Post-seismic viscoelastic deformation and stress transfer after the 1960 M9.5 Valdivia, Chile earthquake : effects on the 2010 M8.8 Maule, Chile earthquake

Thumbnail Image
Date
2014-03-04
Authors
Ding, Min
Lin, Jian
Linked Authors
Person
Person
Alternative Title
Date Created
Location
DOI
10.1093/gji/ggu048
Related Materials
Replaces
Replaced By
Keywords
Seismic cycle
Transient deformation
Seismicity and tectonics
Subduction zone processes
Dynamics: seismotectonics
South America
Abstract
After the 1960 M9.5 Valdivia, Chile earthquake, three types of geodetic observations were made during four time periods at nearby locations. These post-seismic observations were previously explained by post-seismic afterslip on the downdip extension of the 1960 rupture plane. In this study, we demonstrate that the post-seismic observations can be explained alternatively by volumetric viscoelastic relaxation of the asthenosphere mantle. In searching for the best-fitting viscosity model, we invert for two variables, the thickness of the elastic lithosphere, He, and the effective Maxwell decay time of the asthenosphere mantle, TM, assuming a 100-km-thick asthenosphere mantle. The best solutions to fit the observations in four sequential time periods, 1960–1964, 1960–1968, 1965–1973 and 1980–2010, each yield a similar He value of about 65 km but significantly increasing TM values of 0.7, 6, 10 and 80 yr, respectively. We calculate the corresponding viscoelastic Coulomb stress increase since 1960 on the future rupture plane of the 2010 M8.8 Maule, Chile earthquake. The calculated viscoelastic stress increase on the 2010 rupture plane varies gradually from 13.1 bars at the southern end to 0.1 bars at the northern end. In contrast, the stress increase caused by an afterslip model has a similar spatial distribution but slightly smaller values of 0.1–3.2 bars on the 2010 rupture plane.
Description
Author Posting. © The Authors, 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 197 (2014): 697-704, doi:10.1093/gji/ggu048.
Embargo Date
Citation
Geophysical Journal International 197 (2014): 697-704
Cruises
Cruise ID
Cruise DOI
Vessel Name