Biogeosciences, 9, 2821–2830, 2012 www.biogeosciences.net/9/2821/2012/ doi:10.5194/bg-9-2821-2012 © Author(s) 2012. CC Attribution 3.0 License.

Seasonal variability of tropical wetland CH₄ emissions: the role of the methanogen-available carbon pool

A. A. Bloom, P. I. Palmer, A. Fraser, and D. S. Reay

School of GeoSciences, University of Edinburgh, Edinburgh, UK

Correspondence to: A. A. Bloom (a.bloom@ed.ac.uk)

Received: 21 November 2011 – Published in Biogeosciences Discuss.: 12 January 2012

Revised: 6 June 2012 - Accepted: 22 June 2012 - Published: 1 August 2012

Abstract. We develop a dynamic methanogen-available carbon model (DMCM) to quantify the role of the methanogenavailable carbon pool in determining the spatial and temporal variability of tropical wetland CH₄ emissions over seasonal timescales. We fit DMCM parameters to satellite observations of CH₄ columns from SCIAMACHY CH₄ and equivalent water height (EWH) from GRACE. Over the Amazon River basin we found substantial seasonal variability of this carbon pool (coefficient of variation = $28 \pm 22 \%$) and a rapid decay constant ($\phi = 0.017 \, \text{day}^{-1}$), in agreement with available laboratory measurements, suggesting that plant litter is likely the prominent methanogen carbon source over this region. Using the DMCM we derived global CH₄ emissions for 2003-2009, and determined the resulting seasonal variability of atmospheric CH₄ on a global scale using the GEOS-Chem atmospheric chemistry and transport model. First, we estimated that tropical emissions amounted to 111.1 Tg CH_4 yr⁻¹, of which 24 % was emitted from Amazon wetlands. We estimated that annual tropical wetland emissions increased by 3.4 Tg CH₄ yr⁻¹ between 2003 and 2009. Second, we found that the model was able to reproduce the observed seasonal lag of CH₄ concentrations peaking 1-3 months before peak EWH values. We also found that our estimates of CH₄ emissions substantially improved the comparison between the model and observed CH₄ surface concentrations (r = 0.9). We anticipate that these new insights from the DMCM represent a fundamental step in parameterising tropical wetland CH₄ emissions and quantifying the seasonal variability and future trends of tropical CH₄ emissions.

1 Introduction

Wetlands are the single largest source of methane (CH₄) into the atmosphere and account for 20-40% of the global CH₄ source (Denman et al., 2007; Ito and Inatomi, 2012), of which tropical wetlands account for 50-60 % of this global wetland CH₄ source (e.g. Cao et al., 1996; Bloom et al., 2010). Tropical wetland biogeochemistry is poorly understood compared to boreal peatlands (Mitsch et al., 2010), resulting in large inter-model discrepancies of the magnitude and distribution of tropical wetland CH₄ emission estimates (Riley et al., 2011). Tropical climate variability (e.g. resulting in widespread droughts, Lewis et al., 2011) can lead to large year to year variations in tropical wetland CH₄ emissions and subsequently the global CH₄ budget (Hodson et al., 2011). Moreover, Bousquet et al. (2011) found substantial disagreements between tropical wetland CH₄ emissions from process-based and atmospheric inversion estimates. An improved quantitative understanding of the magnitude, distribution, and variation of tropical wetland CH₄ emissions is therefore essential to further understanding of the global CH₄ cycle. Here, we parameterise tropical wetland CH₄ emissions, and hence introduce a predictive capability that can be used to determine future emissions and to help quantify global CH₄ climate feedbacks.

In wetlands and rice paddies, methanogenesis (the biogenic production of CH_4) occurs as the final step of anoxic organic matter decomposition (Neue et al., 1997). Factors influencing methanogenesis rates include substrate availability, soil pH, temperature, water table position and redox potential (Whalen, 2005). Wetland vegetation type and aquatic herbivore activity can also affect the transport of CH_4 between the soil and atmosphere (Joabsson et al., 1999; Dingemans et al.,

2011). On a global scale, seasonal variations in wetland CH₄ fluxes are mostly determined by temporal changes in wetland water volume and soil temperature (Walter et al., 2001; Gedney et al., 2004), and from seasonal changes in wetland extent and wetland water table depth (Ringeval et al., 2010; Bloom et al., 2010). Recent work that used SCIAMACHY lower tropospheric CH₄ column concentrations and Gravity Recovery And Climate Experiment (GRACE) equivalent water height (EWH) retrievals showed that the seasonality of wetland CH₄ emissions can be largely explained by seasonal changes in surface temperature and water volume (Bloom et al., 2010). The Amazon and Congo River basins were the only major exceptions in this study, where CH₄ concentrations peaked several weeks before EWH, highlighting our incomplete understanding of the processes controlling tropical wetland CH₄ emissions over seasonal timescales.

In this paper we focus on the seasonal lag between CH₄ emissions and flooding over the Amazon River basin area (Oki and Sud, 1998). We use SCIAMACHY CH₄ retrievals and GRACE EWH (both described in Sect. 2.2) to determine the seasonal lag between wetland CH₄ emissions and wetland water volume. Figure 1 shows that seasonal flooding of the Amazon basin occurs typically 1-3 months after the peak CH₄ concentrations, and to a lesser extent the lag persists throughout tropical wetland areas. Although typical time-lags between EWH and CH₄ in the Congo River basin are comparable (0–2 months), in this paper we choose to focus on the Amazon basin as it covers a larger areal extent, and larger time-lags between EWH and CH4 are found over this river basin. In Sect. 2, we test the hypothesis that this lag is related to the depletion of methanogen-available carbon during the onset of the tropical wet season by explicitly accounting for this carbon pool in a parameterised model of tropical wetland CH₄ emissions (Bloom et al., 2010). We optimise model parameters by fitting them to SCIAMACHY CH₄ column and GRACE EWH measurements, and use the resulting model to estimate global wetland emission estimates. In Sect. 3 we (1) compare our results to previous estimates of wetland CH₄ emissions and to decomposition rates of methanogen-available carbon in anaerobic environments; (2) provide an overview of additional factors which potentially influence the seasonal variability of CH₄ emissions in tropical wetlands; and (3) use our estimated emissions to drive the GEOS-Chem atmospheric chemistry model as an approach to test the consistency between our emission estimates and observed variations of atmospheric CH₄ concentration. We conclude the paper in Sect. 4.

2 Process-based model and application

Here, we introduce a methanogen-available carbon pool (C_{μ}) that typically originates from labile plant litter, recalcitrant organic matter decomposition and root exudates (e.g. Wania et al., 2010). Typically, soil carbon pool decay

constants are more than an order of magnitude lower than those of leaf litter (Sitch et al., 2003; Wania et al., 2010). Therefore, if C_{μ} originates mostly from the slowdecomposing recalcitrant carbon pool, then variations in C_u over seasonal timescales are likely to be small. Conversely, if C_{μ} is drawn from leaf litter, then large variations in C_{μ} abundance may arise as a result of rapid litter decomposition in the tropics. Miyajima et al. (1997) measured CH₄ accumulation of anaerobic decomposition of incubated tropical withered tree leaves over a 200 day period. These observations showed a rapid decrease in decomposition rates over the incubation period. Bianchini Jr. et al. (2010) found similar results for anaerobic decomposition from dried and ground Oxycaryum cubense at 20 °C: following a 20-day lag (where no emissions were observed) CH₄ produced from organic carbon decomposition peaked after a 50-day period, and then rapidly decreased. On a tropical river-basin scale, flooded areas expand at the onset of the wet season and engulf newly available plant litter; as a result, CH4 emissions from plant litter may peak before the height of the water table. The occurrence of anaerobic CH₄ emissions from litter decomposition within sub-seasonal timescales raises the question as to whether C_{μ} significantly varies in time.

2.1 Model description

We base our model on previous work (Bloom et al., 2010) that describes the temporal variability of wetland emissions $F_{\text{CH}_4}^t$ (mg CH₄ m⁻² day⁻¹) as a function of EWH and surface temperature:

$$F_{\text{CH}_4}^t = k(\Gamma_{\text{w}}^t + D_\alpha) Q_{10}(T_{\text{s}})^{\frac{T_{\text{s}}^t}{10}},\tag{1}$$

where at time t (days), $\Gamma_{\rm W}^t$ is the EWH, $T_{\rm S}^t$ is the surface temperature (K), D_{α} is the equivalent depth of the wetland soil (m), $Q_{10}(T_{\rm S})$ is the temperature dependence function implemented by Gedney et al. (2004), and k is a scaling constant (mg CH₄ m⁻² day⁻¹) accounting for all temporally constant factors (e.g. Gedney et al., 2004).

Equation (1) assumes an inexhaustible source of methanogen-available carbon. Here, we account for the potential seasonal changes in C_{μ} by substituting k with $\phi_0 C_{\mu}^t$, where ϕ_0 (day⁻¹) is the temperature, water and carbon independent decay constant of wetland methanogenesis, and C_{μ}^t is the value of C_{μ} (mg CH₄ m⁻²) at time t:

$$F_{\text{CH}_4}^t = \phi_0 C_{\mu}^t (\Gamma_{\text{w}}^t + D_{\alpha}) Q_{10}(T_{\text{s}})^{\frac{T_{\text{s}}^t}{10}}.$$
 (2)

To determine temporal changes in C_{μ} , we define C_{μ}^{t+1} in terms of C_{μ}^{t} :

$$C_{\mu}^{t+1} = C_{\mu}^{t} + N_{\mu} \Delta t - F_{\text{CH}_4}^{t} \Delta t,$$
 (3)

where Δt is the time interval, $F_{\text{CH}_4}^t$ is the carbon loss due to emitted CH₄ (Eq. 2), and N_{μ} is the net influx of carbon

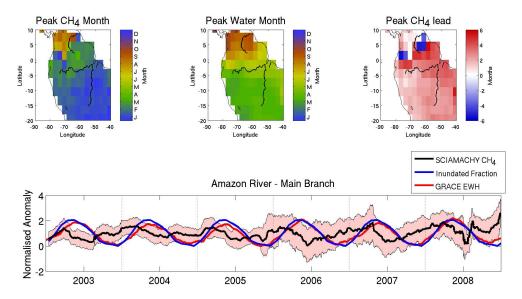


Fig. 1. Top: The timing (month of year) of peak CH_4 concentrations from SCIAMACHY (left), peak equivalent water height (EWH) from GRACE (middle), and the peak CH_4 concentration lead over tropical South America (right). Bottom: Normalised anomaly of GRACE EWH, mean flood fraction (Prigent et al., 2007), and mean CH_4 concentrations (including 1-standard deviation envelope) over the main branch of the Amazon River (0° – 6° S, 40° – 80° W).

available for methanogenesis from plant litter, root exudates, and breakdown of complex polymers from the recalcitrant carbon pool. We assume N_{μ} is temporally constant, and we assume wetland carbon stocks are in quasi-equilibrium on annual timescales, hence $\overline{N_{\mu}} = \overline{F_{\text{CH}_4}^t}$. Note that when ϕ_0 is small, the equilibrium $C_{\mu} \gg N_{\mu} \Delta t$. In this case, $C_{\mu}^{t+1} \simeq C_{\mu}^t$ and Eq. (2) converges to Eq. (1) (Bloom et al., 2010), which assumes $\phi_0 C_{\mu}$ is constant over seasonal timescales. In order to compare derived decay constants with observed and model values (e.g. Miyajima et al., 1997; Wania et al., 2010), we determine the annual mean decay constant of wetlands areas as $\overline{\phi} = \overline{F_{\text{CH}_4}^t}/\overline{C_{\mu}^t}$ (day⁻¹). Equations (2) and (3) constitute the dynamic methanogen-available carbon model (DMCM).

2.2 Data

For the sake of brevity, we only include a brief description of the datasets for our analysis and refer the reader to dedicated papers. Solar backscatter data from the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) instrument onboard Envisat was used to retrieve the mean column concentrations of CH₄ in the atmosphere (Frankenberg et al., 2005). The spatial resolution of CH₄ retrievals is $30\,\mathrm{km}\times60\,\mathrm{km}$, and the Envisat orbital geometry ensures global coverage at 6-day intervals. CH₄ retrievals were only achievable in daytime cloudfree conditions. The Gravity Recovery and Climate Experiment (GRACE) is a twin satellite system from which the Earth's gravity field was retrieved at 10-day intervals. Tides, atmospheric pressure and wind are included in the applied corrections on GRACE gravity retrievals; the remaining

temporal variation in GRACE gravity is dominated by terrestrial water variability (Tapley et al., 2004). We incorporated SCIAMACHY CH₄ concentrations, GRACE EWH and NCEP/NCAR daily $1.9^{\circ} \times 1.88^{\circ}$ temperature re-analyses (Kalnay et al., 1996) into a process-based model following Bloom et al. (2010). We used the 2003–2008 SCIAMACHY column CH₄ retrievals (Frankenberg et al., 2008), and the CNES GRACE EWH $1^{\circ} \times 1^{\circ}$ 10-day resolution product (Lemoine et al., 2007). We aggregated all three datasets to a daily $3^{\circ} \times 3^{\circ}$ horizontal grid (see Bloom et al., 2010).

2.3 Global parameter optimisation

We implemented the DMCM (as shown in Eqs. (2) and (3)) on a global $3^{\circ} \times 3^{\circ}$ grid for the period 2003–2009. We drove the DMCM using the aggregated daily values of $T_{\rm s}^t$ and $\Gamma_{\rm w}^t$. We spun up the DMCM using 2003 $T_{\rm s}^t$ and $\Gamma_{\rm w}^t$ values until it reached an annual equilibrium ($\overline{N_{\mu}} = \overline{F_{\rm CH_4}^t}$). In contrast to Bloom et al. (2010), we supplemented the $Q_{10}(T_{\rm s})$ function with a gradual linear cut-off for temperatures for $0^{\circ}{\rm C}$ $< T_{\rm s}^t < -10^{\circ}{\rm C}$, and when $T_{\rm s}^t < -10^{\circ}{\rm C}$, $F_{\rm CH_4}^t = 0$ as a first order approximation to wintertime CH₄ emission inhibition in boreal wetlands. As the Q_{10} function never reached zero, this supplementary constraint effectively suppressed wintertime CH₄ emissions, which is broadly consistent with our current understanding of CH₄ emissions in boreal wetlands.

We applied the DMCM globally in order to determine (i) the magnitude of $\overline{\phi}$ and C_{μ} in the tropics within each $3^{\circ} \times 3^{\circ}$ gridcell, (ii) the potential of C_{μ} temporal variability on extratropical wetland environments, and (iii) CH₄ emissions from wetlands and rice paddies at a global scale. We determined

the global distribution and seasonal variability of wetland CH₄ emissions by optimising parameters ϕ_0 and D_α at each gridcell by minimising the following cost function (*J*):

$$J = \sum_{t=1}^{n} (\kappa \times \Delta F_{\text{CH}_4}^t - \Delta S_{\text{CH}_4}^t)^2, \tag{4}$$

where $\Delta S_{\text{CH}_4}^t$ denotes the SCIAMACHY CH₄ variability, $\Delta F_{\text{CH}_4}^t$ is derived from Eqs. (2) and (3), and the conversion factor κ (ppm kg⁻¹ CH₄ m⁻² day⁻¹) relates CH₄ emissions to the equivalent column concentration in the lower troposphere (see Bloom et al., 2010). We removed the interannual trend (represented as a second order polynomial) from $\Delta S_{\text{CH}_4}^t$ in order to minimize the influence of global atmospheric CH₄ trends. We then implemented the global $Q_{10}(T_s)$ optimisation approach of Bloom et al. (2010). Like other top-down parameter optimisation methods of global wetland CH₄ emissions (Gedney et al., 2004; Bloom et al., 2010), our method was unable to distinguish between the seasonality of CH₄ emissions from wetlands and rice paddies due to the concurring fluxes over seasonal timescales. However we anticipated that varying fertilisation and irrigation practices also influence the seasonality in rice paddy CH₄ emissions (Conen et al., 2010). We hence distinguished the sources spatially (Bloom et al., 2010), for which we had more confidence in the distribution of rice paddies. Finally, we used the IPCC global wetland and rice paddy CH₄ emissions median of 227.5 Tg CH_4 yr⁻¹ (Denman et al., 2007) as a base value for 2003 emissions.

We propagated the following uncertainties through our global wetland and rice paddy CH₄ emissions estimation (Bloom et al., 2010): (i) SCIAMACHY CH₄ observation errors; (ii) the uncertainty of the linear fit between $F_{\text{CH}_4}^t$ and $S_{\text{CH}_4}^t$; (iii) the uncertainty $\sigma_{\kappa} = \pm 16$ % associated with κ ; and (iv) a global wetland and rice paddy uncertainty of \pm 58 Tg CH₄ yr⁻¹ (Denman et al., 2007).

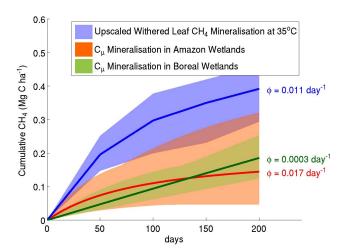
We propagated SCIAMACHY CH₄ VMR errors to a $3^{\circ} \times 3^{\circ}$ resolution; compared to a global mean of ± 18.0 ppb, we found mean CH₄ error values of ± 19.2 ppb (5th–95th percentile = 6.3–37.8 ppb) over the Amazon River basin. Temporal CH₄ VMR error variability was dominated by the number of cloud-free CH₄ VMR observations within each $3^{\circ} \times 3^{\circ}$ gridcell for each daily timestep. We found little seasonal variability in the three-monthly mean propagated CH₄ errors (18.28–20.36 ppb). As the correlation of CH₄ errors within each gridcell was unknown, we chose not to weight the cost function (Eq. 4) using propagated SCIAMACHY CH₄ errors.

We incorporated the uncertainty of κ , $\sigma_{\kappa} = \pm 16$ % in our estimated CH₄ emissions, where σ_{κ} is the estimated uncertainty between surface CH₄ emission amplitude and CH₄ column VMR amplitude; this value was derived from an atmospheric chemistry transport model (GEOS-Chem) using prior emissions and SCIAMACHY averaging kernels (Bloom et al., 2010). Finally, we implemented a global

wetland and rice paddy uncertainty equivalent to the variance of IPCC wetland emission estimates (\pm 58 Tg CH₄ yr⁻¹).

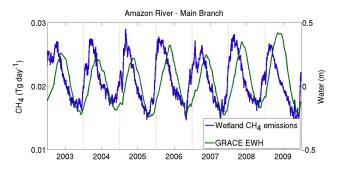
3 Results and discussion

Over the Amazon River basin, we find wetland CH₄ fluxes coincide with small values of C_{μ} , resulting in a highly variable C_{μ} over seasonal timescales. Assuming an annual mean inundated fraction of 3.3% (Prigent et al., 2007), the median CH₄ flux over a flooded area is 1.06 Mg C ha⁻¹ yr⁻¹(387 mg CH₄ m⁻² day⁻¹). The median Amazon wetland $C_{\mu}=0.16\,\mathrm{Mg}$ C ha⁻¹ yr⁻¹ with a range of 0.02– $7.89 \,\mathrm{Mg} \,\mathrm{C} \,\mathrm{ha}^{-1} \,\mathrm{yr}^{-1}$ (5th–95th percentile). The large spatial variability of C_{μ} is consistent with the complexity of methanogenesis rates in wetlands (Neue et al., 1997; Whalen, 2005). Large temporal changes of C_u are observed in the Amazon River basin, where the mean C_{μ} coefficient of variation (c_v) is 28 ± 22 % over the period 2003–2009. When we allow C_{μ} to vary in extra-tropical regions, we find a median of $c_{\rm v}$ < 0.1 %, and as a result the relatively small C_{μ} variability does not influence the seasonality of CH₄ emissions outside the tropics. For rice paddy areas in southeast Asia we find a median of $c_v = 4.8$ %. We acknowledge that due to the varying rice cultivation practices around the world (Conen et al., 2010), the effects of rice paddy irrigation and the timing of fertilisation on C_{μ} cannot be captured by the DMCM


To determine whether our derived values for C_{μ} and ϕ are relevant to tropical ecosystems, we compared them against laboratory measurements of anaerobic decomposition of withered leaves from a wetland region in Narathiwat, Thailand (Miyajima et al., 1997). We simulated CH₄ production from C_{μ} at each model gridcell for a 200-day period without fresh carbon input $(N_{\mu}=0)$, and we used innundated fraction observations (Prigent et al., 2007) to determine the flux magnitude over flooded areas only. Figure 2 shows the cumulative CH₄ production over a 200-day period for (i) simulated decomposition from derived $\overline{\phi}$ and C_{μ} values over the Amazon, (ii) simulated decomposition from derived $\overline{\phi}$ and C_{μ} values over boreal wetlands, and (iii) upscaled withered leaf mineralisation rates by Miyajima et al. (1997) using a median of 17.5 Mg C ha⁻¹ yr⁻¹ fine and coarse woody debris (Malhi et al., 2009). For boreal and tropical C_{μ} decomposition, the median cumulative CH₄ emissions, 68 % confidence interval, and mean decay constants $(\overline{\phi})$ are shown. For the withered leaf mineralisation rates, we show the mean fitted decay constant (ϕ) and the range and median cumulative CH₄ emissions.

The top-down parameter estimation of $\overline{\phi}$ and C_{μ} suggest plant litter C_{μ} is a fundamental component of tropical CH₄ emission seasonality. Our top-down estimation of anaerobic decomposition rates for tropical wetland CH₄ emissions compare favourably with laboratory measurements of anaerobically produced CH₄; while the magnitude of tropical

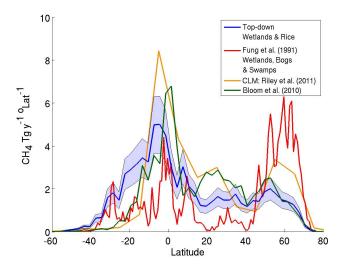
	Decay Constant (yr ⁻¹)	Study
Amazon Wetlands $(\overline{\phi}_{ m Amazon})$	2.6-9.6 ^a (median=5.9)	This Study: Top-down wetland CH ₄ emission parameter optimisation
Withered Leaves (35 °C)	4.0	Miyajima et al. (1997): Decay constant from anaerobic tropical leaf CH ₄ mineralisation
Wetland Macrophyte Decomposition	1.0-5.5	Longhi et al. (2008) ^b : Measured decomposition rates in Paluda di Ostiglia, Italy
Soil Carbon Pool (10 °C) Leaf Litter (10 °C) Root Exudates (10 °C)	0.001-0.03 0.35 13	Wania et al. (2010): Bottom-up CH ₄ Emissions from Northern Peatlands


Table 1. Model and observed decay constants for organic matter decomposition in anaerobic environments.

^b Mass-loss decomposition rates

Fig. 2. Cumulative CH4 emissions over a 200-day period from model C_{μ} mineralisation and incubated withered leaves. Blue: median and range of values from Miyajima et al. (1997). Red (green): median and 68 % confidence interval range of CH₄ emissions from the Amazon River basin (boreal wetland) from C_{μ} and $\overline{\phi}$ values when $N_{\mu}=0$. A total litter stock of 17.5 Mg C ha⁻¹ (Malhi et al., 2009) was used to upscale the Miyajima et al. (1997) CH₄ mineralisation rates.

 C_{μ} decomposition is more than a factor of two smaller than laboratory measurements (Miyajima et al., 1997), the mean decay constant $\overline{\phi}_{\rm Amazon}=0.017\,{\rm day}^{-1}$ compares well to $\overline{\phi}_{\rm leaf}=0.011\,{\rm day}^{-1}$ for withered leaf decomposition. The larger laboratory measurements (Miyajima et al., 1997) are partially explained by an incubation temperature of 35 °C (cf. a mean surface temperature in the Amazon basin of 23 °C), and the lack of observations for coarse woody debris decomposition. As a result of relatively high $\overline{\phi}$ values, measured leaf decomposition and model CH₄ emissions both show a significant reduction of CH₄ emission


Fig. 3. Daily wetland CH_4 emissions for 2003–2009 (blue) and GRACE equivalent water height (green) over the central branch of the Amazon River $(0^{\circ}-6^{\circ} \text{ S}, 40^{\circ}-80^{\circ} \text{ W})$.

rates throughout the 200-day period. In contrast, the boreal decay constant $(\overline{\phi}_{Boreal} = 0.0003 \, day^{-1})$ indicates relatively constant CH₄ emission rates throughout the 200-day period.

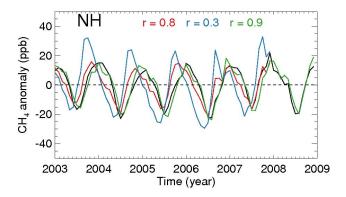
Table 1 shows a comparison between observed and model decay constants derived from a variety of methods. The range of $\overline{\phi}_{Amazon}$ values are within the order of magnitude of leaf and wetland macrophyte decay constants (Miyajima et al., 1997; Longhi et al., 2008; Wania et al., 2010). We believe that $\overline{\phi}_{Amazon}$ is an indicator for the cumulative decay constant of the rapid anaerobic decomposition of root exudates, plant litter decomposition, and the contribution of recalcitrant carbon pools. For a more detailed $\overline{\phi}_{Amazon}$ comparison with observed and model decay constant values, an estimation of the overall $\overline{\phi}$ in wetland CH₄ production from bottom-up process-based models (e.g. Wania et al., 2010) is needed.

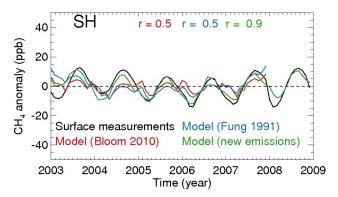
Figure 3 shows the total CH₄ flux over the central branch of the Amazon River (0° N–6° S, 80° W–40° W). The temporal changes in C_{μ} result in a significantly different timing for CH₄ emissions over the tropics in comparison to the Bloom et al. (2010) water volume and temperature dependence

a 68% confidence interval

Fig. 4. Zonal profile of CH₄ emissions from wetlands and rice paddies: top-down wetlands and rice, this study (blue); wetlands, bogs and swamps, (Fung et al., 1991, red); wetland and rice paddy emissions (Riley et al., 2011, orange); wetland and rice paddy CH₄ emissions (Bloom et al., 2010, green). Riley et al. (2011) attribute their elevated tropical fluxes to anomalously high predicted net primary productivity in the Community Land Model (CLM version 4).

approach. While in the dry season the minimum CH₄ fluxes coincide with the lowest GRACE EWH, peak CH₄ fluxes occur during the rising water phase. The DMCM optimisation predicts that the accumulation of carbon in the dry season results in higher C_{μ} values at the onset of the wet season. This carbon pool is then rapidly depleted during the wet season. As a result, CH₄ emission rates begin to decrease before the peak water phase in the wet season.


In order to determine the importance of temperature variablity in estimating $\overline{\phi}$ and the C_{μ} coefficient of variation, $c_{\rm v}$, we performed a temperature-driven sensitivity analysis on the DMCM. Using a range of $Q_{10}(T_{\rm s})=1.2-4$ to repeat the global parameter optimisation (Sect. 2.3), we derived a corresponding ranges of $\overline{\phi}=0.018-0.012$ and $c_{\rm v}=20.2-31.3$ %, respectively, for the Amazon River basin. Hence, larger C_{μ} seasonality is associated with higher $Q_{10}(T_{\rm s})$. We note that the seasonal variability of C_{μ} and the relatively high turnover rates are a prominent feature in the Amazon River basin across a range of prescribed $Q_{10}(T_{\rm s})$ values.


Other hypotheses that could explain the lag between CH₄ and EWH include the temporal variability of (a) macrophyte biomass, (b) water column oxidation, (c) redox potential, and (d) soil pH. The presence of aquatic macrophytes plays an important role in the production of methane in wetland soils, as macrophytes produce carbon available for methanogenesis, facilitate the transport of CH₄ to the atmosphere, transport O₂ to the subsurface (e.g. Laanbroek, 2010), and can inhibit light and re-aeration in aquatic envionments (Pierobon et al., 2010). Hence, an increase in macrophyte biomass during the rising water phase (e.g. Silva et al., 2009) could result

in seasonal changes in CH₄ emissions in tropical wetland environments due to enhanced plant-mediated transport and an increase in labile carbon in aquatic environments. Conversely, seasonal macrophyte growth may result in increased methanotrophy due to increased O₂ transport to the subsurface. Seasonal variability in redox potential in wetland environments is controlled by microbial activity, and hence is indirectly controlled by temperature, nutrient availability, water table level and root biomass, amongst other factors (Seybold et al., 2002; Thompson et al., 2009; Schmidt et al., 2011). However, few long-term measurements of redox potential have been performed over seasonal timescales, and further research is required to determine the large-scale redox variability in wetland environments. CH₄ oxidation within the water column (e.g. Schubert et al., 2010) has also been proposed as a mechanism explaining reduced CH₄ emissions during the peak of the wet season (Mitsch et al., 2010), although this would result in a second CH₄ peak at the end of the wet season. The absence of this peak in our analysis suggests this process plays only a minor role in the seasonality of tropical wetland CH₄ emissions. Soil pH has been found to temporally vary over seasonal timescales and, in particular, has been found to increase with decreasing redox potential (e.g. Singh, 2001; Seybold et al., 2002), although pH responses to redox potential and water table can vary widely (e.g. Singh et al., 2000; Thompson et al., 2009). Although seasonal variation in wetland pH as a significant control on CH₄ emissions is a viable hypothesis, to our knowledge there are currently no repeat measurements of pH in response to flooding in tropical wetlands. Other mechanisms that could temporally affect CH₄ emissions include the subsurface sulfur and iron cycles (Laanbroek, 2010).

We also expect uncertainties in the seasonal variability of tropical wetland CH₄ fluxes to arise from (i) the use of GRACE EWH as a proxy for wetland water volume and (ii) the first order approximation of a temporally constant N_{μ} . GRACE monthly EWH change uncertainties of 1.0-2.1 cm were reported by Wahr et al. (2004); over the Amazon River basin, EWH variability is between 0.30-0.42 m for 2003-2009. However, GRACE EWH is only a proxy for wetland water volume. Papa et al. (2008) found a strong concurrence in the seasonal cycle of GRACE EWH, inundated fraction, and modelled water storage. We also find strong seasonal covariance over the main branch of the Amazon River (Fig. 1). Although independently GRACE and inundated fraction (Prigent et al., 2007) provide proxies for wetland water volume, a better understanding of basin-scale hydrology could ultimately be achieved via a sythesis of all available hydrological parameters (e.g. Azarderakhsh et al., 2011).

We chose a constant value of $\overline{N_{\mu}} = \overline{F_{\text{CH}_4}}$ as a first order approximation of methanogen-available carbon input in wetlands. However, the likely factors influencing the temporal variability of N_{μ} are the seasonal variability of root exudates and leaf litter. While root exudates are strongly dependent on

Fig. 5. Northern Hemisphere (NH, top) and Southern Hemisphere (SH, bottom) mean observed and model methane anomalies from surface concentration measurements, 2003–2008. Surface concentration measurements (black) are from the GasLab, AGAGE and ESRL networks (Francey et al., 1996; Prinn et al., 2000; Cunnold et al., 2002; Dlugokencky et al., 2009). The GEOS-Chem global 3-D chemistry transport model (Fraser et al., 2011) is driven by wetland CH₄ emission estimates from Fung et al. (1991) (blue), Bloom et al. (2010) (red), and our new top-down approach (green).

NPP, in-situ and modelled estimates of leaf litter seasonality in the Amazon River basin have been found to vary widely (Chave et al., 2010; Caldararu et al., 2012). Ultimately, a temporally variable and complete representation of N_{μ} is required in order to further understand the temporal variability of C_{μ} in wetlands.

By globally integrating the DMCM method, we estimated tropical wetlands emit 111.1 Tg CH₄ yr⁻¹, where Amazon wetlands account for 26.2 Tg CH₄ yr⁻¹ (24%). Table 2 shows our estimates are within the range of other independent Amazon wetland emission CH₄ estimates. Figure 4 shows the zonal profile of our top-down approach with the associated uncertainty estimates. We capture three main features of global wetland and rice paddy emissions – i.e. peaks over the tropics, subtropics and lower mid-latitudes (mainly due to rice), and boreal latitudes – in agreement with previous studies (Bloom et al., 2010; Fung et al., 1991; Riley et al., 2011). In comparison to our previous work (Bloom et al., 2010), we find a slight

Table 2. Estimates of total annual Amazon River basin wetland CH_4 emissions (Tg CH_4 yr $^{-1}$).

Study	Amazon Wetland CH ₄ Emissions (Tg CH ₄ yr ⁻¹)
Melack et al. (2004)	22
Fung et al. (1991)	5.3
Riley et al. (2011)	58.9*
Bloom et al. (2010)	20.0
This study	26.2 ± 9.8

^{*} High tropical fluxes by Riley et al. (2011) are a result of anomalously high predicted net primary productivity in the Community Land Model (CLM version 4).

reduction in boreal wetland emissions (3.2%), primarily due to the introduction of a gradual cut-off in methanogenesis rates under 0°C (Sect. 2.3). During 2003–2008, the global change in CH₄ wetland emissions amounted to an increase of 7.7 Tg CH₄ yr⁻¹, mostly as a result of boreal wetlands $(3.1\,\mathrm{Tg}\,\mathrm{CH_4}\,\mathrm{yr}^{-1})$ and tropical wetlands $(3.4 \,\mathrm{Tg}\,\mathrm{CH_4}\,\mathrm{yr}^{-1})$, while there was also a significant increase of $1.1 \,\mathrm{Tg}\,\mathrm{CH_4}\,\mathrm{yr}^{-1}$ from mid-latitude wetlands. The increase in Southern Hemisphere extra-tropical wetland emissions $(0.13 \,\mathrm{Tg}\,\mathrm{CH_4}\,\mathrm{yr}^{-1})$ did not significantly contribute to the CH₄ wetland emissions growth during 2003-2008. Boreal wetland emissions increased by 1.6 Tg CH₄ yr⁻¹ in between 2006-2007 and decreased by 0.1 Tg CH₄ yr⁻¹ in 2007-2008. Tropical wetland emissions increased by 1.4 Tg CH₄ yr⁻¹ in 2006-2007 and $1.2 \,\mathrm{Tg} \,\mathrm{CH_4} \,\mathrm{yr}^{-1}$ in 2007-2008. Other work shows a larger interannual variability, a similar year-to-year trend for boreal wetlands, and a decrease in the atmospheric CH₄ inversion estimates of tropical wetland emissions for 2007–2008 (Bousquet et al., 2011).

Finally, we used our wetland and rice CH₄ emission estimates to drive the GEOS-Chem global 3-D atmospheric chemistry and transport model (described and evaluated by Fraser et al., 2011), allowing us to test consistency between our emissions to surface measurements of CH₄ concentrations. We sampled the model at the time and geographical location of the surface CH₄ measurements from the GasLab, AGAGE and ESRL networks (Francey et al., 1996; Prinn et al., 2000; Cunnold et al., 2002; Dlugokencky et al., 2009). Figure 5 shows model and observed CH₄ concentration anomalies (i.e. minus the mean trend) for the Northern and Southern Hemispheres. We chose to remove the interannual trend from all CH₄ concentrations to compare the seasonality of model and surface measurements of CH₄. We show that the DMCM approach better describes the observed seasonality in both hemispheres ($r_{NH} = 0.9$, $r_{SH} = 0.9$), and the amplitude of the Southern Hemisphere seasonality is largely improved in comparison to the GEOS-Chem runs using Fung et al. (1991) and Bloom et al. (2010) CH₄ emissions.

4 Concluding remarks

Understanding the temporal controls of temperature, water volume and carbon content of wetlands is crucial in determining the global and regional seasonal cycle of wetland CH₄ emissions. We showed that incorporating a temporally variable methanogen-available carbon pool, C_{μ} , in our top-down approach results in a significant improvement in describing the temporal behaviour of tropical and global CH₄ emissions.

By implementing our dynamic methanogen-available carbon model (DMCM) on a global scale, we determined the effects of a seasonally variable C_{μ} on the seasonality of wetland CH₄ emissions in the Amazon River basin. We found a median decay constant of $\overline{\phi}_{\text{Amazon}} = 0.017 \,\text{day}^{-1}$ over the Amazon River basin. Seasonal changes in C_{μ} in the tropics largely explained the seasonal lag between SCIAMACHY observed CH₄ concentrations and GRACE equivalent water height. The relatively high seasonal variability in C_{μ} (mean $c_v = 28$ %) over the Amazon River basin resulted in peak CH₄ emissions occurring mostly 1-3 months prior to the peak water height period; in contrast, the median boreal C_{μ} variability was $c_v < 0.1$ %. We showed a substantial improvement in simulating the seasonality of surface concentrations when using the GEOS-Chem atmospheric chemistry transport model with our wetland and rice CH_4 emission estimates (r = 0.9). These improvements in the magnitude and temporal dynamics of tropical CH₄ emissions will ultimately help constrain global inverse modelling efforts.

We anticipate that this work will lead to further and more detailed parameterisation of tropical wetland CH₄ emissions, and we expect our tropical wetland CH₄ emission parameterisation will reduce the uncertainty in forecasting future changes in wetland CH₄ emissions.

Acknowledgements. We thank Catherine Prigent for providing global inundated fraction data and Christian Frankenberg for providing the SCIAMACHY CH4 retrievals. We thank Nancy Burns for her input on model and measured decomposition rate comparison. The surface measurements were provided by the NASA AGAGE network, the NOAA ESRL network, and the CSIRO Marine and Atmospheric Research GASLab network. A. A. B. was supported by the UK Natural Environmental Research Council (NERC) studentship NE F007973 1 and funds from P. I. P.'s Philip Leverhulme Prize. A. F. was supported by the NERC National Centre for Earth Observation.

Edited by: Z. Jia

References

Azarderakhsh, M., Rossow, W. B., Papa, F., Norouzi, H., and Khanbilvardi, R.: Diagnosing water variations within the Amazon basin using satellite data, J. Geophys. Res. Atmos., 116, D24107, doi:10.1029/2011JD015997, 2011.

- Bianchini Jr., I., da Cunha-Santino, M. B., Romeiro, F., and Bitar, A. L.: Emissions of methane and carbon dioxide during anaerobic decomposition of aquatic macrophytes from a tropical lagoon (São Paulo, Brazil), Acta Limnologica Brasiliensia (Online), 22, 157–164, 2010.
- Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C.: Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data, Science, 327, 322–325, 2010.
- Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E. J., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., Hauglustaine, D. A., Krummel, P. B., Langenfelds, R. L., Ramonet, M., Schmidt, M., Steele, L. P., Szopa, S., Yver, C., Viovy, N., and Ciais, P.: Source attribution of the changes in atmospheric methane for 2006–2008, Atmos. Chem. Phys., 11, 3689–3700, doi:10.5194/acp-11-3689-2011, 2011.
- Caldararu, S., Palmer, P. I., and Purves, D. W.: Inferring Amazon leaf demography from satellite observations of leaf area index, Biogeosciences, 9, 1389–1404, doi:10.5194/bg-9-1389-2012, 2012.
- Cao, M., Marshall, S., and Gregso, K.: Global carbon exchange and methane emissions from natural wetlands: Application of a process-based model, J. Geophys. Res., 101, 14399–14414, 1996.
- Chave, J., Navarrete, D., Almeida, S., Álvarez, E., Aragão, L. E. O.
 C., Bonal, D., Châtelet, P., Silva-Espejo, J. E., Goret, J.-Y., von
 Hildebrand, P., Jiménez, E., Patiño, S., Peñuela, M. C., Phillips,
 O. L., Stevenson, P., and Malhi, Y.: Regional and seasonal patterns of litterfall in tropical South America, Biogeosciences, 7,
 43–55, doi:10.5194/bg-7-43-2010, 2010.
- Conen, F., Smith, K. A., and Yagi, K.: Methane and Climate Change, chap. Rice Cultivation, 115–135, EarthScan, ISBN 9781844078233, 2010.
- Cunnold, D. M., Steele, L. P., Fraser, P. J., Simmonds, P. G., Prinn, R. G., Weiss, R. F., Porter, L. W., O'Doherty, S., Langenfelds, R. L., Krummel, P. B., Wang, H. J., Emmons, L., Tie, X. X., and Dlugokencky, E. J.: In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences, J. Geophys. Res. Atmos., 107, 4225, doi:10.1029/2001JD001226, 2002.
- Denman, K., Brasseur, G., Chidthaisong, A., Ciai, P., Cox, P., Dickinson, R., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., U.Lohmann, Ramachandran, S., da Silva Dias, P., Wofsy, S., and Zhang, X.: Couplings Between Changes in the Climate System and Biogeochemistry, in: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007.
- Dingemans, B., Bakker, E., and Bodelier, P.: Aquatic herbivores facilitate the emission of methane from wetlands, Ecology, 92, 1166–1173, 2011.
- Dlugokencky, E. J., Lang, P., and Masarie, K.: Atmospheric Methane Dry Air Mole Fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983–2007, Version: 2008-07-02, 2009.

- Francey, R. L., Steele, L., Langenfelds, R., Lucarelli, M., Allison, C., Beardsmore, D., Coram, S., Derek, N., de Silva, F., Etheridge, D., Fraser, P., Henry, R., Turner, B., Welch, E., Spencer, D., and Cooper, L.: Global Atmospheric Sampling Laboratory (GASLAB): supporting and extending the Cape Grim trace gas programs. Baseline Atmospheric Program (Australia) 1993, edited by: Francey, R. J., Dick, A. L., and Derek, N., 8–29, Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, Australia, 1996.
- Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T.: Assessing Methane Emissions from Global Space-Borne Observations, Science, 308, 1010–1014, 2005.
- Frankenberg, C., Warneke, T., Butz, A., Aben, I., Hase, F., Spietz, P., and Brown, L. R.: Pressure broadening in the 2ν₃ band of methane and its implication on atmospheric retrievals, Atmos. Chem. Phys., 8, 5061–5075, doi:10.5194/acp-8-5061-2008, 2008
- Fraser, A., Miller, C. C., Palmer, P. I., Deutscher, N. M., Jones, N. B., and Griffith, D. W. T.: The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model, J. Geophys. Res., 116, D20306, doi:10.1029/2011JD015964, 2011.
- Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P., and Fraser, P. J.: Three-dimensional model synthesis of the global methane cycle, J. Geophys. Res., 96, 13033–13065, doi:10.1029/91JD01247, 1991.
- Gedney, N., Cox, P. M., and Huntingford, C.: Climate feed-back from wetland methane emissions, Geophys. Res. Lett., 31, L20503, doi:10.1029/2004GL020919, 2004.
- Hodson, E. L., Poulter, B., Zimmermann, N. E., Prigent, C., and Kaplan, J. O.: The El Niño-Southern Oscillation and wetland methane interannual variability, Geophys. Res. Lett., 38, L08810, doi:10.1029/2011GL046861, 2011.
- Ito, A. and Inatomi, M.: Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, 9, 759–773, doi:10.5194/bg-9-759-2012, 2012.
- Joabsson, A., Christensen, T. R., and Wallen, B.: Vascular plant controls on methane emissions from northern peatforming wetlands, Trends in Ecology and Evolution, 14, 385–388, 1999.
- Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., K. C. Mo, Ropelewsky, C., Wang, J., Jennec, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, Bullet. Am. Meteorol. Soc., 77, 437–471, 1996.
- Laanbroek, H. J.: Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review, Ann. Botany, 105, 141–153, doi:10.1093/aob/mcp201, 2010.
- Lemoine, J.-M., Bruinsma, S., Loyer, S., Biancale, R., Marty, J.-C., Perosanz, F., and Balmino, G.: Temporal gravity field models inferred from GRACE data, Adv. Space Res., 39, 1620–1629, doi:10.1016/j.asr.2007.03.062, 2007.
- Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., and Nepstad, D.: The 2010 Amazon Drought, Science, 331, 554, doi:10.1126/science.1200807, 2011.
- Longhi, D., Bartoli, M., and Viaroli, P.: Decomposition of four macrophytes in wetland sediments: Organic matter and nutri-

- ent decay and associated benthic processes, Aquatic Botany, 89, 303–310, doi:10.1016/j.aquabot.2008.03.004, 2008.
- Malhi, Y., Aragao, L. E. O. C., Metcalfe, D. B., Paiva, R., Quesada, C. A., Almeida, S., Anderson, L., Brando, P., Chambers, J. Q., Da Costa, A. C. L., Hutyra, L. R., Oliveira, P., Patino, S., Pyle, E. H., Robertson, A. L., and Teixeira, L. M.: Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests, Global Change Biol., 15, 1255–1274, doi:10.1111/j.1365-2486.2008.01780.x, 2009.
- Melack, J. M., Hess, L. L., Gastil, M., Forsberg, B. R., Hamilton, S. K., Lima, I. B. T., and Nova, E. M. L. M.: Regionalization of methane emissions in the Amazon basin with microwave remote sensing, Global Change Biol., 10, 530–544, 2004.
- Mitsch, W., Nahlik, A., Wolski, P., Bernal, B., Zhang, L., and Ramberg, L.: Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions, Wetlands Ecol. Manage., 18, 573–586, doi:10.1007/s11273-009-9164-4, 2010.
- Miyajima, T., Wada, E., Hanba, Y. T., and Vijarnsorn, P.: Anaerobic mineralization of indigenous organic matters and methanogenesis in tropical wetland soils, Geochimica et Cosmochimica Acta, 61, 3739–3751, doi:10.1016/S0016-7037(97)00189-0, 1997.
- Neue, H., Wassmann, R., Kludze, H., Bujun, W., and Lantin, R.: Factors and processes controlling methane emissions from rice fields, Nutr. Cycl. Agroecosys., 49, 111–117, 1997.
- Oki, T. and Sud, Y. C.: Design of Total Runoff Integrating Pathways (TRIP) A global river channel network, Earth Interactions, 2, 1–37, 1998.
- Papa, F., Güntner, A., Frappart, F., Prigent, C., and Rossow, W. B.: Variations of surface water extent and water storage in large river basins: A comparison of different global data sources, Geophys. Res. Lett., 351, L11401, doi:10.1029/2008GL033857, 2008.
- Pierobon, E., Bolpagni, R., Bartoli, M., and Viaroli, P.: Net primary production and seasonal CO₂ and CH₄ fluxes in a Trapa natans L. meadow, J. Limnol., 69, 2010.
- Prigent, C., Papa, F., Aires, F., Rossow, W. B., and Matthews, E.: Global inundation dynamics inferred from multiple satellite observations, 1993–2000, J. Geophys. Res. Atmos., 112, D12107, doi:10.1029/2006JD007847, 2007.
- Prinn, R. G., Weiss, R. F., Fraser, P. J., Simmons, P. G., Cunnold, D. N., Alyea, F. N., O'Doherty, S., Salameh, P., Miller, B. R., Huang, J., Wang, R. H. J., Hartley, D. E., Harth, C., Steele, L. P., Sturrock, G., Midgley, P. M., and McCulloch, A.: A History of Chemically and Radiatively Important Gases in Air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105, 17751–17792, 2000.
- Riley, W. J., Subin, Z. M., Lawrence, D. M., Swenson, S. C., Torn, M. S., Meng, L., Mahowald, N. M., and Hess, P.: Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, 8, 1925–1953, doi:10.5194/bg-8-1925-2011, 2011.
- Ringeval, B., de Noblet-Ducoudré, N., Ciais, P., Bousquet, P., Prigent, C., Papa, F., and Rossow, W. B.: An attempt to quantify the impact of changes in wetland extent on methane emissions on the seasonal and interannual time scales, Global Biogeochem. Cyc., 24, GB2003, doi:10.1029/2008GB003354, 2010.
- Schmidt, H., Eickhorst, T., and Tippkötter, R.: Monitoring of root growth and redox conditions in paddy soil rhizotrons by redox electrodes and image analysis, Plant Soil, 341, 221–232,

- http://dx.doi.org/10.1007/s11104-010-0637-2, 10.1007/s11104-010-0637-2, 2011.
- Schubert, C., Lucas, F., Durisch-Kaiser, E., Stierli, R., Diem, T., Scheidegger, O., Vazquez, F., and Müller, B.: Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland), Aquatic Sciences – Research Across Boundaries, 72, 455–466, doi:10.1007/s00027-010-0148-5, 2010.
- Seybold, C., Mersie, W., Huang, J., and McNamee, C.: Soil redox, pH, temperature, and water-table patterns of a freshwater tidal wetland, Wetlands, 22, 149–158, doi:10.1672/0277-5212(2002)022[0149:SRPTAW]2.0.CO;2, 2002.
- Silva, T., Costa, M., and Melack, J.: Annual net primary production of macrophytes in the eastern Amazon floodplain, Wetlands, 29, 747–758, doi:10.1672/08-107.1, 2009.
- Singh, S.: Exploring correlation between redox potential and other edaphic factors in field and laboratory conditions in relation to methane efflux, Environ. Int., 27, 265–274, doi:10.1016/S0160-4120(01)00055-1, 2001.
- Singh, S., Kulshreshtha, K., and Agnihotri, S.: Seasonal dynamics of methane emission from wetlands, Chemosphere Global Change Science, 2, 39–46, doi:10.1016/S1465-9972(99)00046-X, 2000.
- Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J. O., Levis, S., Lucht, W., Sykes, M. T., Thonicke, K., and Venevsky, S.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model, Global Change Biol., 9, 161–185, doi:10.1046/j.1365-2486.2003.00569.x, 2003.

- Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F., and Watkins, M. M.: GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503–506, doi:10.1126/science.1099192.2004.
- Thompson, Y., Sandefur, Brian abd Karathanasis, A., and D'angelo, E.: Redox Potential and Seasonal Porewater Biogeochemistry of Three Mountain Wetlands in Southeastern Kentucky, USA, Aquat. Geochem., 15, 349–370, doi:10.1007/s10498-008-9042-3, 2009.
- Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I.: Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, 11501, doi:10.1029/2004GL019779, 2004.
- Walter, B. P., Heimann, M., and Matthews, E.: Modelling modern methane emissions form natural wetlands 1. Model description and results, J. Geophys. Res., 106, 34189–34206, 2001.
- Wania, R., Ross, I., and Prentice, I. C.: Implementation and evaluation of a new methane model within a dynamic global vegetation model: LPJ-WHyMe v1.3.1, Geosci. Model Dev., 3, 565–584, doi:10.5194/gmd-3-565-2010, 2010.
- Whalen, S. C.: Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere, Environ. Eng. Sci., 22, 73–95, 2005.