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Ice shelves are important elements of the climate system and sensitive to climate changes. The disintegration of large Antarctic
ice shelves is the focus of this fracture mechanical analysis. Ice is a complex material which, depending on the context, can
be seen as a viscous fluid or as an elastic solid. A fracture event usually occurs on a rather short time scale, thus the elastic
response is important and linear elastic fracture mechanics can be used. The investigation of the stress intensity factor as a
measure of crack tip loading is based on a 2-dimensional analysis of a single crack with a mode-I type load and additional
body loads. This investigation is performed using configurational forces. Depth dependent density and temperature profiles
are considered. The relevant parameters are obtained by literature, remote sensing data analysis and modeling of the ice
dynamics. The criticality of wet surface cracks is investigated.
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1 Energy release rate and configurational forces

The analysis of the criticality of cracks in ice shelves is based on the evaluation of the stress intensity factor (SIF) at the crack
tip using configurational forces. The configurational balance of linear momentum

div Σ + g = 0, (1)

with the Eshelby stress tensor Σ = U1− (∇u)Tσ and the configurational volume force can be rearranged to yield

g = −(∇u)Tf − ∂U

∂x

∣∣∣∣
expl.
→ − ∂U

∂x

∣∣∣∣
expl.

= −div
[
U1− (∇u)Tσ

]
+ (∇u)Tf . (2)

In this equation σ is the Cauchy stress tensor, u the actual displacement, f is the physical volume force and U is the strain
energy density U = 1

2ε : (Cε). Discretising (2)2 with finite elements reveals the driving force at the crack tip G. For details
the reader is referred to e.g. [3]. From the crack driving force the stress intensity factorKI can be calculated using the relation

K1 =

√
G

E

1− ν2 (3)

for the plane strain case.

2 Model of a floating ice shelf
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Fig. 1 Plane strain model

Fig. 1 illustrates the plane strain model, representing a vertical cut through an
’infinite’ ice shelf. The model takes different displacement boundary conditions,
gravity, different density profiles as well as water load on the crack faces into
account. The displacement boundary conditions are derived from surface stresses
σ, using the relation

∆u =
σ(1− ν2)

E

l

2
, (4)

with a Young’s modulus of E = 5 · 109 kPa and a Poisson’s ratio of ν = 0.3. The length of the ice shelf model is 2000m and
the thickness 250m. The stresses used are based on typical velocities measured in the Wilkins Ice Shelf [1] and range from 0
to 300 kPa.
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170 Section 3: Damage and fracture mechanics

3 Results

The solution of the finite element problem is done by COMSOL, with an additional code in MATLAB is required for the
evaluation of the stress intensity factors. All simulations are conducted using 6-node triangular elements with quadratic shape
functions.
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Fig. 2 KI for different tensile loads
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Fig. 3 Density profiles
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Fig. 4 KI for different density profiles

Fig. 2 shows the SIF KI for different displacement boundary conditions. It is obvious, that for zero boundary displace-
ment, only the overburden pressure of the ice is acting on the crack. The negative SIF can be interpreted as crack closure.
Larger tensile loads lead to positive stress intensity factors for shallow cracks. For deeper cracks the pressure of the ice be-
comes predominant and leads to closure. Critical SIF are indicated with the red dashed lines and range from 1 to 4·105Pa
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Fig. 5 Water filled cracks

Fig. 3 presents exponential fits for density profiles estimated from a densifica-
tion model of [2] as well as a constant profile. The SIF in Fig. 4 show, that the
small differences in the density profiles lead to only marginal differences in the
KI , strongly varying profiles lead to lower KI than more moderate profiles. The
constant profile leads to a higher overburden pressure and therefore to a lowerKI .
The SIF for cracks subjected to water pressure acting on the crack faces are shown
in Fig. 5. The cracks are filled up to sea level leading to unfilled shallow cracks
with equal SIF as presented in Fig.2. Cracks deeper than sea level show strongly
increasing stress intensity factors that indicate a break through of deep cracks even
for zero tensile loading. Further simulations with varying Poisson’s ratio show
a strong influence of the Poisson’s ratio on the SFI. This can be explained by
the transformation of the vertically acting ice overburden pressure into horizontal
stresses.

4 Conclusion

Unfilled cracks do not reach the bottom of the simulated ice shelf, under the given loading, whereas little water is sufficient
for a break through of cracks. Varying density profiles and different Poisson’s ratios change the stress intensity factors. More
research has to be done on depth dependent material properties and more realistic crack geometries (3D).
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