HOCTH IeACTBHTENPHOIO HOJHOTO RmIuIHmA JIyEH T CosHla X
COOTBETCTBEHHHX IIOCTOAHHHX WIEHOB. JIMEHHO Takylw IOPAJIBHYK
ITOOPABKY DPEKOMEHIOBAT BBOIMTH B H3MEDAEMHE BEJIMUNHH CHUJIH TA—
rectzr Howkosako ¥ B HEBeympoBaEWe, cienysa Howkasofo

Zewon I98I. Taxde OpRIMEHHE HONPABKA HOSBOJIDT ORABECTH

BCE H3MEDEHAA K OIWHAKOBOMY DACIOJOKEHAH BHENHIX BO3MYMAKUIX
Macc ¥ Kak OH K ONHOMYy MOMEHTY BDEMeHH. B 3ToM cayzae B pea-
JIBHOM IOOTEHIMaJe CHJH TARECTH 3eMIM COXPaHAEeTCA IIOCTOAHHHU
wieH RaHUA JyHe w CouHlla, De3yJIbTATH HABEJIADPOBAHASI MOFHO
OyIeT HEeDOCPEICTBEHHO CDaBEABATH CO CPeIHMMA YPORHAMU MOpei,
HO B aQHOMAMWAX CWIH TARECTH 3TOT IOOCTOSHHHE WIeH CYLeT HCK—
JOOYeH M TaKle aHOMAJME MOFHO MCIOOJB3IOBATH B M3BECTHHX GopMy-
Jax TeoprX qUTypH 3emmH. JOGAEMB K BHIMCIEHHOI mo 3TM HopMmy-
JIaM aHOMATBHOE COCTaRImameff HEKOTOPOT'O 3JIEeMeHTa IOoJa COOTBET-
CTBEHHOE RINIHAE HODMATBHOTO 3JUMICOMIA, OOCTQIHAHN WIeH RIMA-
Hag JyEH 7 CoymUa, a OPE XeJAHMY MX IIOJHOe RIASHWE B Ompele—
JICHHHI! MOMEHT BDEMEHW, MOEHO IOJYIATL HYXHHZ BJIEMEHT DEaNbHO-
TO TPABATAIMOHHOTO IOJA 3eMm. CrenyeT 3aMEeTHThH, 9TO 32BACT—
masg OT BPEMEHM 9YacTh RmgHIZ JyEH X CouHIla Ha I'eOMeTpHYIeCKoe
HUBEJIPOBAHAE BECEMA Maja CDABHETENHHO C COBDEMEHHOZX TOYHOCTEHI,
HOCHT CJydafiHuit xapakTep @ IOTOMY, KaK IPABWIO, IpeHeSperae-—
Mma. Taxolt momxox x yueTy nmaHm# JyHH  CoUHIA Ha TI'DAEATAIA-
OHHOe IToJe 3ewm BIOJHE AHATOTAYEH NPEHITOMY CHOCOCY HCKINYEHHA
BIHATEAT OEHTPOGEXHO! CWIH H3 aHOMami CIIH TSXeCTH. BimsnAde
OEeHTPOGeXHO! CHIH, RaK HA3BECTHO, COXDaHAETCA B DPEaJbHOM
DOTEHIaJe CHIIH TARECTE 3eMId, X, COOTBETCTBEHHO, B HODMATEH—
HHX BHCOT2X.

3anagy Teopmw WIYDH 3eMIE MOFHO DENITH IPH WHOM IOIXO-—
Ie K yJeTy OpIIVBHEX RIRTHAN. A EMEHHO, B COOTBETCTEMX C Dpe—
meHreM MexIyHapoIHO! I'eONe3WIeCKOol acCOIFall MOFHO HCKINIATH
nTprmeEHi 20PeKT U3 BCEX IeONe3WYECKUX HM3MepeRwmit, DEemUTE: Kpae—
BYD 3aIa9y, BHDASHTH HYXHHI 3JIEMEHT TIPABATANIOHHOTO IOVIA Z B
HEM BOCCTAHOBUTEH IPWIMBHOE BIMAHEe. [JoyHAasa BHCOTa HEKOTODPOH

Hall HODMATBHHM
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TOYKA 3eMHO! IDOBEDXHOCTH Hall OTCYETHHM 3JUIMICORIOM ABIIETCA
9JEMEHTOM JUCTO T'EOMETPMIECHNM N OT IDARMTAIIONEOTO IOXI He
3apzcmT. IIpm 06OMX IOIXOZAX K yYeTy IDWINEEHX RUIAHMA 5Ta
BelI@Ha OOJ¥HA OOIYIATHECA OImHakoBo#. Tak m Cymer, ecum
mocaerEmit wieH dopMysaH (6) T COOTBETCTBEHHOE RIAAHEE B BEJH-—
wHe V), OyAyT ECKIDYEHH X3 CBA3K BHCOTH KBA3WTEOHNA X BO3-
MymanmeTo TOTEHOUaNs X OTHECEeHH X 3asmcmMoctx (3). Ho B aToM
cay4ae peaXbHHE yDOBEHb MODA OKaXEeTCA 3aBEJOMO, HEyDOBEHHOHA
IIOBEPXHOCTEN X HeJb3s OyHeT Pe3yJAbTATH I'eOMeTDPAIECKOTO HIBE—
JIMPOBAHAA HENOCDPENCTBEHHO HCIQIB30BATE LI A3YYEHAI YDOBHEHR
Mopefi. Huxe OymeT DOKa3aHO, UTO RIUIHWE IOOCTOAHHOTO IWJAB-
HOTO 5PfexTa Ha De3yJIbTATH HABEJIXDOBAHES 3aMETHO E HE CI-—
TaThCA C HAM Helb3g. COCTOSHME TEODHE YPOBHA MOpPA HE IO3BOIAET
BHIUCJIATE C JOCTATOUHO! TOYHOCTEN COOTBETCTBEHHHE IIONDABKA B
3TOT YDOBEHE.

1% omeHK® DOCTOAHHOTO RMIHEA JYHH K COUELA Ha De3yiabTa-
TH HEBEJWPOBAHWI MOXHO BOCHOJIB30BATHECA DAaCUETOM ZFewawn
I98I. OmEaxo OpelCcTaBlIAeTCA HENPABWIBHHM HCIOIB30BATh I Ta-
KOM pacueTe comepramuit wmcia JaBa MHORATEN® 324 yOpyr@e  JIe—
dopvarmm TBepIOX 3eMIH, OOCKOJELKY BBEIEHHE 3TOTO MHOEATEII
OpermoyaraeT KPATKOBPEMEHHOCTH IeliCTREA BO3Mymammneil CHIH.
St yupyrme mgedopMamym Zemow I98I omemmra B + 5,7 CM Ha
o9xBarope ¥ - II,4 cM Ha momocax. CpARHMTENEHO C TOYHOCTED
TPaBEME TDHIECKNX H3MeDeHu#, HeoOXoImMOX maa pemeHEd 3amad
TeopE? @UTYpH 3eMIr, COOTBETCTBEHHHE IOIPEeMHOCTHA MamM. Ompa-
KO OHE MOIYT COCTaBATE HECKOIBKO COTHX MIJLIATANE, T.e. OHTH
3aMEeTHHMZ IIpZ COBPEMEHHOX TOYHOCTE I'DaBHMETDHIECKUX H3Mepe-
HIt. Boslee OpABWIBHHM NDPENCTARIAECTCA CUATATH 3eMID TBepIoi opw
pacueTe DaCCMATDABAEMOTO TOCTOAHEOTO BRMASHWI M BBOOUTE ION-
DaBKy TOJBKO 32 COOTBETCTBEHHOE CMEmMEHMe YDPOBEHHHX IIOBEDXHOC-
reft. Be3 yueTa kosfimmeHTa 3a yupyree Iefopmanpm 3emum, U3
fopMyar Fewaw  cremyer

AH =097 (sn*B — 5in?Bc) W

Besmramra K&H onpelendeT Da3sHOCTE NOTEHIAIOB P B mccie-
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IyeMo#f TOUKe ¥ MCXOINHOM IIYHKTE HUBEJMPOBOK. KCIOI OTCYETHYL
TOYKYy IOMECTHTHL Ha IIOJnCe, TO Ha skBaTrope AH = 0,3 M, 9TO
B odmeM coryacyeTcsa ¢ omeHkoit Wonwkaaafo . Pacxoxmemne co
CPeIHVM YDPOBHEM MODA IIOJydaeTCs 3HAWMTEJLHHM. Kak ykaszat
Zewmoan 1981, Taxmm odpa3oM, HampUMep, MOXET CHTH MCKYCCTBEH-
HO CO3JaHa Pa3HOCTL ypoBHe# BalTmilckoTo M AIpraTHYeCKOT0 MODSA
BesTaHO# oxomo 7,2 CM, UTO IpPeBHIQeT OIMOKK HUBEJHMPOBAHHUA
Ha TaKOM paCCTOSHHAH.

[Ipy ycTaHOBJIEHMX 3HAKA ITONpaBKH CJIelyeT MMeTh B BHLY, 9T0
yIAleHe IMOCTOAHHUX BUMAHAN JyHH ¥ CoumHlla CHAMAeT MOIONHUTE-
JIEHOE SKBATODHANIBbHOE B3AyTHE YDPOBEHHHX IIOBEPXHOCTE# Ha 3emne n
YBeJMIMBaAET PaA3HOCTH BHCOT B TOUKAaX, ONHA U3 KOTOPHX DAaCIOJIO-.
X€eHa oL 9KBaATOpOM, a IpyTasg - B CpelHeil mojoce.

Bompoc 00 “3y4YeHyf OTHOCHUTEJNBHHX YpOBHeR Mope#l ¢ moMo-
WL HWBEJMPOBAHKMA He CJeNyeT CMemIBaTh C BONPOCOM O CpEIHEM
YDPOBHE MOpS KaK OTCUETHOH IIOBEPXHOCTH. Tarkoi#l OTCUeTHOL IIOBED-
XHOCTEID I'€OIE3UCTH HE IIOIb3YRTCA, HECMOTDA Ha YTBEDKICHUI
VIEeCHIKOB Teofie3mM ¥ B yacTHocTz Honkarafo , BHOMpasT 3a
OTCYETHYO COIVIACHO OmpelelyeHd DpyHCa Ty YPOBEHHYD IIOBEDXHOCTE,
KOTOpasd OPOXOIUMT Yepe3 UCXONHHI HYJb CYeTa BHCOT.

Honkaaale [TOJIyYUJI CBOH pe3yJIbTaT OCpPeTHEHUHEeM 3a
18,6 roma - 0GOpOT y3Ja JYyHHO! OpPCUTH. I CpaBHEHMT De3yJbTa-
TOB TI'DABAMETPMYECKUX U3MEpEeHuil — OpUBEelNeHMd UX K OIHOMY MO-
MEHTy BpDEMeH! BIOJHe JocTaTouHa mompaBka Howkasado .
TeM Cojiee, 4YTO OpPA BHYACJIEHUMA CMEMAHHO# aHOMAMM CHJH TsDXeC—
TH HEOOXOIMO IOIIOJIHM TeJbHOE BHWICIEHME KOCBEHHOTO addexTa.

[Ipr “3y9eHM! IBUXEHNS UCKYCCTBEHHHX CIIyTHUKOB 3eMiu,
BsMe JIyHH ¥ Coumua LOKHO OHTHh ODUHSTO BO BHMMAHME HEIOC-—
pPEICTBEHHO., KosdIMpeHTH pa3jIOXeHHMA IeomoTeHIMata Io chepu-
JeCKMM QyHKIMAM W IpyIue JaHHHe O TpaBUTALMOHHOM IIoJe 3eM-
JI IOJLKHH COOTBETCTBOBATEH TOJNBKO peanbHO# 3emre, T.e. B 9TOM
caygae HyxeH moremrmal U + T =W - P, I[p¥ COIVIACOBaHMU CIIYT-

HIKOBHX ¥ HAQ3EMHHX NAHHHX HYXHO IOPAHATE BO BHMMAHNE II0TEHIMIAI
P.
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ANELASTICITY IN THE EARTH'S MANTLE:
IMPLICATIONS FOR THE FREQUENCY
DEPENDENCE OF LOVE NUMBERS

J. Zschau
Institute of Geophysics, Christian Albrechts

University, Kiel, West Germany

Analytical formulas are developed which describe the an-
elastic and viscous behaviour of solids by means of an
absorption band as deduced from a Gaussian distribution

of relaxation times. These formulas are applied to the
Earth's mantle in order to explain post glacial rebcurd
data as well as various observations of anelasticity over
a frequency range of more than seven decades including the
seismological band as well as free dscillations and the
Chandler Wobble. In fitting the parameters of the absorption
band to the observations, the effect of compcsition,
structure, phase transitions, pressure and temperature on
the anelastic behaviour is accounted for by making use of

the empirical relationship

[
So

G* = ¢

where G* is Gibb's free energy of a relaxation process, §
the seismic parameter, 8§, ambient density and c a constant
which is only dependent on the relaxation mechanism itself.
This relationship is shown to be well fulfilled for solid
state self-diffusion in various solids like metals, haliaes

and oxides including minerals important in the mantle.
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Connected with the Gaussian absorption band it yields

a theoretical model of inelasticity in the mantle

which is in excellent agreement with current knowledge

on transient and steady state viscosities as well as

with attenuation and dispersion observations between

1 sec and 435 days in period. Based on this model the
Earth global Love numbers are calculated for different
frequencies. It turns out that the Love numbers entering
into Earth tidal and rotational problems are significantly
different from those valid in the frequency band of
seismology. The difference is an increase in the Love
numbers of 2 to 3% if the Earth's short period tidal
deformation is considered. It is higher for longer periods
of loading and results in an 8 days lengthening of the
Chandler Wobble period at 435 days.
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