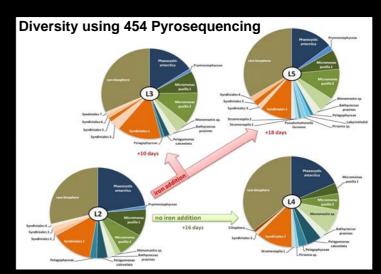
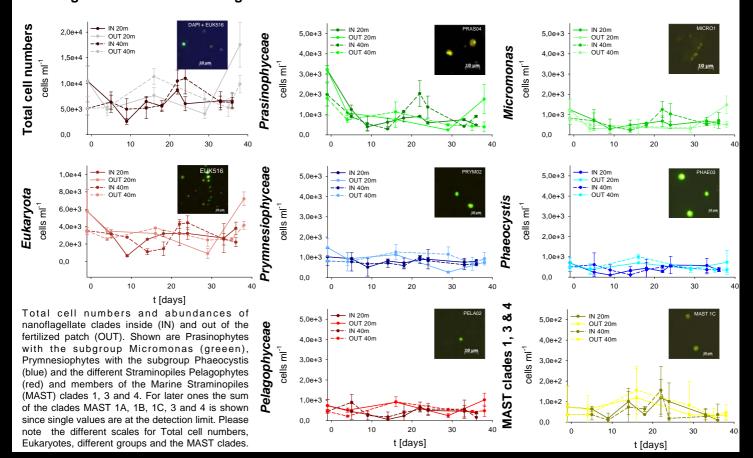


Nanoflagellate diversity during the iron fertilization experiment LOHAFEX



S. Thiele¹, C. Wolf², I. Schulz², B. Fuchs¹, K. Metfies², P. Assmy³, R. Amann¹


¹ Department of Molecular Ecology, Max Planck Institut für Marine Mikrobiologie, Bremen, Germany
² Research Group Bioscience, Alfred Wegener Institut, Bremerhaven, Germany
³ Department of Biological Oceanography, Norwegian Polar Institute, Tromsø, Norway

Background

- Iron fertilization in iron limited but nutrient rich areas leads to phytoplankton blooms.
- During LOHAFEX, an iron fertilization experimtent in the Southern Atlantik, a phytoplankton bloom of mainly nanoflagellates (NF) was induced.
- The bacterial community within the bloom was top-down controlled by heterotrophic nanoflagellates.
- Autotrophic nanoflagellates play a role as primary producer in marine systems, whereas heterotrophic nanoflagellates (HNF) graze upon *Bacteria* and *Archaea* of a size range between 1 µm and 3 µm. Mixotrophic organisms are phototrophic and ingest bacterial prey at the same time.

Nanoflagellate abundances using CARD FISH

Conclusions

- Higher nanoflagellate abundances at 40 m depth compared to 20 m depth.
- Increase of *Micromonas*, an autotrophic prasinophyte, after the second iron fertilization (day 18) at day 22, followed by a decrease in abundance due to predation.
- Remarkably stable community, pointing towards overall top-down control by heterotrohphic predators, e.g. dinoflagellates.