
40

Sa
n

d
ro

 G
io

va
n

n
i K

o
ch

A Reference Structure for
Modular Model-based Analyses

Sandro Giovanni Koch

The Karlsruhe Series on
Software Design

and Quality

40

A
 R

ef
er

en
ce

 S
tr

u
ct

u
re

 f
o

r
M

o
d

u
la

r
M

o
d

el
-b

as
ed

 A
n

al
ys

es

Sandro Giovanni Koch

A Reference Structure for
Modular Model-based Analyses

The Karlsruhe Series on Software Design and Quality
Volume 40

Dependability of Software-intensive Systems group
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

A Reference Structure for
Modular Model-based Analyses

by
Sandro Giovanni Koch

Print on Demand 2024 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 1867-0067
ISBN 978-3-7315-1341-4
DOI: 10.5445/KSP/1000167848

This document – excluding parts marked otherwise, the cover, pictures and graphs –
is licensed under a Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under a Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark
of Karlsruhe Institute of Technology.
Reprint using the book cover is not allowed.

www.ksp.kit.edu

Karlsruher Institut für Technologie
KASTEL – Institut für Informationssicherheit und Verlässlichkeit

A Reference Structure for Modular Model-based Analyses

Zur Erlangung des akademischen Grades eines Doktors der
Ingenieurwissenschaften von der KIT-Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation

von Sandro Giovanni Koch

Tag der mündlichen Prüfung: 7. Juli 2023
Erster Gutachter: Prof. Dr. Ralf H. Reussner
Zweiter Gutachter: Prof. Dr. Bernhard Rumpe

Danksagung

Es ist gescha�t! Mit großer Freude und Dankbarkeit möchte ich meine Aner-

kennung aussprechen. Mein aufrichtiger Dank gilt Ralf, dessen unermüdliche

Unterstützung, Leitung und Expertise maßgeblich dazu beigetragen haben,

dass ich meine Dissertation erfolgreich abschließen konnte. Unsere inspi-

rierenden Gespräche und sein Engagement haben meine akademische, aber

auch meine persönliche Reise bereichert. Ebenfalls möchte ich meine auf-

richtige Dankbarkeit gegenüber Robert ausdrücken, der mir in zahlreichen

Gesprächen und Publikationsprojekten mit Rat und Tat zur Seite stand.

Ein besonderer Dank geht an meine Lebensgefährtin Miri, die bedingungslos

an meiner Seite stand, mich ermutigte, wenn die Hürden schier unüberwind-

bar schienen, und immer Verständnis für die unzähligen Stunden hatte, die

ich dieser Dissertation gewidmet habe. Ihre Geduld und Nachsicht waren

eine unverzichtbare Stütze, die mich zuversichtlich voranschreiten ließ.

Auch meinen Eltern und meiner Schwester möchte ich von ganzem Herzen

danken. Ihre bedingungslose Unterstützung und grenzenlose Liebe haben

mich durch Höhen und Tiefen getragen. Ohne ihre stetige Ermutigung und

Zuversicht hätte ich diesen Meilenstein nicht erreichen können.

Ein herzlicher Dank geht auch an meinen Freund Marco, dessen motivieren-

de Worte und fester Glaube an mich mich dazu inspirierten, meinen Weg

konsequent zu verfolgen.

Auch meinen geschätzten Kollegen möchte ich meinen Dank aussprechen.

Die vielen Gespräche über Gott und die Welt, die moralische Unterstützung

und der fachliche Austausch haben meinen akademischen Weg bereichert

und mir geholfen, neue Perspektiven einzunehmen. Kiana und Axel möchte

ich für ihre Unterstützung, auch über die Zeit am Lehrstuhl hinaus, danken.

Dominik und Stephan bin ich dankbar dafür, dass sie meinen kulinarischen

Horizont erweitert und mir meine Grenzen aufgezeigt haben. Danke auch an

Heiko für die o�ene Tür und die vielen Gespräche in der Mittagspause und

i

Danksagung

nach Feierabend. Mein besonderer Dank gilt Jan, Frederik, Yves, Tobias, Do-

minik, Maximilian und Nicolas, die mit mir zusammen die magischen Welten

von Ikoria bis Zendikar erkundeten und so die langen Stunden erträglicher

gemacht haben.

Abschließend möchte ich all jenen danken, die mich auf diesem Weg begleitet

haben, sei es durch persönliche Begegnungen, aufmunternde Worte oder

positive Gedanken. Ihr alle habt dazu beigetragen, dass diese Dissertation zu

einem Erfolg wurde.

ii

Abstract

Context: In this thesis, we investigated the evolvability, understandabil-

ity, and reusability of model-based analyses. For this purpose, we studied

the co-dependency between models and analyses, particularly the structure

and interdependence of artefacts and the feature-based decomposition and

composition of model-based analyses.

Challenges: Software developers use models of software systems to deter-

mine the evolvability and reusability of an architectural design. These models

enable them to analyse the software architecture before writing the �rst

line of code. However, due to evolutionary changes, model-based analyses

are also prone to the deterioration of evolvability, understandability, and

reusability. These problems can be traced back to the co-evolution of the

modelling language and the analysis. The purpose of an analysis is a system-

atic examination or study of speci�c properties of a system under study. For

example, suppose software developers want to analyse new properties of a

software system. In that case, they must adapt features of the modelling lan-

guage and the corresponding model-based analyses before they can analyse

new properties. Features in the context of the modelling language are, for

example, quality properties such as performance or reliability. Features in a

model-based analysis are, for example, an analysis technique that analyses

such a quality property. Such changes lead to the increased complexity of the

model-based analyses and, as a result, to di�cult-to-maintain model-based

analyses. This increasing complexity reduces the understandability of the

model-based analyses. As a result, development cycles lengthen, and soft-

ware developers need more time to adapt the software system to changing

requirements.

State-of-the-Art: Current approaches allow the coupling of analyses on one

system or across distributed systems. These approaches provide the technical

structure for coupling simulations rather than a structure and process for how

components can be (de)composed. Another challenge in composing analyses

iii

Abstract

is the behavioural aspect, in which the analysis component in�uences what.

By synchronising each participating simulation, the decomposition of simu-

lations increases the need for communication. State-of-the-art approaches

reduce communication overhead; however, decomposition and composition

are left to the user. There are also several approaches to modelling variability

that use feature diagrams to be able to use product line techniques. How-

ever, these approaches must provide a process for identifying and structuring

analysis features.

Contributions: This thesis aims to improve model-based analysis’s evolv-

ability, understandability, and reusability. For this purpose, we take the

reference architecture for domain-speci�c modelling languages as a basis and

investigate the transferability of the structure of the reference architecture to

model-based analyses. The layered reference architecture maps the depen-

dencies of the analysis features and components by assigning them to speci�c

layers. We developed three processes for applying the reference architec-

ture: (i) refactoring an existing model-based analysis, (ii) designing a new

model-based analysis, and (iii) extending an existing model-based analysis.

In addition to the reference architecture for model-based analyses, we have

identi�ed recurring structures that lead to problems in evolvability, under-

standability and reusability; in the literature, these recurring structures are

also called bad smells. In particular, we have investigated the co-dependency

of Domain-speci�c Modelling Languages (DSMLs) and model-based analyses

that lead to these recurring problems. So far, bad smells for DSMLs and source

code have been considered separately, although they are co-dependent. We

examined established model-based analyses and identi�ed and speci�ed thir-

teen bad smells. In addition to specifying the bad smells, we provide a process

for automatically identifying them and strategies for refactoring them so that

developers can avoid or �x them. We also developed a modelling language

for specifying this thesis’s structure and behaviour of analysis components.

Simulations are analyses to investigate a system when experimenting with

the existing system is too time-consuming, costly, dangerous or simply im-

possible because the system does not exist (yet). Developers can use the

speci�cation to compare simulation components and thus identify identical

components. Finding similar simulation components allows developers to

reuse existing components and reduce the e�ort required to develop new

components.

Validation: We evaluated our �rst contribution, the reference architecture

for model-based analyses, by applying it to four model-based analyses. We

iv

Abstract

chose a scenario-based evaluation that derives historical change scenarios

from the repositories of the model-based analyses. In the evaluation, we

can show that evolvability and understandability improve by determining

the complexity, coupling, and cohesion. The metrics we used originate from

information theory but were already used to evaluate the reference archi-

tecture for DSMLs. We evaluated our second contribution, the bad smells

that emerge due to the co-dependency of model-based analyses and their

corresponding DSMLs, by searching four model-based analyses for occur-

rences of our bad smells and �xing the found bad smells. We also chose

a scenario-based evaluation that derives historical change scenarios from

the repositories of the model-based analyses. We can show that bad smells

negatively a�ect evolvability and understandability by determining the com-

plexity, coupling, and cohesion before and after the refactoring. We evaluated

our third contribution, the approach to specify and �nd components of model-

based analyses, by specifying components of two model-based analyses and

by applying our search algorithm to �nd analysis components with similar

structure and behaviour. The evaluation results show that we can �nd similar

analysis components and, as a result, that our approach can ease the search

for analysis components with similar structure and behaviour. Thus, it can

ease the reuse of such components.

Bene�ts: The contributions of our work support architects and developers

in their day-to-day work to develop maintainable and reusable model-based

analyses. For this purpose, we provide a reference architecture that aligns

model-based analysis with the domain-speci�c modelling language, thus

facilitating co-evolution. In addition to the reference architecture, we provide

refactoring operations that allow architects and developers to align an existing

model-based analysis with the reference architecture. In addition to this

technical aspect, we have identi�ed three processes that enable architects and

developers to develop a new model-based analysis, modularise an existing

model-based analysis and extend an existing model-based analysis. Of course,

this is done so that the results conform to the reference architecture. In

addition, our speci�cation allows developers to compare existing simulation

components and reuse them as needed. This avoids the need for developers

to re-implement components.

v

Zusammenfassung

Kontext: In dieser Arbeit haben wir die Evolvierbarkeit, Verständlichkeit und

Wiederverwendbarkeit von modellbasierten Analysen untersucht. Darum

untersuchten wir die Wechselbeziehungen zwischen Modellen und Analy-

sen, insbesondere die Struktur und Abhängigkeiten von Artefakten und die

Dekomposition und Komposition von modellbasierten Analysen.

Herausforderungen: Softwareentwickler verwenden Modelle von Softwa-

resystemen, um die Evolvierbarkeit und Wiederverwendbarkeit eines Ar-

chitekturentwurfs zu bestimmen. Diese Modelle ermöglichen die Softwa-

rearchitektur zu analysieren, bevor die erste Zeile Code geschreiben wird.

Aufgrund evolutionärer Veränderungen sind modellbasierte Analysen jedoch

auch anfällig für eine Verschlechterung der Evolvierbarkeit, Verständlichkeit

und Wiederverwendbarkeit. Diese Probleme lassen sich auf die Ko-Evolution

von Modellierungssprache und Analyse zurückführen. Der Zweck einer Ana-

lyse ist die systematische Untersuchung bestimmter Eigenschaften eines zu

untersuchenden Systems. Nehmen wir zum Beispiel an, dass Softwareent-

wickler neue Eigenschaften eines Softwaresystems analysieren wollen. In

diesem Fall müssen sie Merkmale der Modellierungssprache und die entspre-

chenden modellbasierten Analysen anpassen, bevor sie neue Eigenschaften

analysieren können. Merkmale in einer modellbasierten Analyse sind z. B.

eine Analysetechnik, die eine solche Qualitätseigenschaft analysiert. Solche

Änderungen führen zu einer erhöhten Komplexität der modellbasierten Ana-

lysen und damit zu schwer zu p�egenden modellbasierten Analysen. Diese

steigende Komplexität verringert die Verständlichkeit der modellbasierten

Analysen. Infolgedessen verlängern sich die Entwicklungszyklen, und die

Softwareentwickler benötigen mehr Zeit, um das Softwaresystem an verän-

derte Anforderungen anzupassen.

Stand der Technik: Derzeitige Ansätze ermöglichen die Kopplung von Ana-

lysen auf einem System oder über verteilte Systeme hinweg. Diese Ansätze

bieten die technische Struktur für die Kopplung von Simulationen, nicht aber

vii

Zusammenfassung

eine Struktur wie Komponenten (de)komponiert werden können. Eine weitere

Herausforderung beim Komponieren von Analysen ist der Verhaltensaspekt,

der sich darin äußert, wie sich die Analysekomponenten gegenseitig beein-

�ussen. Durch die Synchronisierung jeder beteiligten Simulation erhöht die

Modularisierung von Simulationen den Kommunikationsbedarf. Derzeitige

Ansätze erlauben es, den Kommunikationsaufwand zu reduzieren; allerdings

werden bei diesen Ansätzen die Dekomposition und Komposition dem Be-

nutzer überlassen.

Beiträge: Ziel dieser Arbeit ist es, die Evolvierbarkeit, Verständlichkeit und

Wiederverwendbarkeit von modellbasierten Analysen zu verbessern. Zu

diesem Zweck wird die Referenzarchitektur für domänenspezi�sche Mo-

dellierungssprachen als Grundlage genommen und die Übertragbarkeit der

Struktur der Referenzarchitektur auf modellbasierte Analysen untersucht. Die

geschichtete Referenzarchitektur bildet die Abhängigkeiten der Analysefunk-

tionen und Analysekomponenten ab, indem sie diese bestimmten Schichten

zuordnet. Wir haben drei Prozesse für die Anwendung der Referenzarchitek-

tur entwickelt: (i) Refactoring einer bestehenden modellbasierten Analyse,

(ii) Entwurf einer neuen modellbasierten Analyse und (iii) Erweiterung einer

bestehenden modellbasierten Analyse. Zusätzlich zur Referenzarchitektur für

modellbasierte Analysen haben wir wiederkehrende Strukturen identi�ziert,

die zu Problemen bei der Evolvierbarkeit, Verständlichkeit und Wiederver-

wendbarkeit führen; in der Literatur werden diese wiederkehrenden Struktu-

ren auch als Bad Smells bezeichnet. Wir haben etablierte modellbasierte Ana-

lysen untersucht und dreizehn Bad Smells identi�ziert und spezi�ziert. Neben

der Spezi�zierung der Bad Smells bieten wir einen Prozess zur automatischen

Identi�zierung dieser Bad Smells und Strategien für deren Refactoring, damit

Entwickler diese Bad Smells vermeiden oder beheben können. In dieser Arbeit

haben wir auch eine Modellierungssprache zur Spezi�kation der Struktur und

des Verhaltens von Simulationskomponenten entwickelt. Simulationen sind

Analysen, um ein System zu untersuchen, wenn das Experimentieren mit dem

bestehenden System zu zeitaufwändig, zu teuer, zu gefährlich oder einfach

unmöglich ist, weil das System (noch) nicht existiert. Entwickler können die

Spezi�kation nutzen, um Simulationskomponenten zu vergleichen und so

identische Komponenten zu identi�zieren.

Validierung: Die Referenzarchitektur für modellbasierte Analysen, haben

wir evaluiert, indem wir vier modellbasierte Analysen in die Referenzarchitek-

tur überführt haben. Wir haben eine szenariobasierte Evaluierung gewählt,

die historische Änderungsszenarien aus den Repositories der modellbasierten

viii

Zusammenfassung

Analysen ableitet. In der Auswertung können wir zeigen, dass sich die Evol-

vierbarkeit und Verständlichkeit durch die Bestimmung der Komplexität, der

Kopplung und der Kohäsion verbessert. Die von uns verwendeten Metriken

stammen aus der Informationstheorie, wurden aber bereits zur Bewertung

der Referenzarchitektur für DSMLs verwendet. Die Bad Smells, die durch

die Co-Abhängigkeit von modellbasierten Analysen und ihren entsprechen-

den DSMLs entstehen, haben wir evaluiert, indem wir vier modellbasierte

Analysen nach dem Auftreten unserer schlechten Gerüche durchsucht und

dann die gefundenen Bad Smells behoben haben. Wir haben auch eine sze-

nariobasierte Auswertung gewählt, die historische Änderungsszenarien aus

den Repositories der modellbasierten Analysen ableitet. Wir können zeigen,

dass die Bad Smells die Evolvierbarkeit und Verständlichkeit negativ beein-

�ussen, indem wir die Komplexität, Kopplung und Kohäsion vor und nach

der Refaktorisierung bestimmen. Den Ansatz zum Spezi�zieren und Finden

von Komponenten modellbasierter Analysen haben wir evaluiert, indem wir

Komponenten von zwei modellbasierten Analysen spezi�zieren und unseren

Suchalgorithmus verwenden, um ähnliche Analysekomponenten zu �nden.

Die Ergebnisse der Evaluierung zeigen, dass wir in der Lage sind, ähnliche

Analysekomponenten zu �nden und dass unser Ansatz die Suche nach Analy-

sekomponenten mit ähnlicher Struktur und ähnlichem Verhalten und damit

die Wiederverwendung solcher Komponenten ermöglicht.

Nutzen: Die Beiträge unserer Arbeit unterstützen Architekten und Entwick-

ler bei ihrer täglichen Arbeit, um wartbare und wiederverwendbare modell-

basierte Analysen zu entwickeln. Zu diesem Zweck stellen wir eine Referenz-

architektur bereit, die die modellbasierte Analyse und die domänenspezi�-

sche Modellierungssprache aufeinander abstimmt und so die Koevolution

erleichtert. Zusätzlich zur Referenzarchitektur bieten wir auch Refaktorisie-

rungsoperationen an, die es Architekten und Entwicklern ermöglichen, eine

bestehende modellbasierte Analyse an die Referenzarchitektur anzupassen.

Zusätzlich zu diesem technischen Aspekt haben wir drei Prozesse identi�ziert,

die es Architekten und Entwicklern ermöglichen, eine neue modellbasierte

Analyse zu entwickeln, eine bestehende modellbasierte Analyse zu modu-

larisieren und eine bestehende modellbasierte Analyse zu erweitern. Dies

geschieht natürlich so, dass die Ergebnisse mit der Referenzarchitektur kon-

form sind. Darüber hinaus ermöglicht unsere Spezi�kation den Entwicklern,

bestehende Simulationskomponenten zu vergleichen und sie bei Bedarf wie-

derzuverwenden. Dies erspart den Entwicklern die Neuimplementierung von

Komponenten.

ix

Contents

Danksagung . i

Abstract . iii

Zusammenfassung . vii

List of Figures . xvii

List of Tables . xix

List of Listings . xxi

Acronyms . xxiii

I. Prologue 1

1. Introduction . 3
1.1. Motivation . 3

1.2. Problem Statements . 5

1.3. Contributions . 7

1.4. Thesis Outline . 10

2. Foundation . 13
2.1. Terms and De�nitions . 13

2.1.1. Domain-speci�c Modelling Language 13

2.1.2. Model-based Analyses 15

2.1.3. Roles . 16

2.2. Foundational Concepts . 18

2.2.1. A Reference Architecture for Metamodels 18

2.2.2. Hypergraph Metrics 22

xi

Contents

2.3. Foundational Concepts for the Decomposition and Composi-

tion of Model-based Analyses 25

2.3.1. Quality Property . 25

2.3.2. Modelling Language 25

2.3.3. Feature Model . 26

2.3.4. Analysis Composition 28

2.3.5. Feature Composition 29

2.3.6. Analysis Decomposition 30

2.4. Bad Smells in Di�erent Domains 31

2.4.1. Bad Smells in Object-oriented Software 31

2.4.2. Bad Smells in Domain-speci�c Modelling Languages 36

2.5. Foundational Concepts for the Reuse of Model-based Analysis

Components . 40

2.5.1. Satis�able Modulo Theories 40

2.5.2. P versus NP . 42

2.5.3. Nondeterministic Polynomial Time 42

2.5.4. Graph Isomorphism 43

2.5.5. Domain-speci�c Language 44

2.6. Foundation of the Evaluation 45

2.6.1. Validity Types . 45

2.6.2. Goal Question Metric Approach 46

2.7. Technical Foundation . 47

2.7.1. Eclipse Modelling Framework 47

2.7.2. Xtext . 47

2.7.3. Xtend . 48

2.7.4. Neo4J . 48

2.7.5. Spoon . 48

II. Improving Evolvability and Reusability of Model-based Analyses 51

3. Decomposition and Composition of Model-based Analyses 53
3.1. Hypothesis and Research Questions 56

3.2. Requirements for the Reference Architecture 59

3.3. Decomposition of Model-based Analyses 63

3.3.1. Modularisation Concepts for Model-based Analyses 63

3.3.2. Layers in Model-based Quality Analyses 69

3.3.3. Refactoring Operations for Modularising Model-based

Analyses . 74

xii

Contents

3.4. Composition of Model-based Analyses 85

3.5. Application Process . 88

3.5.1. Modularisation of an Existing Model-based Analysis 89

3.5.2. Developing a Model-based Analysis from Scratch . . 99

3.5.3. Extending a Model-based Analysis 107

3.6. Technical Contribution . 110

3.6.1. Analysis Library – Refactor Lizar 111

3.6.2. Refactoring Library 114

4. Bad Smells in Model-based Analyses 117
4.1. Hypothesis and Research Questions 118

4.2. Bad Smells in Model-based Analyses 120

4.2.1. Abstraction . 122

4.2.2. Encapsulation . 129

4.2.3. Hierarchy . 132

4.2.4. Modularity . 140

4.3. Identifying Bad Smells in Model-based Analyses 152

4.3.1. Identi�cation of Abstraction Smells 152

4.3.2. Identi�cation of the Encapsulation Smell 154

4.3.3. Identi�cation of Hierarchy Smells 155

4.3.4. Identi�cation of Modularity Smells 157

5. Reuse of Model-based Analysis Components 161
5.1. Hypothesis and Research Questions 162

5.1.1. Model-based Analysis Speci�cation 163

5.1.2. Model-based Analysis Component Identi�cation . . 164

5.2. Speci�cation of Model-based Analyses 164

5.2.1. Discrete-event Simulation De�nition 165

5.2.2. Structure Speci�cation 167

5.2.3. Behaviour Speci�cation 168

5.2.4. Speci�cation Grammar 169

5.2.5. Behaviour with Satis�able Modulo Theories 173

5.3. Structure Comparison . 176

5.4. Behaviour Comparison . 178

5.4.1. Comparing Schedules Relationships 178

5.4.2. Comparing Writes Relationships 180

5.5. Technical Contribution . 182

5.5.1. Tooling . 183

xiii

Contents

5.6. Limitations . 189

5.6.1. Limitations of the Structure Comparison 190

5.6.2. Limitations of the Behaviour Comparison 191

III. Validation 195

6. Case Studies . 197
6.1. Selection Criteria . 198

6.2. The Palladio Simulator . 199

6.3. Camunda . 202

6.4. KAMP and KAMP4aPS . 204

6.5. SmartGrid . 207

7. Reference Architecture Evaluation 211
7.1. Discussion of the Requirements 211

7.2. Research Goals and Metrics 213

7.3. Evaluation Design . 215

7.3.1. Evolution Scenarios 215

7.3.2. Conduction of the Evaluation 216

7.3.3. SimuLizar Refactoring 217

7.3.4. Modular SimuLizar– mSimuLizar 218

7.3.5. SimuLizar Historical Evolution Scenarios 222

7.3.6. Camunda Refactoring 224

7.3.7. Modular Camunda – mCamunda 225

7.3.8. Camunda Historical Evolution Scenarios 226

7.3.9. KAMP4aPS Refactoring 227

7.3.10. Modular KAMP4aPS – mKAMP4aPS 227

7.3.11. KAMP4APS Historical Evolution Scenarios 231

7.3.12. SmartGrid Refactoring 231

7.3.13. Modular SmartGrid – mSmartGrid 231

7.3.14. SmartGrid Historical Evolution Scenarios 234

7.4. Evaluation Results . 234

7.5. Threats to Validity . 240

7.5.1. Internal Validity . 240

7.5.2. External Validity . 241

7.5.3. Construct Validity 241

7.5.4. Conclusion Validity 243

xiv

Contents

7.6. Discussion . 243

7.6.1. Complexity . 243

7.6.2. Coupling . 245

7.6.3. Cohesion . 245

8. Evaluation of Bad Smells in Model-based Analyses 247
8.1. Research Goals and Metrics 247

8.2. Evaluation Design . 249

8.2.1. Evolution Scenarios 249

8.2.2. Conduction of the Evaluation 250

8.2.3. Refactoring Scenarios 252

8.3. Evaluation Results . 264

8.3.1. Frequency of Occurrence Results 264

8.3.2. Evolvability, Understandability, and Reusability Results 265

8.4. Threats to Validity . 273

8.4.1. Internal Validity . 273

8.4.2. External Validity . 273

8.4.3. Construct Validity 274

8.4.4. Conclusion Validity 275

8.5. Discussion . 275

8.5.1. Existence . 275

8.5.2. Relevance . 277

9. Specification and Reuse Evaluation 281
9.1. Research Goals and Metrics 281

9.1.1. Applicability Metric 283

9.1.2. Accuracy Metric . 284

9.1.3. Scenarios . 285

9.1.4. Simulation Components of the Palladio Simulator . . 287

9.1.5. Simulation Components of Camunda 288

9.2. Evaluation Results . 290

9.2.1. Results for the Applicability Evaluation 291

9.2.2. Results for the Accuracy Evaluation 292

9.3. Threats to Validity . 294

9.3.1. Internal Validity . 294

9.3.2. External Validity . 295

9.3.3. Construct Validity 295

9.3.4. Conclusion Validity 295

xv

Contents

9.4. Discussion . 296

9.4.1. Applicability . 296

9.4.2. Accuracy . 296

IV. Epilogue 299

10. RelatedWork . 301
10.1. Decomposition and Composition of Model-based Analyses . 303

10.1.1. Analysis Integration 303

10.1.2. Analysis Orchestration 304

10.2. Integration of DSMLs and Model-based Analyses 306

10.2.1. Language Workbenches 306

10.2.2. Language Engineering Tools 308

10.3. Bad Smells and Anti-Pattern in Model-based Analyses 309

10.3.1. Bad Smell Detection 309

10.3.2. Bad Smell Refactoring 310

10.4. Reuse of Simulation Components 313

10.4.1. Source Code Comparison 313

10.4.2. Simulation Speci�cation and Reuse 314

10.5. Discussion . 316

11. Conclusion and Future Work . 319
11.1. Decomposition and Composition of Model-based Analyses . 319

11.1.1. Summary . 319

11.1.2. Limitations . 323

11.1.3. Future Work . 323

11.2. Bad Smells in Model-based Analyses 324

11.2.1. Summary . 324

11.2.2. Limitations . 327

11.2.3. Future Work . 328

11.3. Speci�cation and Reuse of Model-based Analysis 328

11.3.1. Summary . 328

11.3.2. Limitations . 330

11.3.3. Future Work . 331

Bibliography . 333

xvi

List of Figures

2.1. The Context of Domain-speci�c Modelling Languages (DSMLs),

Models, Analyses, and Results 15

2.2. Reference Architecture for DSMLs – Concept 19

2.3. Graph vs Hypergraph . 23

2.4. Concept of Feature Models . 27

2.5. Graph Isomorphism . 43

3.1. Dependency Structure of SimuLizar and the PCM 60

3.2. Structure and Relations of the Reference Architecture 64

3.3. Feature and Component Relation 68

3.4. Layering Structure for the Reference Architecture 70

3.5. Notational Elements . 75

3.6. Class Split . 75

3.7. Class Merge . 77

3.8. Breaking Dependency Cycles 78

3.9. Breaking Dependency Cycles – Analysis and DSML 78

3.10. Dependency Inversion . 79

3.11. Dependency Inversion – Inheritance 80

3.12. Dependency Inversion – Reference 80

3.13. Dependency Inversion – Bidirectional Reference and Containment 81

3.14. Horizontal Split . 82

3.15. Vertical Split . 83

3.16. Merge . 84

3.17. Extension Extraction . 84

3.18. Modularisation Concept to a Feature Structure Tree 86

3.19. Modularisation – Process Overview 91

3.20. Modularisation Step One: Decomposition into Layers 93

3.21. Modularisation Step Three: Dependency Alignment 95

3.22. New Model-based Analysis – Process Overview 100

3.23. Extending a Model-based Analysis – Process Overview 108

xvii

List of Figures

4.1. Classi�cation of Bad-Smells in Model-based Analyses 121

4.2. Duplicated Abstraction . 122

4.3. De�cient Encapsulation . 130

4.4. Folded Hierarchy . 133

4.5. Folded Hierarchy – Refactoring by Inheritance 135

4.6. Unexploited Hierarchy . 138

4.7. Degraded Modularity . 143

4.8. Rebellious Modularity . 148

4.9. Weakened Modularity . 150

5.1. Structure Speci�cation Metamodel 167

5.2. Behaviour Speci�cation Metamodel 168

5.3. Graph-representation of Structural Elements 177

5.4. Speci�cation and Analysis Toolchain 183

5.5. Simulation Speci�cation Tree-Editor 192

5.6. Simulation Speci�cation Text-Editor 193

5.7. Simulation Speci�cation Graph Visualisation 194

6.1. Dependency Structure of the Modular PCM 200

6.2. Dependency Structure of the Modular BPMN2 DSML 203

6.3. Dependency Structure of the Modular KAMP4aPS DSML 206

6.4. Dependency Structure of the Modular SmartGrid DSML 208

7.1. Dependencies of SimuLizar . 218

7.2. Refactored SimuLizar . 219

7.3. Dependencies of Camunda . 224

7.4. Refactored Camunda . 225

7.5. Refactored KAMP4aPS . 229

7.6. Refactored SmartGrid . 233

7.7. SimuLizar Evolvability Results 236

7.8. Camunda Evolvability Results 237

7.9. KAMP4aPS Evolvability Results 238

7.10. SmartGrid Evolvability Results 239

xviii

List of Tables

7.1. SimuLizar – Historical Evolution Scenarios 223

7.2. Camunda – Historical Evolution Scenarios 228

7.3. KAMP4aPS – Historical Evolution Scenarios 232

7.4. SmartGrid – Historical Evolution Scenarios 235

7.5. SimuLizar Evolvability Results 236

7.6. Camunda Evolvability Results 237

7.7. KAMP4aPS Evolvability Results 238

7.8. SmartGrid Evolvability Results 239

7.9. Changes After the Refactoring 244

8.1. Number of Occurrences of the Bad Smells 264

8.2. SimuLizar– Duplicated Abstraction Refactoring 266

8.3. KAMP4aPS – Duplicated Abstraction Refactoring 267

8.4. SmartGrid – Duplicated Abstraction Refactoring 267

8.5. SimuLizar – Missing Abstraction Refactoring 268

8.6. Camunda – Missing Abstraction Refactoring 268

8.7. KAMP4aPS – Missing Abstraction Refactoring 269

8.8. SmartGrid – Missing Abstraction Refactoring 269

8.9. SimuLizar – Degraded Modularity Refactoring 270

8.10. SmartGrid – Degraded Modularity Refactoring 270

8.11. SimuLizar – Rebellious Modularity Refactoring 271

8.12. Camunda – Rebellious Modularity Refactoring 271

8.13. KAMP4aPS – Rebellious Modularity Refactoring 272

8.14. SmartGrid – Rebellious Modularity Refactoring 272

9.1. Entities and Events in the Palladio Simulator 291

9.2. Entities and Events in Camunda 291

9.3. Accuracy Results for the Palladio Simulator 293

9.4. Accuracy Results for Camunda 293

9.5. Accuracy Results Compared . 294

xix

List of Listings

2.1. SMT Declaration Example . 41

2.2. SMT Validity Example . 42

2.3. Cypher Syntax . 48

4.1. Using a Primitive Type (delay) 125

4.2. Identi�cation of the Duplicated Abstraction Smell 153

4.3. Identi�cation of the Missing Abstraction Smell 154

4.4. Identi�cation of the De�cient Encapsulation Smell 155

4.5. Identi�cation of the Broken Modularity Smell 157

4.6. Identi�cation of the Degraded Modularity Smell 158

4.7. Identi�cation of the Rebellious Modularity Smell 159

5.1. Language Declaration – Main Parser Rules 170

5.2. Structure Speci�cation Syntax 171

5.3. Behaviour Speci�cation Syntax 172

5.4. Type Declaration . 172

5.5. Example of the Speci�cation Language 173

5.6. Example of the Speci�cation Language with Behaviour 173

5.8. Delay Speci�cation Modelled with SMT 174

5.7. Delay Speci�cation . 174

5.9. Write Speci�cation . 175

5.10. Write Speci�cation Modelled with SMT 175

5.11. General Write Speci�cation . 176

5.12. General Write Speci�cation Modelled with SMT 176

5.13. Schedules-Relationships with Identical Behaviour 179

5.14. Example for Schedule Comparison 180

5.15. General Schedule Comparison 180

5.16. Writes-Relationships with Identical Behaviour 181

5.17. Example for the Write Comparison 182

5.18. General Example for the Write Comparison 182

5.19. Z3 Theorem Prover Setup . 186

xxi

List of Listings

5.20. Neo4J Setup . 187

5.21. List all Simulation Components 187

5.22. Compare Simulation Components Command 187

5.23. Compare with all Available Simulation Components Command 187

5.24. No Subgraph Found . 188

5.25. Successful Subgraph Analysis 188

5.26. Not Matching Behaviour . 188

5.27. Matching Behaviour . 189

xxii

Acronyms

API Application Programming Interface. 110

aPS automated Production System. 205, 206, 227, 229, 230, 253, 254

AS Automated System. 205

AST Abstract Syntax Tree. 49

BERT Bidirectional Encoder Representations from Transformers. 310

BPMN Business Process Modeling Notation. 225, 226

BPMN2 Business Process Modeling Notation 2. 92, 135, 136, 142, 145, 149,

152, 197, 202–204, 224, 225

CLI Command Line Interface. 110, 183, 186–188

CoDES Composable Discrete-Event Scalable Simulation. 305, 316

CPU Central Processing Unit. 201

CuBERT Code Understanding BERT. 309, 310

DCRA Duplicated Code Refactoring Advisor. 312

DES Discrete-event Simulation. 165, 166, 168, 169, 189–191, 281, 282, 285,

286, 290, 296, 314, 330, 331

DEVS Discrete Event System Speci�cation. 304, 305, 315, 316

DI Dependency Injection. 309

DIS Distributed Interactive Simulation. 6, 303, 316

DSL Domain-speci�c Language. 44, 48, 102, 109, 162, 164, 165, 169, 176, 178,

182, 296, 306, 307, 330

xxiii

Acronyms

DSML Domain-speci�c Modelling Language. xvii, xviii, 3–21, 26–28, 31, 36–

40, 53–59, 61–65, 67, 69–71, 74–81, 88–92, 94, 98, 101, 107, 109, 111–113,

117–120, 122, 125–137, 140–142, 144–152, 154–159, 165, 197–199, 202–

208, 211, 212, 215, 216, 224, 226, 227, 231, 233, 234, 241, 242, 244, 247,

248, 250–255, 258, 260, 266, 274, 276, 278, 279, 282, 283, 290–292, 294,

301, 302, 307, 309–312, 314, 316–324, 326–331

EBNF Extended Backus–Naur Form. 47, 169

EMF Eclipse Modelling Framework. 39, 47, 141, 159, 183, 184, 307

EMOF Essential Meta-Object Facility. 20, 47, 323, 327

EPC Event-driven Process Chains. 202

ETI Electronic Tool Integration. 304, 316

FMI Functional Mock-up Interface. 6, 303, 315, 316

FoAA Field of Activity Annotations. 206

FOM Federate Object Model. 315

FST Feature Structure Tree. 29, 30, 86

GQM Goal Question Metric. 45, 46, 213

HDD Hard Disk Drive. 201

HLA High-Level Architecture. 303, 315, 316

IDE Integrated Development Environment. 32, 81, 126, 128, 146, 147, 159, 307

IEC International Electrotechnical Commission. 25, 214, 248

ISO International Organization for Standardization. 25, 202, 214, 248

KAMP Karlsruhe Architecture Maintainability Prediction. 140, 205

KAMP4aPS Karlsruhe Architecture Maintainability Prediction for Automated

Production Systems. 197, 198, 204, 205, 207, 227, 229, 231, 232, 234, 237,

238, 245, 253, 257, 262, 267, 269, 272, 322, 326

xxiv

Acronyms

LOP Language Oriented Programming. 307

MMRUC3 Move Method Refactoring Using Coupling, Cohesion, and Contex-

tual Similarity. 310, 311

MOF Meta-Object Facility. 47

MOOS Measure Of Software Similarity. 313

MPM Multi-Paradigm Modelling. 305

MPS Meta Programming System. 307

NLP Natural Language Processing. 310

NP Nondeterministic Polynomial Time. 42, 43

NTM Nondeterministic Turing Machine. 43

OMG Object Management Group. 202

ONTOCEAN Ontology for Code smell Analysis. 311

OOP Object-Oriented Programming. 30, 54, 74

OSORE Ontology for Software Refactoring. 311

P Polynomial Time. 42

PCM Palladio Component Model. 59, 60, 94, 123, 128, 134, 140, 197, 199,

217–222, 252, 276, 287

PLC Programmable Logic Controller. 205

PPU Pick and Place Unit. 205

RD Resource Demand. 288

RESYS Refactoring Recommender System. 311

SEFF Service E�ect Speci�cation. 201, 220, 288

SMT Satis�able Modulo Theories. 40, 41, 162, 165, 174–176, 178–181, 186,

284, 315

xxv

Acronyms

SVN Apache Subversion. 222

SysML Systems Modelling Language. 14, 26

UI User Interface. 110, 185

UML Uni�ed Modelling Language. 13, 14, 26, 307, 311

xxvi

“The choice of model a�ects the �exibility and
reusability of the resulting system.”

– Martin Fowler, Analysis Patterns

Part I.

Prologue

1. Introduction

In this thesis, we investigate the co-dependency of Domain-speci�c Modelling

Languages (DSMLs) and model-based analyses, signi�cantly how the struc-

ture of the DSML can a�ect the evolvability, understandability, and reusability

of its corresponding model-based analyses. Co-dependency refers to the re-

lationship between model-based analyses and DSMLs, where a change in

the DSML a�ects the functionality or behaviour of the model-based analysis.

Model-based analyses and DSMLs are tightly coupled, meaning they rely

heavily on one another and cannot function independently. We present a

reference architecture for model-based analyses that provides a guideline

for (i) decomposing an already existing model-based analysis, (ii) composing

a model-based analysis, and (iii) developing a model-based analysis from

scratch. Also, we present newly identi�ed and speci�ed bad smells that

arise from the co-dependency of DSMLs and model-based analyses. Fur-

thermore, we present an approach to specify components of model-based

analyses regarding their structure and behaviour to use these speci�cations

to improve the reusability of model-based analysis components. This chapter

is structured as follows: In Section 1.1, we motivate why considering the

co-dependency of DSMLs and model-based analyses is a relevant subject

for improving the evolvability, understandability, and reusability of model-

based analyses. In Section 1.2, we present problems when considering the

co-dependency of DSMLs and model-based analyses. How we answered our

research questions is presented in Section 1.3 in the form of our contributions.

We present the outline of this thesis in Section 1.4.

1.1 Deteriorating Evolvability, Understandability,
and Reusability of Model-based Analyses

The internal quality of a software system a�ects its evolvability, understand-

ability, and reusability [ISO10]. Historically grown software systems are

3

1. Introduction

prime examples where changes made during the software system’s lifetime

successively reduce its internal quality. Reduced evolvability, understandabil-

ity, and reusability of a software system mean longer development cycles and

delayed implementation of necessary changes, like innovations, regulations,

or to a lesser degree, trends. To counteract the deterioration of internal soft-

ware quality, software developers have access to analyses that allows them

to investigate the internal software quality before implementing changes.

Modelling the software system with the planned changes allows for analysing

the e�ect on the internal quality, which leads to a better overall quality of

the software system. Adverse e�ects on the internal software quality, like

increased complexity or security breaches, can be predicted and, if determined

as harmful, also be avoided.

Analyses are built to answer questions about speci�c properties of a system

under study. Such an analysis usually does not take the real system as input;

instead, it reasons about a model of the system [Tal+21b]. Such analyses are

called model-based analyses; in the context of this thesis, do these analyses

derive and communicate insights on the quality of a software system by using

modelling languages and models of software systems [ZMK18]. Model-based

analyses are also software systems; ergo, they are prone to the deterioration

of their internal quality. Besides the model-based analyses, their input models

deteriorate over time [HSR19]. Due to changed or new requirements, the

DSMLs of these input models have to evolve over time; for example, when

new properties of the system under study are added to the DSML. If the

model-based analyses that work with the DSML are not adapted to support

the changed DSML, they become less relevant for the analysis user because

it successively supports fewer features.

How to improve evolvability and reusability is well-researched for software

systems. The Gang of Four (E. Gamma, R. Helm, Ralph E. Johnson, and J. Vlis-

sides) published design patterns (reoccurring structures) for object-oriented

software, where they present reusable design patterns for object-oriented

code [Gam+95] and Neill et al. [NLD11] present patterns that negatively a�ect

the quality of a software system. Besides design patterns and anti-patterns,

bad smells in object-oriented software can help software developers �nd oc-

currences in their source code that can lead to a deterioration of the internal

quality of a software system.

Heinrich et al. [HSR19] investigated the evolvability and reusability of DSMLs.

The outcome of their research is a reference architecture for DSMLs that, on

4

1.2. Problem Statements

the one hand, restricts the developer of DSMLs regarding their possible design

decisions; on the other hand, does their reference architecture improve the

evolvability and reusability, if the DSML follows the rules of their reference

architecture. Strittmatter et al. [Str+16] derived bad smells for DSMLs from

the aforementioned bad smells for object-oriented software.

1.2 Problem Statements

In this section, we present the problems we identi�ed that a�ect the evolvabil-

ity, understandability, and reusability of model-based analyses. We identi�ed

three major problems:

Problem Statement 1
The evolvability, understandability, and reusability of historically grown

model-based analyses su�er from increasing complexity.

The �rst problem we identi�ed is the deterioration of the evolvability, un-

derstandability, and reusability of historically grown model-based analyses.

Model-based analyses and their corresponding DSML change during their life-

time, for example, due to changing requirements or legal constraints. These

changes lead to reduced software quality, negatively a�ecting the maintain-

ability, especially the evolvability, understandability, and reusability of the

model-based analyses. We consider di�cult-to-maintain software to be a

concern since it can lead to a range of issues. Increased development time and

costs: When code is challenging to comprehend or modify, it takes developers

5

However, to the best of our knowledge, no approach considers the co-depen-

dency of DSMLs and their corresponding model-based analyses. Suppose

software developers want to analyse new properties of a software system.

In that case, they have to adapt features of the modelling language and the

corresponding model-based analyses before they can analyse these new prop-

erties. Features in the context of the modelling language are, for example,

quality properties such as performance or reliability. Features in the con-

text of a model-based analysis are, for example, an analysis technique that

analyses such a quality property. Such changes lead to complex and di�cult-

to-maintain model-based analyses. This increasing complexity reduces the

understandability of the model-based analyses.

1. Introduction

longer to make changes, resulting in higher project costs. Reduced software

reliability: Code that is di�cult to maintain is more likely to contain bugs,

which can lead to decreased software reliability. Limited scalability: If the

code is di�cult to comprehend and modify, scaling the software to meet the

users’ needs can be challenging. The di�culty for new developers: New devel-

opers may need help understanding the codebase, which limits their capacity

to contribute. Overall, di�cult-to-maintain software makes it more di�cult

to change and adapt, resulting in lower quality, higher costs, and a reduced

ability to meet user needs. Heinrich et al. [HSR19] and Strittmatter [Str20]

have shown that changes negatively a�ect the evolvability, understandability,

and reusability of DSMLs. They provide a reference architecture for DSMLs

that helps to improve these properties of the DSMLs. However, their approach

did only focus on DSMLs, the e�ect on the software that utilises the DSMLs

was ignored. Approaches like Functional Mock-up Interface (FMI) [Blo+12]

or Distributed Interactive Simulation (DIS) [IEE95] focus on improving the

reusability of analyses, but they only provide solutions for the analysis and

not their corresponding DSML.

Problem Statement 2
The dependency of model-based analyses on their corresponding DSML

results in a deterioration of their evolvability, understandability, and

reusability.

The second problem we identi�ed emerges because of the co-dependency of

model-based analyses and their associated DSML. The model-based analy-

ses and the DSML, rely on each other to function correctly. The following

points are potential problems associated with co-dependency in model-based

analyses and DSMLs. Lack of autonomy: Model-based analyses and DSMLs

are co-dependent, and the model-based analysis cannot function indepen-

dently. The lack of autonomy limits the reuse of the model-based analysis in

a di�erent context, making it di�cult to replace or update the DSML without

a�ecting the model-based analysis. Di�culty in identifying errors or bugs:

Errors or bugs in model-based analyses and DSMLs can be hard to identify,

especially when it needs to be well documented. Di�culty in resolving errors

or bugs: Once identi�ed, errors or bugs in model-based analyses and DSMLs

can be challenging to resolve as a change might have a cascading e�ect,

which results in more changes than initially anticipated. Increased complex-

ity: Co-dependent model-based analyses and DSMLs can increase the overall

6

1.3. Contributions

complexity of the software ecosystem and make it more di�cult to understand

how they work together. Increased maintenance cost: Co-dependent model-

based analyses and DSMLs systems require more maintenance and testing,

which can increase the cost of development and operations. Co-dependency

in model-based analyses and DSMLs can create a number of problems and

make it di�cult to evolve, understand and reuse the model-based analyses

and DSMLs. It is essential to be aware of the co-dependency and to iden-

tify common patterns that indicate problems that can negatively a�ect the

evolvability, understandability, or reusability of model-based analyses and

DSMLs.

Problem Statement 3
Increasing complexity makes model-based analyses more challenging

to understand and, as a result, to maintain, extend, or reuse.

The third problem we identi�ed comes from the complexity of analysis com-

ponents and the e�ort required to identify reusable, already existing analysis

components. It can be challenging to �nd reusable analysis components for

several reasons. Lack of standardisation: There are many di�erent ways

to write software, and components built for one analysis may need to be

compatible with another. No standardisation can make it di�cult to �nd

components that can be easily integrated into a new analysis. Discoverability:

With the vast amount of software available, �nding the necessary component

is challenging. There are many ways to discover reusable software compo-

nents, such as searching online or browsing through open-source repositories,

but �nding the right one can still be time-consuming. Reusable software com-

ponents often require ongoing maintenance to ensure they continue to work

with the latest versions of other analyses and to �x any bugs. Reusable analy-

sis components require proper documentation to use them e�ectively. With

proper documentation, it can be easier to understand how to use an analysis

component or con�gure it to work with the needs of a speci�c project.

1.3 Contributions

In this section, we present an overview of the three contributions of this

thesis. This thesis aims to improve the evolvability, understandability, and

7

1. Introduction

reusability of model-based analyses. The three contributions of this thesis do

support architects and developers in developing maintainable and reusable

model-based analyses. The overall research goal of this thesis aligns with

the presented problems in Section 1.2. Although there are approaches to

improve the evolvability, understandability, and reusability of DSMLs and

object-oriented software, respectively, we aim to improve these attributes by

considering the co-dependency of DSMLs and model-based analyses. Thus,

we formulate the following overall research goal for this thesis:

Overall Research Goal
We aim to improve the evolvability, understandability, and reusability

of model-based analyses.

To reach our overall research goal, we provide three contributions. The �rst

contribution extends the reference architecture for DSMLs by the domain

of model-based analysis. Furthermore, our second contribution provides

reoccurring patterns that negatively a�ect the evolvability, understandability,

and reusability of model-based analyses. Our third and last contribution

is the speci�cation of analysis components to improve the reusability of

model-based analyses.

Contribution 1
We propose a reference architecture for model-based analyses with

accompanying processes to (i) modularise an existing model-based anal-

ysis, (ii) develop a model-based analysis from scratch, and (iii) extend

an already existing model-based analysis.

To address Problem Statement 1, we take the reference architecture for

domain-speci�c modelling languages [HSR19] as a basis and investigate the

transferability of the structure of the reference architecture to model-based

analyses. We introduce a �ve-layer architecture that uses four layers of the

reference architecture for domain-speci�c modelling languages (basic fea-

tures, domain-speci�c features, quality features and analysis con�guration)

and extends them with an experiment layer. The layered reference archi-

tecture maps the dependencies of the analysis features and components by

assigning them to speci�c layers. We developed three processes for applying

the reference architecture: (i) refactoring an existing model-based analysis,

8

1.3. Contributions

(ii) designing a new model-based analysis from scratch, and (iii) extending an

existing model-based analysis. We refactored four representative model-based

analyses and used them as case studies. After the refactoring, we compared

the modular model-based analyses with the original monolithic model-based

analyses regarding metrics complexity, coupling, and cohesion.

Contribution 2
We provide a set of bad smells for model-based analyses that emerge

because of the co-dependency of model-based analyses and their corre-

sponding DSML. We also provide identi�cation and refactoring strate-

gies to identify and �x bad smells.

To address Problem Statement 2, we have identi�ed recurring structures that

lead to problems in evolutionary capability, comprehensibility and reusabil-

ity; in the literature, these recurring structures are also called bad smells. In

particular, we have investigated the co-dependency of DSMLs and model-

based analyses that lead to these recurring problems. So far, bad smells for

DSMLs and source code have been considered separately, although they are

co-dependent. Model-based analyses are based on the DSML they analyse,

they require the DSML as input for the analysis, and a change in the DSML

leads to a change in the corresponding model-based analyses. We examined

established model-based analyses and identi�ed and speci�ed thirteen bad

smells. In addition to specifying the bad smells, we provide a process for

automatically identifying these bad smells and strategies for refactoring them

so that developers can avoid or �x them. To evaluate this contribution, we

searched established model-based analyses for our bad smells, so we could

show that the bad smells we speci�ed occur in real-world systems. We also

investigated how �xing the bad smells a�ects the evolvability, understandabil-

ity and reusability of the model-based analyses we studied. After refactoring,

we compared the modular model-based analyses with the original, unmodi-

�ed model-based analyses concerning the metrics complexity, coupling and

cohesion.

Contribution 3
We provide a DSML for the speci�cation of analysis components that

allow the analysis developer to �nd analysis components that are similar

regarding their structure and behaviour.

9

1. Introduction

To address Problem Statement 3, we developed a modelling language for

specifying the structure and behaviour of simulation features. Simulations

are analyses to investigate a system when experimenting with the real-world

system is too time-consuming, costly, dangerous or simply impossible be-

cause the system does not exist (yet). Developers can use the model to

compare simulation features and thus identify identical features. Finding

similar simulation features allows developers to reuse existing features and

reduce the e�ort required to develop new features. To evaluate the approach,

we speci�ed features of two open-source simulations and compared them. By

modelling these existing simulations, we investigated the applicability of the

approach. In addition to modelling the structure and behaviour of simulation

features, we also evaluated the accuracy of identifying similar simulation

features. We used our approach to compare the speci�ed features with the

speci�ed features of the case studies to determine the precision and recall of

the approach.

1.4 Thesis Outline

This chapter presented the problems and challenges that arise through the

co-dependency of DSMLs and model-based analyses. Based on the presented

problems, we de�ned our overall research goal. Furthermore, this chapter

presents an overview of our contributions. The remainder of this thesis is

organised as follows:

Chapter 2: In the second chapter, we present the terms and de�nitions that

are used throughout this thesis. Terms and de�nitions that are dedicated

to only one chapter are placed in the respective chapter. We also present

the foundation for our contributions which mainly consists of the reference

architecture for DSMLs by Heinrich et al. [HSR19] and the validity types by

Runeson et al. [Run+12].

Chapter 3: In the third chapter, we present our reference architecture for

model-based analyses. Besides our modularisation concepts for model-based

analysis we also present the processes for the decomposition and composition

of model-based analyses. Furthermore, we present refactoring operations to

adapt an already existing model-based analyses and a concrete instantiation

of our reference architecture in the context of quality analyses.

10

1.4. Thesis Outline

Chapter 4: In the fourth chapter, we present the bad smells in model-based

analyses that arise through the co-dependency of DSMLs and their corre-

sponding model-based analyses. We categorise the bad smells we derived

from bad smells in object orientation and bad smells in DSMLs. Furthermore,

we present strategies to identify our bad smells in model-based analyses.

Chapter 5: In the �fth chapter, we present our approach to specify and reuse

model-based analyses components. First, we present our approach to specify-

ing analysis components regarding their structure and behaviour. Then, we

present our approach to compare and identify analysis components.

Chapter 6: In the sixth chapter, we present the four case studies we use

throughout this thesis. We discuss our selection criteria for the case studies

and then brie�y overview each case study. Not only do we present the model-

based analyses, but we also present the four DSMLs that the model-based

analyses use.

Chapter 7: In the seventh chapter, we present the evaluation of our reference

architecture for model-based analyses. First, we present our research goals

and metrics for this contribution. Then, we present our evaluation design

by presenting the evolution scenarios and the details of the refactorings of

the four case studies. After the refactorings, we present the results of the

evaluation. We close this chapter by discussing the threats to validity and

the conclusion.

Chapter 8: In the eighth chapter, we present the evaluation of our bad smells

for model-based analyses. First, we present our research goals and metrics for

this contribution. Then, we present our evaluation design by presenting the

evolution scenarios, the analysis details, and the refactorings of the four case

studies. After the refactorings, we present the results of the evaluation. We

close this chapter by discussing the threats to validity and the conclusion.

Chapter 9: In the ninth chapter, we present the evaluation of our speci�cation

and reuse approach for model-based analysis components. First, we present

our research goals and metrics for this contribution. Then, we present the

results of the evaluation. We close this chapter by discussing the threats to

validity and the conclusion.

Chapter 10: In the tenth chapter, we present the related work to di�erentiate

our work from the state-of-the-art. For our �rst contribution, the reference

architecture for model-based analyses, we present related work concerning

the decomposition and composition of analyses. Then, we present related

11

1. Introduction

work that integrates DSMLs and model-based analyses. For our second con-

tribution, the bad smells in model-based analyses, we present related work

concerning detecting and refactoring bad smells. For our third contribu-

tion, the speci�cation and reuse of model-based analysis components, we

present related work comparing source code and the speci�cation and reuse

of analysis components.

Chapter 11: In the eleventh chapter, we summarise our contributions and

evaluation results. We discuss our results in the context of our research goal

and conclude this thesis. Additionally, we discuss possible future work.

12

2. Foundation

In this chapter, we present the foundations of this thesis. First, in Section 2.1,

we introduce terms and de�nitions that are used throughout the whole the-

sis. We introduce DSMLs in Section 2.1.1 and model-based analyses in Sec-

tion 2.1.2. The roles we use to describe the target audience of our approaches

are presented in Section 2.1.3; we distinguish the role of the developer (cf. Sec-

tion 2.1.3.1) and the role of the user (cf. Section 2.1.3.2). Besides the terms and

de�nitions, we also present the foundational concepts in Section 2.2 on which

this thesis is built on. We then provide dedicated foundation sections for our

contributions in Section 2.3, Section 2.4, and Section 2.5. In Section 2.6, we

present the foundation for our evaluation. The validity types by Runeson et

al. [Run+12] that we used for every evaluation in this thesis are presented in

Section 2.6.1 and the principles of the Goal Question Metric Approach are

presented in Section 2.6.2. Finally, we present the technical foundation in

Section 2.7.

2.1 Terms and Definitions

In this section, we present the terms and de�nitions that we use throughout

all contributions. First, we introduce the term domain-speci�c modelling
language in Section 2.1.1. In Section 2.1.2, we introduce the term model-based
analysis and what an analysis and an analysis model is. The roles we use

throughout this thesis are introduced in Section 2.1.3.

2.1.1 Domain-specific Modelling Language

Compared to general-purpose modelling languages like Uni�ed Modelling

Language (UML), DSMLs is explicitly tailored to the needs of particular ap-

plication domains. They are typically less expressive, concentrating instead

13

2. Foundation

on the essential ideas associated with the pertinent domain. When compared

to general-purpose modelling languages, these specialised languages make it

possible to express domain models in a manner that is both more succinct

and precise. Professionals specialising in a particular �eld or domain can use

established and widely recognised modelling languages such as UML [Rum17]

and Systems Modelling Language (SysML) [FMS14] to represent and design

complex systems. Alternatively, they may develop their DSML to suit their

needs and requirements. UML is a general-purpose modelling language that

has become the industry standard for modelling software-intensive systems.

SysML is an extension of UML speci�cally designed to support the modelling

and analysis of complex systems, including hardware and software. On the

other hand, DSMLs are modelling languages custom-built for a particular do-

main or problem space, such as medical devices or �nancial systems. DSMLs

enable domain experts to model and design systems using concepts and ab-

stractions speci�c to their domain, leading to more e�cient and e�ective

design and analysis. The decision to use an established modelling language

or develop a DSML depends on the complexity and speci�city of the domain

in question and the expertise and resources available to the domain experts.

Because it is simpler for domain experts to learn from and comprehend a

DSML than a general-purpose language, it is possible that using a DSML may

improve communication with domain experts, ultimately leading to higher

productivity [SVC06]. A modelling language is constructed from building

blocks, including explicit syntax and corresponding semantics. The words

and the structure of the language, often known as its "grammar"are referred

to by the term syntax. For example, denotational semantics can be realised

through the mathematically sound de�nition of a semantic mapping from

well-formed models to an appropriate and well-understood semantic domain

[HR04]. Each modelling language has its semantic domain within which

it operates. As an illustration, statecharts make use of I / O-relations. The

syntax of DSML can be textual or graphical (including diagrams, for example).

Even though diagrams can help gain a general understanding of a concept,

this understanding can quickly get clouded by confusion, making it di�cult

to traverse. Textual languages make acquiring an overall picture of the model

more challenging. However, they have the advantage of being compatible

with well-known development tools like copy and paste, syntax highlighting,

and auto-completion. There are two possible approaches to de�ning a textual

domain-speci�c language, and they are as follows: Grammar-based: De�ne a

grammar to specify the language and a metamodel will be generated based

on the grammar de�nition provided. Mapping-based: After independently

14

2.1. Terms and De�nitions

DSML MODEL ANALYSIS RESULT

Figure 2.1.: The Context of DSMLs, Models, Analyses, and Results

constructing the metamodel and the concrete syntax, the next step is to de�ne

a mapping between the two.

2.1.2 Model-based Analyses

A model-based analysis is a type of analysis that uses models for reasoning

about a system and for communicating the results [ZMK18]; it is a tool

for the engineer to understand a problem better [Fow96]. A model-based

analysis provides a detailed examination of a model of a system under study.

According to Talcott et al. [Tal+21a], the purpose of model-based analyses

can be: gaining structural, behavioural, or quality information about a system.

In the context of this thesis, these models are developed according to a DSML;

thus, the model-based analysis can analyse di�erent instances of a DSML.

A model-based analysis uses models for examining the structure, behaviour

and quality of a process or system and models are used for communicating

the results. The system is modelled with a DSML containing the information

about the system required for the analysis. For example, if the DSML speci�es

the architecture of software systems, the engineer can model a software

system with di�erent architectures to �nd the software system with the

best performance. A bene�t of model-based analyses is that if the system

is too complex, too expensive or does not exist yet, an analysis can provide

insights before the system is implemented [Law15]. Instances of the DSML

serve as input for the analysis. We distinguish between analysis models

that represent the “mental model” that describes how the analysis solves the

problem [Fow96] and analysis models that represent the system the analysis

reasons about [HSR19].

In Figure 2.1, we present the context of DSMLs, models, analyses, and the

analysis results. The DSML allows the engineer to model the system to

be analysed. However, the engineer only models the system with some

15

2. Foundation

possible details. For example, if the performance of software architecture is

analysed, the model does not contain details of the algorithm [Reu+16]. A

model is always a reduction of the thing it represents [Sta73]. The DSML

prevents the engineer from modelling every detail of the system; it allows

only to model of the elements required by the analysis. The analysis takes

an instance of the DSML, a model, and produces the analysis results. An

analysis can analyse di�erent properties of the model; depending on the

properties, the analysis results are di�erent. For example, in addition to

the aforementioned performance analysis, the same model can be analysed

regarding other properties, like reliability, performability, or security. The

performance analysis provides data containing the system’s throughput,

whereas the security analysis can provide a list of security breaches. We

assume that the results of the analysis also follow a DSML; this DSML can

be part of the DSML that speci�es the input model; however, depending

on the analysis and the type of results it creates, the result DSML can be

independent of the input DSML. For example, if the results are required for

another model-based analysis that requires a di�erent DSML instance as

input [KR19], then the results can be transformed according to the desired

DSML. The analysis contains algorithms that interpret the input model, and

analysis routines are called depending on the model type. These routines

contain the analysis algorithms that investigate properties, like performance

or reliability, of the system under study.

2.1.3 Roles

In this thesis, we distinguish two main roles involved in the development

process of model-based analyses. In Section 2.1.3.1, we present the developer
role and all sub-roles associated with it. We present the user role and all

sub-roles associated with it in Section 2.1.3.1.

2.1.3.1 Developer Role

Heinrich et al. [HSR19] de�ned the roles that specify and evolve a DSML. In

this thesis, these role speci�cations are extended by adding roles for specifying

and developing a model-based analysis.

16

2.1. Terms and De�nitions

Based on their interaction with analyses, we mainly distinguish between key

developer roles: analysis developer and tool developer. The analysis devel-

oper is accountable for de�ning, developing, implementing, and maintaining

the various components of an analysis, such as modelling analysis require-

ments, debugging issues, implementing analysis components, and adding new

analysis features to the analysis speci�cation. On the other hand, the tool

developer is responsible for creating and maintaining tools that utilise the

analysis. This includes writing and modifying code to initiate the execution

of the analysis and utilise its results. In designing tools for orchestrating

analyses, the tool developer must possess knowledge of the various orches-

tration strategies. A choice of six orchestration procedures is available to

the tool developer [Hei+21a]. For future references, the term developer will

collectively refer to both roles.

Within the context of our approach, the role of the analysis developer is

subdivided even further into those of the analysis architect and the analysis
component developer. Analysis component dependencies, the feature model,

and the feature de�nition are all the responsibility of the analysis architect.

For instance, they are responsible for the creation of the analysis speci�cation,

the validation of the analysis, the speci�cation of new features, and the

modi�cation of feature speci�cations in accordance with the requirements

currently in place or that may change in the future. It is the responsibility

of the analysis component developer to implement analysis components. In

doing so, they are responsible for implementing the features speci�ed by the

analysis architect as distinct components. Both roles work together while

creating or changing analysis components.

2.1.3.2 User Role

In the thesis, we also discuss the role of the user, which refers to the person

conducting the model-based analysis. An analysis is carried out by the user

with the use of tools that function on DSML instances to detail the input and

output of the model-based analysis and start the process of carrying out the

analysis. Because of this, we will refer to people in this position as tool users.
In the context of "DSMLs generate and alter models using editors", the term

"tool users"refers to those who use these editors. Within the scope of model-

based analysis, they conduct analyses utilising these models. When we speak

of abstractions and properties, we refer to speci�c groups of abstractions and

17

2. Foundation

properties that are frequently employed together and have a central concept,

also known as a concern. Analysis of software structure and behaviour and

studies into software performance are just a few examples of activities that

fall under this category.

2.2 Foundational Concepts

In this section, we present the concepts this thesis is based on. In Sec-

tion 2.2.1, we introduce the reference architecture for metamodels by Heinrich

et al. [HSR19] that inspired our reference architecture for model-based anal-

yses and thus, also in�uences the bad smells for model-based analyses. In

Section 2.2.2, we present the metrics we used to evaluate our contributions.

Foundational concepts we used for only a single contribution will be placed

in dedicated sections.

2.2.1 A Reference Architecture for Metamodels

To improve the evolvability and reusability of metamodels, Heinrich et al.

developed a reference architecture that provides a layered structure and a

set of dependency rules [HSR19]. Figure 2.2 depicts the concepts of the

reference architecture for DSMLs. In this section, we present these concepts.

They also provide a modularisation concept for metamodels that allows the

developer of a metamodel to modularise an existing, monolithic metamodel.

Besides the modularisation concepts, Heinrich et al. also provide guidelines on

applying their reference architecture for metamodels to existing metamodels

and developing one that complies with their reference architecture. They

provide a systematic way of creating, extending and reusing metamodels

or parts of these metamodels. In their work, they transfer modularisation

concepts from object-oriented design and the idea of a reference architecture

to metamodels for quality modelling. They gathered the requirements for the

reference architecture from a historically grown metamodel. Their reference

architecture supports instance compatibility and non-intrusive, independent

extension of metamodels.

18

2.2. Foundational Concepts

G

F

N

M
req

.

ex
cl

.

Language Feature

Language Component

Feature Relation

Module Dependency Optional Child

Mandatory Child Implements

Alternative OR

Layer

Figure 2.2.: Reference Architecture for DSMLs– Concept [HSR19]

2.2.1.1 Language Features

A metamodel is equivalent to a DSML, composed of language features. Lan-

guage features allow the speci�cation of a language on a conceptual level.

They di�erentiate between atomic and composed language features, where

atomic language features are an abstraction of the subject that is modelled. A

composed language feature consists of atomic language features and other

composed language features. The dependencies of the language features are

derived from the subject it represents.

2.2.1.2 Feature Models in the Context of DSMLs

To express the structure of a DSML, Heinrich et al. [HSR19] employ feature

models commonly used in the product line community. The feature models

are used to restrict the dependencies of the DSML. The dependencies of

the feature model must be derived from the dependencies of the language

features. Restrictions like the prohibition of cycles and strict parent feature

relations give a framework for the DSML developer. Instead of merely a graph

19

2. Foundation

of language features and the dependencies between them, a feature model

organises the language’s characteristics into a hierarchical structure. The

developer that works with the DSML, such as analysis developers, have an

easier time selecting the features they want to employ since they may begin

their search at the top level of the feature hierarchy and proceed only to the

branches that are pertinent to their needs.

2.2.1.3 Modules and Dependencies

According to Heinrich et al. [HSR19], language features must be implemented.

The implementation happens in the metamodel modules; these modules are

containers for packages and classes with a dependency structure that follows

the dependency structure of the language features. However, the dependen-

cies of the metamodel modules are more concrete, where a language feature

has two kinds of dependencies, optional and mandatory; the dependencies

of metamodel modules follow the dependencies that exist in metamodel

modelling. A metamodel divided into metamodel modules still counts as a

metamodel.

2.2.1.4 Extends Relation

Another contribution of Heinrich et al. [HSR19] is the de�nition of an extends
relation that de�nes the dependencies between metamodel modules. They

extended the Essential Meta-Object Facility (EMOF) standard, as it cannot

restructure metamodel module dependencies. Without these extends rela-

tions, the EMOF extension would have violated the reference architecture

for DSMLs. EMOF cannot add new class properties without hampering the

reusability of the DSML.

2.2.1.5 Layers

The reference architecture for DSMLs also uses layers to group language

features and metamodel modules. Language features and their corresponding

metamodel modules must be located on the same layer and only be placed on

one layer. Although Heinrich et al. [HSR19] do not set the number of layers

for DSMLs, they propose a four-layered reference architecture tailored to

DSMLs for quality modelling and analysis.

20

2.2. Foundational Concepts

2.2.1.6 Layers in Metamodels for Quality Modelling and Analysis

For the layering of a DSML that allows modelling and analysis of quality

attributes, Heinrich et al. [HSR19] propose a layered architecture with four

layers.

Paradigm Layer: On the paradigm (π) layer is the fundamentals of the

DSML located. It contains structural and behavioural patterns that occur

throughout the DSML. Especially foundations independent of the domain are

located on the π layer. The idea is that the π layer contains only abstract

concepts and, thus, can only be used with another layer.

Domain Layer: The domain (∆) layer follows the π layer; features on the

∆ layer assign domain-speci�c semantics to the features on the π layer.

For example, on the π layer, concepts like classes and relations are de�ned.

On the ∆ layer, classes of software systems extend the notion of classes,

and relations become more specialised by introducing inheritance relations.

On the ∆ layer, the developer can specify multiple domains. If a developer

is solely interested in software, then the metamodel module for software

components is all that is included in the ∆ layer. A DSML may consist only of

theπ and the ∆ layer for designing and documenting a system not concerned

with quality. However, language features that can be used for modelling or

analysing quality properties are not placed on the ∆ layer; instead, they are a

component of the following layers.

Quality Layer: The quality (Ω) layer follows the ∆ layer; on it can, the

developer de�nes the quality properties that can be modelled with the DSML.

These quality properties are built on domain-speci�c language features. For

example, the developer can add quality properties for each domain feature

that specify a language feature’s performance or reliability. The Ω layer is

speci�c for DSMLs that model the quality of a system.

Analysis Layer: The analysis (Σ) layer follows the Ω layer; features on the Σ
layer are required by model-based analyses that use the DSML for analysis. If,

for example, an analysis needs attributes that are referenced on other layers,

this information is located on the Σ layer. The value of the attribute is altered

over di�erent analysis executions. The attribute is speci�ed in a module

found in one of the more generic layers. Model-based analyses that use the

DSML can share the features on the Σ layer.

21

2. Foundation

2.2.2 Hypergraph Metrics

In this section, we present the hypergraph metrics we use to evaluate our case

studies. The hypergraph metrics are based on the work of Allen et al. [All02;

AGG07]. These metrics use graph and hypergraph abstractions of software

systems to determine the information entropy of a software system. The

hypergraph metrics calculate a software system’s complexity, coupling, and

cohesion to determine the information entropy of a system. In contrast to

metrics that, for example, count the number of incoming and outgoing calls

to determine cohesion and coupling, the hypergraph metrics also consider

the interconnection of the software system. The higher a software system is

interconnected, the more complex the system is. Thus, the hypergraph metrics

allow us also to consider the interconnection to determine the complexity

and, thus, the evolvability and understandability of a software system.

The di�erence between a graph and a hypergraph is that graphs consist of

nodes and edges, and hypergraphs consist of nodes and hyperedges. An edge

connects two graphs. In contrast to an edge, a hyperedge can connect more

than two edges. Another bene�t of hyperedges, in contrast to regular graphs,

is that they can model the set-use relationships of public attributes [HSR19].

Figure 2.3 depicts the di�erence between graphs and hypergraphs. Figure 2.3a

shows a regular graph with eight nodes depicted as black circles. The edges,

depicted as black lines, create pairs of nodes (e. g., n1 and n7 or n1 and n8).

Figure 2.3b shows a hypergraph with eight nodes depicted as black circles.

The hypergraph contains three hyperedges. The �rst hyperedge e1 connects

the nodes n1, n8, and n5. The second hyperedge e2 connects the nodes n2, n3,
n6, and n7. The third hyperedge contains a single node, n4.

In our evaluation, we use the approach by Jung [Jun16] to extract hyperedges

and hyperedge modules. Jung’s approach is based on the approaches by

Schütt [Sch77] and Allen et al. [AGG07], which describe how to extract

hypergraphs from software systems. Jung’s approach separates a hypergraph

into modules. We denote this modular hypergraph H. A hypergraph module

represents a set of nodes; each node can only be contained in one module.

According to Strittmatter [Str20], we distinguish between hyperedges that

do or do not cross module boundaries. A hyperedge that does not cross

22

2.2. Foundational Concepts

n1
n2 n3

n4
n8

n5n6

n7

(a) Regular Graph

n1
n2 n3

n4
n8

n5n6

n7

e1
e2

e3

(b)Hypergraph

Figure 2.3.: Two Graphs with the Same Nodes (n1..n8) but the Regular graph has Edges (black

lines) and the hypergraph has Hyperedges (e1..e3)

module boundaries is called intra-module hyperedge. A hyperedge that

crosses module boundaries is called inter-module hyperedge.

Size (H) =
n∑
i=n

(−loд2pL(i)) (I)

Complexity (G) =

(
n∑
i=j

Size(G j)

)
− Size(G) (II)

We use the size metric of Allen et al. [AGG07] to determine the complexity of

a software system. Equation (I) shows how to calculate the Size of a modular

hypergraph H. The sum is calculated over the probability pattern (pL(i)) for

all nodes i in the hypergraph H. We must calculate the size of the hypergraph,

and therefore, we must establish a pattern for each hypergraph. We �ll a

vector with ones and zeros to represent the pattern. Each entry represents

the relation of hyperedges and its nodes. A one means the hyperedge is

connected, and a zero means the hyperedge is not connected to the node.

Identical patterns are grouped, and the number of occurrences is saved. The

probability of each pattern p is calculated by calculating the ratio of the

number of occurrences and the number of nodes in H [AGG07].

Equation (II) shows how to calculate the complexity of a system. The complex-
ity function takes a modular hypergraph G as input. The size is calculated for

23

2. Foundation

each modular hypergraph G j in G. The hypergraph G j is a hypergraph that

contains a node j and all nodes connected to j by hyperedges. After the size

for each modular hypergraph is calculated, the size metric �nally gets applied

to the whole modular hypergraph G. According to Allen et al. [AGG07] is the

coupling of a modular hypergraph de�ned as the complexity of G, whereas G
is reduced by the intra-module hyperedges. We used Jung’s [Jun16] approach

to determine the modular hypergraph H ∗ that contains only inter-module

hyperedges. Based on the hypergraph H ∗ we calculated the complexity of

the system.

Cohesion (MG) =
Complexity (MGo)

Complexity (MG(n))
(III)

Equation (III) shows how to calculate the cohesion of a system. According

to Allen [All02], cohesion, in terms of a hypergraph, is the ratio of the intra-

module graph MGo
and the complexity of the whole graph MG(n). We applied

the cohesion metric to a regular graph. We follow Jung’s method [Jun16] to

calculate cohesion as with the previous metrics. The modular hypergraph H
must be mapped to a regular graph MG, which replaces each hyperedge with

a set of edges connecting all nodes previously connected by the hyperedge.

The result MG gets stripped of all inter-module edges; the result is a graph

MGo
with only intra-module edges. MG also is used to create the complete

graph MG(n).

Sub-graph Extraction: Evolvability cannot be seen as the absolute property

of a whole software system; therefore, it should always be considered in a

concrete evolution scenario [Ros+15]. We implemented a scenario-based

evaluation to create such evolution scenarios by calculating the metrics for

parts of the software system relevant to the evolution scenario. We could

avoid applying the metrics to the case studies as a whole. Each evolution

scenario of a case study represents a sub-graph. For each case study, we

extract the relevant sub-graph per evolution scenario. When implementing

the change of an evolution scenario, the sub-graph represents the part of

the software system that the developer must inspect. Classes a�ected by the

evolution scenario are a�ected classes. We construct a sub-graph consisting

of dependent classes by basing its composition on the impacted classes and

24

2.3. Foundational Concepts for the Decomposition and Composition of Model-based Analyses

the nature of the change. For instance, if a method signature were to change,

the classes associated with that method would be added to the sub-graph.

2.3 Foundational Concepts for the Decomposition
and Composition of Model-based Analyses

In this section, we present supplemental concepts required to follow the

contents of our �rst contribution, the decomposition and composition of

model-based analyses.

2.3.1 Quality Property

Quality property is a term de�ned in International Organization for Stan-

dardization (ISO) / International Electrotechnical Commission (IEC) 25010

quality models [ISO10]. Examples of quality properties include performance,

reliability, and maintainability. Part of the evolvability of a software system

is its maintainability and extensibility. According to the software evolvability

model by Breivold et al. [BCE08], the model consists of sub-characteristics

analysability, integrity, changeability, extensibility, portability, and testability.

Breivold et al. [BCE08] presented the software evolvability model. This model

comprises the sub-characteristics of analysability, integrity, changeability,

extensibility, portability, and testability. According to the ISO / IEC 25010

software quality model [ISO10], the characteristic of maintainability and

portability map to the sub-characteristics of the software evolvability model

by Breivold et al. [BCE08]. The sub-characteristics analysability, change-

ability, stability, and testability are part of the maintainability characteristic

of ISO / IEC 25010 and the sub-characteristics of adaptability, installability,

co-existence, and replaceability are part of the portability characteristic of

ISO / IEC 25010.

2.3.2 Modelling Language

One purpose of modelling languages is to design processes and systems. Ac-

cording to Holldobler [HRW18], a modelling language is developed and used

to de�ne models to design and analyse systems e�ectively. They can be used

25

2. Foundation

to reason about the processes and systems they represent. As a result, recur-

rent domain knowledge is captured in language features and patterns, which

are then used to construct instances of the modelling language (i. e., models).

Thus, they are called Domain-speci�c Modelling Languages (DSMLs). DSMLs

can be subdivided into grammar-based languages and metamodel-based lan-

guages [HSR19]. Modelling languages are developed and used to design

and reason over processes and systems e�ciently and e�ectively. Recurrent

domain knowledge is captured in the form of language features and patterns,

which are then used to construct models. As a result, they are referred to as

DSMLs. Grammar-based languages and metamodel-based languages are the

two types of DSMLs. Recurrent domain knowledge is captured in the form of

language features and patterns, which are then used to construct models. In

our research, we are interested in metamodel-based DSMLs as our previous

reference architecture is tailored to DSMLs. By transferring our knowledge to

model-based analyses, we expect to improve their evolvability and reusabil-

ity. Modellers can use standardised languages, such as UML [Rum17] or

SysML [FMS14] or they can design their own DSMLs [Com+18]. Language

workbenches [SVC06; HKR21] enable describing extensible languages to

capture reoccurring domain knowledge. A modelling language feature is an

abstraction of a thing to be modelled [HSR19]. It is necessary to have a

clear syntax and a corresponding set of meanings, which together form the

language’s explicit syntax and associated semantics, to create a modelling

language. The syntax de�nes the language’s words and structure, while the

semantics explains what the model means. For instance, denotational seman-

tics is usually achieved through a mathematically valid de�nition of semantic

mapping from well-formed models to a suitable and well-understood seman-

tic domain [HR04]. State charts use I / O relations to de�ne their semantic

domain, while other languages may use other approaches. The FOCUS ap-

proach [BS01; RR11] is an example of a mathematical system model used

for integrated semantics, which enables embedding other semantic domains,

such as SysML semantics.

2.3.3 Feature Model

A feature model [CE00] is a formal representation of the variability and inter-

dependencies among the features of a subject. The feature model determines

a subset of the relevant features to a particular scenario. This subset is de-

termined by constructing a feature graph, which is represented as a tree

26

2.3. Foundational Concepts for the Decomposition and Composition of Model-based Analyses

optional

mandatory

Feature

Root

Alternative

Or

Figure 2.4.:Concept of Feature Models

structure. Figure 2.4 shows tree structure and the relations of features in a

feature graph. The tree structure is formed through parent-child relationships

between features, where each feature, excluding the root node, has one parent,

and the root node has only child relationships. The relationships between

parent and child features can be mandatory, optional or part of an alternative

set or an OR set [CE00]. Any mandatory child features must also be selected

if a parent feature is selected. Optional child features can be chosen but are

not required. In an alternative set, only one feature can be selected, and at

least one must be selected from an OR set of features. Language features

are implemented by modelling language components [HSR19]. A modelling
language component describes language constituents, e. g., through metamod-

els or grammars, has explicit interfaces and composition operators [But+19;

HSR19] for other modelling language components, and has an individual,

composable semantics. Analysis features are implemented by analysis com-
ponents containing the analysis algorithms realised in source code. These

analysis components are executable on the required language features, have

explicit interfaces, and can be combined with other analysis components

using composition operators.

We utilise feature models to express the features of DSMLs and model-based

analyses. Based on a feature model, subsets of the given features are selected

to specify which modelling language or analysis features are of current inter-

est in analysis composition and tool development [Str20]. In the context of our

research, we allow the speci�cation of a set of features that contains only one

feature. That is uncommon for most feature models, but the bene�t is that the

feature set can be augmented with other features without modifying the type

of child relation. A feature selection is a subset of the features in the feature

model that adheres to the feature relations’ requirements [HSR19]. Requires

27

2. Foundation

and excludes relationships between features are also possible. Relationships

must be directional, and mutual relationships are excluded.

2.3.4 Analysis Composition

Analysis composition combines sub-analyses into one complete analysis,

where the individual sub-analyses adhere to their sub-language. The individ-

ual sub-results adhere to their sub-analyses, and an appropriate orchestration
of sub-analyses de�nes the order and use of sub-results into a complete result.

Analysis helps answer a question about a system that might be too complex

or not accessible; thus, analyses work with models (i. e., based on a DSML) of

the system under study. The models represent relevant aspects of the system

under study that help to answer the questions the analysis is determined to

answer. Heinrich et al. [Hei+21b] de�ne an analysis as follows:

M,C `T Q A

M, C, Q, and A are models of the system, the context, the question, and the

answer domains, respectively; T is an analysis technique used in the analysis.

The de�nition of analyses can also be mapped on sub-analyses. A sub-analysis

answers a sub-question Q using an analysis technique T ; to answer the sub-

question, it analyses a sub-language M under a context C. Sub-analyses must

be combined to create an analysis that can reason about multiple facets of

a system (i. e., sub-language). This composition of sub-analyses has many

facets. Talcott et al. [Tal+21a] distinguish three general forms of composi-

tion that we will apply: Model composition (white-box composition) is the

analysis input model, realised by language integration. The composition

of the analysis results by orchestrating encapsulated analyses is called re-

sult composition (black-box composition). The composition of the analysis

techniques by orchestrating the steps of two or more analysis algorithms

is called analysis composition (grey-box composition). In [Tal+21a], they

mathematically de�ne the concept of analysis composition based on these

three types of composition. Sub-analyses can be selected from the feature

model visualised in Figure 3.2 to con�gure and extend a model-based analysis.

Their associated analysis techniques are composed by selecting sub-analysis

from the feature model.

28

2.3. Foundational Concepts for the Decomposition and Composition of Model-based Analyses

2.3.5 Feature Composition

Apel et al. [Ape+08] introduce the concept of a Feature Structure Tree (FST)

for the feature composition. An FST models a feature’s structural elements

(source code artefacts), e. g., classes, �elds, or methods hierarchically. The con-

cept of FST corresponds to our feature and component notation; however, as

depicted in Figure 3.2, two separate graphs represent our notation of features

and components. Nevertheless, our analysis feature and analysis component

notation can be transformed into the FST notation, see Figure 3.18.

For the transformation process, it is imperative to have both the feature graph

and the component graph. The existing structure of the feature graph can be

utilised without modi�cations. The analysis components are represented as

double-lined rectangles with rounded corners, which are then added to the

feature graph as leaf nodes.

The implements dependency between an analysis component and an analysis

feature is transformed into a double-lined dependency, while the dotted

implements arrow between components becomes a dashed arrow. Each

analysis component is added as a terminal node to the feature graph, with

a terminal node being de�ned as the last node in the graph with no child

nodes.

Dependencies on terminal nodes are represented as implements dependencies,

and dotted arrows between terminal nodes represent analysis component

dependencies. As a result, all the operations outlined in [Ape+08] can be

applied to this model.

The following paragraphs provide an overview of the operators of Apel et

al. [Ape+08] and our extension for features and feature composition. A feature

composition is de�ned as:

f • д

This rather abstract operator is divided into two sets, the introduction set I
and the modi�cations set M , as well as three operations:

⊕ : I × I → I , � : M ×M → M

and

� : M × I → I

29

2. Foundation

An atomic introduction expresses basic features and their composition. An

atomic introduction is a part of implementing a basic feature, such as a method,

�eld, class, or package. Introductions are the basic units of di�erence between

two basic features. The superimposition of all paths/atomic introductions in

its FST is a basic feature. Apel et al. [Ape+08] model FST superimposition

using the introduction sum. The introduction sum operator ⊕ is an operation

over the set I , adding two atomic introductions; the result is a non-atomic

introduction. Introduction sum ⊕ over the set of I of introductions forms

a non-commutative idempotent monoid (I , ⊕, ξ). The introduction sum is

associative and non-commutative. The identity is de�ned as follows:

ξ ⊕ i = i ⊕ ξ = i — ξ is an empty FST

The idempotence says that only the rightmost occurrence is e�ective in a

sum; duplicates have no e�ect:

i ⊕ j ⊕ i = j ⊕ i

For j = ξ follows i ⊕ j = i .

2.3.6 Analysis Decomposition

We de�ne analysis decomposition as separating one analysis into individual

sub-analyses, where a model that adheres to the language of the complete

analysis can be projected into individual sub-analyses. Decomposing an

analysis result in: M,C `T Q A, per extracted sub-analysis. In software

engineering exist, di�erent approaches to determining modules; in the con-

text of analyses, we call them sub-analysis. The purpose of decomposing

software is to make each module more manageable. One core principle of

programming software is “Divide and Conquer”, separating software into

functions [CKM22], classes [NKB00], or frameworks [CLZ04] to separate con-

cerns [CG20], or even hardware/software interfaces [DMV20]. For example,

in a modularised software system, developers do not have to understand each

line of source code when they extend or maintain software. Instead, they

must know the module where the change must occur. In Object-Oriented Pro-

gramming (OOP), for example, classes are used to represent concepts of the

software and to make the software more manageable. In aspect-oriented pro-

gramming, the software is decomposed according to the aspects the software

30

2.4. Bad Smells in Di�erent Domains

covers. For the development of DSMLs, Heinrich et al. [HSR19] provide a de-

composition concept for metamodels. However, to the best of our knowledge,

there is no approach that considers the modular structure of a DSML and

derives a decomposition concept for its corresponding model-based analyses.

To �ll that gap, in the following section, we will present our decomposition

concept for model-based analyses while considering the modular structure of

their corresponding DSML.

2.4 Bad Smells in Di�erent Domains

In this section, we present supplemental concepts required to follow the

contents of our second contribution, bad smells in model-based analyses.

Therefore, we explain the bad smells of di�erent domains. We use these types

of bad smells to derive bad smells for the domain of model-based analyses.

As bad smells reduce the evolvability and reusability of software, our �rst

goal is it, to identify and refactor bad smells in the domain of model-based

analyses.

According to Martin Fowler and Kent Beck are bad smells structures in the

code that suggest the possibility of refactoring [Fow99]. Bad smells are created

from the experience of developers that have looked at lots of code.

First, we explain bad smells on the code level, i. e. in object-oriented software.

Second, we explain bad smells in metamodels and DSMLs. Moreover, �nally,

we discuss why model-based analyses still have bad smells that are not covered

by either object-oriented bad smells nor DSML bad smells.

2.4.1 Bad Smells in Object-oriented So�ware

In this section, we focus on bad smells on the code level, code written in

an object-oriented programming language in particular. The term bad smell
was shaped by Kent Back in the late 20th century. Kent Beck and Martin

Fowler initially identi�ed 21 bad smells in 1999 [Fow99]. Since then, in 2018,

Martin Fowler published a new revision of its book “Refactoring”, and in it,

they changed the names of some bad smells and added one additional bad

smell [Fow18]. We will refer to the new version of the bad smells. Although

31

2. Foundation

not all bad smells are required to understand the bad smells of model-based

analysis, we want to give a brief overview of these 22 bad smells.

Mysterious Name: According to Fowler, it is fun to puzzle over words

in detective �ction rather than in code. The code may seem boring and

straightforward, with no suspense and immersion. Developers should put

much care into naming functions, modules, variables, and classes to express

what they do and how to utilise them. Naming is one of programming’s two

hardest things [Fow18]. It is worth renaming things, even if it has the slightest

chance of improving the readability of the code. With modern Integrated

Development Environments (IDEs), renaming classes, methods, variables, or

modules requires almost no e�ort besides �nding a suitable name.

Duplicated Code: The same code structure in multiple places makes soft-

ware di�cult to maintain. Unifying the code and consolidating it in one place

will improve the maintainability of the software, as there is only one place

where a change can occur. Duplicate copies require careful reading to spot

di�erences. Modern IDEs can spot identical code; however, when the code is

similar but not identical, they cannot identify it. The developer must discover

each duplicate code to change it. Having identical expressions in two class

methods is a sign of duplicated code. Fixing this smell requires extracting the

code from both places into one method. If the code is similar but not identical,

using di�erent statements allows one to organise it.

Long Function: Fowler et al. [Fow18] found that software with short func-

tions lasts the longest. Short functions have no computation, and the software

is an in�nite delegation of function calls. However, short functions are easier

to explain, to share, and as they are easier to understand, they are also easier

to select. Longer functions are harder to grasp, and subroutines of older lan-

guages create overhead that discourages short functions. Modern languages

have eliminated in-process call overhead. Good naming makes little functions

easier to understand, and if a function’s name is easy to understand, its body

is usually unnecessary. Functions should be decomposed more aggressively;

for example, instead of writing a comment, write a function [Fow18]. This

function contains the code the developer wanted to comment on but is titled

after its purpose, not its function. The key is the semantic di�erence between

what a method does and how it accomplishes it.

Long Parameter List: A method call with a long parameter list indicates

bad programming. It indicates that there could be a problem with the im-

plementation. There is no de�nitive guideline for how many criteria are

32

2.4. Bad Smells in Di�erent Domains

excessive. Usually, anything over three or four is too many. However, func-

tions require parameters if they have no access to global data. Usually, there

is a reason why the symptoms mentioned exist. A method may require more

information. The developer may have attempted to create a generic function

to handle many scenarios.

Global Data: Since the �rst days of programming software, we have been

told of the horrors of global data. The di�culty with global data is that it

may be edited from anywhere in the code base, and there are no means to

detect which portion of code touched it. This leads to problems that occur

in a running system. Global variables are the most apparent form of global

data; however, class variables and singletons also cause problems. Small

amounts of global data are manageable, but the more global data exist, the

more complicated it becomes.

Mutable Data: Data changes can frequently result in unexpected results and

complex issues. When updating some data in one place, developers may need

to realise that another software component expects something di�erent. This

can result in a failure that is especially di�cult to detect if it only occurs in

rare circumstances. As a result, a whole programming paradigm is predicated

on the idea that data should never change and that altering a data structure

should always provide a new copy of the structure with the change, keeping

the old data untouched. This paradigm was also introduced in Java with

lambdas and streams.

Divergent Change: Software changes over time [Leh80]; thus, the design

of the software should allow developers to implement changes with as less

e�ort as possible. Locating the spot to change should also be easy. If the

developer cannot do so, it is a sign of the Divergent Change smell. Divergent

change happens when one module is frequently altered di�erently for various

reasons. Separating concerns by creating separate modules for each concern

mitigates the Divergent Change smell. As a result, when one context changes,

the developer needs to grasp only that context and ignore the rest.

Shotgun Surgery: The Shotgun Surgery smell is comparable to but not

the same as the Divergent Change smell. Small changes to di�erent classes

occur every time the developer changes something in the code, a sign of the

Shotgun Surgery smell. When changes are dispersed, they are challenging to

locate, and it is simple to overlook a crucial change. Overlooked changes can

lead to unforeseen behaviour and even more changes.

33

2. Foundation

Feature Envy: When decomposing and modularising software, the goal is to

break the code into modules to enhance interaction inside a module (cohesion)

while minimising dependencies between modules (coupling). An example of

Feature Envy arises when a function in one module has more dependencies

and calls on functions or data in another module than on functions or data

in its module. Fowler et al. [Fow18] bring the example of a function calling

numerous getters of class to compute some value.

Data Clumps: The data that is semantically related tend to clump together,

e. g. in �elds of classes or as parameters of functions. These data collections

commonly comprise a data clump that is tightly related and often interdepen-

dent. As a result, they are frequently utilised together as a group.

Primitive Obsession: Programming languages like Java utilise a set of

primitive types that are frequently used, for example, integers, �oating point

numbers, and strings. According to Fowler et al. [Fow18], programmers must

be more open to constructing their own types bene�cial in their domain, such

as money, coordinates, or ranges. As a result, they implement calculations

that treat monetary amounts as simple numbers or calculations of physical

quantities that ignore units (increasing inches to millimetres). A correct type

typically includes consistent display logic for when it has to be presented in

a user interface, if nothing else.

Repeated Switches: Switch statements have fallen out of favour with the

developers of object-oriented software. Each switch statement could represent

a not implemented polymorphism, and in the �rst version of “Refactoring”

by Fowler et al. [Fow99], they had a bad smell called Switch Statements. Due

to the advancement of switch statements, they are okay; however, the issue

with duplicate switches is that when a developer adds a clause, they must

�nd and update all the switches.

Loops: Loops are part of almost every modern C-like programming language,

including Java, C#, or Go. They can be very complex and, thus, hard to

comprehend and maintain. However, modern concepts like streams and

pipelines allow omitting loops entirely. Pipeline operations like �lter and map

let the developer easily determine which items are included in the processing

and what happens to them.

Lazy Element: Introducing structure to a program element to allow vari-

ability or reusability where there is no need to. It could be a function with

the same name as its body code or a class that is e�ectively just one simple

34

2.4. Bad Smells in Di�erent Domains

function [Fow18]. This is when a function is overengineered with the pur-

pose for later use that never happens. The result is an unnecessarily complex

structure and, thus, more di�cult to maintain software systems.

Speculative Generality: Speculative Generality is similar to the Lazy Ele-

ment smell. Instead of a single element, it covers the concept of planned but

never used elements and functionality of a system. The added code makes it

more di�cult for the developer to understand the code, especially when they

cannot di�erentiate between code used and code just there for decorative

purposes.

Temporary Field: Setting values of �elds inconsistently leads to misunder-

standings and code that is di�cult to understand. If a �eld is only sometimes

set, it indicates that a class covers multiple concerns.

Message Chains: This smell occurs when, in order to retrieve an object, a

chain of other objects is called. This cascading e�ect leads to a sequence of

method calls prone to errors when one part of the chain must be changed. It

is also hard for the developer to understand, as they must follow the chain of

calls to determine which objects are part of the chain and where the requested

object originates.

Middle Man: The Middle Man smell is related to the Message Chains smell,

where functionality is delegated too often. This makes it di�cult for the

developer to locate certain functionality in the software. In the worst case,

when the delegating entity is changed, it can also a�ect the delegated.

Insider Trading: Insider Trading occurs when the modules of a software

need to exchange data frequently. This unnecessarily increases the coupling

between the modules, and thus, it negatively a�ects the maintainability of the

software system. Removing data exchange between modules is not feasible,

as it would create one monolithic module; however, the goal is to reduce the

exchange to a minimum.

Large Class: A class that combines multiple concerns tends to be very large.

Such a class has too many �elds and methods. When a class has too many

�elds, duplicating code is unavoidable. A class may only use some of its �elds

all of the time.

Alternative Classes with Di�erent Interfaces: Classes that should be

interchangeable must have the same interfaces; otherwise, they are unsuitable

as a substitute.

35

2. Foundation

Data Class: Such classes can store and provide data but lack behaviour.

Data classes indicate behaviour in the wrong place, so relocating it from the

client to the data class can help. One exception is a record used as a function

result.

Refused Bequest: Subclasses are intended to inherit the methods and

�elds of their parents. If they do not use these inherited methods and �elds,

this is the Refused Bequest. If a subclass reuses behaviour but does not

support the superclass’s interface, it smells like a denied bequest. Denying

implementations does not bother us, but refusing interfaces does.

2.4.2 Bad Smells in Domain-specific Modelling Languages

In this section, we present the bad smells in DSML de�ned by Hahn and

Strittmatter [Hah17; Str20]. They grouped the bad smells according to the

methodology by Ganesh [GSS13]. For our contribution, we use the same

methodology; therefore, we will present it in more detail in Section 4.2. In

addition to the 22 bad smells in object-oriented software, they identi�ed 19

bad smells speci�c for the domain of DSMLs. In the following section, we

brie�y overview these 19 bad smells for DSMLs.

Missing Class: When a class contains more than one concept, some at-

tributes and references should be part of another class. It makes it di�cult

for the modeller to identify the concept of a class; hence it impedes the un-

derstandability and changeability of the a�ected class. The Missing Class bad

smell results from a mistake; however, moving the a�ected attributes and

references to a new class �xes it.

Dead Classi�er: If the modeller cannot create an instance of a classi�er, the

classi�ers are unusable. Strittmatter di�erentiates two types of classi�ers:

the �rst are classes, and the second and enums. The class misses incoming

dependencies, and the enum is not used as an attribute in a class. These dead

classi�ers make the DSML more di�cult to understand and are a proving

ground for errors. Fixing this bad smell requires the language developer to

delete the a�ected classes and enums.

Inconsistent Abstraction: If a more package or DSML �le depends on a

more specialised package or DSML �le, the dependencies cross a boundary,

resulting in an inconsistent abstraction. These inconsistent abstractions can

have negative e�ects on the maintainability of the DSML, as changes to a

36

2.4. Bad Smells in Di�erent Domains

more speci�c package or DSML can a�ect the more generic one. Performing

the dependency inversion refactoring presented by Heinrich et al. [HSR19]

�xes this bad smell.

Language Feature Scattering: If classes that are part of a feature are scat-

tered over di�erent packages, especially cross-cutting features, the under-

standability and maintainability of the DSML are hampered. This bad smell

results from changes to the DSML that occur over time. Refactoring this bad

smell is to move the a�ected classes into a common feature.

God Class: A class containing too many properties, such as attributes and

references, is hard to understand. It is also a symptom of the amalgamation

of multiple concepts in one class. Setting a universal threshold for the size of

a class that can be applied to any DSML is impossible; the generation of false

positives is inevitable. The developer has to decide whether the God Class is

predestined for refactoring. To �x a God Class, the developer separates the

properties in accordance with the concepts and moves these properties to

new classes accordingly.

Blob Package: If a package contains classes of di�erent language features,

it requires more e�ort to understand the package. Due to the unnecessarily

high number of language features in such a package, the developer has to

di�erentiate the di�erent features. Also, they must understand which class

belongs to which feature. The result is a package that is di�cult to understand

and maintain. To �x this bad smell, the developer groups the classes according

to their feature and moves them into new packages representing precisely

one feature.

Metamodel Monolith: If a DSML �le consolidates di�erent language fea-

tures, it requires more e�ort to understand the DSML �le. Due to the unnec-

essarily high number of language features in such a DSML �le, the developer

has to di�erentiate the di�erent features. Also, they must understand which

class belongs to which feature. The result is a DSML �le that is di�cult to

understand and maintain. To �x this bad smell, the developer groups the

classes according to their feature and moves them into new DSML �les that

represent exactly one feature.

Missing Hierarchy: Type information enclosed in a class using attributes

and basic data types prevents the developer from adding features selectively.

Thus, features are added to more basic classes and the complexity of the DSML

37

2. Foundation

increases. Instead of using basic data types, the developer has to introduce

specialised types representing the desired information.

Instance Data Modelled by Inheritance: When a type models data that

changes during the lifetime of an instantiated object, it models state informa-

tion instead of type information. Such a structure is achieved by inheritance

that models non-type information. The code that works with instances of

the DSML is getting more complex, as it must create new objects to handle

changes. Also, due to the increased inheritance depth, the DSML is more

complex than necessary. To �x this bad smell, the developer must replace the

inheritance with one or more attributes.

Redundancies in Hierarchy: If a subclass contains properties identical to

the properties of its parent or sibling class, it is a case of redundancies in

hierarchy. Sibling classes share the same superclass. Changes to one class

a�ect all other classes with the same properties; these classes can only evolve

together. To �x this bad smell, the developer must move the a�ected properties

to the common superclass and remove the properties in all subclasses.

Wide Hierarchy: If a class has an exceeding number of subclasses, the

inheritance hierarchy is di�cult to comprehend for the developer. Also, the

tools that use the DSML become more complex, as no intermediate superclass

exists; thus, the type safety is lost [Str20]. To �x this bad smell, the developer

must introduce intermediate superclasses to ensure type safety.

SpeculativeHierarchy: An abstract class is created to allow multiple classes

to inherit common properties; however, if only one class inherits from the

abstract class, it introduces unnecessary complexity to the DSML. The abstract

class is generated with the expectation that, in the future, more than one

class will inherit from it. However, if no class inherits from the abstract

class, the inheritance relationship has been introduced unnecessarily and

only complicates the DSML. The developer moves the properties from the

abstract class to its only subclass to �x this bad smell.

Deep Hierarchy: Theoretically, the chain of classes formed by inheritance

relations can be arbitrarily deep. In reality, the deeper the chain is, the more

complex it becomes; thus, it becomes more and more complex for the de-

veloper to comprehend such a structure in the DSML. Combined with other

smells like Speculative Hierarchy or Instance Data Modelled by Inheritance,

38

2.4. Bad Smells in Di�erent Domains

the �xes for these smells help to deal with the Deep Hierarchy smell. Other-

wise, if these other bad smells do not occur, the developer can merge classes

in the chain to reduce the depth.

Multipath Hierarchy: If a class inherits via di�erent paths from one class,

it either contains unnecessary dependencies or the concept is so complex that

it requires such a structure. If the dependency structure contains unnecessary

dependencies, it makes the DSML unnecessarily complex. Removing one path

is not easy if none of the paths is a direct dependency because the inherited

properties of the classes in between would get lost. As a result, the developer

can delete all direct dependency paths. The remaining paths must be analysed

to determine whether they contain unnecessary dependencies, i. e., inherited

properties are not used.

Concrete Abstract Class: Classes in a DSML that are concrete but are never

instantiated should be abstract. Also, the supertype of multiple types and the

concrete supertype of abstract classes should be abstract. Such classes make

it di�cult for the tool user to create instances of the DSML, as the pool of

classes they can instantiate is bigger than it should be. The developer declares

the a�ected class as abstract to �x this bad smell. They must remember that

instances that use the a�ected classes are not invalidated. To circumvent the

problem, the developer can provide a transformation that �xes the instances

if needed.

Dependency Cycle: Dependency cycles can occur between di�erent entities

of an DSML. Strittmatter [Str20] di�erentiates three levels: cycles between

classes, packages, and DSML �les. They all have in common that they make

it di�cult for the developer to understand the DSML. They also worsen the

maintainability of the DSML, as the e�ort required to implement a change is

unpredictable. Heinrich et al. introduce class and package level refactorings

to �x Dependency Cycles in DSMLs [HSR19] to �x this bad smell.

Container Relation: The Container Relation smell is exclusively present for

DSMLs that were created with the Eclipse Modelling Framework (EMF). In the

context of this dissertation, we do not exclusively focus on EMF-based DSMLs;

however, the foundational work on which our approaches are based uses the

EMF-based DSMLs. Therefore, we include the description of the Container

Relation smell. In EMF, if a dependency is a containment dependency is

already de�ned by the framework; however, it is still possible to create an

explicit containment dependency. According to Strittmatter [Str20], adding

such a dependency adds unnecessary complexity to the DSML, especially

39

2. Foundation

when a class has multiple containment dependencies. The tool developer

must handle these additional dependencies when the container is deleted;

the dependency remains. Either the tool user has to remove the remaining

dependency, or the tool must implement a routine that removes such pointless

dependencies. If the user has to deal with it, it is an inconvenience for them,

but if the handling is integrated into the tool, each change to the dependency

structure will result in changes. To �x this bad smell, the developer must

delete the containment dependency.

Obligatory Container Relation: The Obligatory Container Relation is

when a type is contained in multiple containers, but one of these depen-

dencies has a multiplicity of one. As a result, the type is always contained in

the container with a multiplicity of one. The other dependencies are, there-

fore, useless; they only increase the complexity of the DSML. To �x this bad

smell, the developer removes the dependency with the multiplicity with one

or all other dependencies.

Specialised Relation: Suppose the relation structure is redundant; for exam-

ple, when on the abstract level, the same relation exists as on a more concrete

level. In that case, it impedes the understandability and maintainability of

the DSML. Due to the additional relations, it is di�cult for the developer to

determine whether they are legit or redundant. If the relation on either level

changes, all other redundant relations must also be changed. To �x this bad

smell, the developer removes the specialised relation so that the most generic

remains.

2.5 Foundational Concepts for the Reuse of
Model-based Analysis Components

In this section, we present supplemental concepts required to follow the

contents of our third contribution, the reuse of model-based analysis compo-

nents.

2.5.1 Satisfiable Modulo Theories

The Satis�able Modulo Theories (SMT) problem is a decision problem con-

cerned with the satis�ability of �rst-order logic formulas with respect to

40

2.5. Foundational Concepts for the Reuse of Model-based Analysis Components

a background theory. Examples of possible theories are the theory of inte-

gers or the theory of real numbers. An SMT-Solver is a software that solves

this problem for as many instances as possible [DB11]. The SMT problem

is NP-hard, and as a result, it can be undecidable; the high computational

complexity of the SMT-problem forces most solvers to focus on classes of

SMT-instances that appear in practice [MB09]. As a result, researchers try

to �nd decidable classes of theories to extend the number of decidable SMT

problems.

A formula P is satis�able if values are assigned to its function symbols so that

P evaluates to true. P is valid if P evaluates to true for all possible assignments

of function symbols. The relationship between validity and satis�ability can

be expressed as follows:

P is valid ⇐⇒ ¬P is not satis�able

or alternatively:

P is not valid ⇐⇒ ¬P is satis�able

An SMT-Solver will only check a formula P for satis�ability and output a

valid assignment of values to function symbols if the solver can �nd such

an assignment. With this connection between satis�ability and validity, the

solver can determine if a formula P is valid by determining if ¬P is (not)

satis�able.

SMT-LIB: The SMT-LIB standard [BFT17] de�nes a language to specify in-

stances of the SMT-problem. Based on the selected background theory, vari-

ables can be declared as function symbols and conditions on these variables.

Listing 2.1 shows the declaration of an integer variable z and a condition that

requires that z2 = 25.

1 (declare-fun z () Int)

2 (assert (= (* z z) 25))

3 (check-sat)

Listing 2.1: SMT Declaration Example

The condition is satis�able and any SMT-solver should �nd a valid assignment

of z (e. g., z = 5). The condition can be negated and rechecked for satis�ability

to check the formula for validity, as shown in Listing 2.2.

41

2. Foundation

1 (declare-fun z () Int)

2 (assert (not (= (* z z) 25)))

3 (check-sat)

Listing 2.2: SMT Validity Example

The result will show that the second formula is satis�able (e. g., for z = 15),

i. e. the solver found a counterexample to the validity of the original formula,

implying that the original formula is not valid.

2.5.2 P versus NP

In theoretical computer science, the P vs NP (Polynomial Time (P) vs Nonde-

terministic Polynomial Time (NP) problem is an unsolved complexity theory

problem. The question is whether the set of problems that can be solved

quickly (P) and the set of problems that can be checked for correctness fast

(NP) are identical. Quickly solvable or checkable implies the existence of

an algorithm that solves the problem; the computational e�ort (number of

computational steps) is bounded by a polynomial function depending on the

amount of the input. The input size is the number of elements fed into the

algorithm. For example, when sorting index cards, the size is the number of

index cards.

For all problems that can be solved quickly, one can also quickly check the

correctness of a solution. This needs to be clari�ed in the opposite direction:

For some problems, an algorithm exists that can quickly check a proposed

solution, but neither could an algorithm be found that also quickly �nds a

correct solution nor could the impossibility of such an algorithm be proven.

Thus, the question is unsolved. If one were to �nd an algorithm for all quickly

testable problems NP that also solves them quickly, then P = NP would apply.

If it could be shown for at least one problem from NP that it cannot be solved

quickly in principle, P , NP would be proved.

2.5.3 Nondeterministic Polynomial Time

NP is a complexity class for decision problems where there is evidence for

“yes” answers that can be veri�ed e�ciently (in polynomial time). However, it

42

2.5. Foundational Concepts for the Reuse of Model-based Analysis Components

can sometimes take time to �nd such proof. So an alternative description of NP

is the class of all decision problems that can be solved by a non-deterministic

Nondeterministic Turing Machine (NTM) with respect to the input length

in polynomial time. Here, an instance is answered “yes” if at least one of

the possible computations of the non-deterministic Turing machine answers

with “yes” [KT06].

NP-complete problems probably cannot be solved e�ciently. All known

deterministic algorithms for these problems require exponential computa-

tional e�ort, and it is a strong hypothesis that there are no more e�cient

algorithms. Con�rming or disproving this hypothesis is the P-NP problem,

one of computer science’s most important open problems. The best-known

NP-complete problem is the travelling salesman problem.

2.5.4 Graph Isomorphism

When two graphs are isomorph, they have a bijection between their vertex

sets that preserves the adjacency between them [McK+81]. An automorphism
is an isomorphism that exists between a graph and itself [MP14]. Figure 2.5

1

2

3

4

5

6

7

8
(a)

a d

f g

b c

e h

(b)

Figure 2.5.: Two Graphs with the Same Number of Nodes and Edges but Di�erent Node Names

shows two graphs that are at �rst glance not identical; however, the graph

isomorphism analysis allows us to determine whether these two graphs are

not identical. A bijection between their vertex sets and preserving the adja-

cency of the vertex sets shows that the two graphs are structurally identical.

The result is 1 → a, 2 → b, . . . , 8 → h. The nodes’ and edges’ names and

identi�ers are not taken into account in the graph isomorphism analysis.

43

2. Foundation

The collection of all automorphisms of a graph G is called the automorphism

group Aut(G) [MP14]. The graph isomorphism problem is concerned with

determining if two given graphs are isomorph i. e. if they are structurally

identical. The nodes’ and edges’ names and identi�ers are not considered

when determining if two graphs are isomorph. The graph isomorphism

problem is known to be one of the NP problems, but it needs to be clari�ed

whether it is NP-complete. From 1984 until 2015, the fastest running time

was set at eO (
√
(n ·logn))

by Babai et al. [BKL83]. Since 2015 the fastest running

time is set at e(logn)
O (1)

also by Babai [Bab16].

2.5.5 Domain-specific Language

A Domain-speci�c Language (DSL) is a formal language designed and imple-

mented to ease the interaction between humans and computers for a speci�c

domain. Due to DSLs, key aspects of a domain can be formally expressed

and modelled [SVC06]. A DSL possesses a metamodel, including its static

semantics and corresponding concrete syntax. When designing a DSL for a

domain, the goal is to have a high degree of problem speci�city: The DSL

should focus on the problems of the domain, and it should exclude anything

that is not part of the domain. This makes the DSL usable by domain experts

without special knowledge about general-purpose programming languages.

The opposite of a DSL is a general-purpose programming language, such as

Java or C++, or a universally applicable modelling language, such as UML.

The bene�ts of a DSL are that the domain experts can focus on the problem at

hand without worrying about the syntactic speci�cities of a general-purpose

language. Due to the reduced complexity of a DSL, the e�ort to learn a DSL

is less than learning a general-purpose language. One drawback is that the

semantics of a DSL must be well documented [SVC06]. Another challenge is

that the semantics of the DSL must be intuitively clear to the modeler [SVC06].

DSL adopts concepts from the problem space so that a domain expert will

recognise its “domain language”. According to Stahl et al. [SVC06], the se-

mantics of a DSL are relevant when the modeller must know the semantics

of the language entities so that they can create reasonable models.

44

2.6. Foundation of the Evaluation

2.6 Foundation of the Evaluation

In this section, we present the foundation for the evaluation we used through-

out this thesis. We introduce the validity types that Runeson et al. [Run+12] de-

�ned that we used throughout every evaluation in this thesis, and then we in-

troduce the Goal Question Metric (GQM) approach by Basili et al. [BCR94].

2.6.1 Validity Types

We use case studies to evaluate our contributions. To determine the validity

of our approach, we use the four types of validity introduced by Runeson et

al. [Run+12]. They distinguish four types of validity for case study research in

the area of software engineering: Internal, external, construct, and conclusion
validity. The better the case studies and the evaluation addresses the validities,

the more weight the conclusions we can draw from the results.

Internal Validity: In the case study-driven evaluation, the conductor of the

experiment should be able to link the e�ects observed in the case study to a

cause. The internal validity type deals with this circumstance. It concerns the

cause and e�ect and whether the observed e�ects can be linked to a cause.

Regarding cause and e�ect, the conductor must also consider possible side

e�ects. In the best case, the e�ect is traceable to a speci�c cause. This validity

type is compromised when e�ects in the observed case study have unknown

causes.

External Validity: Case studies represent a type of system that, ideally,

allows us to conclude these types of systems in general. The external validity

type deals with the ability to generalise the conclusions drawn from the

case study. External validity is compromised if the case study sample is not

su�ciently diverse to support valid conclusions for the supposed scope to

which the conclusions should apply.

Construct Validity: The case study and the evaluation must be constructed

to measure the desired information. In the case of this thesis, we have to

ensure that the metrics we use to measure our case studies analyse the

desired property. This validity type is compromised when the metrics are

inappropriate for the desired case.

45

2. Foundation

Conclusion Validity: Science is based on the repeatability of experiments,

the reproducibility of results and especially the unambiguousness of the

conclusions drawn. Therefore, the aim is that other researchers can conduct

the evaluation and that they also obtain the same results. The results should

not leave room for interpretation. This validity type is compromised, for

instance, when the data and the tools are unavailable or when the process of

how the evaluation is conducted is unknown.

2.6.2 Goal Question Metric Approach

With software evaluation in mind, the GQM was developed by Basili et

al. [BCR94]. The idea of the GQM approach is to derive research questions

and metrics from the goals we want to achieve. In 2008, Koziolek [Koz08]

stated that the GQM approach could also be applied to evaluate approaches

in other engineering domains. In contrast to bottom-up processes, where the

metrics are selected without a concrete goal, Basili et al. [BCR94] proposes a

top-down process, where de�ning the goal is the �rst step of the evaluation.

De�ning the goal �rst prevents the scientist from using metrics that measure

irrelevant attributes in their evaluation. The process of the GQM is as follows:

First, the goals of the topic that should be examined are speci�ed in detail. For

example, we are implementing an approach to compare software components

to �nd software artefacts that could be reused in another software project.

There may be one or more questions that are de�ned for a goal. For example,

does the compare algorithm �nd all potentially �tting software artefacts that

could be reused? There may be one or more metrics that are de�ned for

a query. In our example, the metrics precision, recall and F1 are suited to

determine whether all software artefacts are identi�ed, no software artefact

is wrongly identi�ed, and no software artefact was forgotten. Following

the measurement, the GQM strategy will undergo a bottom-up evaluation.

The questions can be answered by examining the metrics in question. How

the questions were answered enables us to draw judgments regarding their

objective.

For each contribution, we provide a plan according to the GQM approach.

First, we de�ne the goals we want to achieve by evaluating our contribu-

tions. Therefore, to identify whether we have achieved our goals, we derive

questions we answer. To answer the evaluation questions, we de�ne metrics

whose results we use to get a quantitative measure.

46

2.7. Technical Foundation

2.7 Technical Foundation

In this section, we present the technical foundation, which includes the

third-party tools we use throughout this thesis.

2.7.1 Eclipse Modelling Framework

The EMF [Ste+09] is a framework for model-driven software development.

It provides various tools and frameworks to help develop metamodels and

domain-speci�c languages. EMF utilises the Ecore metamodel description ap-

proach to describe metamodels. Ecore includes fundamental object-oriented

modelling concepts such as packages, classes, references and attributes. Ecore

is based on a subset of the Meta-Object Facility (MOF) metamodelling stan-

dard. EMF had a direct in�uence on the formulation of the EMOF standard.

As a result, Ecore serves as a reference implementation of EMOF. The EMF

also contains tools for generating Java classes, APIs, and graphical editors for

model generation and manipulation. When designing UI elements such as

editors, it is possible to rely on already provided functionality thanks to the

integration with the Eclipse framework. These UI elements o�er only a bare

minimum of functionality, but this is often all required. Other Eclipse projects,

such as Sirius, can be utilised if more complex editors are necessary.

2.7.2 Xtext

Xtext is a framework for creating domain-speci�c languages that integrate

with the EMF [Bet16]. It uses a grammar-based approach to generate a parser,

linker and editor from a speci�ed grammar; however, Xtext can also integrate

existing metamodels as part of the abstract syntax. The language can then be

extended by custom scoping, validation and code generation. Xtext uses the

Extended Backus–Naur Form (EBNF) syntax notation to describe the terminal

rules of the grammar. More details regarding Xtext and its grammar language

can be found at [ES21].

47

2. Foundation

1 (nodes)-[:relation]->(anotherNodes)

Listing 2.3:Cypher Syntax

2.7.3 Xtend

Xtend is a general-purpose programming language that compiles Java code,

making it interoperable with Java [Bet16]. Because of its template engine,

Xtend is often used to implement code generation for DSLs de�ned with

Xtext. The functional aspects of Xtend, such as Lambda-expressions and

graph-transformation tools such as the create-methods, make it suitable as a

model transformation language.

2.7.4 Neo4J

Neo4J is a graph database that is implemented in Java
1
. It is developed as Open

Source software, and it has been available since 2010. Neo4j is an embedded,

disk-based, transactional database engine that stores data structured in graphs

instead of tables. In Neo4j, information is stored as an edge, a node or an

attribute. A node can have any number of attributes, and nodes and edges

can have a label. The database uses schemas for indexing, available via the

query language Cypher. Cypher is a graph query language that allows the

user to retrieve data from the graph. The query language is comparable to

SQL in relational databases. The Cypher language has a syntax that visualises

nodes and edges.

Listing 2.3 shows the syntax of the Cypher query language. Nodes are en-

closed in rounded brackets, and relations between nodes are represented as

arrows. The type of relation can be speci�ed by using square brackets.

2.7.5 Spoon

Spoon is an open-source library that allows the user to analyse, rewrite, and

transform Java source code. One bene�t of Spoon is that the source code must

1
https://www.neo4j.com

48

2.7. Technical Foundation

not compile in order for Spoon to analyse it. Especially when the developer

wants to analyse only parts of an model-based analysis, they are not required

to provide compilable source code. Spoon uses a metamodel to represent

the java source code, and its instances resemble an Abstract Syntax Tree

(AST). However, it is reduced in its complexity compared to the metamodel

of Sun’s compiler (javac). Other than a compiler-based AST (such as that

provided by javac), the Spoon metamodel of Java is intended to be easily

understood by ordinary Java developers, allowing them to build their own

programme analyses and transformations. The Spoon metamodel provides all

information needed to generate compilable and executable Java programmes

(hence contains annotations, generics, and method bodies) [Paw+15].

49

Part II.

Improving Evolvability and
Reusability of Model-based

Analyses

3. Decomposition and
Composition of Model-based
Analyses

Changes made to the software, especially when done under time and �nancial

constraints, have the potential to reduce software quality signi�cantly. Devel-

opers can utilise model-based analyses to examine the impact on the quality

of foreseen changes in software systems before performing changes. Using

model-based analyses can prevent bad repercussions on software quality,

such as performance drops, reduced reliability, or security breaches. One

type of these analyses is known as model-based analysis; such analyses derive

and communicate information on the quality of a software system by using

modelling languages and models of software systems [ZMK18]. In addition

to the system, a model-based analysis examines, the model-based analyses

themselves are also prone to changes over time. As a result, historically grown

model-based analyses su�er from increasing complexity and deterioration of

internal software quality. If the model-based analysis is not adapted to the

changed requirements, it becomes less relevant for the users.

Analysis developers must also adapt model-based analyses to changes of

their corresponding DSML, see Section 2.1.3. A corresponding DSML is the

metamodel on which the input models of the model-based analyses are based

on. DSMLs evolve over time, and therefore, they are also prone to decline

quality, even if they evolve more slowly than software systems [HSR19]. New

features that are added to the DSML ideally do not a�ect the corresponding

analysis. When the changes are made in a non-intrusive way, for example,

when the DSML is developed according to the reference architecture for

DSMLs by Heinrich et al. [HSR19]. A non-intrusive change can be a new

language feature that inherits properties from an existing language feature;

for example, an analysis developer adds to a performance simulation of

software systems the TCP/IP stack simulation to simulate remote calls. If a

53

3. Decomposition and Composition of Model-based Analyses

corresponding model-based analysis needs no use of the newly added feature,

an analysis developer must adapt the model-based analysis to the feature of

its corresponding DSML.

Due to changes to the DSML and the resulting, inevitable change of the

model-based analysis, model-based analyses become more complex over time.

Such historically grown model-based analyses are hard to evolve and to

reuse [KHR22a]. Ideally, analysis developers have no issues understanding

the source code of the model-based analysis to implement or change a feature

without introducing the technical debt. The more complex the code base

of an model-based analysis is, the more time needs an analysis developer

to understand the code base and the more time a developer need for the

implementation. In addition to a general deterioration in quality brought

on by evolution, model-based analyses are notoriously di�cult to reuse

because they are frequently bound to a particular domain and DSML. Our

goal is to reduce the complexity and to improve the understandability and

reusability of model-based analyses. Therefore, instead of having two di�erent

architectural concepts, one for the model-based analysis and one for the

DSML, we investigate whether we can apply the same architecture to the

model-based analysis and its associated DSML.

Since the beginning of software development, developers have aimed to di-

vide software into smaller pieces to make the software more manageable.

Divide and Conquer is the strategy for decomposing software into smaller

entities to reduce the complexity of the overall system. In OOP, classes are

such entities to encapsulate concerns. Heinrich et al., for example, propose a

reference architecture suited to DSMLs in order to enhance the evolvability

and reusability of DSMLs [HSR19]. In software engineering, reference archi-

tectures provide a general architecture for applications in a certain domain.

For example, the Java EE architecture is a layered reference design for de-

veloping Java applications, according to [Som18]. In software engineering,

developers can choose from a myriad of architectural patterns that propose

how to decompose and modularise a software system [Ric15].

Metamodel design and object-oriented design have many similarities. Compo-

sition, acyclic dependencies, dependency inversion, and layering are all prin-

ciples that can be transferred from DSMLs to model-based analysis [HSR19].

Although model-based analyses are also software systems and approaches

that improve the quality of software systems (e. g. , separation of concerns,

54

3. Decomposition and Composition of Model-based Analyses

�xing bad smells) are also applicable to model-based analyses, there are no so-

lutions that are tailored to the co-evolution of model-based analyses and their

corresponding DSMLs to the best of our knowledge. However, to the best of

our knowledge, no approach considers the co-dependency of model-based

analyses and their corresponding DSML.

When discussing reference architectures for model-based analyses, we use

the term reference architecture for convenience. Our research is aimed at the

relationships between a DSML and the model-based analyses that go with it.

We apply our experience of DSML structuring, development, and refactoring

to model-based analyses. Our reference architecture enables independent

development of analysis features and serves as a template solution for method-

ically extending and reusing components of model-based analyses. Features

that have a representation in a DSML and a matching model-based analysis

can evolve and be utilised and reused together as a result of our research. In

order to accomplish this goal, the reference architecture establishes a frame-

work for model-based analyses that take into account the corresponding

DSML. Therefore, we investigate how the evolvability, understandability and

reusability of model-based analyses are a�ected when the structure of the

associated DSML (i. e., layers, constraints of dependencies, the introduction

of features) is transferred to the structure of model-based analyses.

In this chapter, we present our �rst contribution: a reference architecture for

model-based analyses that takes the structure of the corresponding DSML into

account to improve the evolvability and reusability of model-based analyses:

(i) decompose an already existing model-based analysis, (ii) compose a model-

based analysis, and (iii) develop a model-based analysis from scratch.

The chapter is structured as follows:

• After presenting the hypothesis and research questions in Section 3.1,

we use an application scenario to derive requirements for our reference

architecture, which we then present in Section 3.2.

• Section 3.3 provides our decomposition approach for the reference

architecture. To create these concepts, we have applied insights gained

from the reference architecture for DSMLs to model-based analyses

and made adjustments where necessary. To this end, we introduce

the reference architecture tailored to model-based analyses. Likewise,

we present a concrete instantiation of our reference architecture with

55

3. Decomposition and Composition of Model-based Analyses

layers tailored to model-based quality analyses and a set of features

that are required by model-based quality analyses.

• In Section 3.4, we introduce our composition concept for model-based

analyses.

• In Section 3.5, we provide guidelines for implementing the reference

architecture. We present three processes on how to apply our approach,

considering three application scenarios: (i) refactoring an already

existing model-based analysis, (ii) developing a model-based analysis

from scratch, and (iii) extending a model-based analysis.

• In Section 3.6, we present the technical foundation that we developed

to decompose and compose model-based analyses.

3.1 Hypothesis and Research Questions

In this section, we present research questions for the �rst contribution of

this thesis. Heinrich et al. [HSR19] proposed a reference architecture for

DSMLs that separates a DSML into language features and then distributes

these language features on di�erent layers. Each layer contains a set of fea-

tures of the DSML. The reference architecture for DSMLs provides a clear

structure and extension mechanisms for DSMLs. To refactor existing, mono-

lithic DSMLs, they also provide refactoring operations on class and package

level. Due to the reference architecture for DSMLs, the refactoring operations

and processes to modularise monolithic DSMLs, they have shown that their

approach improves the evolvability and reusability of DSMLs. Unfortunately,

their approach only considers DSMLs, software that uses these DSMLs do

not gain any advantage regarding evolvability or reusability. On a conceptual

level, the DSML and its corresponding model-based analyses, are separated.

Although the DSML is modularised and separated into layers, its correspond-

ing model-based analyses can still be monolithic or follow a totally di�erent

architectural pattern. As a result, analysis developers must understand the

semantics of the DSML and, additionally, must invest their time to under-

stand the model-based analysis and how it is using the DSML. We raised the

question: “What if the DSML and its corresponding model-based analyses

follow the same architectural pattern?”. To the best of our knowledge, there

have been no studies to date that have investigated whether the evolvability,

56

3.1. Hypothesis and Research Questions

understandability, and reusability of model-based analyses improves, when

the same architectural pattern that is used by the DSML is also applied to

the model-based analysis. In this thesis, we will focus on the pattern of the

reference architecture for DSMLs by Heinrich et al. [HSR19]. Thus, we derive

the following hypothesis for transferring concepts of DSML development to

model-based analysis development:

Hypothesis 1
The evolvability, understandability, and reusability of a model-based

analysis will improve when transferring the concepts of the reference

architecture for DSMLs to model-based analysis.

The results of [HSR19] show that the reference architecture improves the

evolvability of DSMLs and it improves the need-speci�c use and reuse of

language features. Ideally, introducing a layered structure to a model-based

analysis that resembles the structure and the semantics of the corresponding

DSML has the same positive e�ect on model-based analyses.

We formulate the following research questions to determine whether the

hypothesis 1 is correct.

Research Question 3.1
Does using an isomorphic structure, which corresponds to the reference

architecture for modelling languages, improve the evolvability of model-

based analyses?

The ability of a model-based analysis to evolve determines whether a model-

based analysis will stand the test of time. If the developers cannot implement

new features or change features to adapt the model-based analysis to changed

requirements, the model-based analysis will lose relevance for the user. As

a result, the model-based analysis falls out of users’ favour and is no longer

used. Using the same concepts in both DSMLs and model-based analysis,

allows developers to transfer their knowledge about the structure and the

semantics of the DSML to their corresponding model-based analyses and vice

versa. Even when the analysis developers cannot transfer their understanding

of the DSML to the model-based analysis, for example, because they have no

knowledge about the DSML, having a modular model-based analysis should

57

3. Decomposition and Composition of Model-based Analyses

be better evolvable than its monolithic counterpart. When each language

feature in the DSML also has a feature representation in the model-based

analysis, developers can locate the spots to apply the changes in the model-

based analysis by consulting the DSML.

Research Question 3.2
Does using an isomorphic structure, which corresponds to the reference

architecture for modelling languages, improve the understandability of

model-based analyses?

Understanding a model-based analysis and determining the use and semantics

of language features in the analysis is a non-trivial task. For the developer of

the model-based analysis it can be unclear whether a language feature is used

in the model, whether the language feature is used correctly in the model-

based analysis, how it will a�ect the analysis result, or if it a�ects the result

at all [Hei+21b]. When the features of a DSML and a corresponding model-

based analysis are identical (i. e., have the same structure and semantics),

the developer can locate a analysis feature by investigating the features of

the DSML. Having an identical feature structure, analysis developers can

identify whether a language feature is used in the model-based analysis.

When it is easier to identify the usage, the analysis developers can focus on

understanding how the language feature is used and how it a�ects the analysis

result. Even if the analysis developer has no knowledge about the DSML,

they can use the DSML as starting point to understand the structure of the

system the model-based analysis reasons about. We also assume that using

a modular and layered architecture with a �xed set of rules and constraints

for model-based analyses will improve the understandability, reducing the

complexity of a model-based analysis.

Research Question 3.3
Does using an isomorphic structure, which corresponds to the reference

architecture for modelling languages, improve the reusability of model-

based analyses?

The monolithic structure of a model-based analysis does impede the reuse

of analysis features in other model-based analyses, according to Heinrich et

al. [Hei+21b]. When the use of language features in a model-based analysis is

58

3.2. Requirements for the Reference Architecture

not separated, i. e., one component of the model-based analysis has dependen-

cies on all language features, the bene�t of having feature con�gurations is

irrelevant, because all language features must be used no matter the con�gura-

tion. The modular structure of a DSML developed according to the reference

architecture of Heinrich et al. allows the reuse of dedicated features [HSR19].

Transferring the modular structure of a modular DSML to a monolithic model-

based analysis introduces a modular feature structure to the model-based

analysis. Thus, by introducing a modular structure to a model-based analysis,

the reusability of analysis features should be improved.

3.2 Requirements for the Reference Architecture for
Model-based Analyses

Based on our research questions, we derive requirements for a reference archi-

tecture for model-based analyses that supports evolvability, understandability,

and reusability. Before we can derive these requirements, we introduce an

application scenario based on an illustrative example model-based analysis.

We use this application scenario and the research questions to derive the

requirements for reference architecture for model-based analyses.

We use the Palladio Simulator as an illustrative example in our application

scenario. As part of the Palladio Approach [Reu+16], the Palladio Simula-

tor allows software architects to analyse a software architecture based on a

model. The Palladio Simulator allows analysing such an architectural model

regarding di�erent quality properties, such as performance [BKR09], reli-

ability [Bro+12], maintainability [Ros+17], and security [Sei+22; WHR22].

The central component of the Palladio Approach is the Palladio Component

Model (PCM). The PCM is a DSML that allows the software architect to spec-

ify and to document software architectures. For our application scenario, we

focus on the performance analysis part of the Palladio Simulator. The per-

formance simulator of the Palladio Simulator is called SimuLizar. SimuLizar

does interpret the PCM to derive performance information about the system

under study; however, due to the size and deprecated language features of

the PCM, SimuLizar does not support all features of the PCM. SimuLizar is

a historically grown model-based analysis, with the typical deterioration of

the internal quality over time. In our chapter about the case studies (Chap-

ter 6), we present more details regarding SimuLizar and other historically

59

3. Decomposition and Composition of Model-based Analyses

Language
Feature analyses optional

Analysis
Component mandatory

SimuLizar

runtimestate

seff repository composition

simulated
component

software
composition

behaviour
seff

Figure 3.1.: Illustrative Example of the Dependency Structure of SimuLizar and the Palladio

Component Model (PCM)

grown model-based analyses. In this section, we focus on the shortcomings of

SimuLizar that in�uence its evolvability, understandability, and reusability.

Project Structure Erosion: The model-based analysis SimuLizar has been

continuously extended and maintained since 2013. The continuous devel-

opment resulted in software corrosion [Par79]. Over time, more and more

features were added to SimuLizar. Figure 3.1 illustrates the dependency struc-

ture of SimuLizar and the PCM. All dependencies on the PCM are bundled

in one component of SimuLizar, depicted as a white rectangle. A simpli�ed

version of the features of the PCM is depicted as grey rectangles with rounded

corners. In its �rst version, SimuLizar was only capable of performing design-

time performance analysis for self-adapting systems.

Uncontrolled Dependency Growth: The features with dependencies on

language features were added to the same component of SimuLizar, where all

dependencies on the language features are located, resulting in a model-based

analysis that has to ship every feature, depends on a language feature, even

if the language feature is not required. The increasing amount of features re-

sulted in a growing, monolithic structure that led to uncontrolled dependency

growth.

Feature Drift: This monolithic structure deteriorated evolvability, under-

standability, and reusability. As a direct consequence, evolvability decreased,

and feature drift occurred. The term “feature drift” refers to the process by

60

3.2. Requirements for the Reference Architecture

which developers add unnecessary features to a system for the end user. Due

to feature drift, users will need help determining whether the simulated DSML

features impact the analysis outcome.

We use these shortcomings (i. e., project structure erosion, uncontrolled

growth of dependencies, and feature drift) to derive the following require-

ments for the reference architecture for model-based analyses:

• Requirement R1 (Improved Evolvability): The �rst requirement is

that a model-based analysis that is developed according to our refer-

ence architecture for model-based analysis has better evolvability than

a model-based analysis that is not developed according to our refer-

ence architecture. We assume that when the analysis architect applies

the reference architecture to a monolithic model-based analysis, the

evolvability of the model-based analysis improves. We determine the

evolvability of a model-based analysis as good when the model-based

analysis has a low complexity, a low coupling, and a high cohesion (cf.

Section 7.2).

• Requirement R2 (Non-intrusive Extension): When the analysis ar-

chitect extends features of a model-based analysis, and they have to

make changes to the existing analysis features, other analysis features

might be a�ected by such an extension. Such intrusive extensions

hamper the evolvability of model-based analysis, because the e�ort

to add an extension needs to be clari�ed. Also, due to the dependen-

cies of a more general feature on an extension, the feature can not be

reused without the extension. To avoid such intrusive and unnecessary

changes to existing analysis features, analysis developers should not

alter the components they want to extend. Therefore, we require that

the reference architecture for model-based analysis must guarantee

that components of the remaining model-based analysis have no de-

pendencies on the extension. Extensions that do not alter the analysis

features they extend are non-intrusive. Non-intrusive extensions avoid

the detrimental e�ects of such dependencies.

• Requirement R3 (Consistent Dependencies): According to our �rst

hypothesis, we assume that the analysis architect uses the structure

of the DSML to derive the structure of model-based analysis. If the

features of the DSML and the features of the model-based analysis

are not aligned, changes to the DSML can have unpredictable e�ects

on the model-based analysis. Features are not aligned when features

61

3. Decomposition and Composition of Model-based Analyses

and feature dependencies of the DSML are di�erent from the features

and feature dependencies of the analysis. In the end, the DSML and

the model-based analysis are inconsistent. Such inconsistencies occur

when the dependencies of the DSML and its corresponding model-

based analysis are not aligned. These inconsistencies make it di�cult

for the analysis developer to determine the e�ort required to adapt the

model-based analysis to changes made in the DSML. It is impossible to

predict the development time of a feature, leading to a delayed feature

release and the delay of additional features. As a result, we require

that the feature structure of reference architecture for model-based

analysis is consistent with the feature structure of its corresponding

DSML.

• Requirement R4 (Need-speci�c Reuse): Due to the monolithic nature

of SimuLizar and model-based analysis in general, it is hard for analysis

developers to reuse features of one model-based analysis in another.

Also, analysis developers need to understand a model-based analysis

and its dependency structure as a whole to extract components. It

is especially tedious when the analysis developer must understand

all available features, although they do not want to reuse all these

features of the model-based analysis. These unnecessary dependencies

can confuse and require additional e�ort to comprehend by the analysis

developer. Thus, we require that the reference architecture for model-

based analyses allows the analysis architect to select analysis features

for reuse without a�ecting other analysis features.

• Requirement R5 (Need-speci�c Use): When developing tools for

composing a model-based analysis, the developer of those tools needs

to have a solid understanding of the DSML as well as the model-

based analysis that is based on DSML. The complexity of creating

such a model-based analysis presents a barrier to creating useful tools.

Additionally, the �nal model-based analysis may incorporate features

that are not used by the analysis that the tool user is performing. To

address this shortcoming, we require that the reference architecture

allow the tool developer to selectively use components of the model-

based analysis based on their demands.

62

3.3. Decomposition of Model-based Analyses

3.3 Decomposition of Model-based Analyses

For decomposing a monolithic model-based analysis, we assume that the

models used by the analysis follow a DSML. We also assume that the DSML

is already modularised according to the reference architecture for DSMLs by

Heinrich et al. [HSR19]. This assumption results from our Hypothesis 1 that

the concepts of the modular DSML can be transferred to the model-based

analysis. In this section, we present our approach for decomposing model-

based analyses. In Section 3.3.1, we present concepts for the modularisation of

model-based analyses. To realise our modularisation concepts, we divide the

decomposition of model-based analyses into two parts. First, we introduce

an instantiation of our reference architecture for model-based analyses using

the domain of model-based quality analyses as an example. In the example,

we provide a set of �ve layers in our reference architecture (cf. Section 3.3.2).

Second, we provide tools for the analysis developer to refactor a monolithic

model-based analysis into a modular model-based analysis (cf. Section 3.3.3).

We provide a set of refactoring operations to apply our reference architecture

to existing model-based analyses. We di�erentiate between refactorings on

the class level (cf. Section 3.3.3.1) and refactorings on the component level

(cf. Section 3.3.3.2).

3.3.1 Modularisation Concepts for Model-based Analyses

We utilise feature models to represent features of model-based analyses. The

feature structure we introduced in this thesis is based on the layered reference

architecture for metamodels presented by Heinrich et al. [HSR19]. They

di�erentiate language features and language components (formerly de�ned

as language module). Each language feature and language component is

placed at exactly one layer. In the context of the reference architecture for

DSMLs, a layer refers to a logical grouping of related language features and

language components. Language features and their corresponding language

components must be located on the same layer and only be placed on one

layer. Although Heinrich et al. [HSR19] do not set the number of layers for

DSMLs, they propose a four-layered reference architecture that is tailored to

DSMLs for quality modelling and analysis.

We show the concepts of our extended layered reference architecture for

model-based analyses in Figure 3.2. As long as the DSML follows the reference

63

3. Decomposition and Composition of Model-based Analyses

architecture of Heinrich et al., the following modularisation concepts can

be applied to the model-based analysis that uses the DSML for analysis. In

our reference architecture, we distinguish features of languages and model-

based analyses, and components of languages and features. As in the work

of Heinrich et al., we place each feature and component at one layer. In the

following sections, we present our extended reference architecture in more

detail and discuss the reasoning behind our design decisions. In the remainder

of this thesis, we refer to the extended reference architecture as reference

architecture for model-based analyses.

Analysis FeatureAnalysis Component

Language FeatureLanguage Component

Feature Relation

Component Dependency Optional Child

Mandatory Child

ImplementsAlternative OR Layer separator req. requires

Model-based Analysis

req.

req.

req.

req.

req.

Figure 3.2.: Structure and Relations of the Reference Architecture for Model-based Analyses and

DSMLs

3.3.1.1 Use of Feature Models

We use feature models to structure the features of model-based analyses.

Each node in the feature graph represents either a feature of the DSML

or a feature of the model-based analysis. The analysis architect de�nes the

feature dependencies in the feature model. This dependency structure already

restricts the dependencies at the feature level. The dependency structure

limits the possibility of the dependencies of the model-based analysis; as

a result, the complexity for the analysis component developer is limited.

Additionally, it provides guidance for the analysis component developer.

64

3.3. Decomposition of Model-based Analyses

In contrast to feature modelling from, for example, the product line com-

munity, our concept allows multiple root features to group other features.

Multiple root features are required to represent the concept of atomic analysis

features and composed analysis features. We also ban cycles in our feature

models. Cycles can prevent the analysis developers from selecting features

individually, and cycles also prevent a straightforward transition through

the graph. The straightforward transition allows selecting features that are

merely based on their feature dependencies (mandatory / optional) to more

specialised features (cf. Section 3.3.1.4).

3.3.1.2 Language Feature and Analysis Feature

Before we go into detail regarding our modularisation concepts for model-

based analyses, we present the language feature and language component

de�nition by Heinrich et al. [HSR19]. Heinrich et al. modularise a DSML

by separating it into distinct language features with a de�ned parent-child

relation. The features represent the conceptual level of the DSML and the

model-based analysis. A language feature is the expression of a concept

without any detail regarding its technical realisation. In Figure 3.2, we de-

pict the language features as grey rectangles with rounded corners. The

language architect creates the language feature graph as they work on the

conceptual level. The language architect can add atomic language features

or composed language features to the language feature model. An atomic

language feature models one abstraction, and a composed language feature is

comprised of atomic and other composed language features. When a language

feature represents the concerns of an analysis user, it is called a user language
feature.

We map the modularisation concepts of Heinrich et al. to model-based anal-

yses. In this subsection, we extend the notion of language features by the

notion of analysis features. An analysis feature is a concept of the model-

based analysis, e. g. an abstraction of a system’s property to be analysed. In

Figure 3.2, we depict the analysis features as white rectangles with rounded

corners. The analysis architect creates the analysis feature graph. Regarding

the creation of the feature graph, the analysis architect role is identical to

the role of the language architect. In comparison to the language feature

denotation, we de�ne atomic analysis features, composed analysis features,
and user analysis features. An atomic analysis feature represents a concept of

65

3. Decomposition and Composition of Model-based Analyses

a system that the model-based analysis can analyse, and a composed analysis

feature comprises of atomic analysis features and composed analysis features.

Composed analysis features are required to cluster analysis features that

represent a broader concept and are always used together. A user analysis

feature is a special type of the generic analysis feature, as it represents con-

cepts regarding the analysis user. An analysis feature has a dependency on a

language feature if it requires the language feature for the analysis.

For the sake of comprehensibility, if we reference language features and anal-

ysis features, respectively, we will call them feature. Dependencies between

features in the same feature graph, either the language feature graph or the

analysis feature graph, are called feature dependencies. The feature dependen-

cies of the language feature graph determine the feature dependencies in the

analysis feature graph. The dependencies of an atomic analysis feature are

derived from the language features it analyses i. e. requires, and the depen-

dencies of a composed analysis feature are derived from the dependencies

of the analysis features it contains. We distinguish �rst- and second-class

atomic features. An atomic feature contained in a root feature is a �rst-class

feature, and a second-class feature is only contained transitively.

The two feature graphs are connected by the root feature that frames the

model-based analysis. This root feature is depicted as a white rectangle with

rounded corners and a dashed line as a contour. The model-based analysis

represents all possible con�gurations that can be derived from the language

feature and analysis feature graph.

3.3.1.3 Language Component and Analysis Component

Heinrich et al. [HSR19] introduced the concept of language components. They

require that each language feature is implemented by a language component;

thus each language component has a implements dependency on language

features. A language component contains packages and classi�ers. Language

components can have dependencies on other language components and follow

a set of restrictions (cf. metamodel module in [HSR19]). In Figure 3.2 language

components are depicted as grey rectangles.

We use the concept of language components to derive our concept of analysis

components. We require that each analysis feature is implemented by an anal-

ysis component; however, in contrast to language components, an analysis

66

3.3. Decomposition of Model-based Analyses

component is a container that contains classes, packages and especially anal-

ysis algorithms. An analysis component is realised in source code; it also can

have dependencies on other analysis components. The analysis algorithms

analyse language features; ergo, analysis features have requires dependen-

cies on language features. The dependencies are of a transitive nature, as

only analysis features have explicit dependencies on language features. In

Figure 3.2 analysis components are depicted as white rectangles.

For the sake of comprehensibility, if we reference language components and

analysis components, respectively, we will call them component. The analy-

sis component developer implements analysis components. We derive the

dependencies on other analysis components from the dependency structure

of the analysis features. Thus, the dependency structure must conform to

the dependency structure of the corresponding features. We do not require

an identical dependency structure; the dependencies can conform directly or

transitively. Furthermore, components are not allowed to form dependency

cycles (cf. acyclic dependencies’ principle [Mar03]), as when components of

a cycle are used or changed, all other components in the cycle are a�ected.

This hampers those components that can be reused individually.

3.3.1.4 Layering

In the context of our reference architecture for model-based analyses, we

de�ne a layer as a logical grouping of features and components. A feature

and its corresponding components are located at the same layer, and features

and components are only located at exactly one layer. The number of layers

depends entirely on the DSML and the model-based analysis. Heinrich et

al. recommend a maximum of four layers for DSMLs [HSR19]. We add an

additional layer to the architecture of model-based analyses (cf. Section 3.3.2).

According to the layered architecture pattern [RF20], features and components

are placed in accordance with their dependencies: Feature-required and -

parent and component dependencies must point in the same direction. To

be more precise, the dependencies are only allowed to point to the same or

a more basic layer (the more abstract, the more basic the layer). The more

basic the layer is, the more on top it is located in our visual notation. More

abstract classes can be seen at the top, while inheritance / generalisation lines

point up.

67

3. Decomposition and Composition of Model-based Analyses

3.3.1.5 Relation Between Modularisation Concepts

N G

FM

Figure 3.3.: Feature and Component Relation [HSR19]. Legend see Figure 3.2

Figure 3.3 depicts the relation of features and components. It represents no

actual model-based analysis; however, it serves as an example of an arbitrary

model-based analysis. The left graph represents the analysis component

structure, and the right graph represents the analysis feature structure. Each

analysis component and analysis feature is located at one layer; the notation

of elements conforms to the legend shown in Figure 3.2.

Dependencies between analysis components are when classes, �elds, or meth-

ods of a analysis component M depend on classes, �elds or methods of another

analysis component N. Dependencies can be, for example, the extension of a

class, an aggregation of a class, or a plain reference.

Regarding component-oriented design, Reussner et al. [Reu+16] di�erentiate

requires and provides roles. On the component level, we interpret these

relations as dependencies. When deriving dependencies from analyses, de-

pendencies manifest as connections between input and output [Hei+21a].

In addition to the structural input and output connection dependencies, we

derive behavioural dependencies between analysis components. By adding

events, analysis components can be coupled at a behavioural level [Koc+22].

We model the behavioural dependencies at the component level, so our ap-

proach does not require additional syntax. We focus on the presence and

direction of the dependencies; thus, the precise nature of the dependencies

between analysis components is irrelevant at the level of analysis components

and their dependencies.

68

3.3. Decomposition of Model-based Analyses

In the feature graph, the analysis features F and G are the corresponding

analysis features of the analysis components M and N. If there is a path in

the feature graph from G to F, then the dependency from N to M is consid-

ered supported. Each analysis component dependency must be supported;

otherwise, the analysis features and analysis components are not individually

reusable. For example, if the dependency of M to N is not supported, these

components are unrelated semantically. This means that the analysis feature

G must be used when the analysis feature F gets selected. If each analysis

feature dependency is supported, the analysis feature and analysis component

models are conformal.

3.3.2 Layers in Model-based Quality Analyses

The layering concept shown in Figure 3.2 does represent the general idea of

having layers in model-based analyses. The analysis architect can choose

an arbitrary number of layers with an arbitrary semantics. To illustrate

an instantiation of our reference architecture for model-based analyses, we

propose the layering system of our reference architecture for model-based

quality analyses. The layering system is based on the modularisation concepts

presented in Section 3.3.1. The �rst four layers of our architecture use the

same four layers as in the reference architecture for quality metamodels.

We add a �fth layer; as a result, our reference architecture for model-based

quality analysis corresponds to a �ve-layered architecture. For other types of

model-based analyses, the number and purpose of the layers can di�er; the

layers are derived from the associated DSML.

Within our reference architecture for model-based analyses, we de�ne a layer

as a logical grouping of features and components. A layer consists of features

and their corresponding components, and each feature and component is

assigned to one layer only. The layering restricts feature-required and -

parent dependencies and component dependencies; they must all point in the

same direction. A layer represents an abstract grouping; a layer can contain

language features, language components, analysis features, and analysis

components equally. The layering only a�ects the dependency direction

and grouping of classes; the layering does not a�ect the behaviour of the

analysis. Therefore, we can reuse the four layers of the reference architecture

for quality metamodels.

69

3. Decomposition and Composition of Model-based Analyses

Furthermore, for each language feature, we have a corresponding analysis

feature. Features represent the conceptual level of the DSML and the model-

based analysis. They are expressed as a concept without technical detail.

Analysis features have a dependency on language features if they require

them for analysis. The feature dependencies of the language feature graph

determine feature dependencies in the analysis feature graph. Due to the

conceptual nature of a feature, we can have the same structure of features in

the model-based analysis as in the DSML.

In addition to the layers paradigm (3.3.2.1), domain (3.3.2.2), quality (3.3.2.3),

and analysis (3.3.2.4) which are identical to the layers in the reference archi-

tecture for DSMLs, we propose the experiment (3.3.2.5) as �fth layer of our

reference architecture for model-based quality analyses. Figure 3.4 depicts

the �ve layers for model-based quality analyses.

Paradigm π

Domain Δ

Quality Ω

Analysis Σ

Experiment Φ

Figure 3.4.: Layering Structure for the Reference Architecture for Model-based Analyses. Legend

see Figure 3.2

3.3.2.1 Paradigm Layer

Theπ paradigm layer is the most abstract layer in our reference architecture

for model-based quality analyses. The layer contains the building blocks

of the model-based analysis, and it contains de�ning analysis features for

reoccurring patterns of structure and behaviour. It does not contain any

70

3.3. Decomposition of Model-based Analyses

dynamic semantics; for example, in a performance analysis, state or interfaces

are speci�ed in π without specifying their usage. Features on the π layer

can reference the features on the π layer on the DSML architecture. These

references are used for the analysis of the π features. In addition to the

analysis of the π features, the π layer also contains basic features that are

only relevant for the model-based analysis. Due to the missing dynamic

semantics, the π layer is not intended to be used without another layer.

Dependencies on other layers are not allowed, as they would contradict

the layering principle and dependencies on more abstract layers are not

possible, as π represents the most abstract layer. The π layer can only

have dependencies on features on the same layer. It contains mostly abstract

classes or interfaces, as the more concrete layers are intended to add the

dynamic semantics.

The analysis components for theπ layer that the analysis developer develops

must be so generic that the analysis developer can reuse analysis components

for di�erent domains. For example, model-based analyses can share features

like the speci�cation of users and states. They are so generic that a user

merely has a name, and a state has a �eld indicating that the state is active.

These features are so generic that one analysis uses these features to analyse

the behaviour of a user of a software system, and the other analysis uses

these features to analyse users in a hardware environment, for example, a

production plant. However, the analysis architect speci�es the specialisation

of a feature on a more specialised layer, for instance, the domain layer ∆.

3.3.2.2 Domain Layer

The domain layer ∆ is the �rst extension layer. It is placed after the π layer.

The ∆ layer extends the π layer by extending its abstract components. How

a component is extended depends on the underlying programming language.

In Java for example, the analysis developer extends the abstract classes and

implements the interfaces of the π layer. Thus, the analysis developer adds

structure and behaviour to the model-based analysis.

The added structure and behaviour introduce domain-speci�c semantics to

the model-based analysis. For example, suppose the analysis developer wants

to add the two domains of software systems and hardware systems (e. g.,

production plants). In that case, they can extend the features introduced in

71

3. Decomposition and Composition of Model-based Analyses

Section 3.3.2.1. The analysis developer adds a software user, a software state,

a hardware user, and a hardware-state features. This way, the model-based

analysis is able to analyse software and hardware systems.

The bene�t of separating the domain-speci�c features into hardware- and

software-speci�c features is that if the analysis developer does not need to

analyse hardware systems, the hardware-speci�c features can be ignored

without a�ecting the software-speci�c features. However, the domain layer

is explicitly not restricted to one domain.

Although the ∆ layer can contain atomic features, the analysis architect must

consider whether they should place such a feature at the π layer. Alterna-

tively, they could extract the fundamentals and place them at the π layer.

The remainder remains at the ∆ layer.

An model-based analysis can consist of only the π and ∆ layer. The analysis

user runs it to reason about structural and behavioural properties. How-

ever, the analysis developer can extend the analysis by adding features for

modelling or analysing quality properties. We recommend having π and ∆
in each model-based analysis. This allows the analysis developer to reuse

general features of a model-based analysis (π) and domain-speci�c features

(∆) for di�erent kinds of specialisations a model-based analysis can have.

The next layer illustrates the analysis of quality attributes, and it is such a

specialisation a model-based analysis can have.

3.3.2.3 Quality Layer

The quality layer Ω extends the model-based analysis by analysing quality

properties. Quality properties are, for example, the performance or reliability

of a system. The security and safety of a system are also quality properties.

The Ω layer contains the main reason why a model-based analysis exists, as

it is crucial to determine the quality of a system before spending resources

implementing such a system. Thus, the analysis developer adds the analysis

that determines the quality of a modelled system to the Ω layer.

The added quality analysis features extend the model-based analysis by

quality-speci�c semantics. For example, if the analysis developer wants

the user to be able to analyse the performance and reliability of a system, they

can utilise the domain-speci�c features. Before implementing the analysis

72

3.3. Decomposition of Model-based Analyses

components, the analysis developer must determine whether the quality anal-

ysis can be applied to each domain or whether the quality analysis is speci�c

to a certain domain. For example, considering the performance analysis of

software and hardware systems, the concept of queues can be applied to both

domains. Thus, the analysis developer extracts a common feature that the

performance analysis of both domains can use, and then they can develop

the individual components. They place the individual components also on

the ∆ layer.

The bene�t of separating the quality-speci�c features is that if the analysis

developer only needs to analyse a certain quality attribute, the remaining

quality analysis features can be ignored. This �exibility allows the Ω layer to

be explicitly not restricted to one quality property.

3.3.2.4 Analysis Layer

The analysis layer Σ extends the model-based analysis by analysis features

that are relevant for a concrete analysis execution. Part of the Σ layer is the

speci�cation of con�guration data of the model-based analysis. Additionally,

this layer holds the information of the runtime state and the speci�cation of

model-based analysis output. For example, if a reference to a model attribute

is needed for a reachability analysis, the value range and the reference to the

attribute are located on Σ.

The features on the Σ layer utilise the features of the Ω layer. For example,

the performance and reliability analysis could be speci�ed separately; how-

ever, if the analysis developer needs to combine both features to perform a

performability analysis. The analysis developer de�nes a feature that inter-

prets the runtime state and the output of these two features to determine the

performability of the analysed system.

The features located at the Σ layer represent an experiment that the analysis

could run. Such an experiment is represented on a structural level. The

experiment runs are located at the Φ layer.

3.3.2.5 Experiment Layer

The experiment layer Φ extends the model-based analysis by analysis features

that represent the experiment runs. If, for example, the model-based analysis

73

3. Decomposition and Composition of Model-based Analyses

provides setting seed values for an experiment, the analysis developer places

the seed value feature on the Φ layer. More examples of features at the Φ
layer are setting the initial states, termination conditions or the sequence of

actions; other features of the analysis are invoked. Especially the sequence of

actions is relevant when setting up more than one experiment runs. The Φ
layer allows creating of reproducible experiments that contain a sequence of

analysis runs.

3.3.3 Refactoring Operations for Modularising Model-based
Analyses

In this section, we present the refactoring operations we provide for anal-

ysis developers. The refactorings were �rst published in our technical re-

port [KHR22a]. These refactoring operations are meant to apply our reference

architecture to an already existing model-based analysis. The model-based

analysis and its corresponding DSML must ful�l two preconditions. The

�rst and most important precondition is that the DSML already conforms

to the reference architecture for metamodels [HSR19]. This means that the

DSML is already separated into layers, the language features and language

components are cycle free, and the dependencies point only to a more generic

layer. The second precondition is that the model-based analysis uses the

DSML or instances of the DSML to reason about a system.

We divide the refactoring operations into refactorings on the analysis class

level and refactorings on the analysis component level. The analysis class

level refactorings consist of operations that split or merge classes, �x depen-

dency cycles and change the dependency direction of classes. The analysis

component level refactorings consist of operations that split (horizontally or

vertically) or merge components, and that extract features and components,

if needed.

The refactorings we present are based on the DSML refactorings of Heinrich et

al. [HSR19] and OOP refactorings [Fow18]. The DSML structure (i. e., number

of layers, features and dependencies between features) serves as a template

for the model-based analysis design (see Figure 3.2). We apply the refactorings

presented in this section to transform the monolithic model-based analysis

into the modular structure of our reference architecture.

74

3.3. Decomposition of Model-based Analyses

The �gures in this section heavily rely on the legend depicted in Figure 3.5.

Rectangles that resemble a folder symbol represent components, and regular

rectangles represent classes. In order to distinguish between language and

analysis elements, the language elements are coloured grey, and the analysis

elements are coloured white. If an element represents both, it is �lled half

grey and half white.

Reference Inheritance

Extension

Dependency

Refactoring
Operation

Analysis Class

Analysis ComponentLanguage Component

Language Class

Counts for both, Language and Analysis

Figure 3.5.: Legend for the Notational Elements Used to Depict the Refactoring Operations

3.3.3.1 Analysis Class Refactorings

The analysis class refactorings are the foundation to modularise an existing,

monolithic model-based analysis. These refactorings provide a toolset for

the analysis developer to adapt the structure of a model-based analysis to

the structure of its corresponding DSML. It is not always necessary for the

analysis developer to use all refactorings to accomplish a modularised model-

based analysis. The refactorings are, per de�nition, not intended to change the

behaviour of the refactored system [Fow18]. We distinguish four refactoring

operations on the class level: class split, class merge, breaking of dependency
cycles, and dependency inversion.

C
E

C

L2

L1
L1

L2

C1

C2
S

L2

L1

(i) (ii)

Figure 3.6.:Class Split [KHR22a]

75

3. Decomposition and Composition of Model-based Analyses

Class Split Splitting a class is a common refactoring operation in software

development. The class split refactoring operation is where class elements,

such as attributes and methods, are extracted and transferred into one or

more new classes [Fow18]. In language- and object-oriented design, the goal

of the class split refactoring is to separate di�erent concerns into separate

classes to improve the comprehensibility of individual classes. The refactoring

operation class split is shown in Figure 3.6. We require to split a class when

it has dependencies on di�erent language components. The analysis class C
has dependencies on the two language components L1 and L2. Our approach

assumes that the underlying language is already modularised and partitioned.

Therefore, if possible, a class should be split when it has more than one

language component as a dependency. Another problem is that after the

refactoring, we must be able to distinguish whether the language components

are placed on one layer or distributed over several layers in the architecture.

When a class is split according to the structure of the language components,

the refactored classes must be distributed according to their dependencies in

the same architecture layers. The analysis developer can choose from two

class splits. The �rst class split is shown in Figure 3.6 (i), the analysis class C,

that needs to be split up, is extended by a new analysis class E. Also, E takes

properties of C; for this, the required properties are factored out from C to E.

Incoming dependencies remain on C.

From a purely syntactical view, attributes, methods, references, containments,

and inheritance can be factored out on the class level without complications.

In the case of model-based analyses, it is often impossible to split a class

according to the language structure. An analysis feature might need di�er-

ent language features to perform an analysis. However, the structure of the

DSML requires that the analysis feature has no dependency on the language

feature i. e., has no knowledge about the language feature. However, given

the structure of the language, it is not always possible to separate a class as

demanded by the reference architecture of the metamodel. This can occur

if, for example, language components from di�erent layers are used with

dependencies on each other. Besides the elements that can be cleanly sep-

arated from a class and the components that do not have dependencies on

the language component, we propose encapsulating the inseparable elements

in a class and then placing them in the most speci�c layer. As it is shown

in Figure 3.6 (ii), a specialisation analysis class S is introduced, which uses

the second split class refactoring as shown in Figure 3.6 (i), but the incoming

76

3.3. Decomposition of Model-based Analyses

dependencies are shifted to S. In the worst-case scenario, the classes cannot

be fully split so that S holds dependencies of L1 and L2.

C2

C1
L C L

(i)

C1
L

C2
(ii)

Figure 3.7.:Class Merge [KHR22a]

ClassMerge Like the class split, the class merge is also a common refactoring

operation that originates in object-oriented design [Fow18]. A class merge

transfers attributes and methods of a class to another class. In the context of

our reference architecture for model-based analyses, a class merge is required

when two classes have dependencies on the same language component.

The class merge is intended to combine concerns that are distributed across

di�erent classes. The class merge refactoring is shown in Figure 3.7. We

di�erentiate between a clean class merge Figure 3.7 (i) and a class merge with

a rest Figure 3.7 (ii). When a language component of the DSML has scattered

dependencies, i. e., types of a language component are referenced by multiple

classes and levels, the class merge can be used to merge these dependencies.

A class merge is performed by extracting attributes and methods of one class

and then inserting them into another class. The result is an extended target

class with attributes and behaviour of the source class. Figure 3.7 (i) shows

the class merge, both classes can be combined to one class when both classes

depend on only language classes of the same language component. C1 and C2
have dependencies on the same language component L; the merge combines

C1 and C2 into one new class, C which, as a result, shares the dependencies

on the desired language component L.

When the classes that should be merged also depend on language classes from

di�erent language components, only the attributes and methods are allowed

to be moved when they depend on language classes of the same language

component L. Figure 3.7 (i) shows the class merge with a rest. The attributes

and methods of C2 that had dependencies on the language component L
were moved to C1. The remaining attributes and methods of C2 that have

77

3. Decomposition and Composition of Model-based Analyses

dependencies on other language components were not moved. If the classes

C1 and C2 were merged like shown in Figure 3.7 (i), we would have produced

a scenario that requires a class split as shown in Figure 3.6.

C1 C2
C1

C2
E

(i)

…
C1 C2

…
(ii)

Figure3.8.:Breaking Dependency Cycles between Classes of the Model-based Analysis [KHR22a]

L1 A1
L1 A1

D

L1 A1

D

Figure 3.9.: Breaking Dependency Cycles between Classes of the Model-based Analysis and its

associated DSML

Breaking Dependency Cycles As stated in Section 3.3.1.1, a model-based

analysis that is modelled according to our reference architecture must be

cycle free. If the bad smell cyclic dependencies, known from object-oriented

design, occurs, the following refactoring operations show how developers

can break such cycles. Dependency cycles prevent easy extension of software

systems [Par79], and according to Fowler [Fow01], dependency cycles make

a system harder to understand, thus, harder to maintain. How to refactor

dependency cycles between classes of the model-based analysis is shown

in Figure 3.8. We assume that the DSML does not contain any dependency

cycles [HSR19], and if our reference architecture for model-based analyses is

applied, the model-based analysis should also not contain any dependency

cycles. Due to the co-dependency of model-based analyses and DSMLs, we

distinguish two types of dependency cycles. The �rst type occurs between

classes of the model-based analysis (see Figure 3.8). The second type occurs

between classes of the model-based analysis and the DSML (see Figure 3.9).

First, we explain how dependency cycles between analysis classes can be

broken up. As in language- and object-oriented design, we distinguish two

78

3.3. Decomposition of Model-based Analyses

refactoring operations to break dependency cycles. On the one hand, the

previously presented class split can be used; on the other hand, dependency

inversion is also a valid option to break dependency cycles. The initial state

is that C1 and C2 depend on each other. The outgoing dependency of C1 is

factored out into E if they contributed to the cycle. As a result, C1 is split, and

C1 has no dependency on E; thus, the cycle no longer exists see Figure 3.8 (i).

The dependency inversion is described in the following section. Dependency

inversion is one technique to tackle dependency cycles, as exempli�ed in

Figure 3.8 (ii).

The language must have no dependencies on the analysis; otherwise, changes

in the analysis can trigger changes in the language. One DSML can be

used by multiple model-based analyses; as a result, a change in one model-

based analysis could have a cascading change e�ect on all remaining model-

based analyses that are associated with the DSML. Fixing a dependency cycle

between language and analysis classes is depicted in Figure 3.9. To break

up dependency cycles between language (L1) and analysis classes (A1), the

analysis developer and the language developer must split the analysis class

A1 to separate the elements the language class depends on (D) from the

remainder of the class (A1). If possible, the elements of D can be added to a

language feature, alternatively, D becomes part of the generated language

component.

A

S

A

S

(i)

A

S

A

S

(ii)

Figure 3.10.:Dependency Inversion [KHR22a]

Dependency Inversion According to Martin [Mar03], abstractions (A) must

not depend on speci�cs (S); instead, speci�cs must depend on abstractions.

This statement is known as the dependency inversion principle. It origi-

nated in the object-oriented design and was later adapted by Heinrich et al.

to suit the design of DSMLs [HSR19]. To tackle the problem when depen-

dencies violate the constraints of our reference architecture, we present a

refactoring solution that transfers the reference architecture for DSMLs to

79

3. Decomposition and Composition of Model-based Analyses

model-based analyses. The general refactoring for dependency inversion is

illustrated in Figure 3.10, dependency inversion by inheritance is shown in

Figure 3.11, dependency inversion by reference is shown in Figure 3.12, and

dependency inversion by bidirectional reference and containment is shown

in Figure 3.13.

A

S

A

S

A

N
S

A

S
(i) (ii) (iii)

Figure 3.11.:Dependency Inversion – Inheritance [KHR22a]

In Figure 3.11, we present the dependency inversion by inheritance refac-

toring. If S is a specialisation of A, the inheritance is in the wrong direction

and must be inverted; especially when A is a language class. Occurrences of

S and A in the analysis code must be switched Figure 3.11 (i). Inverting the

inheritance means that concepts that are relevant for A are moved from S
to A. The inheritance can be removed entirely if a feature is implemented

by both A and S, as both implement the same functionality. Alternatively, a

subclass can be introduced to invert the inheritance. The new subclass (N)

of A and S is introduced Figure 3.11 (ii). Dependencies must be redirected to

either A, S, or N; for this, incoming dependencies of A and S are used. If S is

not a specialisation of A but if it is part of a �rst-class analysis component,

the inheritance is removed and replaced by a reference from S to A Figure 3.11

(iii). All these refactorings have in common that when A is a language feature,

the language model must be changed due to the problematic dependency

from the DSML to one analysis.

A

S

A

E
S

A

S

A

S

N
…

(i) (ii) (iii)

Figure 3.12.:Dependency Inversion – Reference [KHR22a]

80

3.3. Decomposition of Model-based Analyses

In Figure 3.12, we present an approach to invert a dependency by refactoring a

reference. A reference can be inverted using a class split, this type is presented

in Figure 3.12 (i). A new class E is introduced when inverting the reference. E
replaces the reference from A to S. This option should be chosen if S is part

of a �rst-class analysis component (i. e., an instance of S does not depend

on an instance of A). This refactoring is applicable for refactoring language

and analysis classes, as it �xes the dependency direction for both. If S is part

of a second-class analysis component, which extends the functionality of A
but is no further extended, a simple extends relation, in the case of an object-

oriented language inheritance, can be implemented Figure 3.12 (ii). However,

if S needs to be further specialised, introducing a common superclass N is

advised Figure 3.12 (iii). The third refactoring is only applicable for analysis

classes, as A would still depend on a class of a model-based analysis. When

A and N are language classes, we recommend consulting the refactoring

operations for DSMLs proposed by Heinrich et al. [HSR19].

A

S

A

S

A

S

A

S

Figure 3.13.:Dependency Inversion – Bidirectional Reference and Containment [KHR22a]

A bidirectional reference between two classes A and S is the simplest form

of a dependency cycle (see Figure 3.8, and a special case of Figure 3.12). The

bidirectional nature implies a redundant reference, which is usually detected

by an IDE like IntelliJ or Eclipse. To remove one redundant reference, the

parts in S that are referenced by A can be moved from S to A, see Figure 3.13

(i). Containment references can be removed by extracting an extension class S
representing the desired feature. That way, features can be strictly separated,

see Figure 3.13 (ii). In both cases, if a language class depends on an analysis

class, the developer must consider the possible cascading changes that a�ect

all associated model-based analyses when modifying the DSML.

81

3. Decomposition and Composition of Model-based Analyses

3.3.3.2 Analysis Component Refactorings

In addition to our refactoring operations on the class level, we present refac-

toring operations that target analysis components instead of classes. What

analysis developers need for the class-level refactorings can be transferred

to the component level. Instead of performing single, small refactorings on

the class level, when an analysis developer has to adjust whole components,

the refactoring can get tedious, depending on the number of classes in a

component. Therefore, we present �ve additional refactoring operations on

the component level: horizontal split, vertical split, merge, extension extraction,

and feature support extraction.

M N M N

(i) (ii)

C

M N

C

M N

(iii) (iv)

[]

Figure 3.14.:Horizontal Split [KHR22a]

Horizontal Split An analysis component must be split horizontally by the

analysis architect if parts of an analysis component can be used indepen-

dently of each other (cf. Single Responsibility Principle [Mar+03]). An initial

indicator to split an analysis component is when an analysis component has

dependencies on multiple language components. Figure 3.14 (i) shows the

potential best-case outcome; the components are unrelated. In Figure 3.14

(ii), one of the analysis components is dependent on the other. In Figure 3.14

(iii), the potential worst case is shown. The new components M and N may

82

3.3. Decomposition of Model-based Analyses

still share the original component’s common part C. The parenthesis around

C indicates that this component does not necessarily exist. All the analysis

components may be mutually dependent. The dependencies of M and N must

be adjusted according to the dependencies of the analysis feature they im-

plement. The adjustment of the dependencies must be made by the analysis

architect and the analysis component developer in Figure 3.14 (iv) the compo-

nents M and N dependent on a common component C. The common analysis

component C also indicates an additional feature, which is an addition to the

analysis feature graph.

Figure 3.15.:Vertical Split [KHR22a]

Vertical Split The vertical split is illustrated in Figure 3.15. The analysis

architect performs this refactoring if the layer to which an analysis compo-

nent could be assigned is unclear. An indicator to vertically split an analysis

component is when said component has dependencies on language compo-

nents on di�erent layers. A horizontal split is recommended if the language

components are on the same layer. However, if the language components

are located on di�erent layers, the analysis architect divides the analysis

component so that each resulting analysis component can be assigned to one

layer. The analysis component developer must split classes if necessary. After

the refactoring, each resulting analysis component is assigned to its layer by

the analysis architect. The resulting architecture could have dependencies

that point from an abstract to a more speci�c layer. If this is the case, the

analysis component developer must perform dependency inversion.

Merge Figure 3.16 shows the component merge refactoring. A merge refac-

toring could be advisable when more than one analysis component depends

on the same language component and if the analysis components are located

on the same layer. The analysis developer checks whether the dependent

83

3. Decomposition and Composition of Model-based Analyses

Figure 3.16.:Merge [KHR22a]

language features have a mandatory feature relation or if the analysis com-

ponents form a dependency cycle. If one of these constructs can be found

in the architecture, the analysis architect should consider merging those

features and their analysis components. There may be various dependency

constellations between the merged analysis components, like one-directional

or bidirectional. Merging analysis components could also be advisable if they

have no dependencies but classes of an analysis component that are abstract

function as ubiquitous superclasses.

M
M’

C

M’

C’

M’

C’

M’

C’

M’

C’

(i) (ii)

(iii) (iv)

Figure 3.17.: Extension Extraction [KHR22a]

Extension Extraction The analysis architect uses the extension extraction

refactoring if an analysis component contains content that does not belong

to the feature it implements. An indicator for refactoring is if the optional

content cannot be used independently. The extension extraction refactoring

is depicted in Figure 3.17 – the analysis architect factors out the optional

84

3.4. Composition of Model-based Analyses

content of M into a new analysis component C. The remainder of M is denoted

as M’. The classes of component M must be split if they should be located in N
but contain optional properties that belong to M’. The analysis component

developer also does this refactoring. If a class has dependencies on multiple

language components, which cannot be factored out, the class must be put

in the most specialised analysis component. The following step reverses all

dependencies from elements of M’ to C. Incoming dependencies on C must be

considered for dependency inversion. The result of the dependency inversion

is shown as outgoing dependencies of C’. The refactoring can be performed if

the analysis components have no dependencies on any language component.

However, if M has dependencies on multiple language components, each

dependency should be refactored into one dedicated analysis component (see

Figure 3.17 (ii)). If the optional content of N’ represents a dedicated analysis

component that has no representation in the language, N’ must be refactored

into a dedicated analysis component with no dependencies on the language

(see Figure 3.17 (iii)). If it is reasonable to separate optional content, C’ but the

dependencies on one language component cannot be separated Figure 3.17

(iv) must be applied.

3.4 Composition of Model-based Analyses

In this section, we present composition operators that allow the analysis

architect to compose model-based analysis features and components. The

composition operators were �rst published in our technical report [KHR22a].

We developed the composition operators presented in this section to work

with our reference architecture for model-based analyses. As a result, a model-

based analysis must follow our reference architecture so that the composition

operators in this section can be applied to it. After modularising an exist-

ing model-based analysis with the refactoring operations presented in Sec-

tion 3.3.3, the model-based analysis is separated into features. These features

can be used to create or extend other model-based analyses by composing

them with each other. The concepts presented in this chapter are heavily

inspired by feature composition in general and the feature composition by

Apel et al. [Ape+08] in particular (cf. Section 2.3, Feature Composition).

The composition operators that we will present operate on the structure of

both the analysis feature and analysis component, as depicted in Figure 3.18.

85

3. Decomposition and Composition of Model-based Analyses

AFAC

Model-based Analysis

AF

Model-based Analysis

AC

Analysis Feature
Analysis Component

Implements

Component Dependency

Analysis Component
as Terminal Node

Figure3.18.:Transformation of Our Modularisation Concept to a Feature Structure Tree [KHR22a]

Besides the introduction sum of Apel et al. [Ape+08], we de�ne another

operation, the Introduction Di�. The introduction di� is needed to remove

nodes from an FST. The introduction di� operator 	 is also an operation

over the set of I , which removes atomic introductions; the result is again

a non-atomic introduction or an empty FST (ξ). Introduction di� 	 over

the set of I of introductions forms a non-commutative idempotent monoid

(I , 	, ξ). The introduction di� is non-associative and non-commutative. By

means of non-associativity, without the order of operations, the calculation

is performed from left to right:

(f 	 д) 	 h , f 	 (д 	 h)

For j = ξ follows i 	 j = i .

A modi�cation speci�es how a feature a�ects another feature during com-

position and how features are composed. Modi�cations consist of queries

and changes. The queries are for fetching the a�ected components to apply a

set of changes to achieve the desired composition. Their associated analysis

techniques are composed by selecting sub-analysis from the feature model.

A modi�cationm has a query q, which selects a set of atomic introductions,

and a change c , which will be applied to the query result m = (q, c). The

modi�cation application operator � is applied to the set M of modi�cations

and the set I of introductions. A modi�cation can return either the input

86

3.4. Composition of Model-based Analyses

introduction or a changed introduction. The modi�cation is associative and

non-commutative. The identity is de�ned as follows:

ζ �m = m � ζ — ζ is a class of empty modi�cations.

Modi�cations are not idempotent.

We identi�ed six modi�cation operations to aid the development of model-

based analysis. Each operation utilises the previously introduced composition

operators. We distinguish between two atomic modi�cation operations (add
and delete) and four composite modi�cation operations (move, replace, merge,
and split). The analysis developer proposes possible change operations, which

the analysis architect can then utilise.

Add a node to the graph: The add operation madd � (f1 ⊕ f2) combines

two features, f1 and f2. The modi�cation operationmadd fetches the added

features and their parent nodes. If the added features are components, the

modi�cation operation determines which extension dependency has to be

used. The modi�cation can be detailed, e. g. which extension mechanism

to use on which class, or it can be generic. Additionally, the modi�cation

does not need to be automated; manual steps can also be part of such a

modi�cation.

Delete a node of the graph: The delete operationmdelete �(f1	 f2) removes

feature f2 from feature f1. The mdelete fetches all child features of f2 and

removes them from the graph. Also, the mdelete modi�cation operation

removes dependencies concerting the deleted features. This ensures that the

graph no longer contains features representing a specialisation of a feature

that no longer exists. Furthermore, if extends dependencies are no longer

viable, components will be modi�ed.

Move a node of the graph: The move operationmmove � ((f1 	 f2) ⊕ f2)
moves the existing feature f2. The move operation is a composite modi�cation

operation that �rst deletes the features f2 that must be moved. Then, the

feature f2 is added to the new destination in the graph. The modi�cation

operation mmove adapts the dependencies of the features and components

a�ected by the move operation.

Replace a node of the graph: The replace operationmr eplace � ((f1 	 f2) ⊕
f3) replaces the feature f2 with feature f3. The replace operation is also a

composite modi�cation operation, as the move operation. After removing the

87

3. Decomposition and Composition of Model-based Analyses

feature f2, the feature f3 replaces the feature f2 by adding it to the tree. The

modi�cation operationmr eplace adapts the dependencies in the component

nodes in the graph. If the new node replaces a feature without replacing the

dependent component, mr eplace must ensure the compatibility between the

feature and component node.

Merge two nodes of the graph: The merge operationmmerдe � (f1 	 f2)
merges the features f1 and f2. The merge operation also is a composite

modi�cation operation; it utilises the delete operation to remove the feature

f2 from the graph. Themmerдe modi�cation operation moves the internals of

feature f2 to feature f1, and all dependencies from the feature f2 are moved

to the feature f1.

Split a node: The split operationmsplit � (f1 ⊕ f2) splits feature f1 in the fea-

tures f1 and f2. The split operation also is a composite modi�cation operation;

it adds a new feature f2 to the graph that inherits internals and dependencies

of the feature f1. Themsplit modi�cation operation moves this internals of

feature f1 to the new feature f2, with dependencies getting also modi�ed.

3.5 Application Process

In this section, we present processes to apply our reference architecture for

model-based analyses in di�erent scenarios. We di�erentiate three scenarios

in the development of an model-based analysis where an analysis developer

can apply our reference architecture where we consider the state of the DSML

and the state of the model-based analysis together. The �rst scenario is the

modularisation of an already existing model-based analysis (i). The second

scenario is the development of an model-based analysis from scratch (ii). The

third and last scenario is the extension of an model-based analysis (iii).

The steps di�er regarding the development stage of the DSML and the model-

based analysis. In the �rst scenario (i), the analysis developers already have

access to implemented analysis components that analyse the DSML. We

assume that the DSML is already modularised according to the reference

architecture for metamodels; ergo, we assume that the feature model al-

ready exists. Thus, the analysis developers must modularise the analysis

components according to the feature model. The refactoring operations for

modularising a model-based analysis are tailored to object-oriented software;

88

3.5. Application Process

therefore, the process for the �rst scenario is applicable as long as the DSML

follows the reference architecture for DSMLs and the model-based analysis is

implemented in an object-oriented programming language.

In the second and third scenarios, the analysis developer creates the DSML

and analysis feature model before implementing (ii) or extending (iii) the

analysis components. The composition operators for implementing dedicated

exchangeable and extendable analysis components rely on the inheritance

principle of object-oriented software. As a result, these processes also re-

quire that the model-based analysis will be (scenario (ii)) or is (scenario (iii))

implemented in an object-oriented language. These scenarios extend the

application processes for DSML modularisation and composition [HSR19].

Although the processes restrict the analysis developers in their freedom on

how to design, implement, and extend model-based analyses, the processes

also have their bene�ts. The processes provide a structure for the analy-

sis developers that they can follow, which uni�es the design, development,

and extension process [HSR19]. Due to the processes, the evolvability and

reusability of the model-based analysis are improved.

This section is structured as follows: First, we present the process to modu-

larise an existing model-based analysis in Section 3.5.1. Second, we present

the process to develop a model-based analysis from scratch in Section 3.5.2.

Finally, we present the process to extend a model-based analysis in Sec-

tion 3.5.3.

3.5.1 Modularisation of an Existing Model-based Analysis

The following applies to all processes; the analysis requires a corresponding

DSML modularised according to the reference architecture for metamodels.

We also assume that a feature model of the language exists. We start with the

modularisation of an already existing, monolithic, model-based analysis. The

analysis developers’ goal is to adapt the monolithic model-based analysis to

our reference architecture. The steps in these processes are not performed

purely sequentially; therefore, we will discuss where it is advisable to repeat

certain steps.

To create these processes, we modularised the software performance anal-

ysis SimuLizar and extracted our �ndings. We published a technical report

in [KHR22a] for more details regarding the refactoring. SimuLizar also serves

89

3. Decomposition and Composition of Model-based Analyses

as a case study in this thesis (cf. Section 6.2). The analysis SimuLizar is not the

only model-based analysis to which we applied our reference architecture; we

selected case studies from di�erent domains to have a variety of model-based

analyses (cf. Section 6.1). Thus, we can state that our process is applicable to

a variety of object-oriented model-based analyses.

To determine the modularisation potential, we de�ne the following criteria:

The �rst question an analysis developer has to answer is: Does the model-

based analysis resemble the structure of the corresponding DSML? They can

answer it by identifying features of the DSML in the model-based analysis,

and the dependencies of these features can be identical (i. e., direction, type,

and connection of features). The analysis developer requires information

about the features so that they can create the feature model of the model-

based analysis. Ideally, they can place the features already on a layer in the

reference architecture. The analysis developer can utilise our refactoring

operation of Section 3.3.3 and the composition operators of Section 3.4 to

�x the dependency structure, breaking up cycles and placing the analysis

features and analysis components on the right layer. The more the features

and dependencies resemble the structure of the DSML, the less e�ort has

the analysis developer to adapt the model-based analysis to the reference

architecture.

Figure 3.19 depicts the steps of modularising a monolithic, model-based

analysis. The process contains eight steps in total, one prerequisite step and

seven steps for the modularisation of model-based analyses. In the remainder

of this section, we present the details of each process step. For each step, we

present the roles that are required for the step, a detailed description, and the

results.

3.5.1.1 Prerequisite: Modular DSML

Roles Involved: Language Architect, Language Component Developer

Each model-based analysis has a corresponding DSML that it can analyse.

Before the analysis developer can modularise an existing model-based analy-

sis according to our reference architecture, we require that the DSML follows

the reference architecture of Heinrich et al. [HSR19]. If the DSML is not

modularised, the language architect must refactor the DSML according to

the reference architecture for metamodels. We recommend refactoring the

90

3.5. Application Process

Prerequisites

Monolithic
Analysis Project

Modular
DSML Project

1: Decomposition into Components

2: Creating the Feature Model3: Dependency Alignment

4: Decomposition Refinement 5: Extracting Commonalities

7: Feature Model Forming 6: Feature Refinement

.

.

.

.

.

Figure 3.19.:Modularisation – Process Overview

DSML before modularising the model-based analysis, as it requires less ef-

fort to change a metamodel than to change the code-base of a model-based

analysis.

91

3. Decomposition and Composition of Model-based Analyses

3.5.1.2 Step One: Decomposition into Layers

Roles Involved: Analysis Architect, Analysis Component Developer, Lan-

guage Architect, Language Component Developer

Figure 3.20 depicts the detailed process of this step. For the visualisation,

we use the Business Process Modeling Notation 2 (BPMN2). The analysis

architect checks the documentation and the source code of the model-based

analysis to identify its features. To identify the features of the model-based

analysis, they can consider the package or module structure of the source code.

Then they identify the features that correspond to the features of the DSML. If

the DSML has features that the model-based analysis is missing, the analysis

architect can decide whether to add the feature to the model-based analysis

or to leave the feature out. When they decide to add the missing feature,

the analysis architect speci�es the feature so that the analysis developer

can implement the corresponding analysis component. If the model-based

analysis has features that are not part of the DSML, the analysis architect

decides, together with the language architect, to add the feature to the DSML.

When they decide to add the feature to the DSML, the language component

developer must implement the language component. The result is a set of

analysis features and analysis components.

The next step for the analysis architect is to identify the problem of the accu-

mulation of dependencies to identify the analysis components that must be

split up. This problem occurs when an analysis component has dependencies

on multiple analysis features of di�erent layers. The analysis component

developer can split these analysis components up by using the horizontal split
refactoring (cf. Section 3.3.3.2). The analysis component developer performs

the horizontal split refactoring until all accumulation of dependencies is gone,

or the remaining analysis components cannot be split up further. Finally,

the analysis component developer assigns the analysis components to their

designated layer.

In SimuLizar, for example, the RDSEFFSwitch class, one of the biggest accu-

mulation of dependencies, were in the interpreter component of SimuLizar.

We split the RDSEFFSwitch into separate classes that we then could place on

π , ∆, and Ω.

Result: As the analysis component developer did not �x any other problems,

the result is a set of highly interconnected analysis components that are

92

3.5. Application Process

Figure 3.20.:Modularisation Step One: Decomposition into Layers

93

3. Decomposition and Composition of Model-based Analyses

placed at their designated layer. The dependencies can point in the wrong

direction (i. e., from a generic to a more speci�c layer), and the dependencies

can form cycles. These errors will be addressed in the following steps.

3.5.1.3 Step Two: Creating the Feature Model

Roles Involved: Analysis Architect

In the second step, the analysis architect creates the feature model for the

model-based analysis. First, they populate the feature model with the features

that are also present in the feature model of the DSML; however, they exclude

the features discarded in Step One: Decomposition into Layers Section 3.5.1.2.

Then, they check which analysis component does not have a corresponding

analysis feature. For each analysis component without an analysis feature,

they create a feature in the feature model; however, they ignore the dependen-

cies of the analysis components. As stated in Section 3.5.1.2, the dependencies

of the analysis components may not conform to our reference architecture.

Thus, the analysis architect models the feature dependencies according to

our reference architecture.

In our case study SimuLizar, the analysis contains an analysis component

that supports the recon�guration of an architecture model [KHR22a]. We

declared for this analysis component a new feature, which does not have a

representation in the PCM. We place this new feature in accordance with the

constraints of our reference architecture and its dependencies.

Result: The result is a feature model of the model-based analysis corre-

sponding to the feature model of the DSML. The feature model also contains

new features that are exclusive to the model-based analysis. The dependen-

cies of the analysis features conform to our reference architecture; however,

the dependencies of the analysis components can violate the constraints of

our reference architecture (i. e., dependency cycles or wrong dependency

direction).

3.5.1.4 Step Three: Dependency Alignment

Roles Involved: Analysis Architect, Analysis Component Developer

94

3.5. Application Process

Figure 3.21.:Modularisation Step Three: Dependency Alignment

95

3. Decomposition and Composition of Model-based Analyses

Figure 3.21 depicts the process of this step. In the third step, the analysis

architect checks the dependencies of the analysis components. They identify

where the dependencies are aligned, which means they check whether a

dependency at the analysis feature level is present at the analysis component

level. They also check whether a dependency is missing at the analysis

component level; i. e., the feature model has a dependency that is missing at

the analysis component level. The analysis architect also checks the direction

of the dependencies, whether they are aligned with the analysis feature

dependencies, and whether they conform to the constraints of our reference

architecture. A good starting point for checking the dependencies is at the

most speci�c layer of the model-based analysis, as the most speci�c analysis

components have the least number of incoming dependencies.

Aligning the dependencies requires that the analysis architect and the analysis

component developer looping through the following steps until the dependen-

cies at the analysis component level are aligned and conform to our reference

architecture. The steps are for one pair of analysis components and one

dependency between these analysis components:

1. The analysis architect checks whether the two classes that are responsi-

ble for the dependency are placed at the layers so that the dependency

between these classes points from the specialised to the more generic

layer. If that is not the case, they move the class at the more generic

layer into the analysis component at the more speci�c layer.

2. If they encounter a class that does not belong in one of the analysis

components, they determine an analysis component to which the

class belongs. When they cannot �nd a �tting analysis component,

they move the class to a new analysis component. This new analysis

component can also host other classes that are extracted during this

process.

3. If they cannot move a class due to various reasons, they perform the

dependency inversion refactoring (cf. Figure 3.10) of the dependency.

4. For a missing dependency, the analysis architect can move a class that

does not belong to another analysis component but has the dependency

to the desired analysis component. They omit this step if there is no

available class until a class with the desired dependency is identi�ed.

Each step requires the analysis architect to update the feature model accord-

ingly.

96

3.5. Application Process

In the context of the model-based analysis SimuLizar, we had to split the

RDSEFFSwitch class in Step One. This split, however, created a cyclic depen-

dency of three classes. To break the cycle, we introduced a builder class that

inverted the dependency at one class; thus, we could break the cycle.

Result: The result is a modular model-based analysis that is free of depen-

dency cycles and wrong dependency directions. Thus, all dependencies, either

between analysis components on di�erent layers or analysis components on

the same layer, are aligned with the dependencies in the feature model.

3.5.1.5 Step Four: Vertical Decomposition

Roles Involved: Analysis Architect, Analysis Component Developer

Although the refactored model-based analysis is modular after Step Three,
the analysis architect cannot reuse the analysis features of the model-based

analysis for other quality properties or domains. If the model-based analysis

still contains the accumulation of dependencies that are located on exactly one

layer, the analysis features and the analysis component that form the blob are

not reusable individually. Therefore, the analysis component developer splits

the a�ected analysis components to remove the accumulation of dependencies.

Step Four is done to improve the reusability of the model-based analysis. In this

step, the analysis architect also assigns analysis of the analysis components

to the same layer as their corresponding analysis feature.

In the context of the model-based analysis SimuLizar, the components result-

ing from the RDSEFFSwitch split still contained the accumulation of depen-

dencies. Therefore, we had to split the components further to resolve this

problem.

Result: The result of this step is a model-based analysis that contains features

that an analysis architect can reuse for di�erent domains and for the analysis

of di�erent quality properties.

3.5.1.6 Step Five: Extracting Commonalities

Roles Involved: Analysis Architect, Analysis Component Developer

In the �fth step, the analysis architect re�nes the π layer. Until this step, the

paradigm layer only contains features that are present in both the language

97

3. Decomposition and Composition of Model-based Analyses

feature model and the analysis feature model. The remaining analysis features

in the ∆ layer can also contain analysis-speci�c features that are so generic

that they are relevant for other model-based analyses, regardless of their

domain. Therefore, the analysis architect identi�es analysis features that

are contained in the layers above π but are fundamental for model-based

analyses.

If the analysis architect must refactor an analysis component (e. g., move

classes out of the component) and the a�ected classes are not abstract, they

create a new abstract class. That abstract class contains the fundamentals

of the analysis component. The analysis component developer moves the

remaining parts (attributes, methods) into the concrete class. This concrete

class inherits from the new abstract class. By performing these steps, the

domain-speci�c parts of a analysis component remain on the ∆ layer. As

before, after each performed refactoring, the analysis architect updates the

analysis feature model.

In the context of the model-based analysis SimuLizar, we did not have to

introduce more generic components to the π layer. The reason is a tailored

DSML that also considers the analysis-speci�c features.

Result: This step results in a more tailored π layer and a more reusable

∆ layer, as the generic features are decoupled from the domain features.

However, analysis components and classes could be too �ne-grained. An

indicator for too �ne-grained analysis components is the high number of

classes that are contained in an analysis component or that the size of some

classes is small. We do not provide a counting metric to determine small

analysis components or classes; however, in the following step, we provide an

indicator to identify analysis components or classes that might not be ideally

sized.

3.5.1.7 Step Six: Feature Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

Until this step, the focus of the analysis architect was to modularise the

model-based analysis and to align the DSML and analysis feature models.

The analysis architect identi�es too �ne-grained analysis components and

classes in this step. Therefore, they search for scattered dependencies. The

scattering of dependencies occurs when a feature has incoming dependencies

98

3.5. Application Process

of di�erent analysis components. Often, the analysis architect cannot avoid

that an analysis feature has incoming dependencies of multiple analysis

components. Suppose these components, however, are located on the same

layer, and they also do not depend on multiple features. In that case, the

analysis component developer can perform the refactoring class merge to

reduce the number of scattered dependencies. In the context of the model-

based analysis SimuLizar, the merge of classes or analysis components was

not required.

Result: This step results in a more concise model-based analysis with analysis

components with a speci�c purpose.

3.5.1.8 Step Seven: Feature Model Forming

Roles Involved: Analysis Architect, Analysis Component Developer, Lan-

guage Architect, Language Component Developer

After creating and refactoring the feature model, the feature model must be

created by the analysis architect. The initial step is to create a root feature.

Then, the steps Step Six: Feature Grouping (Section 3.5.2.7), Step Seven: Parent
Feature Identi�cation (Section 3.5.2.8), and Step Eight: Child Feature Type
Determination (Section 3.5.2.9) from the following Section 3.5.2 are performed

by the analysis architect.

Result: After �nishing this step, the result is a modular model-based analysis

that conforms to our reference architecture for model-based analyses.

3.5.2 Developing a Model-based Analysis from Scratch

In this section, we present the application process to create a new model-

based analysis. The following steps are intended to be executed iteratively.

To express the variability, we use feature models of the model model-based

analyses (cf. Section 3.3, Apel et al. [AK09], and Czarnecki et al. [Cza+12]).

In some cases, it can be bene�cial for the analysis architect to backtrack to a

previous step, for example, if they overlooked a feature or they identi�ed a

feature that they can now split.

Figure 3.22 depicts steps in the process of developing a model-based analysis

from scratch. The process contains eleven steps in total; steps six to eleven

99

3. Decomposition and Composition of Model-based Analyses

Prerequisites

Modular
DSML Project

1: Language Feature Transfer

2: Identification of Analysis Features3: Reusing Analysis Components

4: Creating the Feature Model 5: Introducing Layers

Steps 6 to 11
.

.

.

.

.

Figure 3.22.:New Model-based Analysis – Process Overview

are combined because they would depict only small variations of the picture

shown in step �ve. In the remainder of this section, we present the details of

each process step. For each step, we present the roles that are required for

the step, a detailed description, and the results after performing a step.

100

3.5. Application Process

3.5.2.1 Step One: Language Feature Transfer

Roles Involved: Analysis Architect

For this process to work, we assume that for the model-based analysis, we

want to develop, a corresponding DSML already exists. Furthermore, we

require that the DSML corresponds to the reference architecture for meta-

models (cf. Heinrich et al. [HSR19]). If a DSML exists, but the DSML is not

modularised, we advise the language architect and language developer to

modularise the DSML before proceeding with this process.

In the �rst step, the analysis architect creates the analysis feature model. First,

they add the features to the feature model that also exist in the language

feature model. They also adopt the layers and feature dependencies from the

language feature model.

Result: The result is an analysis feature model that mirrors the language

feature model.

3.5.2.2 Step Two: Identification of Analysis Features

Roles Involved: Analysis Architect, Analysis User

In the second step, the analysis architect identi�es features that exist ex-

clusively in the model-based analysis. Therefore, they work together with

the analysis user, or if no analysis user is available, the analysis architect

estimates their concerns. The analysis architect should elicitate the require-

ments after the feature model of the DSML is completed to avoid unnecessary

changes to the analysis feature model. If it is not avoidable for the analysis

architect because the DSML and model-based analysis development start

simultaneously, the potential e�ort to implement the changes are limited.

In this starting phase, no code is written; thus, the analysis components

do not exist. If this step is visited in a later development stage, the e�ort

to implement the changes is higher, as the analysis components are surely

a�ected by the changes.

Result: The result of this step is an analysis feature model that contains

analysis-speci�c features.

101

3. Decomposition and Composition of Model-based Analyses

3.5.2.3 Step Three: Reuse of Analysis Components

Roles Involved: Analysis Architect

In the third step, the analysis architect identi�es already existing analysis

components. Therefore, they can utilise our approach to identify already

existing analysis components by comparing the structure and behaviour of

analysis components (cf. Chapter 5). We do not distinguish between in-house

analysis components or publicly available analysis components.

The analysis architect selects an analysis feature and searches the available

analysis components for a component that matches the feature speci�cation.

If the feature was speci�ed with our DSL to specify the structure and be-

haviour of analysis features (Chapter 5), the analysis architect can use our

toolchain [KR22] to �nd matching analysis components automatically. The

analysis architect assigns the found analysis components to their correspond-

ing analysis feature in the analysis feature model.

Result: The result of this step is an extended feature model that contains

reusable analysis components.

3.5.2.4 Step Four: Creating the Feature Model

Roles Involved: Analysis Architect

In the fourth step, the analysis architect creates the feature model. Therefore,

they create the root node of the feature model and then label it. Usually,

the root node gets labelled after the name of the model-based analysis. In

the case of SimuLizar, we called the root node simply SimuLizar. Then, the

analysis architect adds the identi�ed features from Step Two: Analysis Feature
Identi�cation (Section 3.5.2.1) to the feature model. After they added these

features, they added the analysis-speci�c features identi�ed in Step Two:
Analysis Feature Identi�cation (Section 3.5.2.2).

Up to this point, the analysis architect added only features to the feature

model without considering the relationship between these features. To add the

relationship between two features A and B, we de�ne the following rules:

Application of Requires Relation

102

3.5. Application Process

• if a reused analysis component that implements A has a dependency

on a reused analysis feature that implements B

• if analysis feature A is an extension of analysis feature B

• if analysis feature A is dependent on the content of analysis feature B

Application of Excludes Relation

• if analysis feature A prohibits analysis feature B or vice versa

As we prohibit cycles of requires-relations, the analysis architect has to break

these cycles up (e. g., by using the dependency inversion).

Result: The result of this step is a feature model of the model-based analy-

sis.

3.5.2.5 Step Five: Introducing Layers

Roles Involved: Analysis Architect

The analysis architect introduces layers to the feature model in the �fth

step. Therefore, they assign each feature to a single layer by sticking to the

constraints of our reference architecture. In this step, they omit the π layer

(cf. Step Six: Paradigm Extraction). To distribute the features, the analysis

architect must follow these steps:

1. The analysis architect assigns analysis features that also have repre-

sentations in the language to the same layer.

2. To extract features that are not relevant to the current layer, they

create a new analysis feature containing irrelevant parts. They assign

to the current layer the original analysis feature. The architect handles

the newly generated, unassigned analysis feature when the following

layer is modularised. They declare a requires-relation from the new

analysis feature to the original one.

3. To conform to the layering, and the speci�ed dependency direction of

the reference architecture, they must reverse the feature dependencies

of the more basic layers to the analysis features of the current layer.

Result: This step results in a feature model where the features are separated

into layers while the π layer is still empty.

103

3. Decomposition and Composition of Model-based Analyses

3.5.2.6 Step Six: Extracting the Paradigm Layer

Roles Involved: Analysis Architect

In the sixth step, the analysis architect �lls the remaining empty π layer.

Therefore, they have to decide whether a analysis feature represents a funda-

mental feature of model-based analyses. They also can create new analysis

features and place them on theπ layer. For each feature on theπ layer, they

must add requires relations from features of the ∆ layer if they depend on

the new analysis features.

Result: This step results in a feature model where all layers are populated.

3.5.2.7 Step Seven: Grouping of Features

Roles Involved: Analysis Architect

In the seventh step, the analysis architect groups analysis features that share

concepts or properties. For example, analysis features can share types, struc-

tural abstractions or behaviour. Therefore, the analysis architect does model

a logical grouping of such features. A hard restriction is that the analysis

architect can only group features that are located on the same layer. If they

want to group analysis features of di�erent layers, they �rst have to move

the analysis features to the same layer.

The analysis architect groups features by introducing a new feature. This new

feature is then declared as a parent for each analysis feature in the group. The

analysis architect also adds alternative and OR conditions to the grouping. In

this step, they also add excludes relations to the features. For each excludes

relation, they must ensure that an alternative feature selection exists.

Result: The result of this step is a partially connected feature model that

contains alternative and OR sets. The feature model also contains excludes

relations.

3.5.2.8 Step Eight: Parent Feature Identification

Roles Involved: Analysis Architect

104

3.5. Application Process

In the eighth step, the analysis architect identi�es the analysis features on the

π layer that directly relates to the feature model’s root node. The indicators

for the analysis architect to identify such analysis features are:

• A composed analysis feature contains atomic analysis features that are

fundamental to the analysis. In the context of the analysis SimuLizar,

such a feature would be a simulation-type feature.

• A composed analysis feature contains atomic analysis features that are

shared by analyses. In the context of the analysis SimuLizar, such a

feature would be the de�nition of a time feature that is used throughout

the analysis.

• An analysis feature has no outgoing feature dependencies

The analysis architect then identi�es the parent features for the remaining

analysis features. An incoming requires-relation can identify the parent.

When one feature extends another, they de�ne a parent relationship from the

extending feature to the extended feature. The parent relationship always

replaces an existing dependent relationship between the two features. A

parent relation, such as the requires-relations, must not refer to a more

speci�c layer.

Result: The result of this step is that the analysis features of the π layer are

now connected.

3.5.2.9 Step Nine: Adding the Remaining Dependencies

Roles Involved: Analysis Architect, Analysis Component Developer, Lan-

guage Architect, Language Component Developer

In the ninth step, the analysis architect connects the remaining analysis

features in the feature model by determining the child features in the feature

model. In Step Seven: Feature Grouping (Section 3.5.2.7), the analysis architect

already connected some analysis features. For the remaining features, the

analysis architect determines the parent features. They mark each parent

feature as mandatory. The root analysis feature is the only feature in the

feature model that has no parent feature. Dependencies that cross theπ layer

must be OR sets; otherwise, the analysis features of the π layer could be

selected without a analysis feature of the next layer. As each analysis feature

of the π layer is abstract or an interface, the analysis would not be usable.

105

3. Decomposition and Composition of Model-based Analyses

The OR set ensures that each analysis feature of the π layer is selected with

at least one child of the next layer. Dependencies that cross other boundaries

must be optional; otherwise, the next layer is mandatory.

Result: The result of this step is a fully interconnected feature model.

3.5.2.10 Step Ten: Implementing the Features

Roles Involved: Analysis Architect, Analysis Component Developer

In this step, the analysis component developer implements the analysis com-

ponents according to the feature model that the analysis architect developed

in the previous steps. Not every analysis feature has a corresponding analysis

component; for example, the root node and the parent node created to group

features are merely containers to host the model-based analysis (root node)

or a logical group of analysis features.

The analysis component developer can add new dependencies while imple-

menting the components. When adding new dependencies, the analysis com-

ponent developer must adhere to the constraints of our reference architecture.

The analysis architect then must update the feature model accordingly.

If the analysis component developer notices that an analysis component

requires multiple language features for an analysis, they create an analysis

component for each language feature. The analysis component developer

then introduces an indirection. They create an additional analysis component

that references the other analysis components that depend on the language

feature.

Result: The result of this step is a analysis component model with corre-

sponding analysis code.

3.5.2.11 Step Eleven: Revision and Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

In this �nal step, the analysis architect has a modular model-based analysis

that corresponds to our reference architecture. Until this step, the analysis

architect and the analysis component developer aligned the structure of the

106

3.5. Application Process

model-based analysis to its corresponding DSML. To �nalise the modularisa-

tion of the model-based analysis, they can still make changes to the analysis

feature model. These changes are mostly done to re�ne the model and the

code. The analysis architect can use the insight gained by the analysis com-

ponent developer during the implementation of the analysis components for

further improvement.

Result: After �nishing the last iteration, the result is a newly developed

modular model-based analysis that conforms to our reference architecture

for model-based analyses.

3.5.3 Extending a Model-based Analysis

In this section, we present the application process to extend an already ex-

isting model-based analysis. Therefore, the model-based analysis that is

extended must conform to our reference architecture. The steps are intended

to be executed sequentially; however, if necessary, the analysis architect can

backtrack no previously executed steps.

Figure 3.23 depicts the steps of developing a model-based analysis from

scratch. The process contains �ve steps in total. In the remainder of this

section, we present the details of each process step. For each step, we present

the roles that are required for the step, a detailed description, and the results.

3.5.3.1 Step One: Identification of Analysis Features

Roles Involved: Analysis Architect, Analysis User

In the �rst step, the analysis architect investigates the goal of the planned ex-

tension and identi�es analysis features that are required by the extension but

are not yet part of the model-based analysis. They can use the concerns of the

analysis user to identify new analysis features for the model-based analysis.

Alternatively, if the DSML has new features, the analysis architect decides

whether to add the new language features to the model-based analysis.

Result: This step results in a set of new analysis features that are required

for a planned extension of the model-based analysis.

107

3. Decomposition and Composition of Model-based Analyses

Prerequisites 1: Identification of Analysis Features

2: Reusing Analysis Components3: Extending the Feature Model

4: Implementing Analysis Features 5: Revision and Refinement

.

.

.

.

.

Monolithic
Analysis Project

Modular
DSML Project

!
!

< />

< />

Figure 3.23.: Extending a Model-based Analysis – Process Overview

3.5.3.2 Step Two: Reusing Analysis Components

Roles Involved: Analysis Architect, Analysis Component Developer, Lan-

guage Architect, Language Component Developer

In the second step, the analysis architect identi�es already existing analysis

components to implement the new analysis features. Therefore, they can

utilise our approach to identify already existing analysis components by

comparing the structure and behaviour of analysis components (cf. Chapter 5

and [Koc+22; KR22]). We do not distinguish between in-house analysis

components or publicly available analysis components.

The analysis architect selects one of the new analysis feature and searches

the available analysis components for a component that matches the feature

108

3.5. Application Process

speci�cation. If the feature was speci�ed with our DSL to specify the struc-

ture and behaviour of analysis features (Chapter 5), the analysis architect

can use our toolchain [KR22] to automatically �nd matching analysis compo-

nents. The analysis architect assigns the found analysis components to their

corresponding analysis feature in the analysis feature model.

Result: The result of this step is an extended feature model that contains

reusable analysis components.

3.5.3.3 Step Three: Extending the Feature Model

Roles Involved: Analysis Architect

In the third step, the analysis architect extends the analysis feature model by

the newly identi�ed features. If the feature corresponds to a language feature,

they name the new analysis feature accordingly. Also, the analysis architect

places the new analysis feature in the same layer with the same dependencies

as their counterpart. New analysis features with no representation in the

DSML must be placed as described in Section 3.5.2.5 Step Five: Layering.

The dependencies are modelled following Section 3.5.2.8 Step Eight: Parent
Feature Identi�cation and Section 3.5.2.9 Step Nine: Adding the Remaining
Dependencies.

Result: The result of this step is an extended feature model with its necessary

dependencies.

3.5.3.4 Step Four: Implementing the Remaining Analysis Features

Roles Involved: Analysis Architect, Analysis Component Developer

In the fourth step, the analysis component developer implements the new

analysis components according to the feature model that the analysis ar-

chitect extended in the previous steps (cf. Step Ten: Feature Implementation
Section 3.5.2.10).

The analysis component developer can add new dependencies while imple-

menting the components. When adding new dependencies, the analysis com-

ponent developer must adhere to the constraints of our reference architecture.

The analysis architect then must update the feature model accordingly.

109

3. Decomposition and Composition of Model-based Analyses

Result: The result of this step is an analysis component model with corre-

sponding analysis code.

3.5.3.5 Step Five: Revision and Refinement

Roles Involved: Analysis Architect, Analysis Component Developer

In this step, the analysis architect can make changes to the analysis feature

model. These changes are mostly done to re�ne the model and to use the

insight gained by the analysis component developer during the implementa-

tion of the analysis components. They can return to the �rst step to iterate

over the steps. Especially when, during the development of the extension,

the requirements change due to new insights (e. g., better performance or

new language features). Furthermore, to re�ne the extension, the analysis

architect and the analysis component developer can exchange or modify

reused analysis components to adapt to the changed requirements.

Result: After �nishing the last iteration, the result is a modular model-based

analysis with an extension that conforms to our reference architecture for

model-based analyses.

3.6 Technical Contribution for the Analysis and the
Refactoring of Model-based Analyses

In this section, we present our tooling that aids the analysis architect and the

analysis component developer to analyse and refactor model-based analyses.

Our tooling is separated into an Application Programming Interface (API)

that provides interfaces for analysing and refactoring model-based analyses

and a User Interface (UI) reference implementation that allows the analysis

architect and the analysis component developer to access the analysis and

refactoring capabilities of our tooling. We implemented the UI as a Command

Line Interface (CLI). We named our tool Refactor Lizar and the reference

implementation Refactor Lizar CLI. First, we present the analysis part of

Refactor Lizar in Section 3.6.1. Second, we present the refactoring capabilities

of our tool in Section 3.6.2. The reference implementation of Refactor Lizar

can be found on GitHub [KWc].

110

3.6. Technical Contribution

3.6.1 Analysis Library – Refactor Lizar

We implemented the analysis part of Refactor Lizar as a Java library. The

library is available on GitHub [KWb] or Maven Central [KWa]. In this section

about Refactor Lizar, we will focus on the analysis capabilities that the analysis

architect can utilise to identify the parts of the model-based analysis that

are not conforming to our reference architecture. We di�erentiate between

issues that result from the feature and component structure of the model-

based analysis and its corresponding DSML, and issues that result from

constraints of our reference architecture. First, we present in Section 3.6.1.1

the identi�cation and refactoring of the accumulation of dependencies of one

class on multiple analysis features.

3.6.1.1 Accumulation of Dependencies Detection

The accumulation of dependencies occurs when multiple language features

are used in one analysis component or one analysis class. In our previous

work [Hei+21b], we provide insights into the Palladio Simulator, where

we derived problems that occurred during the development of the Palladio

Simulator. We identi�ed the accumulation of dependencies as one of the

problems that occurred during the development of the Palladio Simulator. In

order to �nd accumulated of dependencies, the analysis architect must provide

the path to the DSML and the path to the model-based analysis code. The

model-based analysis must be written in Java 17 or older in order for Refactor

Lizar to be able to analyse the model-based analysis. The analysis result is an

analysis report that contains a list of the a�ected language types and a�ected

analysis components. If the analysis architect needs a more detailed report,

Refactor Lizar can also provide the a�ected classes in its report. If these

analysis components are located on multiple layers, the analysis architect

must merge these analysis components and place them on the same layer as

the language feature.

In the following Chapter 4, we analyse reoccurring patterns that negatively

a�ect the evolvability and reusability of model-based analyses. More details

regarding the accumulation of dependencies can be found in Section 4.2.4.4 –

Rebellious Modularity.

111

3. Decomposition and Composition of Model-based Analyses

3.6.1.2 Detection of Scattered of Dependencies

The accumulation of dependencies occurs when a type of a language feature

is used in multiple analysis components. In our previous work [Hei+21b], we

provide insights into the Palladio Simulator, where we derived problems that

occurred during the development of the Palladio Simulator. We identi�ed

the scattering of dependencies as one of the problems that occurred during

the development of the Palladio Simulator. In order to �nd a scattering of

dependencies, the analysis architect must provide the path to the DSML, and

the path to the model-based analysis code. The model-based analysis must be

written in Java 17 or older in order for Refactor Lizar to be able to analyse the

model-based analysis. The analysis result is an analysis report that contains

a list of the a�ected language types and a�ected analysis components. If

the analysis architect needs a more detailed report, Refactor Lizar can also

provide the a�ected classes in its report. If these analysis components are

located on multiple layers, the analysis architect must merge these analysis

components and place them on the same layer as the language feature.

In the following Chapter 4, we analyse reoccurring patterns that negatively

a�ect the evolvability and reusability of model-based analyses. More details

regarding the scattering of dependencies can be found in Section 4.2.4.2 –

Degraded Modularity.

3.6.1.3 Layer Violation Detection

A layer violation occurs when dependencies of an analysis component point

from a generic to a more speci�c analysis component or if a dependency

skips a layer. Another type of layer violation is when an analysis feature is

located on a di�erent layer as a corresponding analysis component. In order

to �x this problem, the analysis architect must either invert the dependency

(if it points in the wrong direction) or introduce a new analysis component

in between the skip. If the location of an analysis feature and an analysis

component are not the same, the analysis architect �x this smell by moving

either the analysis feature of the analysis component to the right layer. The

layer identi�cation of analysis components requires further annotation by the

analysis developer, while the layer identi�cation of referenced DSML types is

made automatically. To help the analysis architect identify layer violation

112

3.6. Technical Contribution

occurrences, Refactor Lizar provides an interface to identify this bad smell

automatically.

In order to �nd occurrences of a layer violation, the analysis architect must

provide the path to the model-based analysis code. The model-based analysis

must be written in Java 17 or older in order for Refactor Lizar to be able to

analyse the model-based analysis. The analysis result is an analysis report

that contains a list of a�ected analysis components. If the analysis architect

needs a more detailed report, Refactor Lizar can also provide the a�ected

classes in its report.

In the following Chapter 4, we analyse reoccurring patterns that negatively

a�ect the evolvability and reusability of model-based analyses. More details

regarding layer violations can be found in Section 4.2.3.

3.6.1.4 Dependency Cycle Detection

A dependency cycle occurs when the dependencies of components or classes

form a loop. Such a dependency cycle hampers the extensibility or change-

ability of the a�ected elements. To �x a dependency cycle, the analysis

architect has to invert the dependency of one or more classes of the cycle

(cf. Section 3.3.3.1).

In order to �nd occurrences of dependency cycles, the analysis architect

must provide the path to the model-based analysis code. The model-based

analysis must be written in Java 17 or older in order for Refactor Lizar to be

able to analyse the model-based analysis. The analysis result is an analysis

report that contains a list of the a�ected analysis components. If the analysis

architect needs a more detailed report, Refactor Lizar can also provide the

a�ected classes in its report.

In the following Chapter 4, we analyse reoccurring patterns that negatively

a�ect the evolvability and reusability of model-based analyses. More de-

tails regarding dependency cycles can be found in Section 4.2.4.5, where we

investigate cycles that are formed between a model-based analysis and a

corresponding DSML.

113

3. Decomposition and Composition of Model-based Analyses

3.6.1.5 Complexity, Coupling, and Cohesion Analysis

For the evaluation of our reference architecture we implemented the metric

calculation as part of Refactor Lizar. Details regarding the metrics’ evaluation

and selection can be found in Chapter 7.

The metrics calculation is inspired by an implementation of Jung [Jun16].

Before we can analyse a model-based analysis regarding these metrics, the

analysis requires the path to the source code that will be analysed. It also

needs a set of classes part of the source code the user wants to analyse. The

set of classes allows for performing multiple analyses under the same path.

Suppose the user wants to analyse all classes or a set of classes with certain

parameters in the path’s folders and sub-folders. In that case, we allow regular

expressions to specify a desired subset. Furthermore, the analysis also allows

to specify data classes in the same way as those to analyse. Data classes dilute

the result, although they contain no behaviour; therefore, we allow omitting

data classes when calculating the metrics. We store this information in two

separate text �les.

To start the analysis, Refactor Lizar needs the path to �les with the observed

system (classes to analyse) and to the �le with the data classes. Refactor Lizar

calculates the observed system’s cohesion, coupling, and complexity using

the metrics introduced by Allen et al. [All02]. The results are the metrics’

values cohesion, coupling, and complexity.

3.6.2 Refactoring Library

We implemented the refactoring part of Refactor Lizar as a Java library. The

library is available on GitHub [KWb] or on Maven Central [KWa]. In this

section about Refactor Lizar, we will focus on the refactoring features that the

analysis architect needs to adapt a model-based analysis so that it conforms

to our reference architecture.

The following refactoring operations are supported by Refactor Lizar:

• Move type members of classes

• Introduce inheritance

• Adapt interface extension

114

3.6. Technical Contribution

• Change the visibility of members

• Change the visibility of methods

• Introduce new types

Refactor Lizar utilises these refactorings to implement refactorings presented

in Section 3.3.3. Refactor Lizar supports the following refactorings:

• Class Split (cf. Section 3.3.3.1)

• Class Merge (cf. Section 3.3.3.1)

• Breaking Dependency Cycles (i) (cf. Figure 3.8)

• Dependency Inversion (cf. Section 3.3.3.1)

• Horizontal Split (cf. Section 3.3.3.2)

• Vertical Split (cf. Section 3.3.3.2)

• Component Merge (cf. Section 3.3.3.2)

• Extension Extraction (cf. Figure 3.17)

115

4. Bad Smells in Model-based
Analyses

In software engineering, developing software that can evolve over time is

crucial. Evolvability is determined by the e�ort required by developers to im-

plement changes like extending a feature or adding new features to a software

system in a reasonable time frame. In the previous chapter, we introduced our

reference architecture for model-based analyses to improve the evolvability

and reusability of model-based analyses. However, such a reference architec-

ture is not the philosophers’ stone to solve all evolvability and reusability

issues of model-based software systems. The reference architecture gives the

analysis developer a structure which can guide them through the development

and extension process; however, the reference architecture does not prevent

issues unrelated to the architecture of a model-based analysis. When the anal-

ysis developers, for example, use primitive types instead of dedicated types

(cf. Missing Abstraction in Section 4.2.1.2), or when they implement analysis

behaviour multiple times (cf. Duplicated Abstraction in Section 4.2.1.1). Such

problems negatively a�ect the evolvability and reusability of model-based

analysis.

In this chapter, we focus on the improvement of the evolvability and reusabil-

ity of model-based analyses that arise due to the co-evolution of model-based

analyses and their corresponding DSMLs. Model-based analyses change over

time due to new or changing requirements, and developers must adapt them

to meet these requirements. The ability to adapt to such changing require-

ments is hampered by problematic structures in the source code and the

architecture. Such problematic structures are called bad smells. Bad smells

impede the evolvability and reusability of software systems. The term bad
smell was introduced by Martin Fowler and Kent Beck in the late 90s [Fow99].

According to Fowler et al. [Fow99], bad smells are structures that have the

potential for refactoring. Refactorings change the structure of the source code

(i . e., move attributes or methods), but they should not change the behaviour

117

4. Bad Smells in Model-based Analyses

of the software. Bad smells are not a theoretical construct; they are derived

from the experience of developers that have gathered experience by creating

and refactoring source code [Fow18].

Fowler and Beck initially de�ned 21 bad smells that can occur in object-

oriented software. Strittmatter identi�ed bad smells for DSMLs by using

object-oriented bad smells as baseline [Str20]. He identi�ed 13 bad smells for

DSMLs. Both Fowler and Strittmatter provide strategies on how to �x bad

smells.

So far, bad smells for DSMLs and source code have been considered separately,

although they are co-dependent. Model-based analyses are based on the

DSML they analyse; they need the DSML as analysis input, and changing

the DSML results in changes of their corresponding model-based analyses.

It is unclear whether such bad smells exist in the domain of model-based

analyses or which bad smells originate from the co-dependency of DSMLs

and their corresponding model-based analyses. Further, as there are no

dedicated bad smells for model-based analyses and their corresponding DSML,

we do not know how these dedicated bad smells in�uence the evolvability

and reusability of model-based analyses. If, for example, a DSML and its

corresponding model-based analysis form a cycle, the impact of a change to

either the DSML or the model-based analysis is unpredictable. Such structures

can result in huge costs and the potential failure of a project, as changes to

either the DSML or the model-based analysis can result in unforeseen costs

and e�ort.

In this chapter, we investigate the bad smells that are unique for DSMLs and

their corresponding model-based analyses. First, we present our hypothesis

and research questions in Section 4.1. We present the bad smells of model-

based analyses in Section 4.2. Our approaches to identify bad smells in

model-based analyses are presented in Section 4.3. In Chapter 8, we present

the evaluation of the bad smells; in Section 10.3, we present the related work

to our approach. We present the conclusion and future work in Section 11.2.

4.1 Hypothesis and Research Questions

In this section, we present the hypothesis and research questions for the

second contribution of this thesis. Detecting and �xing bad smells in object-

118

4.1. Hypothesis and Research Questions

oriented software [Fow18] or domain-speci�c modelling language [Str20]

helps to improve the internal quality of the source code or the DSML. Such

an internal quality improvement reduces the software’s complexity and the

DSML. Reducing the complexity allows the analysis developer to comprehend

the model-based analysis code faster, thus positively in�uencing the evolv-

ability and reusability. Recognising what �xing bad smells means for software

systems and DSMLs, respectively, we derive the following hypothesis for bad

smells in the domain of model-based analyses:

Hypothesis 2
The evolvability and reusability of a model-based analysis will improve

when �xing bad smells that originate from the co-dependency of model-

based analysis and their corresponding DSML.

In order to determine whether our hypothesis 2 is correct, we must answer

the following research questions.

Research Question 4.1
Which bad smells arise from the co-dependency of model-based analysis

and their corresponding DSML?

To the best of our knowledge, the co-dependency of model-based analyses

and DSMLs regarding potential bad smells is unexplored. Therefore, it is

unknown whether bad smells even exist for model-based analyses. Before

further investigation, we must identify bad smells that exist only in the do-

main of model-based analyses. Having dedicated bad smells enables analysis

developers to improve the internal quality of their model-based analysis by

identifying common problems obtained from our empirical analysis. These

bad smells can also a�ect the corresponding DSML, which will positively

a�ect features of the DSML. If, for example, due to refactorings, analysis

features are identi�ed that are not used in the model-based analysis although

dependencies on the corresponding language feature exist, both features have

the potential to be deleted by the language architect and analysis architect

respectively.

119

4. Bad Smells in Model-based Analyses

Research Question 4.2
How to refactor bad smells of model-based analyses and their corre-

sponding DSML without a�ecting the behaviour of the analysis?

Refactoring operations are intended to change the structure of the software,

but the behaviour has to remain the same. For example, changing the name

of a �eld does not a�ect the behaviour of the code. Identifying bad smells

in the domain of model-based analyses is only the �rst step to improving

their evolvability and maintainability. If an analysis developer cannot refactor

the bad smells without a�ecting the behaviour of the model-based analysis,

it would require more e�ort to �x the bad smells. Therefore, we develop

refactoring operations that analysis developers can use to �x bad smells in

their model-based analyses without altering their behaviour.

Research Question 4.3
How do bad smells of model-based analyses and their corresponding

DSML in�uence the evolvability and reusability of model-based analy-

ses?

After bad smells in model-based analyses are identi�ed and refactored, the

e�ect on evolvability and reusability is unclear. Fixing bad smells is intended

to improve the internal quality of a software system. Having a system that

is easier to evolve and reuse increases the chance that such a system will

longer be maintained and, thus, can longer exist in the market. Therefore,

we analyse model-based analyses to �nd and �x the bad smells we identi�ed

when answering research question 4.1. We use the results to determine the

e�ect of the refactorings on the evolvability and reusability of model-based

analyses.

4.2 Bad Smells in Model-based Analyses

In this section, we explain the bad smells we derived from bad smells in

object-oriented software and from bad smells in DSMLs. We use the classi�-

cation of structural design smells by Ganesh et al. [GSS13] to distinguish four

types of bad smells: Abstraction, Encapsulation, Hierarchy, and Modularity.

120

4.2. Bad Smells in Model-based Analyses

Classes of Bad-Smells

Encapsulation Hierarchy

ModularityAbstraction
Duplicated Abstraction

Missing Abstraction

Unused Abstraction

Deficient Encapsulation Folded Hierarchy

Missing Hierarchy

Unexploited Hierarchy

Broken Modularity

Degraded Modularity

Missing Modularity

Rebellious Modularity

Weakened Modularity

Figure 4.1.:Classi�cation of Bad-Smells in Model-based Analyses

Figure 4.1 shows the classes and the bad smells we identi�ed for model-based

analyses. The naming scheme of our bad smells is oriented on the four types

by Ganesh et al. [GSS13]. They introduce four categories of bad smells:

Abstraction: “An abstraction denotes the essential characteristics of an

object that distinguish it from all other kinds of objects and thus provide

crisply de�ned conceptual boundaries relative to the viewer’s perspective.”

Encapsulation: “Encapsulation is the process of compartmentalising the

elements of an abstraction that constitute its structure and behaviour; encap-

sulation serves to separate the contractual interface of an abstraction and its

implementation.”

Modularity: “Modularity is the property of a system that has been decom-

posed into a set of cohesive and loosely coupled modules.”

Hierarchy: “Hierarchy is a ranking or ordering of abstractions.”

In the following subsections, we present the 12 bad smells we identi�ed and

speci�ed by analysing existing model-based analyses. We named the bad

smells following the naming guidelines by Ganesh et al. [GSS13]. For each

bad smell, we developed a process for the analysis developer how to identify

and refactor them. We explain the negative e�ects on the evolvability and

121

4. Bad Smells in Model-based Analyses

reusability of each bad smell and what are the circumstances in which the

bad smells are created.

We start with the class of abstraction bad smells in Section 4.2.1. Then, we

present the bad smells associated with the encapsulation class in Section 4.2.2

In Section 4.2.3, we present the bad smells associated with the hierarchy

class. Finally, in Section 4.2.4, we present the bad smells associated with the

modularity class.

4.2.1 Abstraction

An abstraction is a representation of the basic characteristic of an object

that sets it apart from all other types of objects and, as a result, gives clearly

de�ned conceptual boundaries relative to the observer’s viewpoint.

4.2.1.1 Duplicated Abstraction

We derive the Duplicate Abstraction smell from the object-oriented Duplicated
Code bad smell (cf. Section 2.4.1). The bad smell also looks for duplicated

structures; however, unlike the duplicate source code smell, the duplicated

abstraction focuses on the dependency structure of the model-based analysis

and its corresponding DSML. Figure 4.2 depicts the duplicated abstraction

Analysis Class Language Class depends on

A

C

BZ Y

Figure 4.2.:Duplicated Abstraction

smell. The dependency structure of analysis class Z and Y are identical, which

122

4.2. Bad Smells in Model-based Analyses

means that the analysis and language classes have the same dependency

structure. The analysis classes Z and Y depend on the language classes A, B,

and C. Both classes are part of the same model-based analysis.

E�ect: This bad smell indicates that the analysis class that depends on a

language type is implemented multiple times. The analysis class is part of an

analysis component; the analysis component implements an analysis feature

(cf. feature in Chapter 2). In the event of a change to either the language

classes or to the implementation of the analysis class, the analysis developer

must modify multiple occurrences of such an analysis class, as they presum-

ably implement / analyse the same feature. If the analysis developer does

not know about the other occurrences of the analysis class, the model-based

analysis will have di�erent behaviour, depending on the invoked analysis

class. For example, the tool user models a software system with the PCM

(cf. Chapter 2) and the resource demand of a component is calculated in two

di�erent analysis classes. If the invocation of the analysis classes depends on

factors that are not clear to the tool user, they cannot rely on the analysis re-

sult. Another drawback is that the e�ort required to make changes is n-times

the number of duplicated analysis classes. If not all duplicated classes are

changed during a change, the Duplicated Abstraction smell leads to divergent

behaviour and, thus, to bugs that the analysis developer must �x. Even if all

occurrences of the identical analysis classes are changed, the e�ort required

to implement a modi�cation is more than if the analysis class exists only

once.

Causes: When multiple analysis classes implement the same concern, the

Duplicated Abstraction bad smell arises. When multiple analysis algorithms

are merged into one class, a single algorithm might be unusable independently

of the remainder of the analysis class. As a result, separating the algorithms

of the analysis class requires more e�ort than implementing the required

algorithm in a new class. The more analysis classes implement the same algo-

rithms, the harder it becomes for the analysis developer to comprehend the

model-based analysis. Thus, the analysis developers have di�culty knowing

each implemented feature of the model-based analysis. This knowledge gap

leads to the multiple implementation of an analysis feature.

Identi�cation: As shown in Figure 4.2, the Duplicated Abstraction smell

occurs if multiple classes in a model-based analysis have dependencies on the

same set of language classes. For each analysis class, the analysis developer

collects its dependencies and removes all dependencies that point to language

123

4. Bad Smells in Model-based Analyses

classes. Given the set of dependencies, the analysis developer searches for

classes that depend on the same language classes. In our analysis, we set

the threshold of common dependencies to two so that if classes have only

two or fewer dependencies in common, we do not count them as Duplicated
Abstraction smell. If multiple analysis classes depend on the same language

class is no absolute indicator for the Duplicated Abstraction smell, as the

analysis classes could also analyse di�erent quality properties. Therefore,

the analysis developer must decide whether the identi�ed similarity in the

dependency structure holds true for the Duplicated Abstraction smell. If

two analysis classes have identical dependencies, we determine it as the

occurrence of the Duplicated Abstraction smell.

Refactoring: The analysis developer can refactor the bad smell Duplicated
Abstraction by moving the dependencies into one class (cf. Refactorings

in Section 3.3.3). The simplest way to move all dependencies is to merge

all a�ected classes into one class. Alternatively, they can split the analysis

classes so that the dependencies on the language types are clearly separated.

After splitting the class, each dependency is located in a dedicated class. The

analysis developer has to consider whether to merge the classes with the

dependencies or split the classes. The analysis developer has to decide how

to refactor this bad smell.

Limitations: Suppose the analysis developer merges the analysis classes. In

that case, the result can produce the bad smell Rebellious Modularity (cf. Sec-

tion 4.2.4.4) or if they split classes so that each has a dependency on one

language type they produce the bad smell Degraded Modularity (cf. Sec-

tion 4.2.4.2). An automated refactoring or a clear identi�cation of the bad

smell Duplicated Abstraction is not possible. The analysis developer has to

decide which occurrence to refactor, and they have to remember that the

refactoring can result in other bad smells. However, �nding occurrences of

the Duplicated Abstraction smell can also help the analysis developer �nd

duplicated code and behaviour within one model-based analysis. Even if they

do not refactor the Duplicated Abstraction smell, the analysis developer can

�nd classes that represent similar behaviour; thus, they are less likely to miss

classes during a change of the behaviour if it occurs in multiple classes.

124

4.2. Bad Smells in Model-based Analyses

4.2.1.2 Missing Abstraction

The DSML introduces types to the model that the model-based analysis then

can use to perform an analysis; however, when the language developers

and analysis developers do not work together to coordinate the develop-

ment of the DSML and the model-based analysis, the types of the DSML

become incomplete. We determine a type as incomplete when the analysis

developer requires the type to have more attributes than it actually has. A

hypothetical example of an incomplete type is a delay type in a simulation

that does only contain the delay time in milliseconds. When the model-based

analysis needs the delay in another unit than milliseconds, the type could

contain a transformation from milliseconds into the desired unit. When the

delay type does not contain such a transformation, every time the delay type

occurs, the analysis developer needs to transform the type manually if the

unit of the delay type changes, every occurrence of the transformation must

be adapted by the analysis developer. Suppose analysis developers cannot

introduce new types to the DSML but must represent certain concepts. In

that case, they can either introduce new types in the context of the model-

based analysis or use primitive types to represent concepts of the analysis.

The Missing Abstraction smell deals with these primitive types. For exam-

ple, in the Palladio Simulator (cf. Chapter 2), the delay in the simulation is

represented by a primitive type (i. e., integer) instead of a type in the DSML.

1 scheduleDelay(Event event, int delay, int iteration, int participants) {

2 while(isValid(delay))

3 addParticipants(participants);

4 waitDelay(delay);

5 iteration++;

6 event.fire();

7 }

Listing 4.1:Using a Primitive Type (delay)

Listing 4.1 shows a simple example referring to the Palladio Simulator exam-

ple. The second parameter of the method scheduleDelay has the primitive

type integer. The delay is used in the isValid and the waitDelay methods.

E�ect: If a concept is represented by a primitive type (e. g., integer, double,

or string), the comprehensibility of the source code gets worse. For example,

when an analysis developer must invoke a method with multiple parameters

of the same type, they have to consult the documentation or, when possible,

the method itself to determine which parameter represents what. Access to

125

4. Bad Smells in Model-based Analyses

the invoked method is only possible when the source code is available. Mod-

ern IDEs assist the analysis developer in identifying the correct parameter;

however, an IDE also needs access to the source code to aid the analysis devel-

oper. In the Palladio Simulator example, the analysis developer can introduce

bugs by accidentally setting the parameters in the wrong order if a method

requires the delay and some other integer parameters. Modern IDEs provide

some assistance to avoid such errors, but current tools cannot distinguish the

parameters by their semantics. As a result of the Missing Abstraction smell,

analysis developers require more e�ort to understand the code base of a

model-based analysis. Changing concepts represented by primitive types are

elaborate when the concepts are used throughout the model-based analysis.

The analysis developer has to trace each occurrence of a variable with the

primitive type. Even with the aid of modern IDEs, the analysis developer

must change each occurrence manually.

Causes: Introducing new types, especially at the beginning of the devel-

opment, is reasonable to avoid introducing dedicated types. If it is unclear

whether a type is used in a broader scope or has just a single use, the e�ort

to introduce new types is not justi�able. Therefore, it is not uncommon to

use primitive types in the beginning. Changing a primitive type, for example,

from an integer to a �oating point, in the context of one class or even one

method requires low e�ort; adapting a dedicated type, on the other hand, is

more complex. The analysis developer must coordinate with the language

developer the extension of the DSML. However, the technical debt increases

when such a concept is represented by a primitive type and the concept is

used on multiple occasions in the model-based analysis. Using a primitive

type is quick to implement, with the cost that method signatures can become

too complex.

Identi�cation: To identify the Missing Abstraction smell, the occurrence of a

primitive type is the �rst indicator. Such a primitive type occurs in a method

signature and the method itself. The identi�cation is based on the primitive

types the language supports; therefore, the primitive types of the language

must be identi�ed. Marking every occurrence of a primitive type would create

too many false positives, as an auxiliary variable would also be part of the

result. Therefore, we need a more elaborate process to identify the Missing
Abstraction smell. An indicator for the Missing Abstraction smell is when a

variable can be traced through di�erent methods / analysis classes, and it is

advisable to use a dedicated type. Alternatively, variables that have the same

126

4.2. Bad Smells in Model-based Analyses

name but occur in di�erent classes and methods are also an indicator of this

bad smell.

Refactoring: Fixing this bad smell requires introducing a dedicated type

that represents the concept that is represented by a primitive type. In the

context of the Palladio Simulator, the analysis developer creates a class that

represents the concept of a delay. The class must contain a constructor that

requires the primitive type as an input. If the concept is also part of the

DSML, the language architect also introduces the new type to the DSML,

either as part of a feature or, if the concept is more complex, as a new feature.

If necessary, the analysis developer adds behaviour to the new class. For

example, determining the delay regarding the resource (i. e., CPU or HDD)

which causes the delay. After the new type is created, all occurrences of the

primitive type must be replaced by the new type.

Limitations: Every occurrence of a primitive type can indicate a Missing
Abstraction smell. To identify the Missing Abstraction smell, manual inter-

action by the analysis developer is required. The analysis developer must

identify whether a primitive type that is passed through classes and methods

represents a concept. Also, just because variables share the same name does

not mean they represent the same concept. Therefore, we need the analysis

developer to decide whether the variables that share the same name represent

the same concept.

4.2.1.3 Unused Abstraction

In the development of DSMLs and corresponding model-based analyses,

especially in historically-grown systems, some language types are not or no

longer used. The Unused Abstraction smell corresponds to the dead code bad

smell. The dead code bad smell from object-oriented design is a widespread

problem in object-oriented software [Cai+21]. We assume each available

type in a DSML impacts the analysis result when modelled. This assumption

means the tool user has the guarantee to model all types with the assumption

that the modelled elements impact the analysis outcome. If the assumption

does not hold, in the best case, the modelled types do not a�ect the result

or the interpretation of the results. However, in the worst case, the tool

user interprets the results involving unused types. As a result, they can

conclude that the modelled types a�ect the result, which can lead to wrong

conclusions.

127

4. Bad Smells in Model-based Analyses

E�ect: The negative e�ect on the assumptions and the conclusions is not the

only e�ect the Unused Abstraction smell can have. A single unused language

type can drastically impact the interpretation of the results and the complexity

of the created models. The tool user has no idea that a certain type has no

e�ect on the analysis, so the model they create can contain unnecessary model

elements. Also, the evolvability or reusability of a model-based analysis is

a�ected, as the impression can arise that the type must be used in the analysis

or that the type is somewhere used. Furthermore, when the number of unused

types grows, the features of a DSML contain more types than necessary, which

makes the features convoluted. As a result, the analysis developer can assume

usage of a type in the model-based analysis, which can increase the e�ort

required to �x bugs or extend the model-based analysis.

Causes: During the lifetime of a DSML, due to changing requirements, fea-

tures are added or removed. Ideally, the DSML and its corresponding model-

based analysis evolve together. However, when features are no longer needed,

they are no longer maintained and are eventually removed from the latest

version of the model-based analysis. Due to the size di�erence of DSMLs

and model-based analyses, DSMLs are usually smaller; changing a DSML

compared to a corresponding model-based analysis requires less e�ort. The

complexity of a DSML does increase when a few types are added; the PCM,

for example, has 209 types [HSR19]. Compared to the 200k lines of code of

its corresponding model-based analysis, changing the DSML requires compa-

rably less e�ort. On the other hand, the corresponding model-based analysis

feature requires more maintenance e�ort. Nevertheless, removing unused

types in a DSML will improve its complexity. In the context of the Palladio,

for example, the PCM and its analyses have many features (cf. Chapter 6

and [HSR19]). These features depend on a certain Java version and a certain

version of the Eclipse IDE. At some point, some features were no longer

needed or required too much e�ort to keep them up-to-date. As a result,

these features were no longer added to the newest version of the Palladio

Simulator. If the features added new types to the PCM, they remained in the

DSML, eventually resulting in unused types.

Identi�cation: In order to identify occurrences of the Unused Abstraction
smell, the analysis developer must analyse the dependencies of the model-

based analysis on the DSML. Each language type without an incoming depen-

dency from the model-based analysis can be considered unused. If multiple

model-based analyses are associated with one DSML, we recommend using

our reference architecture for model-based analyses (cf. Chapter 3). According

128

4.2. Bad Smells in Model-based Analyses

to our reference architecture, the model-based analysis is modularised accord-

ing to the language features of the DSML. Due to our feature-based approach,

each model-based analysis corresponds to one feature con�guration. A fea-

ture con�guration is a valid subset of all available features (cf. Section 3.3.1).

If we want to �nd occurrences of the Unused Abstraction smell considering all

model-based analyses, we analyse whether all types of a feature con�guration

are used in the model-based analysis. This is necessary because if we use

all features instead of a feature con�guration, all features not part of the

con�guration automatically correspond to the Unused Abstraction smell, as

they are not used in the con�guration.

Refactoring: If a language type has no incoming dependencies, the language

architect can remove the language type from the DSML. If all types of a

language feature are not used by the model-based analysis, the language

architect can also consider removing the whole feature. However, if the DSML

is developed according to the reference architecture for DSMLs by Heinrich

et al. [HSR19], the language feature can remain in the feature structure of the

DSML. The modular structure and the extension mechanisms of the reference

architecture for DSMLs allow removing features for a certain con�guration.

This is relevant when multiple model-based analyses use the DSML, but not

each model-based analysis requires the feature. Removing types from the

DSML a�ects the model instances; the tool user must change their models if

the unused types are used in an instance.

Limitations: The refactoring of the Unused Abstraction smell, i. e., removing

the unused language type, can have negative e�ects if the DSML has a mono-

lithic structure. If the type is part of a cycle or other types have dependencies

on the unused type, further changes can be required. Also, deleting a lan-

guage type could render the models and tools like editors of the DSML useless.

Therefore, we recommend applying the reference architecture for DSMLs

before making any deletions. When the reference architecture for DSMLs and

the reference architecture for model-based analyses are applied, the DSML

and the model-based analysis are cycle free, and as a result, implementing

changes is more predictable.

4.2.2 Encapsulation

The process of encapsulation involves modularising the components of an

abstraction that are responsible for the behaviour and structure. The pri-

129

4. Bad Smells in Model-based Analyses

mary role of the encapsulation is to maintain the separation between an

abstraction’s interface and its implementation.

4.2.2.1 Deficient Encapsulation

Historically grown DSMLs and model-based analyses will change during their

lifespan; otherwise, their quality declines [Leh80]. Adding new features is one

cause for such changes. Existing features or types could sometimes be merged

as they represent the same concept. For example, the network communication

part of a software and hardware simulation was initially implemented as a

static delay. In order to add more functionality, the ISO/OSI stack gets added

to the DSML, and the model-based analysis. The static delay is no longer used

Analysis Class Language Class depends on

A

B

X

Y

Z

AB

X

Y

Z
Bad Smell Solution

Figure 4.3.:De�cient Encapsulation

in the analysis; even if a static delay is modelled, the analysis maps it onto

the ISO / OSI stack analysis. As a result, both features (i. e., static delay for

network communication and the ISO / OSI stack) are always used together.

When language types are always used together, we determine it as De�cient
Encapsulation smell. Figure 4.3 depicts the bad smell and its solution. For the

bad smell example on the left side, the analysis classes X, Y, and Z depend on

the same language classes A and B. These same language classes The solution

in Figure 4.3 depicts the same analysis classes X, Y, and Z, however, now they

depend on a single, new language class AB. In the refactoring part of this

section, we describe how to achieve the solution to the De�cient Encapsulation
smell.

E�ect: The De�cient Encapsulation smell indicates an unnecessarily high

number of language types in the DSML size is bigger than it needs to be. The

130

4.2. Bad Smells in Model-based Analyses

size of the DSML and the model-based analysis increases, and the number

of types that should be used together is also increased. The size of the

DSML is bigger because of unnecessary language types, and the size of the

model-based analysis is bigger because of the additional dependencies on the

language types. Thus, the complexity of both the DSML and the model-based

analysis also bigger, as the analysis developer must know the types, their

interaction with each other, and their dependencies. If the analysis developer

lacks this knowledge, the potential for errors and bugs increases, as they

might use types other than the language developer intended. In the example

of Figure 4.3, the analysis classes A and B are interchangeable. Depending on

which language type is present in the model, the analysis developer has to

cover all cases, resulting in duplicated analysis code. Due to the increasing

complexity, the e�ort to implement or change new features increases.

Causes: During the lifetime of a model-based analysis, due to changing

requirements, new language types are added to the DSML. These language

types can require that they are only used together with other, maybe already

existing, language types. Another cause is that the language architect an-

ticipates that the language types are used individually, but the model-based

analysis was no use-case for the individual language types. Furthermore, to

avoid the Missing Abstraction smell (cf. Section 4.2.1.2), the analysis developer

is encouraged to introduce more language types to the model-based analysis

to avoid using primitive types. The result is a set of language types that are

always used together. Another possible cause is that the use of language

types in the model-based analysis is unclear. This can happen when the

DSML is developed independently of the model-based analysis, for example,

by another team or company.

Identi�cation: A �rst indicator for the De�cient Encapsulation smell is that

analysis classes that depend on one type A also always depend on type B.

Therefore, to identify such an occurrence, we create pairs of each type and

compare these pairs to the total number of occurrences of one type. For

example, when type A occurs �ve times and the pair of type A and B also

occurs �ve times, we have a positive match. To further investigate the usage

of both types, we analyse each class that contains the pair of type A and B.

We check each method signature for the usage of both types. If the result

is that both types always occur in pairs of the signature, we determine it as

De�cient Encapsulation.

131

4. Bad Smells in Model-based Analyses

Refactoring: In order to �x this bad smell, the language developer introduces

a new language type; in the case of our example depicted in Figure 4.3,

they create the language class AB. After creating the language class AB,

the language developer can choose whether they move all characteristics

(i. e., attributes, relations) of the a�ected types A and B to the new language

type AB. Alternatively, they move only the attributes and relations to the

new language class that creates dependencies. Changing the DSML could

invalidate corresponding model-based analysis or editors that are based on

the DSML. Therefore, instead of altering the DSML, the analysis developer

can introduce a wrapper in the model-based analysis that encapsulates both

types that form the bad smell. The result is that the analysis classes X, Y, and

Z only depend on one language class AB.

Limitations: If adapting dependent model-based analyses and editors re-

quires too much e�ort, �xing the De�cient Encapsulation smell is a trade-o�

decision. The language architect and the analysis architect must decide

whether or not �xing it is worth increasing the technical debt. The more the

doubled language types are used, the more complex it becomes to distinguish

the language types. The example in Figure 4.7 shows only two redundant

language types; however, if the number of these redundant types grows, the

more complex the DSML and the model-based analysis becomes. Further-

more, if changes to the language would break existing model-based analyses

or another tooling like editors, it also a�ects the decision-making regarding

changing the DSML.

4.2.3 Hierarchy

A ranking or ordering of abstractions is what we mean when we talk about

hierarchies. The bad smells Folded Hierarchy and Unexploited Hierarchy can

be detected when the model-based analysis is developed according to our

reference architecture for model-based analyses. In Chapter 3, we introduce

our reference architecture for model-based analyses, and in Section 3.3.1.4,

and Section 3.3.2 we explain the layering of our reference architecture for

model-based analyses.

132

4.2. Bad Smells in Model-based Analyses

4.2.3.1 Folded Hierarchy

According to Heinrich et al. [HSR19] and our reference architecture for model-

based analyses, language features, analysis features, language components,

and analysis components are separated into layers, and each feature and each

component is located on a single layer. More details regarding layering of

model-based analyses are presented in Section 3.3.2. An analysis component

can have dependencies on a language component of the same layer or of

a more generic layer. Both are possible; we distinguish strict layering (i. e.,

A

B

Y A

BZ

Analysis Class Language Class depends on Layer Separator

regular layering strict layering

Figure 4.4.: Folded Hierarchy

dependencies are allowed only on language components of the same layer)

and regular layering (i. e., dependencies on language component of the same

or a more generic layer). Figure 4.4 depicts violations of the strict (orange,

Z to A) and the regular (red, Y to B) layering. The analysis class Y and the

language class A are located on a more generic layer. The analysis class Z and

the language class B are on a more speci�c layer. The dependency from Z to

A is a violation when strict layering is applied. If we apply regular layering,

this dependency is allowed. The dependency from Y to B is not allowed in

both.

E�ect: We di�erentiate the e�ects of strict and regular layering. Strict

layering has a clear dependency structure that allows the analysis developer

to place and locate the usage of language classes in the model-based analysis.

When ignoring the rule of strict layering, the model-based analysis is harder

to comprehend, as its structure diverges from the structure of the DSML.

Violating the rule that the dependency of a generic on a speci�c layer is

forbidden, the more generic layer is no longer independent of, the more

133

4. Bad Smells in Model-based Analyses

speci�c layer. Ergo, the layers cannot be reused independently of each other.

The Folded Hierarchy smell enables dependency cycles between layers when

the Weakened Modularity smell (cf. Section 4.2.4.5) is also present. As a result,

it impedes the maintainability of the model-based analysis (cf. Section 3.3).

Causes: If the DSML and the model-based analysis are developed indepen-

dently, the language architect cannot anticipate how language classes are

used. As a result, they can introduce specialised types that might be needed

by an analysis class on a more generic layer. If the DSML does not add such a

generic type, the analysis developer cannot comply with the regular layering.

Then, the specialised analysis class must depend on the language type on

the more specialised layer. Violations of either strict or regular layering can

originate in the lack of understanding on the part of the analysis developer

regarding the DSML. In the modular version of the PCM [SHR18], some

language types on di�erent layers have the same name due to inconsistent

naming. This resulted in occurrences of the Folded Hierarchy smell, and the

analysis developer has to guess which type to use.

Identi�cation: In order to identify violations of the Folded Hierarchy smell,

each incoming dependency of a language class is analysed. Only incoming

dependencies originating from analysis classes are relevant; thus, all other

incoming dependencies are discarded. If the dependency occurs between

classes on the same layer, no violation is detected, and the dependency is

discarded. However, suppose the dependency occurs from an analysis class

located on a layer that is more speci�c on a language class located on a

more generic layer. In that case, the strict layering is violated (cf. Figure 4.4,

orange dependency). These occurrences are categorised and collected as

dependencies that violate strict layering. If the violations of the strict layering

are irrelevant, these dependencies also get discarded. The category of layering

violations that occur from an analysis class located on a more generic layer,

on a language class that is more speci�c, is always accounted to the Folded
Hierarchy smell (cf. Figure 4.4, red dependency).

Refactoring: In order to refactor the Folded Hierarchy smell, the analysis

developer collects the dependencies of the analysis classes on the language

classes that break the regular and the strict layering rule. For each violation of

the layering rules, the analysis developer must adapt the dependencies so that

they no longer violate the layering rules. If, for example, the red dependency

in Figure 4.4 is the only dependency of Y, the analysis developer can move the

analysis class Y to the same layer as the language class B. If an analysis class

134

4.2. Bad Smells in Model-based Analyses

A

BZ

A

BZ C

Analysis Class Language Class depends on Layer Separatorinherits

Figure 4.5.: Folded Hierarchy – Refactoring by Inheritance

has dependencies on multiple layers, the a�ected �elds and methods with

dependencies on the same layer are extracted into a new analysis class. The

dependencies of the analysis class Z in Figure 4.4 prevent that the analysis

developer can move Z on the same layer as language class A, as they would

create another layer violation. Therefore, the analysis developer creates a new

analysis class on the same layer as the language class A. Then, they identify

the attributes and methods in the analysis class Z that depend on the language

class A. After identifying the attributes and methods, they move them into

the newly created analysis class. However, if the analysis class cannot be

split, and it is a strict layer violation, the language architect has the option

to introduce a new language type on the required layer. In our example, the

language architect introduces a language class C on the same layer as B. Then,

C inherits from language class A and the orange dependency is replaced

by a dependency on C. Figure 4.5 depicts the refactoring by inheritance;

introducing a new language class C to �x the dependency error.

Limitations: Strict layering is not always possible, for example, when an

analysis algorithm requires a language type of a more generic layer. In the

refactoring section, we proposed that the language architect introduces a

new type on the required layer. In our example, the language architect had

to introduce a new language class C on the same layer as B. Then, they made

language class C inhering from language class A and replaced the orange

dependency (Z on A) with a dependency on C. However, if the DSML is not

changeable, for example, when it implements a standard (cf. the BPMN2

metamodel [HSR19]), introducing new types is impossible.

135

4. Bad Smells in Model-based Analyses

4.2.3.2 Missing Hierarchy

This bad smell originates from the object-oriented bad smell Switch Statements.
Switch statements indicate a lack of polymorphism in the object-oriented

design. However, the excessive use of language types in switch statements

indicates that polymorphism is missing in the DSML design. The switch

statements in the model-based analysis indicate missing subtypes in the

DSML.

E�ect: Maintaining switch statements requires more e�ort than the main-

tenance of a type hierarchy. Each new case must be changed in the switch

statements, resulting in more changes as switch statements exist. Thus, the

model-based analysis is harder to evolve and reuse. Switch statements also

mask possible polymorphism, which can also a�ect the time to develop new

features or maintain existing features (cf. Repeated Switches in [Fow18]).

Furthermore, di�erentiating language types based on their attributes is hard

to follow, as the analysis developer has to understand the e�ect the state of

the attribute has on the analysis. Therefore, such constructs are prone to

errors, and changes to the semantics of the attributes can a�ect each switch

statement that handles such an attribute.

Causes: If the DSML does not provide subtypes, switch statements are a fast

solution to di�erentiate states of a language type. Needing a fast solution

also can result in implementing switch statements instead of changing the

DSML. As changing the DSML could a�ect other dependent model-based

analyses and editors. Such changes would initially require more e�ort than

using a switch statement. Furthermore, changing the DSML would create

inconsistencies; for example, when it implements a standard (cf. the BPMN2

metamodel [HSR19]), introducing new types to the DSML, would make it

inconsistent to the standard. Diverging from a DSML standard would render

the tooling incompatible with models that are developed with another lan-

guage that follows the standard. So, if an analysis developer wants to use the

DSML that complies with the standard, they must use helper constructs like

the switch statement to cope with this disadvantage of the DSML.

Identi�cation: In order to identify the Missing Hierarchy smell, each anal-

ysis class in the model-based analysis is analysed. If the analysis class that

contains a switch statement contains a dependency on a language type, the

analysis class is marked for further analysis. If the switch statement has a

language type as a condition, we determine it as an occurrence of the Missing

136

4.2. Bad Smells in Model-based Analyses

Hierarchy smell. According to Fowler et al. [Fow18], in their revision of the

object-oriented bad smells, only some occurrences of a switch statement

are problematic. However, if in the model-based analysis the analysis devel-

oper has two distinct cases of a language type, the switch statement makes

the analysis code convoluted; therefore, we advocate marking every switch

statement that meets our conditions for the Missing Hierarchy smell.

Refactoring: We de�ne two approaches to refactor the Missing Hierarchy
smell. The �rst approach introduces subtypes and uses dynamic dispatch to

replace the switch statements. The method call replaces the switch statement

itself, and each case is implemented as a method that replaces the case. The

second approach is implementing the visitor pattern to replace the switch

statement. If the states of the language types are unrelated and new operations

are needed frequently, it is highly inconvenient for developers to implement

a new subclass for each new operation.

Limitations: As mentioned in the Causes section of this smell, it is not

always possible to introduce new types to the DSML. Either because the

DSML is not open source and, therefore, cannot be changed or the DSML is

implemented according to a standard and changing it would require changing

either the standard or models that follow the standard cannot be analysed.

4.2.3.3 Unexploited Hierarchy

We assume that the model-based analysis is developed according to our refer-

ence architecture for model-based analyses model-based analysis (cf. Chap-

ter 3). The model-based analysis has distinct layers, and each analysis compo-

nent of the model-based analysis is located in one of these layers. According

to our reference architecture for model-based analyses, dependencies between

analysis components are allowed when the analysis components are located

on the same layer. A dependency from an analysis component to an analysis

component on a more generic layer is also allowed. A dependency from an

analysis component to an analysis component on a more speci�c layer is

forbidden. If an analysis component has a dependency on a more generic

layer that is not adjacent, it is only a problem when the layering is strict. The

left side in Figure 4.6 depicts a valid dependency structure with two layers.

One class is located in a generic (top layer), and two classes are located in a

specialised layer (bottom layer). The right side depicts a three-layered archi-

tecture. The orange arrow (A to B) indicates a layer violation because a layer

137

4. Bad Smells in Model-based Analyses

Analysis Class depends on Layer Separator

C

D

B

A

Figure 4.6.:Unexploited Hierarchy

in between is omitted. It is only a problem when the layered architecture

is intended to be strict. The red arrow (B to D) indicates a layer violation

because a generic class depends on a more specialised class.

E�ect: We di�erentiate the e�ects of strict and normal layering. Strict

layering has a clear dependency structure that allows the analysis developer to

exchange components within a layer without the need to modify components

on a more generic layer. When ignoring the rule of strict layering, the model-

based analysis is harder to comprehend. When a dependency skips a layer,

for example, to improve the performance, it increases the coupling of the

model-based analysis. When an analysis class depends on an analysis class

on a more speci�c layer, the more generic layer is no longer independent of,

the more speci�c layer. Ergo, the layers cannot be reused independently of

each other. It also enables dependency cycles between layers, which impedes

the maintainability of the model-based analysis (cf. Section 3.3).

Causes: A lack of understanding of the layers of the model-based analysis

by the analysis developer can result in component misplacement in the ar-

chitecture. Or, if analysis developers want to improve the performance, they

let dependencies skip layers and, thus, violate the strict layering. Another

case that generates layer violations is when analysis developers remove a

component, which can result in a skipped layer. The removed component is

part of a chain of dependencies, for example, the second class in the middle

of the chain. When the second class is removed, the third class that depended

on the second one now needs a replacement. A new class is introduced on

138

4.2. Bad Smells in Model-based Analyses

the same layer as the second class, which would have no e�ect, or the second

class is replaced by a dependency from the third to the �rst class.

Identi�cation: Identifying if an analysis component is placed in the right

layer is only possible when a mapping to a layer is documented. For example,

annotating each component with its designated layer or creating a map

that documents the components and their layers. With this mapping, each

dependency has to be analysed. Dependencies within a layer are discarded.

Then, starting from the most generic layer, each remaining dependency is

checked. The most generic layer should have no remaining dependencies;

however, if a dependency remains, it automatically violates the layering rules,

as the most generic layer must not have dependencies on other layers. For the

remaining layers, each dependency is analysed to determine whether it points

only to a more generic layer and, if necessary if it points only to an adjacent

layer. Checking whether the dependencies point to a more generic layer is

unnecessary for the most generic layer. These dependencies are not part of

the result, and the remaining dependencies are violations of the Unexploited
Hierarchy smell.

Refactoring: The refactoring of a model-based analysis, especially introduc-

ing layers and �xing layer violations, is presented in Section 3.3.3. When a

dependency of an analysis class points to a more speci�c analysis class, we de-

�ne the dependency inversion refactoring to �x it. The dependency inversion

refactoring is divided in Dependency Inversion by Inheritance (cf. Figure 3.11),

Dependency Inversion by Reference (cf. Figure 3.12), Dependency Inversion by
Bidirectional Reference and by Containment (cf. Figure 3.13). In this chapter,

we will not provide further details regarding the refactoring of model-based

analysis; please go to Chapter 3 for more details.

Limitations: One disadvantage of a layered approach is that the code re-

quired to route and manipulate data across a layer might slow down the

performance of the model-based analysis. This is especially noticeable in

portions of the model-based analysis where the data would be better suited

structurally in deeper layers than in the layers they are authorised to access.

Reports o�ering aggregated data, such as totals or averages, are prominent

instances of this, as data aggregated on a generic layer could be moved up sev-

eral layers without any modi�cation before it is printed. If the performance

of the model-based analysis is crucial, the bene�ts of the layered approach

are neglected in the aforementioned application scenarios in favour of faster

execution.

139

4. Bad Smells in Model-based Analyses

4.2.4 Modularity

The capability of a system to be decomposed into a collection of self-contained

and loosely coupled modules is referred to as its modularity. The loosely

coupled modules of a model-based analysis allows the developer to change

individual modules without changing other modules. Also, a clear dependency

structure of the modules, like the reference architecture for model-based

analysis improves the evolvability and reusability of model-based analyses

(cf. Chapter 3).

4.2.4.1 Broken Modularity

The DSML should have no dependencies on the tool in which it is used, as a

DSML can be used by di�erent model-based analyses. Each of these model-

based analyses could analyse di�erent quality properties; see, for example,

the Karlsruhe Architecture Maintainability Prediction (KAMP) methodol-

ogy [HBK18]. The Palladio-Simulator utilises the PCM to analyse the per-

formance of software systems based on an architectural model. The PCM is

also utilised by the KAMP approach to analyse the impact of changes in the

domain of software systems and business processes. To avoid that changes in

the model-based analysis a�ecting the DSML, we forbid dependencies from

the DSML to its corresponding model-based analyses. If a dependency of the

DSML to the model-based analysis occurs, we call it the Broken Modularity
smell.

E�ect: Suppose the DSML would know the model-based analyses, i. e. has

dependencies on its tooling, all model-based analyses that use the DSML have

to deal with these unnecessary dependencies. Changes to one model-based

analysis can result in changes of the DSML, which in return can result in

changes to other corresponding model-based analyses. Such dependencies

increase the coupling of the DSML and its corresponding model-based anal-

yses, and as a result, they are more di�cult to maintain, evolve or reuse.

It also allows dependency cycles between the DSML and the model-based

analysis, resulting in even more maintenance, evolvability, and reusability

di�culties.

Causes: Adding features that should be located in the model-based analysis

instead of the DSML can happen if the language architect adds analysis

concerns of the DSML. For example, when the language architect adds the

140

4.2. Bad Smells in Model-based Analyses

type of simulation (continuous, discrete, event-based; cf. Chapter 2) to the

DSML, the model instances contain this simulation-speci�c information in

their model. Simulations are a subset of analyses that examine a system over

time. They are used when experimenting with the real system is too time-

consuming, costly, dangerous or simply impossible because the system does

not exist (yet). Analyses that use no simulation approaches have to deal with

model elements representing the kind of simulation the modeller intended.

In the best case, the elements can be ignored by the analysis. However, if

the analysis developer has no idea how to interpret model elements that

are not part of the DSML, they could use such elements in their analysis.

Even if during the analysis only the presence of the unused model elements

is checked, a change to the DSML that modi�es these elements would also

require a change in the model-based analysis. A change that could have been

avoided if the elements were at the right place (i. e. part of the model-based

analysis instead of the DSML) from the beginning.

Identi�cation: In order to detect the Broken Modularity smell, the outgo-

ing dependencies of the DSML must be analysed. Therefore, we collect all

dependencies of the DSML and discard all incoming dependencies, as tools

like editors and model-based analyses require the DSML either to model or

to analyse model instances. Also, we discard all internal dependencies of the

DSML, for example, a dependency that points to a type of the DSML. The

dependencies that remain are dependencies on external tools and libraries.

The last step is to remove all dependencies on libraries that are required for

the DSML; for example, if the DSML was created with the EMF, we discard

these dependencies. Dependencies on the standard Java library or other

DSMLs are also required and, thus, discarded. What remains are the outgoing

dependencies on tools like editors and model-based analysis. We regard the

remaining dependencies as the Broken Modularity smell.

Refactoring: Fixing this smell requires the language architect and the anal-

ysis architect to work together. The knowledge of both, about the domain

of the DSML and the model-based analysis, is required to identify and �x

wrongly placed language features in the DSML. For each outgoing depen-

dency that is marked as Broken Modularity smell, the architects must decide

whether the whole feature or only the types that create the dependency must

be moved to the model-based analysis. If the types of the DSML can be

moved to the model-based analysis, the language types are removed from

the feature of DSML and added to the corresponding feature in the model-

based analysis. For the case that the model-based analysis does not have

141

4. Bad Smells in Model-based Analyses

such a feature, the analysis architect introduces a corresponding feature in

the model-based analysis. Alternatively, if multiple language types must be

moved to the model-based analysis, it could be su�cient to move the whole

feature to the model-based analysis. For example, if the simulation types are

part of a feature with the same name. The analysis architect creates a feature

with the same name, and the analysis component developer implements the

corresponding components (cf. Chapter 3).

Limitations: Identi�cation of the Broken Modularity smell is only possible

when the source code of the DSML is accessible, and the same is true for

changes that a�ect the DSML. Even if the DSML is accessible, if the DSML

implements a standard, for example, the BPMN2 standard, the language

architect might want to avoid changing the DSML. Changing the DSML

means that it no longer conforms to the standard. Ergo, model-based analyses

that expect a model that conforms to the standard can no longer use instances

of the changed DSML. The same goes for each tool that is based on the

standard DSML. Another problem when �xing the Broken Modularity smell is

that the developers must change each corresponding tool of the DSML. In the

long term, we recommend �xing this bad smell, as it creates unpredictable

changes to the DSML and its corresponding tooling; however, the e�ort that

comes with �xing the bad smell should be considered and planned for each

corresponding tool. Otherwise, each tooling is only usable once the smell is

�xed.

4.2.4.2 Degraded Modularity

If a language component is used by multiple analysis components, the analysis

developer has to make many changes to many di�erent analysis components

when the language component is modi�ed. The Degraded Modularity is

inspired by the Shotgun Surgery smell [Fow18]. A single responsibility, in the

case of the DSML, a language feature, is split up among analysis components.

Figure 4.7 depicts the Degraded Modularity smell. It shows three analysis

components that depend on one language component, such a dependency

results from dependencies of analysis classes that are part of an analysis

component. An analysis component can have multiple classes that depend

on a language component.

E�ect: Due to the scattering of language components all over analysis com-

ponents, the code is di�cult to comprehend. The three analysis components

142

4.2. Bad Smells in Model-based Analyses

Analysis Component Language Component depends on

Figure 4.7.:Degraded Modularity

shown in Figure 4.7 could implement the same analysis algorithm of the lan-

guage component, or each analysis component implements a di�erent variant

of the same analysis algorithm, or each analysis component implements

a di�erent analysis algorithm. In order to understand how these analysis

components work together or how they work, the analysis developer has to

consult the documentation of each analysis component, which makes it time-

consuming and di�cult to comprehend. Another e�ect is that changes to one

language component can require that the analysis developer must change

multiple analysis components; hence, the similarity to the bad smell Shotgun
Surgery (cf. Chapter 2). The coupling between the analysis components and

the language component is increased, and if the analysis components also

depend on each other, reusing a single analysis components is di�cult. Fur-

thermore, the increased coupling hampers the evolvability of the model-based

analysis, as changes to one of the analysis components can lead to changes

in the remaining analysis components.

Causes: During the lifetime of a model-based analysis, analysis developers

add and change analysis components of the analysis. A language component

that was used by a single analysis component could then add to other anal-

ysis components. Such errors happen easily without restrictions that give

a warning or prevent the analysis developer from adding the dependency.

If the analysis developer must implement a new analysis, they must know

every analysis component and their intent. Only then can they determine

whether the new analysis must be part of an already existing analysis com-

ponent or whether they must implement a new one. Even if the analysis

developer is aware that an analysis component already exists, they could

143

4. Bad Smells in Model-based Analyses

decide to implement a new analysis component to avoid understanding the

existing code and implement the analysis code faster. Another cause for the

Degraded Modularity smell is cross-cutting concerns of language components.

If a language component is required in a variety of analysis components, it

is better to split the language component up instead of consolidating each

dependency in one language component. This is only possible when the

analysis components depend on di�erent classes of the language component.

If the analysis component represents multiple concerns, it is more di�cult

to comprehend, evolve, and reuse due to its many dependencies on other

language components and other analysis components. It is di�cult to reuse

an analysis component that implements di�erent concerns. If an analysis

component implements multiple concerns, for example, if an analysis com-

ponent determines a system’s performance and reliability analysis, reusing

the performance part requires reusing the reliability part also. The analysis

component needs information about the system’s performance part (e. g. ,

throughput, processing time) and about the reliability (e. g. , mean time to

failure). These requirements create either dependencies on other analysis

components or, if the analysis developer decides to contain them all in one

analysis component, the analysis component gets too complex.

Identi�cation: To identify whether a language component is used in multi-

ple analysis components, we analyse all incoming dependencies of a language

component. A dependency is an incoming dependency when it points from

an analysis component to the analysed language component. To identify

incoming dependencies, we determine an language component and search all

analysis components for dependencies on the respective language component.

If the language component has incoming dependencies of multiple analysis

components, we determine it as Degraded Modularity smell. For example, if

the DSML and the model-based analysis are layered according to our refer-

ence architecture for model-based analyses (cf. Chapter 3), we analyse and

compare only the incoming dependencies of one layer at a time. Due to the

modularisation of the analysis, language components are needed on di�erent

layers; therefore, we count only incoming dependencies of the same layer.

Ergo, in a layered architecture, a language component can have incoming

dependencies from di�erent layers. If an incoming dependency originates

from a more specialised layer, it corresponds to the Folded Hierarchy smell

(cf. Section 4.2.3.1).

Refactoring: If the a�ected analysis components do not depend on other

language components, merging these components will �x this bad smell, as

144

4.2. Bad Smells in Model-based Analyses

all dependencies on the language component now come from a single analysis

component. However, if these components represent di�erent concerns (i. e.,

have dependencies on other language components), merging these compo-

nents would create the bad smell Rebellious Modularity (cf. Section 4.2.4.4).

Alternatively, the analysis developer can move the classes of the analysis

component that depend on the language component. These classes can either

be moved to a new analysis component or to an analysis component with

dependencies on the language component. However, even a class could con-

tain dependencies on multiple language components; therefore, the analysis

developer can move the a�ected �elds and methods to �x this bad smell.

Another way to �x the Degraded Modularity smell is to split the language

component up. Heinrich et al. [HSR19] introduced refactoring operations for

splitting a language class or language component up. The goal is to group the

language types by incoming dependencies from their corresponding model-

based analysis. The result in the case of our example shown in Figure 4.7, the

number of language components is increased from one to three, and each

analysis component depends on one, di�erent language component.

Limitations: Identifying the Degraded Modularity smell does not always

require access to the DSML. If the DSML implements a standard, for example,

the BPMN2 standard, the language architect might want to avoid changing the

DSML. Therefore, they can choose to merge the a�ected analysis components;

however, they must be aware that merging the analysis components can create

the Rebellious Modularity smell (cf. Section 4.2.4.4). If the language architect

must change the DSML and the DSML is developed according to a standard,

changing the DSML means it no longer conforms to the standard. Ergo,

model-based analyses that expect a model conforming to the standard can no

longer use instances of the changed DSML. The same goes for each tool that

is based on the standard DSML. Another problem when �xing the Degraded
Modularity smell is that the developers must change each corresponding tool

of the DSML.

4.2.4.3 Missing Modularity

This bad smell heavily refers to our reference architecture for model-based

analyses (cf. Chapter 3). Our reference architecture requires a layered struc-

ture of the model-based analysis, similar to the reference architecture for

DSMLs [HSR19]. The layering helps the analysis developer to locate analysis

145

4. Bad Smells in Model-based Analyses

components and reuse components. The layering also helps to avoid cycles

of the analysis components (cf. Section 4.2.3.3) and cycles of analysis compo-

nents and language components (cf. Section 4.2.3.1). The Missing Modularity
smell is only applicable when the model-based analysis should have layers

because then when the model-based analysis does not contain any or just

one layer, we determine it as Missing Modularity smell. Having no layer or

one layer is the same, cf. Section 3.3.2.

E�ect: Due to the missing layers, it is harder to identify the role of an analy-

sis component in the context of the model-based analysis. The model-based

analysis is missing a clear structure that allows the analysis developer to

locate concerns and, if necessary, make changes or add new features without

understanding each analysis component in the analysis. If, for example, an

analysis component is located on the domain layer (cf. Section 3.3.2.2) of

the model-based analysis, the analysis component represents some form of

domain-relevant information. If the analysis developer wants to add new

domain-speci�c behaviour, they only have to consider the analysis compo-

nents on the respective layer for the desired extension. However, if such a

structure is missing, the analysis developer has to search the source code of

the analysis component to determine its concern in the model-based analy-

sis. Also, the layered structure provides a clear dependency structure: only

cross-layer dependencies from a layer to a more generic layer are allowed.

This allows layers to be exchanged without a�ecting more generic layers.

Causes: Missing layers in an existing model-based analysis can have mul-

tiple causes. One is that the DSML is already modularised according to a

layered architecture like the reference architecture for DSMLs by Heinrich et

al. [HBK18]. In Chapter 3, we investigate the e�ects of modularising a model-

based analysis according to the layered structure of the DSML. However, the

Missing Modularity smell is more a suggestion than a clear smell when the

DSML is already layered, but its corresponding model-based analysis follows

none or another architecture pattern. Therefore, we consider this smell as

not essential for the quality of the model-based analysis.

Identi�cation: The model-based analysis either has layers or not; there is

little to do to identify the Missing Modularity smell. The analysis developer

must ensure the layers are identi�able for the other analysis developers

working on the model-based analysis. How to de�ne layers depends on the

programming language and, under some circumstances, also on the IDE.

In Java and Eclipse, for example, the layers could be organised by projects,

146

4.2. Bad Smells in Model-based Analyses

where each project represents a layer, and each package represents an analysis

component of the layer. However, reusing single packages is not provided

by the Java programming language; thus, we recommend using a project to

represent an analysis component and group the analysis components that

are located on the same layer in working groups of the Eclipse IDE.

Refactoring: Ideally, the model-based analysis corresponds to a DSML that

is already modularised according to the reference architecture for DSMLs. If

that is the case, we explain the refactoring operations in Section 3.3.3 and

Section 3.5.1 and the process to modularise a model-based analysis. However,

if the DSML does not correspond to the reference architecture for DSMLs,

we recommend refactoring the DSML �rst; see [HSR19].

Limitations: The Missing Modularity smell is only applicable if the model-

based analysis is intended to have layers. If the layers are not identi�able due

to language restrictions or missing documentation, the smell can indicate

such problems. However, if a layered structure is already applied, the smell

cannot detect problems in the layering itself. To �nd problems regarding

the layering of the model-based analysis visit the smells Folded Hierarchy in

Section 4.2.3.1 and Unexploited Hierarchy in Section 4.2.3.3.

4.2.4.4 Rebellious Modularity

A language component can contain multiple concerns. Even if the DSML

is modularised according to the reference architecture for DSMLs [HSR19],

the language architect might not be able to anticipate how the concerns are

structured. As a result, the language architect can model the concerns very

�ne-grained, which means that the concern is separated into multiple lan-

guage components. For example, instead of having a control �ow language

component in a DSML for software architectures, the language architect

separates the control �ow language component into multiple language com-

ponents. However, the corresponding model-based analysis would only need

a level of detail in the model. The indicator for a concern that is separated over

di�erent language components is multiple outgoing dependencies from one

analysis component to di�erent language components. Outgoing dependen-

cies are dependencies from an analysis component to a language component.

The dependencies result from classes of the analysis component that either

extend or use classes from the language component. Figure 4.8 depicts the

147

4. Bad Smells in Model-based Analyses

Analysis Component Language Component depends on

Figure 4.8.: Rebellious Modularity

Rebellious Modularity smell, it shows one analysis component that depends

on three language components.

E�ect: The analysis component a�ected by the Rebellious Modularity con-

tains many lines of code across multiple classes, similar to a god class (cf. Chap-

ter 2); it either contains many classes or complex classes that cover di�erent

concerns. This analysis component cover di�erent concerns; hence the de-

pendencies on multiple language components. Due to the high number of

classes or the large classes, the analysis component is complex and di�cult

to comprehend for the analysis developer. Also, reusing a subset of the lan-

guage components with the analysis component is di�cult, as all language

components are required by the analysis component. As a result, due to the

complexity of the analysis component, the evolvability is hampered, and the

reusability is also problematic when some required language components

cannot be used.

Causes: The causes for the Rebellious Modularity smell on the model-based

analysis can have two origins: (I) When the analysis component represents

multiple concerns, it contains many classes that depend on di�erent language

components. Extending the analysis component by adding dependencies on

language components requires less e�ort than splitting the analysis compo-

nent or creating a new analysis component. (II) When the language compo-

nents represent only a fraction of a concern, the language architect might not

understand how the DSML is used. Alternatively, during the development

of the DSML, the intended use of the language components shifted, and the

�ne-grained modular structure remained. For example, �rst, the language

architect intended to use the aforementioned detailed control �ow structure.

148

4.2. Bad Smells in Model-based Analyses

However, while developing the corresponding model-based analysis, they

discovered that the increased e�ort in modelling such a �ne-grained structure

does not bene�t the analysis result. Therefore, they decided not to use the

detailed elements of the DSML in the model-based analysis, but the possibility

to model such details was not removed from the DSML.

Identi�cation: Each analysis component is analysed regarding its outgoing

dependencies. Outgoing dependencies are the dependencies from an analysis

component to a language component. We disregard the dependencies between

analysis components; as for the Rebellious Modularity, only the dependencies

between analysis components and language components are relevant. If an

analysis component depends on any number of language components above

a threshold n, we determine it as Rebellious Modularity. The threshold n allow

the analysis developer to de�ne how many dependencies are allowed before

they count as Rebellious Modularity smell.

Refactoring: If the cause for the bad smell is (I) that an analysis component

represents multiple concerns, we split the analysis component into multiple

components. Regarding Figure 4.8, we create two additional components,

each depending on one language component respectively. To split an analysis

component, the classes which contain undesired dependencies (i. e., depen-

dencies on another language component than the required one) are moved to

another or a new analysis component. If the classes contain dependencies

on multiple language components, we split them. More details regarding the

refactoring can be found in Section 3.3.3. If the cause for the bad smell is (II),

the language components represent the same concern; we merge the language

components. The refactoring operations of merging analysis components

and analysis classes are presented in Section 3.3.3.

Limitations: Identifying the Rebellious Modularity smell does not always

require access to the DSML components. If the DSML implements a standard,

for example, the BPMN2 standard, the language architect might want to avoid

changing the DSML. If the language architect must change the DSML and

the DSML is developed according to a standard, changing the DSML means

that it no longer conforms to the standard. Ergo, model-based analyses that

expect a model conforming to the standard can no longer use instances of

the changed DSML.

149

4. Bad Smells in Model-based Analyses

4.2.4.5 Weakened Modularity

When language components depend on analysis components, then this corre-

sponds to the bad smell Broken Modularity (cf.Section 4.2.4.1). However, when

dependencies from language components on analysis components exist, they

can form dependency cycles between the DSML and its corresponding model-

based analysis. Figure 4.9 depicts such a dependency cycle. The depicted cycle

Analysis Component Language Component depends on

Figure 4.9.:Weakened Modularity

contains three components; however, the smallest cycle can exist between

a language component and one analysis component. An analysis developer

can easily detect and �x such examples, but if the cycles are complex, e. g.

containing a dozen components, it is di�cult for the analysis developer to

detect them.

E�ect: Dependency cycles between language components and analysis com-

ponents have the same negative e�ect as dependency cycles in DSMLs [Str20]

or in object-oriented software [Fow18]. If an analysis developer changes an

analysis component in such a dependency cycle, it is most likely that they

must also adapt the remaining components in the cycle. Maintenance steps

become unpredictable, and in the worst case, they are a great risk because

the e�ort required to realise a change cannot be estimated. The more com-

plex the cycles in the model-based analysis, the higher the risk of changing

existing code or adding new features. If the DSML is used by multiple model-

based analyses, changes can a�ect not only one model-based analysis but all

model-based analysis that depend on the DSML.

150

4.2. Bad Smells in Model-based Analyses

Causes: An analysis developer either introduces cycles into a system on

purpose, without knowing the dire consequences or by accident. Ignoring the

consequences of dependency cycles are inexcusable but unavoidable if done

deliberately. Introducing dependency cycles by accident is only avoidable

if the cycles are small enough so the analysis developer can detect them

manually. Adding a language component as a dependency to an analysis

component can form a cycle when somewhere exists a dependency from a

language component on an analysis component.

Identi�cation: In order to detect the Weakened Modularity smell, the analy-

sis developer can transform the DSML and model-based analysis elements

(i. e., classes, methods, attributes, packages, and DSML �les) into a directed

graph. They then apply a cycle detection algorithm like Floyd’s cycle detec-

tion algorithm [Flo67] to that graph. Alternatively, the analysis developers

can use a graph database like Neo4J
1

and its apoc extension
2

to detect cycles.

For example, a graph can be created according to Strittmatter [Str20] when

packages are transformed into nodes and dependencies between packages

are transformed into edges. This transformation into a graph is applicable

for both the DSML and the model-based analysis.

Refactoring: Fixing this smell requires understanding the DSML and the

model-based analysis. If the types of the DSML can be moved to the model-

based analysis, the language types are removed and added to the model-based

analysis. This applies when the analysis developer �nds in addition to the

cycle also the Broken Modularity smell (cf. Section 4.2.4.1). Then, they can

perform the refactoring described in the refactoring paragraph of the Broken
Modularity smell. Alternatively, if multiple language types must be moved

to the model-based analysis, it could be su�cient to move the whole feature.

In order to move a whole feature, the refactoring of the Broken Modularity
smell is applied to each class that corresponds to the a�ected feature. Also,

dependency inversion can be performed to �x this bad smell (cf. Figure 3.8).

Therefore, the language architect must inverse the dependency from the

language component on the analysis component.

Limitations: Identi�cation of the WeakenedModularity smell is only possible

when the source code of the DSML is accessible, and the same is true for

changes that a�ect the DSML. Even if the DSML is accessible, if the DSML

1
https://neo4j.com/

2
https://neo4j.com/labs/apoc/4.1/overview/apoc.nodes/apoc.nodes.cycles/

151

4. Bad Smells in Model-based Analyses

implements a standard, for example, the BPMN2 standard, the language

architect might want to avoid changing the DSML. Changing the DSML

means that it no longer conforms to the standard. Ergo, model-based analyses

that expect a model that conforms to the standard can no longer use instances

of the changed DSML. The same goes for each tool that is based on the

standard DSML. Another problem when �xing the Weakened Modularity
smell is that the developers must change each corresponding tool of the

DSML. In the long term, we recommend �xing this bad smell, as it creates

unpredictable changes to the DSML and its corresponding tooling; however,

the e�ort that comes with �xing the bad smell should be considered and

planned for each corresponding tool. Otherwise, each tooling is unusable

until it is �xed.

4.3 Automatically Identify Bad Smells in
Model-based Analyses

In Section 4.2 we introduced the twelve bad smells we identi�ed; furthermore,

we explained for each bad smell how to identify them. In this section, we

show which bad smells we can automatically identify and, especially, how

we are able to identify them. In order to identify the following bad smells,

the model-based analysis must have an associated DSML that conforms to

the reference architecture for DSMLs by Heinrich et al. [HSR19].

4.3.1 Identification of Abstraction Smells

In this section, we present how we identify bad smells related to the abstrac-

tion category presented in Section 4.2.1.

4.3.1.1 Duplicated Abstraction

We are able to identify the Duplicated Abstraction smell automatically. We

transform the dependencies of analysis classes on language classes into a

graph notation. To be able to create the graphs, the developer who performs

the analysis must provide the path to the DSML and the path to the model-

based analysis. Each analysis class and language class is represented as a node

152

4.3. Identifying Bad Smells in Model-based Analyses

1 def duplicatedAbstractionIdentification(threshold):

2 analysisClasses.foreach(class ->

3 var dependenciesOnLanguageClasses =

4 getDependenciesOnLanguageClasses(class)

5 var sameDependencies =

6 compareToDependenciesOnRemainingAnalysisClasses

7 (dependenciesOnLanguageClasses)

8 var sameDependencies = filterDependencies(threshold)

9)

10 return sameDependencies

11

12 def compareToDependenciesOnRemainingAnalysisClasses

13 (dependenciesOnLanguageClasses):

14 var dependencies

15 analysisClasses.foreach(

16 dependencies.

17 add(sameDependencies(

18 dependenciesOnLanguageClasses,

19 analysisClass))

20)

21 return dependencies

Listing 4.2: Identi�cation of the Duplicated Abstraction Smell

in the graph. If an analysis class uses a language class, these dependencies are

represented as edges between these nodes. Our tool identi�es each analysis

class that shares a certain number of dependencies on language classes. The

developer who performs the analysis can set the threshold of shared depen-

dencies according to their needs. Listing 4.2 shows the sequencing when

identifying the Duplicated Abstraction smell.

4.3.1.2 Missing Abstraction

We can automatically identify the Missing Abstraction smell. We collect all

methods of the analysis classes and identify the methods with a primitive type

in the signature. The extract the methods, the developer who performs the

analysis must provide the path to the analysis. Our tool identi�es each method

that has a primitive type in its signature. The developer who performs the

analysis must determine whether the found signature should be contemplated

for further investigation. Listing 4.3 shows the sequencing when identifying

the Missing Abstraction smell.

153

4. Bad Smells in Model-based Analyses

1 def missingAbstractionIdentification(path):

2 var classes = getAllAnalysisClasses(path)

3 classes.foreach(class ->

4 methods = class.getMethods()

5 methods = methods

6 .filter(it::hasPrimitiveParameter)

7)

Listing 4.3: Identi�cation of the Missing Abstraction Smell

4.3.1.3 Unused Abstraction

In order to identify the Unused Abstraction smell automatically, we transform

the dependencies of analysis classes on language classes into a graph notation.

To be able to create the graphs, the developer who performs the analysis

must provide a link to the DSML and the model-based analysis. Each analysis

class and language class is represented as a node in the graph. If an analysis

class uses a language class, these dependencies are represented as edges

between these nodes. We then search for each language class node that is not

connected to an analysis class node and provide a list of all identi�ed nodes

as a result of the analysis.

4.3.2 Identification of the Encapsulation Smell

In this section, we present how we identify the bad smell related to the

encapsulation category presented in Section 4.2.2.

4.3.2.1 Deficient Encapsulation

We can partially identify the De�cient Encapsulation smell automatically. The

developer who performs the analysis must provide the path to the DSML and

the path to the model-based analysis. We collect all types of the language

and all methods of the model-based analysis. The methods with only one

parameter are discarded. For each parameter pair, we generate a tuple, but

we omit tuples that contain the same parameter. Then, we count the occur-

rence of each tuple. The resulting tuples and the number of occurrences are

documented as De�cient Encapsulation smell. The developer who performs

154

4.3. Identifying Bad Smells in Model-based Analyses

1 def deficientEncapsulationIdentification(languagePath, analysisPath):

2 var parameterTuples

3 var methods = getAllMethodsFromAnalysis(analysisPath)

4 filterParameters(methods)

5 methods.foreach(method ->

6 parameterTuples.add(createTuples(method))

7)

8 removeIdenticalPairs(tuples) // {a,a} or {b,b}

9 countTupleOccurrences(tuples)

Listing 4.4: Identi�cation of the De�cient Encapsulation Smell

the analysis has to decide whether these tuples of language types can be

merged. Our tool identi�es each parameter tuple that occurs in the methods

of the model-based analysis and counts the number of occurrences. Listing 4.4

shows the sequencing when identifying the De�cient Encapsulation smell.

4.3.3 Identification of Hierarchy Smells

In this section, we present how we identify bad smells related to the hierarchy

category presented in Section 4.2.3.

4.3.3.1 Folded Hierarchy

We can automatically detect the Folded Hierarchy smell when the layer in-

formation is available in the DSML and the model-based analysis that gets

analysed. The developer who performs the analysis must provide the path to

the DSML and the model-based analysis. Furthermore, they must provide the

layers that are used by the DSML and model-based analysis. We transform

the language and analysis classes’ dependencies into a graph notation. Each

class is represented as a node in the graph. If an analysis class references a

language class, these dependencies es represented as an edge between these

nodes. Each class node contains information on which layer the class is

located and which order number the layer has. The more generic a layer is

the smaller its number. We distinguish between two violations of the layering.

The �rst violation is when an analysis class (source) depends on a language

class (target) on a more speci�c layer. To detect this violation, we compare the

order number of the classes. If the order number of the source class is less than

155

4. Bad Smells in Model-based Analyses

the order number of the destination class, the aforementioned layering rule is

violated. The second violation is when an analysis class (source) depends on

a language class (target) on a more generic layer. To detect this violation, we

compare the order number of the classes. If the di�erence between the order

numbers, source minus destination, is greater than zero, the aforementioned

layering rule is violated.

4.3.3.2 Missing Hierarchy

We can automatically detect the conditions that lead to the Missing Hierarchy
smell. The developer who searches for the Missing Hierarchy smell must

provide the path to the DSML and the model-based analysis. First, we search

the analysis classes and extract all references on the DSML. Then, we �lter

the reference and remove all references that do not originate from a switch

statement. The developer must analyse the remaining references to determine

whether they contribute to the Missing Hierarchy smell.

4.3.3.3 Unexploited Hierarchy

We can automatically detect the Unexploited Hierarchy smell when the layer

information is available in the model-based analysis that gets analysed. The

developer who performs the analysis must provide the path to the model-

based analysis. Furthermore, they must provide the layers that the model-

based analysis uses. We transform the dependencies of the analysis classes

into a graph notation. Each analysis class is represented as a node in the graph.

If an analysis class references another analysis class, these dependencies es

represented as an edge between these nodes. Each analysis class node contains

information on which layer the class is located and which order number the

layer has. The more generic a layer is the smaller its number. We distinguish

between two violations of the layering. The �rst violation is when an analysis

class (source) depends on another analysis class (target) on a more speci�c

layer. To detect this violation, we compare the order number of the classes.

If the order number of the source class is less than the order number of the

destination class, the aforementioned layering rule is violated. The second

violation is when an analysis class (source) depends on another analysis

class (target) on a non-adjacent layer. To detect this violation, we compare

the order number of the classes. If the order number of the source class is

156

4.3. Identifying Bad Smells in Model-based Analyses

1 def brokenModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAllReferences(languageTypes)

5 references.foreach(reference ->

6 if not referencesAnalysisType(reference, analysisTypes):

7 references.remove(reference)

8)

Listing 4.5: Identi�cation of the Broken Modularity Smell

greater than the order number of the destination class, and if the di�erence

between these numbers is greater than one, the aforementioned layering rule

is violated.

4.3.4 Identification of Modularity Smells

In this section, we present how we identify the bad smells that are related to

the modularity category presented in Section 4.2.4.

4.3.4.1 Broken Modularity

To automatically detect the Broken Modularity smell, the developer who

performs the analysis must provide the path to the DSML and the path to

the model-based analysis. We collect all references of the language types in

the DSML, and we also collect the analysis types of the model-based analysis.

For each reference of the language, we �lter out each reference that does

not depend on an analysis type. The remaining references violate the Broken
Modularity smell. Listing 4.5 shows the sequencing when identifying the

Broken Modularity smell.

4.3.4.2 Degraded Modularity

To automatically detect the Degraded Modularity smell, the developer who

performs the analysis must provide the path to the DSML and the path to the

model-based analysis. We collect all language types and analysis types of the

path provided by the developer. Then, we collect all references of analysis

157

4. Bad Smells in Model-based Analyses

1 def degradedModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAndGroupAllReferencesOnLanguageTypes(

5 languageTypes,

6 analysisTypes)

7 references.foreach(referenceGroup ->

8 if not containsDifferentAnalysisTypes(referenceGroup):

9 references.remove(reference)

10)

Listing 4.6: Identi�cation of the Degraded Modularity Smell

types to language types. Of the collected references, we �lter the references

on language types that originate from di�erent analysis types. Listing 4.6

shows the sequencing when identifying the Degraded Modularity smell.

4.3.4.3 Missing Modularity

We can automatically detect the Missing Modularity smell when the layer

information is part of the DSML and the model-based analysis. Currently, we

support Eclipse Plugin projects. The developer who performs the analysis

must provide the path to the DSML and the model-based analysis. We assume

that the layer information is located in the meta�le of the plugin. If the

meta�le does not contain information regarding the layer, we determine that

the projects are missing a layered structure.

4.3.4.4 Rebellious Modularity

To automatically detect the Rebellious Modularity smell, the developer who

performs the analysis must provide the path to the DSML and the path to the

model-based analysis. We collect all language types and analysis types of the

DSML and model-based analysis. Then, we collect all references of analysis

types to language types. Of the collected references, we �lter the references

on language types that originate from the same analysis type. Listing 4.6

shows the sequencing when identifying the Degraded Modularity smell.

158

4.3. Identifying Bad Smells in Model-based Analyses

1 def degradedModularityIdentification(languagePath, analysisPath):

2 var languageTypes = getAllLanguageTypes(languagePath)

3 var analysisTypes = getAllAnalysisTypes(analysisPath)

4 var references = collectAndGroupAllReferencesOnLanguageTypes(

5 languageTypes,

6 analysisTypes)

7 references.foreach(referenceGroup ->

8 if not (containsDifferentLanguageTypes(referenceGroup)

9 and originateFromOneAnalysisType(referenceGroup)):

10 references.remove(reference)

11)

Listing 4.7: Identi�cation of the Rebellious Modularity Smell

4.3.4.5 Weakened Modularity

IDEs, like Eclipse and IntelliJ, are already capable of identifying cycles be-

tween classes, components, and projects. The cycles between a DSML and

its corresponding model-based analysis can occur when the code for the

DSML is generated and altered afterwards. As our approach is based on EMF-

based metamodels, the generated code is embedded in regular Eclipse plugin

projects. Eclipse provides a cycle detection for its plugins that is based on the

meta�les of the plugin projects. Therefore, it is unnecessary to implement

our own cycle detection.

159

5. Reuse of Model-based Analysis
Components

After presenting decomposition and composition approaches for model-based

analyses, and after presenting bad smells dedicated to model-based analy-

ses and how to identify, categorise, and refactor these bad smells, in this

�nal contribution chapter, we present an approach to specify, compare, and

identify model-based analysis components. Our speci�cation and identi�ca-

tion approach decreases the e�ort required for reusing model-based analysis

components. After identifying and refactoring bad smells in model-based

analysis and modularising existing model-based analyses according to the

process presented in Chapter 3 and Chapter 4, the analysis architect has

a repository �lled with analysis features and their corresponding analysis

components. As motivated in Chapter 3, modularisation is necessary to reuse

analyses in di�erent analyses. However, reusing an analysis component is

more than just using an analysis component more than once. Specifying a

component regarding its desired structure and behaviour and identifying a

possible analysis component that complies with a desired speci�cation is also

part of reusing an analysis component.

As a model-based analysis’ complexity grows, it becomes more di�cult to

understand and, as a result, to maintain, extend, or reuse. Because of the

increased complexity of the mode-based analysis, already created model-based

analysis components must be reused in succeeding model-based analysis

projects. Reusing model-based analysis components allows for saving time

and resources. On the other hand, the specialisation of model-based analyses

for a particular domain or even a speci�c system limits reusability for other

domains or systems. On a syntactic level, the structure of a component

(i. e., classes, interfaces) might be identi�ed as a possible match for a reuse

candidate. However, because a model-based analysis depends on a domain

or system, it is di�cult to determine whether the discovered component is

a semantic match (i. e., exhibits the required behaviour). If the number of

161

5. Reuse of Model-based Analysis Components

components to be analysed is vast or the components are complex, it may be

prohibitively expensive.

In this chapter, we present an approach for specifying model-based analyses

structure and behaviour. We use the speci�cation of model-based analyses to

�nd analysis components with a similar structure and behaviour. To specify

model-based analysis components, we use a modelling technique based on

metamodels and on a DSL. We also present an approach for identifying simi-

lar model-based analysis components by comparing model-based analysis

components in structure and behaviour. The process of comparing analysis

components is separated into two stages: We begin by comparing model-

based analysis components regarding their structure. We then transform the

requirements into graph notation and perform a graph-isomorphism analysis

to detect similar structures. Second, we compare model-based analysis com-

ponents based on their behaviour by translating the speci�cation to the SMT

notation and then detecting similar behaviour utilising an SMT-Solver. We

decided to use an SMT-Solver because they are capable of processing a wide

variety of theories, such as arithmetic, bit-vectors, arrays and others. SMT-

Solvers are highly e�cient and can quickly solve complex logical formulas.

They use a combination of decision procedures, heuristics, and optimisations

to explore the search space and �nd a solution e�ciently.

The contribution in this chapter is based on our previous publications regard-

ing the speci�cation and reuse of model-based analysis components [Koc+22]

and [KR22]. Our contributions in this chapter are structured as follows: After

presenting the research questions in Section 5.1 and additional terms and

de�nitions necessary to understand the content of this chapter in Section 2.5,

we introduce the speci�cation approach for specifying the structure and

behaviour of model-based analyses in Section 5.2. Our approach to compare

speci�ed analysis components based on their structure is presented in Sec-

tion 5.3. Our approach to compare speci�ed analysis components based on

their behaviour is presented in Section 5.4.

5.1 Hypothesis and Research Questions

In this section, we present the hypothesis and research questions for the

third contribution of this thesis. Finding the suitable model-based analysis

162

5.1. Hypothesis and Research Questions

feature and its corresponding model-based analysis component is a non-

trivial task. The analysis architect has to analyse each available model-based

analysis component using its documentation or source code. Even if the

analysis component is documented and the documentation is up-to-date, it is

a costly and time-consuming task if done manually. We derive the following

hypothesis for improving the reuse of model-based analysis components:

Hypothesis 3
The reuse of a model-based analysis will improve when we reduce the

barrier to �nding reusable analysis components.

To determine whether the analysis component �ts the required needs, the

analysis architect has to understand the analysis component they want to

reuse in the model-based analysis. Instead of analysing the source code or

the documentation, an analysis component speci�cation could be used to

compare analysis components. We distinguish between the speci�cation

of model-based analysis components and compare model-based analysis

components.

5.1.1 Model-based Analysis Specification

Before comparing an analysis component, we need a common speci�cation

for model-based analyses which serves as the foundation to compare and iden-

tify model-based analysis components. Therefore, we ask the �rst research

question:

Research Question 5.1
What methods or techniques can be employed to specify model-based

analysis components that enable comparison between di�erent compo-

nents?

The speci�cation needs to be an abstraction of the structure of the analysis

component. Thus, we derive a sub-research question RQ 5.1.1: How to specify
the structure of a model-based analysis? However, more than the structure of

an analysis component may be needed to determine if a component �ts the

desired needs of the analysis architect. Even if the component �ts structurally

163

5. Reuse of Model-based Analysis Components

(i. e., programming language and interfaces), the analysis architect still must

read the documentation or analyse the source code to determine whether

the analysis component has the desired behaviour. Therefore, besides the

structure, the speci�cation must also be able to specify the behaviour of an

analysis component. Thus, we derive another sub-research question RQ 5.1.2:

How to specify the behaviour of a model-based analysis?

5.1.2 Model-based Analysis Component Identification

After specifying analysis components, the analysis architect must be able to

identify existing components based on their speci�cation rather than their

documentation or, in the worst-case based on their source code. Therefore,

we derive the second research question for this contribution:

Research Question 5.2
What methods can compare and accurately identify similar model-based

analysis components?

The identi�cation of analysis components utilises the two aspects of the

speci�cation. First, an analysis component should be identi�ed based on its

structure. Therefore, we derive the sub-research question RQ 5.2.1: How
to identify model-based analysis components with a similar structure? There

needs to be more than the structure to determine whether the behaviour

also �ts the desired speci�cation. Thus, we derive the second sub-research

question RQ 5.2.2: How to identify model-based analysis components with a
similar behaviour?

5.2 Structure and Behaviour Specification of
Model-based Analyses

In this section, we present our speci�cation approach to address RQ 5.1.1:

modelling the structure of a model-based analysis and RQ 5.1.2: modelling

the behaviour of a model-based analysis. We focus on a subset of model-

based analyses, the discrete event simulations. The structure and behaviour

modelling will be done via a DSL that we have developed. To process the

164

5.2. Speci�cation of Model-based Analyses

models speci�ed via the DSL, we de�ne ametamodel as the underlying abstract

syntax of the language. We keep the language on a high level of abstraction.

Hence, a comparison between simulation speci�cations has to handle as

little unnecessary complexity as possible while still being precise enough

to detect behavioural similarities. As a result, the language does not allow

the speci�cation of simulation output parameters or the creation and �ow of

entities between events. We keep the language on a high level of abstraction;

as a result, a comparison between simulation speci�cations has to handle as

unnecessary complexity as possible. The most crucial generalisation we make

is to always refer to entities and attributes on the type-level, i. e., referring to

static objects instead of speci�c instances; there is no tracking of the �ow of

entities between events or their creation and destruction. Furthermore, we

exclude the speci�cation of the simulation output because the de�nition of

the simulation result does not impact simulation behaviour. Our DSL and our

metamodel are separated regarding the entities concerned with the structure

of a simulation from the entities concerned with a simulation’s behaviour.

First, we de�ne a discrete-event simulation in Section 5.2.1. Our speci�cation

DSML, which consists of a language feature to model the structure of a

Discrete-event Simulation (DES), presented in Section 5.2.2 and a language

feature to model the behaviour of a DES, presented in Section 5.2.3. Then,

we introduce our grammar used in our DSL to model the structure and

behaviour of DES, presented in Section 5.2.4. Finally, we introduce our SMT

representation of the behaviour, presented in Section 5.2.5.

5.2.1 Discrete-event Simulation Definition

A simulation is a representation of a system and its behaviour over time. The

purpose of a simulation is to analyse a system to get information that would

otherwise be impossible to attain. Simulations have been proven helpful for

characterising behaviour patterns in a target system [Dur21]. Simulations are

utilised when experimenting with an existing system is too time-consuming,

expensive, dangerous, or impossible since the system does not exist. A system

is a collection of entities that interact according to mathematical or logical

relationships in the context of simulations [DLK94]. A simulation has multiple

analysis components. In the context of a simulation, an analysis feature is

part of a simulation that re�ects a simulation functionality, such as task

scheduling or time progression. One or more analysis components are in

165

5. Reuse of Model-based Analysis Components

charge of implementing a simulation feature [Hei+21b]. A simulation model
represents and re�ects the structure of a system. The simulation model

generates the system’s behaviour [Top+16]. The simulator, or the running

part of a simulation, provides the behaviour used to understand the simulation

model and handle events. The simulation world depicts the current condition

of the system entities. Events can alter the state of one or more entities.

We categorise simulations regarding their understanding of time. In continu-
ous simulations, model attributes such as state variables change continuously

with respect to time. Examples of continuous simulations are tra�c sim-

ulations, where the exact positions of vehicles are observed, or weather

simulations, concerned with temperatures and wind speeds. In discrete simu-

lations, model attributes only change at discrete, separated points in time. In

this thesis, we will focus on DESs. DES is a type of discrete simulation where

states only change at instantaneous points in time. These points in time are

called events. Because state changes can only occur at events, no processing

is required between two events. Simulation time can be advanced from one

event to the next without consuming unnecessary computation time. In DES,

the state of the simulation world is represented by a set of entities, each with

a set of attributes. A common example for DES is the simulation of persons

waiting in a queue. The queue represents an entity that contains a list of

persons, and the list of persons represents one attribute of the entity. An

example of an event is when a person is added to the queue or when a person

is removed from the queue. We de�ne a simulation S as a set of entities E,

events V , and a starting event e0:

S = { E,V , e0}

We de�ne the state of an Entity as Z , the initial state of an entity is Z0, and

the state of an entity at a given time is de�ned as Zt = Z0 ⊕ ∆Zm . The state

of an entity is a set of attributes a:

Zt = {a1 . . . an}

Only events can change the state of an entity. We de�ne an event et as

follows:

et (E) = {E
′,V ′}

166

5.2. Speci�cation of Model-based Analyses

An event can change multiple entities, which are de�ned as a set of entities

E. The result of an event is a set of entities E ′ that are changed by the event

and a set of events V ′ that are scheduled by the event et (E).

5.2.2 Model-based Structure Specification of Discrete Event
Simulations

Package

Simulation

Attribute

DataType

0..* entities 0..* events

0..* attributes 0..* read

0..1 type

Entity Event

Figure 5.1.:Metamodel for Specifying the Structure of DES Components

We de�ne the structure of a simulation as the set of basic building blocks

described in Section 2.5: events, entities and attributes. In this structural

view of a simulation, an event is merely an identi�able object without any

behavioural aspects attached to it. Figure 5.1 depicts the metamodel to model

the structure of a discrete event simulation. A simulation contains a set

of Entities and Events, and each entity contains a set of typed Attributes.
Additionally, we model a reads relationship between events and attributes to

describe which attributes a�ect the behaviour of an event. This relationship

is part of the structural metamodel because a read-operation on an attribute

does not a�ect the simulation world.

167

5. Reuse of Model-based Analysis Components

5.2.3 Model-based Behaviour Specification of Discrete Event
Simulations

While there are di�erent de�nitions of the term behaviour, we de�ne the

behaviour of a simulation as the e�ects of events on the state of the simulation

world, i. e., the changes to attributes triggered through events. Besides the

simulation structure, two additional concepts are necessary to specify the

behaviour of a simulation. A simulation changes the simulation world during

its runtime. In order to describe those changes, the language must allow a

speci�cation of changed attributes as part of the simulation speci�cation.

Attribute changes can be linked to events during which they occur since in

DES, such changes can only happen at events. This is always the case in

DES because an event is de�ned as any point in time that marks a change in

the simulation world (cf. Section 2.5). The state of the simulation world is

indirectly a�ected by the order and time that events are scheduled. Events

may cause other events to be scheduled with a certain delay. Figure 5.2 shows

the metamodel to describe these behavioural aspects.

Package

BehaviourContainer

Expression

DataType

startEvent: Event

endEvent: Event

Schedules

event: Event

attribute: Attribute

WritesAttribute
0..* schedules 0..* writes

0..1 condition
0..1 delay

0..1 condition
0..1 write

0..1 type

Figure 5.2.:Metamodel for Specifying the Behaviour of DES Components

The Schedules and WritesAttribute classes represent the aforementioned be-

havioural concepts. In addition to the references to events and attributes, these

classes contain expressions to de�ne the schedules- and writes-relationships

further. Expressions can be constant values, attributes (as long as there is a

reads-relationship for the corresponding event and attribute) or a combina-

tion of other expressions with the common logical and arithmetic functions.

168

5.2. Speci�cation of Model-based Analyses

Expressions are used to describe the delay of a schedules-relationship and

the new attribute value of a writes-relationship. Additionally, both elements

can de�ne a condition expression that restricts when an event should be

scheduled or an attribute should be overwritten.

It is generally allowed to model multiple schedules- and writes-relationships

between two events or between an event and an attribute. For schedules-

relationships, this results in an event A scheduling multiple instances of event

B, for example, with di�erent delays. For writes-relationships, di�erent values

can be written to the same attribute under di�erent conditions.

5.2.4 Grammar-based Specification of Discrete Event
Simulations

In this section, we present the concept of modelling a DES by utilising a

grammar-based modelling approach. Therefore, we present the technical

realisation to motivate and describe the concepts of our modelling approach.

The speci�cation grammar, the linchpin of our speci�cation approach, utilises

the metamodels for structure and behaviour. We use the grammar language

of Xtext, a variation of the EBNF, to specify the grammar of our DSL. A

simulation S is a set of simulation components SC . A simulation component

SC also consists of a set of entities E, events V , and a starting event e0:
SC = { E,V , e0}. Thus, we can de�ne a simulation S as a set of simulation

components SC : S = {SC }.

The user can de�ne each S and SC individually. The non-terminal symbols of

the grammar that serve as an entry point for the parser determine whether a

simulation or a simulation component is speci�ed. The non-terminal symbols

are presented in Listing 5.1. The main non-terminal, or grammar speci�-

cation, as it is called in Xtext, is the ModelElement; it produces either a

SimulationComponent or a simulation. The simulation, indicated by the simu-
lation keyword, de�nes a simulation. It consists of an arbitrary amount of

simulation components (S = {SC }). To enable a better understanding of a

speci�ed simulation, we added the possibility of adding a description.

The simulation components SC , indicated by the component keyword, can

depend on other simulation components, as they can schedule events and

a�ect the attributes of other simulation components. The UseComponent
grammar speci�cation and the use keyword make the events and attributes

169

5. Reuse of Model-based Analysis Components

1 ModelElement: SimulationComponent | Simulation;

2

3 SimulationComponent: ’component’ name=QualifiedName

4 (uses+=UseComponent)*
5 (events+=Event | entities+=Entity | enums+=EnumDeclaration)*;

6

7 Simulation: ’simulation’ name=ID ’{’

8 (’description’ ’=’ description=STRING)?

9 ’components’ components+=[SimulationComponent|QualifiedName]

10 (’,’ components+=[SimulationComponent|QualifiedName])*
11 ’}’;

12

13 UseComponent: ’use’ component=[SimulationComponent];

Listing 5.1: Language Declaration – Main Parser Rules

of other simulation components available. A quali�ed name references each

simulation component; thus, it is possible to separate the components’ def-

inition from the simulation’s de�nition. A simulation component consists

of the structure elements shown in Figure 5.1, namely Events, Entities, and

EnumDeclarations.

Listing 5.2 depicts the grammar speci�cation for the structural elements of

a simulation component. First, we have the de�nition of events (et (E) =
{E ′,V ′}). An event has a name that serves as an identi�er and can read

attributes of other components; the attributes of other components are made

available via the use keyword. Besides reading attributes, an event can also

schedule other events or change attributes. Scheduling other events and

changing attributes are part of the behaviour speci�cation presented in the

next paragraph. The structure speci�cation syntax also supports the de�nition

of entities. An entity, indicated by the entity keyword, is identi�ed by a name

and consists of attributes.

Listing 5.3 depicts the grammar speci�cation for the behaviour elements of a

simulation. The grammar speci�cation Schedules, indicated by the schedules
keyword, allows specifying which events are scheduled. The delay can be

added if an event is scheduled later. The delay is indicated by the with and

delay keywords. Some events are only scheduled if a condition is met. To

both, the delay and the condition are expressions assigned. The delay can get

integers or �oats assigned, and the condition gets a boolean expression as-

170

5.2. Speci�cation of Model-based Analyses

1 Event returns structure::Event:

2 (’event’ {GEvent} name=ID ’{’

3 (’reads’ readAttributes+=[structure::Attribute|QualifiedName]

4 (’,’ readAttributes+=[structure::Attribute|QualifiedName])*)?

5

6 (schedules+=GSchedules | writeAttributes+=GWritesAttribute |

7 definitions+=Definition)*
8 ’}’);

9

10 Entity returns structure::Entity:

11 ’entity’ name=ID (’{’

12 (attributes+=Attribute)*
13 ’}’)?;

14

15 Attribute returns structure::Attribute:

16 name=ID ’:’ type=Type;

Listing 5.2: Structure Speci�cation Syntax

signed. The grammar speci�cations WriteToValue and WriteToArray represent

the assignment of values to attributes.

Listing 5.4 depicts the grammar speci�cation for the type declaration of

the speci�cation language. The grammar speci�cation Type can either be a

PrimitiveType, an EnumType or an ArrayType. Primitive types are integers,

doubles, or booleans. Enums allow the de�nition of dedicated types, as

indicated by the datatype keyword. ArrayTypes are used when more than one

type is needed.

Listing 5.5 shows an example simulation to demonstrate the textual syntax

for the simulation structure. For the sake of brevity, the example omits the

de�nition of events. We will present an example in the following paragraph.

Consider a pedestrian light that switches between the colours red and green

and keeps track of the number of waiting pedestrians. We can model this

concept with a single entity and two events. The example shows the de�nition

of datatypes, entities and events, and the reads-relationships. In line one, the

typeColour with two states, Red andGreen is modelled. The entity Tra�cLight
is modelled in lines three to seven. The tra�c light consists of the number of

waiting pedestrians, the colour of the pedestrian light and the tra�c light.

Listing 5.6 extends the structural speci�cation of the PedestrianGreen event by

the behavioural aspects. The event switches the pedestrian light to green and

171

5. Reuse of Model-based Analysis Components

1 Schedules:

2 ’schedules’ endEvent=[structure::Event]

3 (delaySpec=Delay? & (conditionSpec=Condition)?);

4

5 WritesAttribute:

6 ’writes’ writeFunction=(WriteToValue | WriteToArray)

7 (conditionSpec=Condition)?;

8

9 Delay: ’with’ ’delay’ ’=’ delay=Expression;

10 Condition: ’when’ condition=Expression;

11

12 WriteToValue returns WriteFunction:

13 {WriteToValue} attribute=[structure::Attribute|QualifiedName]

14 ’=’ value=Expression;

15

16 WriteToArray returns WriteFunction:

17 {WriteToArray} attribute=[structure::Attribute|QualifiedName]

18 ’[’ index=Expression ’]’ ’=’ value=Expression;

19

20 Definition: ’def’ name=ID ’=’ expression=Expression;

Listing 5.3: Behaviour Speci�cation Syntax

1 Type returns datatypes::DataType:

2 {datatypes::BaseDataType} primitiveType=PrimitiveType |

3 {datatypes::EnumType} declaration=[datatypes::EnumDeclaration] |

4 ArrayType;

5

6 ArrayType returns datatypes::ArrayDataType: ’ARRAY’ ’[’ contentType=Type ’]’;

7

8 EnumDeclaration returns datatypes::EnumDeclaration:

9 ’datatype’ name=ID ’{’

10 (literals+=ID) (’,’ literals+=ID)*
11 ’}’;

12 enum PrimitiveType returns datatypes::PrimitiveType: INT | DOUBLE | BOOL ;

Listing 5.4: Type Declaration

resets the number of waiting pedestrians (if there are any). It also schedules

the event to switch the light back to red with a delay of 15 seconds. Line one to

nine de�nes the event when the pedestrian light turns green, PedestrianGreen.

It reads the number of waiting pedestrians in line two. It also changes two

attributes in the simulation world. In line four, it changes the pedestrian light

172

5.2. Speci�cation of Model-based Analyses

1 datatype Colour { Red, Green }

2

3 entity TrafficLight {

4 waitingPedestrians: INT

5 colourPedestriansLight: Colour

6 colourTrafficLight: Colour

7 }

8

9 event PedestrianGreen { ... }

10 event PedestrianRed { ... }

Listing 5.5: Example of the Speci�cation Language

1 event PedestrianGreen {

2 reads TrafficLight.waitingPedestrians

3

4 writes TrafficLight.colourPedestriansLight = Colour.Green

5 writes TrafficLight.waitingPedestrians = 0

6 when waitingPedestrians != 0

7

8 schedules PedestrianRed with delay = 15.0

9 }

10

11 event PedestrianRed { ... }

Listing 5.6: Example of the Speci�cation Language with Behaviour

to green, and in line 5, the number of waiting pedestrians is reduced to zero. In

the simulation, we assume that all pedestrians waiting at the pedestrian light

want to cross the street; therefore, after the light turns green, all pedestrians

will leave their waiting position. The number of waiting pedestrians is only

reduced to zero if it had people waiting at the light. The event also schedules

another event with some delay, shown in line eight. The event PedestrianRed
is not shown, as it is similar to PedestrianGreen.

5.2.5 Representing Behaviour with Automated Reasoning and
Logical Formulas

In this section, we present how we compare the behaviour of simulation com-

ponents by modelling the e�ect of their schedules- and writes-relationships

173

5. Reuse of Model-based Analysis Components

1 // condition:

2 (declare-fun waitingPassengers () Int)

3 (assert (> waitingPassengers 0))

4

5 // delay:

6 (declare-fun delay () Double)

7 (assert (= delay 15))

Listing 5.8:Delay Speci�cation Modelled with SMT [Koc+22]

on the simulation world. To represent these e�ects, we use automated reason-

ing and logical formulas. Therefore, we specify the instances of the behaviour

metamodel as logical formulas and transform them into SMT statements.

We distinguish between relationships that directly or indirectly a�ect the

attributes of the simulation world. The attributes are indirectly a�ected by

schedules-relationships; these relationships can schedule events, and these

events can directly a�ect attributes of the simulation world. To determine

that two schedules-relationships have the same behaviour, these relationships

must schedule the same event with an identical delay. Listing 5.7 shows the

de�nition of waiting passengers and a concrete delay of 15 seconds.

1 ∃ waitingPassengers ∈ Z :

2 waitingPassengers > 0 ∧

3 ∃ delay ∈ R :

4 delay = 15

Listing 5.7:Delay Speci�cation

In order to compare two schedules-relationships, it is su�cient to model the

condition and delay the expression of a schedules-relationship as separate

SMT formulas (cf. Listing 5.8). The following SMT statements are written

in the SMT-LIB syntax. These statements depict variable declarations for all

attributes accessed in those statements. Formulas that specify the value of a

variable (i. e., delays and write-functions) also include a declaration for the

variable. The SMT equivalent to the given logical formula statement is shown

in Listing 5.7.

We consider two writes-relationships to have the same behaviour if they

a�ect the attribute in the same way, i. e., if the attribute value after the

speci�ed write-action is the same for every given assignment of input values.

The condition cannot be modelled independently from the write-function

174

5.2. Speci�cation of Model-based Analyses

for writes-relationships because the new attribute value depends on both

the condition and the write-function. An attribute will obtain the value

speci�ed by the write-function if the condition evaluates to true; otherwise,

the attribute will keep its old value (cf. Section 5.2.3).

1 ∀ old, value, input ∈ N :

2

3 ((input > 0) → (value = old + 1)) ∧

4 (¬(input > 0) → (value = old))

Listing 5.9:Write Speci�cation

Listing 5.10 shows this correlation in SMT-LIB syntax with two implications.

An attribute of type integer will be increased by one if the condition input >

0 is met.

The SMT equivalent to the given logical formula in Listing 5.9 is:

1 (declare-fun old () Int) // old attribute value

2 (declare-fun value () Int) // new attribute value

3 (declare-fun input () Int) // additional input

4

5 (assert (=> (input > 0) (= value (+ old 1))))

6 (assert (=> (not (input > 0)) (= value old)))

Listing 5.10:Write Speci�cation Modelled with SMT

This formula uses quanti�ers to assert that the relationships hold for all

integer values of old, value, and input. The �rst assertion states that if the

input is greater than 0, the value should be equal to old + 1. The second

assertion states that the value should be equal to old if the input is not greater

than 0.

As described in Section 5.2.3, multiple writes-relationships to the same at-

tribute from the same event are allowed. Because the �nal value of an at-

tribute depends on all of those writes-relationships, a combination of all

writes-relationships can represent the e�ect of an event on the attribute. The

representation of writes-relationships can be extended to meet this require-

ment by creating an implication for each relationship. Then the attribute

keeps its old value if none of the conditions is met.

For n writes-relationships from event A to attribute C with condition-expres-

sions C1..n and write-functions F1..n . Listing 5.11 shows the general write

speci�cation to describe the e�ect A has on C.

175

5. Reuse of Model-based Analysis Components

1 ∃ old ∈ Z, value ∈ Z :

2 (C1 ⇒ value = F1) ∧ ... ∧ (Cn ⇒ value = Fn) ∧

3 (¬(C1 ∨ . . . ∨ Cn) ⇒ value = old)

Listing 5.11:General Write Speci�cation

Listing 5.12 shows the combined SMT formula based on Listing 5.11.

1 (declare-fun old () Int)

2 (declare-fun value () Int)

3 (declare-fun ...) // additional inputs

4

5 (assert (=> (C1) (= value F1)))
6 ...

7 (assert (=> (Cn) (= value Fn)))
8 (assert (=> (not (or C1 .. Cn)) (= value old)))

Listing 5.12:General Write Speci�cation [Koc+22]

5.3 Utilising Model-based and Grammar-based
Specification of Discrete Event Simulations for
Structure Comparison

In this section, we present our approach to compare the structure of speci�ed

analysis components modelled with our DSL. We developed this approach to

address research question RQ 5.2.1, identifying simulations based on their

structure. We use a graph-based representation of these speci�cations with

annotated nodes and edges. Entities, events and attributes are represented

as nodes, while schedules- and writes-relationships, and parent-child rela-

tionships between entities and attributes are represented as edges. Figure 5.3

shows an example of such a graph representation. The picture shows the

aforementioned tra�c light simulation, modelled as a graph. The entity

Tra�c Light has two attributes, the colour the tra�c light can take and the

number of waiting pedestrians that wait at the tra�c light. The graph also

contains two events that read the number of waiting pedestrians and write

to the colour attribute i. e., change the colour of the tra�c light. The dis-

tinction between structure and behaviour in our metamodel di�ers slightly

176

5.3. Structure Comparison

<<entity>>
TrafficLight

<<attribute>>
colourTraffic

<<attribute>>
waitingPed.

<<event>>
Red

<<event>>
Green

writes

reads

Figure 5.3.:Graph-representation of Structural Elements

from the distinction we make for comparing structure and behaviour. The

behaviour metamodel contains the entire speci�cation of schedules- and

writes-relationships; the presence of these relationships can be integrated

into the graph representation of the elements from the structure metamodel.

However, this information is irrelevant to the structure comparison, and

thus, we omit it in Figure 5.3. The entire simulation speci�cation cannot be

compared using a graph-based approach because of the use of expressions in

schedules- and writes-relationships, representing a paradigm orthogonal to

the graph notation.

We consider two simulation speci�cations structurally similar if their graph

representations are isomorphic, i. e., if there is a bijection between the struc-

tural elements (i. e., entities, attributes, and events) of both simulations. Re-

garding entities and attributes, graph isomorphism ensures that the simula-

tion worlds of both simulations can store the same information. A bijection

between the events of both simulations ensures that each event in simula-

tion A has a uniquely associated event in simulation B that schedules the

same events. Furthermore, the reads- and writes-relationships ensure that

mapped events access the same properties of the simulation world. We will

use this bijection as a starting point for a behaviour comparison that takes

the expressions into consideration that specify the behaviour of schedules-

and writes-relationships. There may be multiple isomorphisms between the

graph representations of the two simulations. This is possible if two attributes

of an entity only participate in reads-relationships from the same event. In

this case, both attributes are structurally indistinguishable, and a behaviour

comparison needs to be employed for each isomorphism.

177

5. Reuse of Model-based Analysis Components

5.4 Utilising Model-based and Grammar-based
Specification of Discrete Event Simulations for
Behaviour Comparison

In this section, we present our approach comparing speci�ed analysis features

addressing research question RQ 5.2.1, identifying simulations based on their

behaviour. To explain our approach, we use the tra�c light example shown

in Figure 5.3. We will demonstrate how the example is modelled with our

DSL and how the behaviour is represented as SMT formula. The usage of

expressions in the behavioural metamodel renders the graph-isomorphism

approach unusable for behaviour comparison, even though a description of

the structure of simulations with the structural metamodel contains su�cient

information to utilise a graph-based structural comparison. The expressions

specifying the behaviour in the simulation speci�cation are �rst-order logic

statements. We use these statements as part of SMT instances (as introduced in

Section 2.5). We use the �rst-order logic statements to derive SMT statements

to build SMT instances whose satis�ability /validity helps to identify the

behavioural similarity of two events [Koc+22].

Our approach compares simulation behaviour on a per-event basis, i. e., it will

verify if an event in simulator A and simulator B share the same behaviour.

With the de�nition of simulation behaviour explained in Section 5.2.3, this is

the case if the events have the same e�ect on the simulation world, i. e., they

write the same values to the same attributes and schedule the same events.

First, we will introduce a representation of the behavioural concepts event
schedules event and event writes attribute in SMT-LIB syntax. We will demon-

strate the behaviour comparison on a simple example, and from there, we

derive a general formula. When comparing behaviour between speci�cations

of simulations S1 and S2 we assume that a structural isomorphism has already

been found, i. e., for every attribute and event of S2 there is an attribute or

event respectively in S2 with equal structural characteristics.

5.4.1 Comparing Schedules Relationships

For every pair of events Ea and Eb , we assume one schedules-relationship from

Ea to Eb . Finding a bijection between the schedules-relationship from Ea to Eb

178

5.4. Behaviour Comparison

1 // simulator S1
2 event A {

3 reads Z.input

4 schedules E with delay = 2 * (5 + input)

5 }

6 // simulator S2
7 event B {

8 reads Z.input

9 schedules F with delay = 10 + 2 * input

10 }

Listing 5.13: Schedules-Relationships with Identical Behaviour

in both simulator speci�cations will allow the developer to expand the follow-

ing concepts to numerous schedules-relationships. This is feasible because

each schedules-relationship’s impact on the simulation world is self-contained

and not dependent on the e�ects of any other schedules-relationships; how-

ever, this is not the case with writes-relationships. With this assumption and

mapping of events, we can compare the (unique) schedules-relationship from

event A to event E in simulator S1 with the schedules-relationship from event

B to event F in simulator S2, where A and B as well as E and F need to be a

structural match [Koc+22].

When we compare the scheduled events E and F the behaviour of event A
and B is identical, if the delay- and condition-expressions are equivalent.

Consider the example depicted in Listing 5.13: The eventsA and B in simulator

S1 and S2 respective schedule an event (that has been matched between the

simulators S1 and S2) with slightly di�erent delay expressions that always

evaluate to the same value.

According to the representation of expressions in SMT-LIB syntax that we

presented in Section 2.5, we can combine both delay speci�cations in a single

SMT formula and declare them delayA and delayB to verify their equality.

The SMT-LIB example is depicted in Listing 5.14. They are equivalent if

they always evaluate to the same value for all possible assignments of input

variables, i. e., if the expression (assert (= delayA delayB)) is valid, or

equivalently if the negation of that expression is not satis�able.

To compare conditions of the schedules-relationship, we de�ne: Let CA and

CB be the condition-expressions of the schedules-relationships from event

179

5. Reuse of Model-based Analysis Components

1 (declare-fun input () Double)

2 (declare-fun delayA () Double)

3 (declare-fun delayB () Double)

4

5 (assert (= delayA (* 2 (+ 5 input))))

6 (assert (= delayB (+ 10 (* 2 input))))

7 (assert (not (= delayA delayB)))

Listing 5.14: Example for Schedule Comparison

1 (declare-fun ...) // all read-attributes

2

3 (assert (not (= CA CB)))
4 (assert (not (= DA DB)))

Listing 5.15:General Schedule Comparison [Koc+22]

A and B respectively and DA and DB the delay-expressions [Koc+22]. As

a result, if the SMT statement depicted in Listing 5.15 is unsatis�able, the

behaviour of the schedules-relationships is identical.

A statement is satis�able when the SMT solver �nds an assignment of input

variables where the condition- or delay-expressions show not identical values.

This allows our approach to determine whether two events have the same

behaviour and generate a mapping of attribute values (a subset of attribute

states) to show how they match.

5.4.2 Comparing Writes Relationships

When comparing writes-relationships, we assumed that for schedules-rela-

tionships exist at most one schedules-relationship between one event and

another. This assumption is plausible since schedules-relationships e�ects are

independent. Additionally, a method for identifying schedules-relationships

that are similar to those that satisfy the assumption can be expanded to sup-

port any number of schedules-relationships between two events. We cannot

make a similar assumption for write-relationships. We assume that it exists

one write-relationship in event A that writes to attribute C, at most. The

combination of all write-relationships from A to C is the result of the e�ect

of A on C. As a result, we cannot compare write-relationships separately. To

180

5.4. Behaviour Comparison

1 // simulator S1
2 event A {

3 reads Z.waitingPassengers

4 writes Z.waitingPassengers = 0

5 when waitingPassengers != 0

6 }

7

8 // simulator S2
9 event B {

10 reads Z.waitingPassengers

11 writes Z.waitingPassengers = 0

12 }

Listing 5.16:Writes-Relationships with Identical Behaviour [Koc+22]

illustrate our assumption, �rst, we present a single write-relationship that

a�ects one attribute. Second, we derive a general statement that represents

the concept. Listing 5.16 shows the statement, where two events a�ect an

identical attribute: waitingPassengers. The presented conditions are not the

same; however, the two conditions have the same e�ect on the attributes.

The example in Listing 5.16 illustrates how the expression describing the new

value of the attribute and the condition cannot be compared separately, as it

is possible with schedules-relationships. We can use the SMT representation

of writes-relationships introduced in Section 5.2.5 to combine both writes-

relationships in a joint SMT formula using two variables to represent the

two write-action outputs, as shown in Listing 5.17. A single variable is

used for the old attribute value in the combined formula to assert that both

write-functions access the same state of the simulation world. Similar to

schedules-relationships, the joint formula will be satis�able if there is a state

of the simulation world for which both writes-relationships write di�erent

values to the same attribute, proving di�erent behaviour.

Generalisation for the write comparison: The e�ect of an event A on an

attribute C is the result of the combination of all write-relationships from A to

C, each of which can contain a condition. Using the representation of multiple

writes-relationships from A to C explained earlier, and this comparison can

be extended to a general formula. Let CA,1..n and CB,1..m be those conditions

of event A and B respectively and FA,1..n and FB,1..m the corresponding write-

functions. Then the e�ect of A and B on the attribute is identical if the SMT

formula shown in Listing 5.18 is not satis�able:

181

5. Reuse of Model-based Analysis Components

1 (declare-fun old () Int)

2 (declare-fun newA () Int)

3 (declare-fun newB () Int)

4

5 // writes-relationship of S1:
6 (assert (=> (not (= old 0)) (= newA 0)))

7 (assert (=> (= old 0) (= newA old)))

8

9 // S2, simplified, because the condition is always true:

10 (assert (= newB 0))

11 (assert (not (= delayA delayB)))

Listing 5.17: Example for the Write Comparison

1 (declare-fun old () Sort)

2 (declare-fun newA () Sort)

3 (declare-fun newB () Sort)

4 (declare-fun ...) // all read-attributes

5

6 // write-functions of event A

7 (assert (=> (CA,1) (= newA FA,1)))

8 ...

9 (assert (=> (CA,n) (= newA FA,n)))

10 (assert (=> (not (or CA,1 .. CA,n)) (= newA old)))

11

12 // write-functions of event B

13 (assert (=> (CB ,1) (= newB FB ,1)))
14 ...

15 (assert (=> (CB ,m) (= newB FB ,m)))

16 (assert (=> (not (or CB ,1 .. CB ,m)) (= newB old)))

17 (assert (not (= newA newB)))

Listing 5.18:General Example for the Write Comparison

5.5 Technical Contribution

In this section, we present the toolchain that allows analysis architects to

specify the structure and behaviour of simulation components. Our toolchain

follows our metamodel-based approach to specifying the structure and be-

haviour of simulation components presented in Section 5.2. We provide

the analysis architect with a model-based textual editor for the speci�ca-

tion of simulation components. The textual editor is based on our DSL to

182

5.5. Technical Contribution

specify the structure and behaviour of simulation components presented in

Section 5.2.4. Furthermore, we provide a tool that empowers the analysis

architect to identify similar simulation components. In our toolchain, we im-

plemented the structural and behavioural comparison according to Section 5.3

and Section 5.4.

5.5.1 Toolchain for Simulation Component Specification and
Comparison

Our approach is separated into specifying and identifying simulation compo-

nents; as a result, we also separated our toolchain accordingly. The �rst part

of our toolchain is for specifying the structure and behaviour of simulation

components. The second part of our toolchain is for comparing simula-

tion components to �nd simulation components that are similar regarding

structure and behaviour. Figure 5.4 displays the tools we created to realise

simulation component speci�cation and identi�cation and the third-party

tools we used in our toolchain. Our tools are depicted with black icons: the

Simulation Speci�cation Editor, the Analysis CLI, and the Analysis Results.
The external tools we use in our toolchain are Eclipse, EMF, Xtext for the

speci�cation; Neo4J and Docker to store the speci�cation; the Z3 Solver and

Neo4J for the comparison. This section explains how we use and implement

the toolchain in detail.

Neo4J

DockerSimulation
Specification
Editor

Analysis
Result

Analysis
CLI

Z3

queries creates

calls result

fillsprovides

SPECIFICATION IDENTIFICATION

EMF

Eclipse

Xtext

Figure 5.4.: Speci�cation and Analysis Toolchain [KR22]

183

5. Reuse of Model-based Analysis Components

5.5.1.1 Specification of Simulation Components

The speci�cation approach utilises the metamodels for specifying the struc-

ture (cf. Figure 5.1) and behaviour (cf. Figure 5.2) of simulation components.

We created the metamodels in EMF. EMF provides graphical and textual

editors to create such metamodels. Furthermore, it provides generators for

creating code stubs of the metamodel classes, editing classes, and rudimentary

tree editors. As shown in Figure 5.4, we use the EMF technology stack to

create the simulation speci�cation editors. Figure 5.5 depicts the tree editor

with an example model. The tree editors are suited for small models and rapid

prototyping; however, the tree editors are hard to navigate and understand.

Therefore, we use Xtext to create a grammar for a textual editor. The grammar

is presented in Section 5.2.4. Figure 5.6 shown the textual editor. The textual

editor allows the analysis architect to specify structure and behaviour.

The analysis architect can work exclusively with the text editor; the model

instances are created automatically. In the editor, each simulation component

is stored in a *.simspec �le, and the generated model �les are stored in the

*.structure �les.

Each node in the editor has a distinct ID and name property. In addition

to the ID and name, the developer can add a description to the root node,

representing the simulation component. Entities and events are contained

in the root node. Attributes on all entities are base datatypes like integers,

booleans, arrays, or enums. Each event can relate to several attributes to

express a reads relationship. The behaviour is represented independently

to separate the structure from the behaviour. The structural and behaviour

metamodels are built using the reference architecture for domain-speci�c

modelling languages [HSR19]. This allows us to individually maintain and

extend the metamodels while using an editor that accesses both metamodels.

Writes attributes and schedules relationships comprise the behaviour. Ac-

cording to our metamodel is, each writing attribute associated with a single

event. When the event is triggered, the writes attribute has a condition that,

if true, changes the referenced attribute. The writes attribute also models

how an attribute is changed.

Events can also schedule other events. Developers can add the schedules

node to the tree editor to model event scheduling. A schedules node refers to

the scheduling event and the event to be scheduled. The node also contains

the condition and a reference to the attributes assessed to decide whether the

184

5.5. Technical Contribution

simulation component plans an event. For the speci�cation to be used for

comparison, we convert it into a graph. As seen in Figure 5.4, the speci�cation

is saved in graph form in the graph database Neo4J
1
. Our tool has an interface

for saving the speci�cation to a database. For an easy setup of the Neo4J

database, we propose running the database in a Docker container.

Although the Neo4J database is utilised to store the transformed speci�cations

and execute the structural comparison, users can view each stored graph

via the Neo4J UI. We recommend using the UI only for debugging purposes

because the graphs are created from scratch for each analysis run. The graphs

are created each time new because we want to avoid inconsistencies between

the speci�cation and the data stored in the Neo4J database. The graphs in

Figure 5.7 depict six simulation components of varying complexity. The

blue nodes represent a simulation component. The yellow nodes represent

simulation component instances. The red nodes re�ect simulation component

events. The grey nodes are the simulation component’s datatypes. Reads and

writes are represented by arrows connecting events and datatypes. Arrows

between events represent schedule-relationships as well. Besides the struc-

tural information that is depicted in Figure 5.7, the behavioural information

is encoded as SMT statements that are annotated at the nodes and edges

where necessary. Although the graphs in the Neo4J user interface can be

modi�ed, the speci�cation in the tree editor cannot be automatically updated

depending on the new graph. As a result, we advocate only using the text

editor to amend the speci�cations.

5.5.1.2 Identification of Simulation Components

The speci�cation of simulation components alone serves as a documentation

tool. Using the speci�cation for the identi�cation of simulation components

regarding their structure and behaviour, we present the second part of our

toolchain: The second part of our toolchain accesses the graphs that are

stored in the Neo4J database. We use these graphs to compare simulation

components based on their speci�cation. When we compare two simula-

tion components, we use two approaches to �rst compare the structure and

second, to compare the behaviour. As the �rst step, the tool performs a sub-

graph isomorphism analysis [Ull76], searching whether a graph can be part

1
https://neo4j.com/

185

5. Reuse of Model-based Analysis Components

of another graph. To perform the graph-isomorphism analysis, we utilise a

Neo4J plugin developed by Cordio [Cor22]. After the sub-graph isomorphism

analysis con�rms that the two graphs have structural similarities, the simi-

larity analysis proceeds with the behaviour analysis. The annotations that

store the behaviour information and the reads- and writes-relations of the

metamodel are transformed into SMT statements based on the SMT-LIB stan-

dard
2
. We transmit the statements to an SMT-Solver to determine whether

the behaviour is identical. We use for the behaviour analysis the Z3 Theorem
Prover by Microsoft [Z3P19]. The theorem prover solves the SMT problems

we extracted from the simulation component speci�cations.

5.5.1.3 Configuration

To compare simulation components based on their speci�cation and to avoid

invoking the subgraph isomorphism and behaviour analysis manually, we

developed a CLI. Before starting the analysis, the tool must know where the

Z3 Theorem Prover is located. The PATH variable must be extended to provide

the location of our toolchain. We provide a command in the CLI to add the

path to the Z3 installation to the PATH variable of the operating system; thus,

the user must install the Z3 Theorem Prover manually. Our CLI provides the

following command to provide the location of the Z3 installation:

1 sim-compare z3 <PATH TO libz3.dylib>

2 sim-compare z3java <PATH TO libz3java.dylib

Listing 5.19: Z3 Theorem Prover Setup

It depends on the used operating system whether the user must manually

change PATH variable or use the CLI. Currently, the z3 and z3java commands

are tested for MacOS. Please consult the o�cial Z3 website
3

or the GitHub

page
4

for more information.

Neo4J can run locally or remotely; however, we assume the user has a standard

Neo4J instance that runs locally. Suppose that is not the case; the user uses

another IP address or username and password. In that case, the user must

2
https://smtlib.cs.uiowa.edu/

3
https://www.microsoft.com/en-us/research/project/z3-3/

4
https://github.com/Z3Prover/z3

186

5.5. Technical Contribution

invoke the following commands to change the IP, username, and password

according to their Neo4J installation:

1 sim-compare neoip <IP>

2 sim-compare neousr <USER>

3 sim-compare neopw <PASSWORD>

Listing 5.20:Neo4J Setup

5.5.1.4 Analysis Commands

The user can check which simulation components are saved in the Neo4J

database; these are available for searching for similar simulation components.

To display the available simulation components, the CLI can list all simulation

components that are stored in the Neo4J database by name:

1 sim-compare list

Listing 5.21: List all Simulation Components

The main feature of our toolchain is the search for similar simulation compo-

nents in structure and behaviour. To compare two simulation components,

the user can invoke the analysis with the following command:

1 sim-compare compare <SIM_A> <SIM_B>

Listing 5.22:Compare Simulation Components Command

This inconspicuous command consolidates the approaches to compare simu-

lation components regarding their structure (cf. Section 5.3) and behaviour

(cf. Section 5.4). Invoking the command for each simulation component can

be tedious for the user when the database contains hundreds of simulation

components. Thus, we recommend using the following command to search

for one speci�c simulation component:

1 sim-compare list | xargs -L1 sim-compare <SIM_A>

Listing 5.23:Compare with all Available Simulation Components Command

The �rst part of the command lists all available simulation components that

are stored in the Neo4J database. The list is piped into the sim-compare com-

mand, where <SIM_A> is the simulation component searched in the remaining

available simulation components.

187

5. Reuse of Model-based Analysis Components

5.5.1.5 Analysis Results

After invoking the sim-compare compare <SIM_A> <SIM_B> command, the

analysis result can have four outcomes. The �rst outcome is that the two

compared simulation components do not match structurally. Listing 5.24

shows the result when the structure of the simulation component SIM_A

is compared to the structure of the simulation component SIM_B and the

subgraph isomorphism yields no result.

1 Compare SIM_A and SIM_B

2 No isomorphism between simulator graphs!

Listing 5.24:No Subgraph Found

Listing 5.25 shows an excerpt of the result when the subgraph isomorphism

analysis was successful. Instead of the output No isomorphism between

simulator graphs!, the analysis compares the subgraphs’ mappings. The

currently analysed mapping is indicated by the placeholder n, and the total

number of mappings is indicated by the placeholder m.

1 Compare SIM_A and SIM_B

2 ...

3 Testing mapping n out of m:

Listing 5.25: Successful Subgraph Analysis

After the subgraph isomorphism analysis, each mapping that yields a pos-

itive result for the subgraph isomorphism analysis (i. e., they are identical

on a structural level) is analysed regarding the matching behaviour. As the

subgraph isomorphism can yield more than one result, each result will be

compared until the SMT-Solver �nds a solution or the behaviour is not iden-

tical. Listing 5.26 shows the results for a mapping that is not identical (SMT

status: NOT SATISFIABLE). For each attribute that is compared, the CLI will

print an info line like in line 4 of Listing 5.26.

1 Compare SIM_A and SIM_B

2 ...

3 Testing mapping n out of m:

4 Comparing ’XYZ writes demand’ with ’ABC writes demand’

5 SMT status: NOT SATISFIABLE

Listing 5.26:Not Matching Behaviour

188

5.6. Limitations

If the subgraph isomorphism analysis was successful and the behaviour is

identical, the results show a mapping of the events and entities that yielded

the result. Listing 5.27 shows the result of a successful subgraph isomorphism

and behaviour analysis.

1 ...

2 Testing mapping n out of m:

3 Comparing ’XYZ writes demand’ with ’ABC writes demand’

4 Behaviour identical with mapping:

5 [Event] EventA = EventC

6 ...

7 [Entity] EntityA = EntityZ

8 ...

Listing 5.27:Matching Behaviour

5.6 Limitations

While our approaches for comparing the structure and behaviour of DES

components have shown promising results, it is essential to acknowledge

their limitations. In this section, we will discuss these limitations to provide

a comprehensive understanding of our methods and their potential weak-

nesses.

In Section 5.6.1, we will discuss the limitations of the structure comparison

approach. One limitation is that the structure comparison approach only

considers isomorphic components with the same structure. However, com-

ponents with di�erent structures can have the same behaviour, which could

result in false negatives. Additionally, the approach relies on the availability

of a formal speci�cation, which may only sometimes be the case. Furthermore,

due to the computational cost of identifying isomorphism, the approach may

only be suitable for a small and complex DES component.

In Section 5.6.2, we will discuss the limitations of the behaviour comparison

approach. One limitation is that the approach relies on the availability of input-

output traces, which may only sometimes be available or may be di�cult to

obtain. Additionally, the approach assumes that components with similar

behaviour are functionally equivalent, which may not always be the case.

189

5. Reuse of Model-based Analysis Components

Furthermore, the approach may not be able to detect subtle di�erences in

behaviour that could be important in some applications.

By acknowledging these limitations, we hope to provide a clear understanding

of the scope and applicability of our approaches. While these limitations may

constrain the e�ectiveness of our methods in speci�c scenarios, they provide

a solid foundation for future research in DES comparison and veri�cation.

5.6.1 Limitations of the Structure Comparison

The �rst step in comparing DES components is to perform a structure com-

parison. This step is not intended to identify identical components but rather

to �lter the DES components with the same structure, i.e., isomorphic compo-

nents. However, these isomorphic components can have di�erent semantics

and di�erent behaviour.

For example, two DES components may have the same structure but di�erent

semantics. As a result, even though they may look identical, they have

di�erent meanings and functions. Similarly, two DES components with the

same structure and semantics may exhibit di�erent behaviour when subjected

to the same input.

Using graph isomorphism is one way to preselect DES components based

on their structure. Graph analysis can be used to check for isomorphism

between DES components e�ciently. This preselection step is important

because comparing the behaviour of every available DES speci�cation with

the desired speci�cation can require a lot of computation time due to the

complexity of the task. By preselecting DES components based on their

structure, the SMT solver can focus only on those likely to be behaviourally

equivalent to the desired speci�cation, which can signi�cantly reduce the

computation time of the behaviour comparison process.

In conclusion, performing a structure comparison is an essential �rst step

when comparing DES components. Although isomorphic components may

have the same structure, they can have di�erent semantics and behaviour.

Preselecting DES components based on their structure using the structural

comparison can help avoid the need to compare the behaviour of every

available DES speci�cation with the desired speci�cation, which can save

time and computational resources.

190

5.6. Limitations

5.6.2 Limitations of the Behaviour Comparison

The time required for behaviour comparison of a DES component increases

with the number of events and entities involved in the system. However, the

preselection approach through structural comparison cannot guarantee that

it only discards the DES components with the same behaviour. Nevertheless,

preselection is still necessary to reduce the number of DES components that

require behaviour comparison, thus reducing the overall computation time

of the behaviour comparison.

It is essential to note that the behaviour speci�cation focuses only on events

and the variables that change due to those events. It does not consider

computations of the DES components that are not a�ected by events. The

speci�cation approximates the behaviour of a DES component, which results

in the behaviour comparison being a heuristic to reduce the search space for

the developer. While this heuristic helps reduce the computation time, it is

still the developer’s responsibility to analyse the matching components to

ensure their suitability for the desired purpose.

Furthermore, the approach’s limitations in comparing the structure and be-

haviour of DES components need to be considered. One such limitation is the

inability to identify complex behaviours due to the simplicity of the behaviour

speci�cation. Additionally, the structural comparison approach may need to

be revised to identify the subtle di�erences between the components with

di�erent behaviours.

Another limitation could be the assumptions about the behaviour speci�ca-

tion, which can result in the behaviour comparison being an approximation.

As a result, the developer needs to be cautious when interpreting the results

of the behaviour comparison.

In conclusion, the preselection approach through structural comparison helps

reduce the number of DES components that require behaviour comparison,

thus reducing the computation time. However, the limitations of this ap-

proach and the approximations made in the behaviour speci�cation need to

be considered while interpreting the results of the behaviour comparison. Ul-

timately, the developer is responsible for analysing the matching components

to ensure their suitability for the desired purpose.

191

5. Reuse of Model-based Analysis Components

Figure
5.5.:

S
i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
E

d
i
t
o

r
–

T
r
e
e
-
E

d
i
t
o

r
[
K

R
2
2
]

192

5.6. Limitations

Fi
gu
re
5.
6.
:S

i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
E

d
i
t
o

r
–

T
e
x
t
-
E

d
i
t
o

r
[
K

R
2
2
]

193

5. Reuse of Model-based Analysis Components

Figure
5.7.:

S
i
m

u
l
a
t
i
o

n
S
p

e
c
i
�

c
a
t
i
o

n
G

r
a
p

h
V

i
s
u

a
l
i
s
a
t
i
o

n

194

Part III.

Validation

6. Case Studies

In this chapter, we introduce the case studies we use throughout evaluat-

ing our contributions. The research questions and metrics to validate our

contributions are designed to work in the context of particular systems and

particular cases. A suitable method for gathering the metrics and answers to

our research questions is applying our approaches to such systems. According

to Wohlin [Woh21] must, an empirical case study is a contemporary, real-

world phenomenon. They must be actively developed to make case studies

valuable for evaluation. Therefore, we decided to use four model-based anal-

yses originating from di�erent domains: SimuLizar [Reu+16], SimuLizar is a

software architecture performance analysis tool based on the PCM; Camunda
BPM [Gei+18], Camunda is a BPMN2-based work�ow and simulation engine;

the Karlsruhe Architecture Maintainability Prediction for Automated Production
Systems (KAMP4aPS) [Hei+18], KAMP4aPS is an analysis for predicting the

maintainability of automated production systems utilising change impact

analysis; Moreover, the Smart Grid Topology (SmartGrid) [Ras+15], SmartGrid

is a resilience analysis to reason about energy network grid topologies.

We use case studies to evaluate our three contributions. To evaluate our

reference architecture for model-based analyses, we modularised the case

studies so that they comply with the reference architecture. To evaluate the

bad smells that arise from the co-dependency of DSMLs and model-based

analyses, we searched the case studies for occurrences of bad smells. Further,

we �xed the bad smells in the case studies to determine the impact on evolv-

ability, understandability, and reusability. For evaluating our speci�cation

and reuse approach, we speci�ed analysis components of the case studies

and used the speci�cation to apply our search approach.

In Section 6.1, we explain the criteria for selecting the model-based analyses.

We present the case study SimuLizar in Section 6.2. The case study Camunda

is presented in Section 6.3. KAMP4aPS is presented in Section 6.4, and the

case study SmartGrid is presented in Section 6.5.

197

6. Case Studies

6.1 Selection Criteria

The selection criteria for the case studies are separated into four requirements.

Our �rst requirement is independent of the contribution and the approach we

want to evaluate. In order to be able to evaluate our contributions through

representative case studies, we need to be able to change the source code of

the model-based analyses. Therefore, the �rst and most important selection

criteria the case studies must meet is that the model-based analyses must be

publicly available as open-source software. Otherwise, we cannot test our

hypothesis on real-world case studies.

Our second requirement is independent of the contribution and the approach

we want to evaluate. The main research goal of this thesis is to improve

the evolvability and reusability of model-based analyses. Ergo, the second

selection criteria the case studies must meet is that the case studies use models

as input, and the model must be based on a DSML.

Our third requirement concerns the �rst contribution, a reference architecture

for model-based analyses, and the second contribution, bad smells in model-

based analyses. We must be able to derive historical evolution scenarios from

the case studies to determine the e�ect of our contributions on the evolvability

of the case studies we investigate. In order to derive representative changes

that happened during the development of the case studies, the developers of

the model-based analysis must use some source code versioning.

The fourth requirement concerns the �rst contribution, a reference architec-

ture for model-based analyses, and the second contribution, bad smells in

model-based analyses. Our �rst and second contribution assumes that the

DSML is modularised according to the reference architecture for DSMLs by

Heinrich et al. [HSR19]. Hence, we focus on the four already modularised

DSMLs: the PCM, the BPMN2, the KAMP4aPS metamodel, and the SmartGrid

metamodel. Due to the pre-selection of metamodels, we could not in�uence

the number of available analyses and the size of the case studies, which range

from about 10.000 lines of code to more than 500,000 lines of code. Further-

more, we assume the corresponding analyses have decomposition potential

due to the metamodels’ decomposition potential. We investigated di�erent

kinds of model-based analyses in terms of new vs old, small vs large size,

many vs few layers, and di�erent domains.

198

6.2. The Palladio Simulator

6.2 The Palladio Simulator – So�ware Architecture
Quality Prediction

The Palladio Simulator is an established software architecture quality analysis

tool based on the PCM. It consists of three analyses (SimuLizar, SimuCom,

and EventSim), each of which employs a distinct analysis approach and can

make performance predictions based on the PCM.

The model-based analysis SimuLizar uses instances of the PCM to assume

the modelled system’s performance and reliability. Furthermore, SimuLizar

can change the model and simulate recon�gurations of the system during

runtime. SimuLizar is the most sophisticated and the best maintained of the

three analyses; thus, we have selected it as a case study. SimuLizar represents

a historically grown and versatile model-based analysis that can analyse

multiple aspects of software quality.

The Palladio Simulator and the PCM are publicly available Open Source

software. Heinrich et al. [HSR19] modularised the PCM so that it conforms

to their reference architecture for DSMLs. Figure 6.1 shows the language

components of the modular PCM. The modular PCM consists of three layers;

on the paradigm layer, they locate the essential language components needed

to model software systems on an architectural level.

Paradigm Layer: The paradigm layer contains twelve language components.

The units, identi�er, variables, and base provide the basic building blocks for

modelling software systems on an architectural level. The se� component

allows the user to model the behaviour of entities of the DSML. For mod-

elling the behaviour, statistical expressions are required; thus, the modular

PCM provides the stoex language component. It depends on the probfunction,

which allows the modelling of statistical distributions. To store and com-

pose entities of the DSML, the modular PCM provides the repository and the

composition component. The composition language component serves as a

generic framework for all structures within the PCM. It incorporates the con-

cept of composition, introducing a new superclass Containable, which serves

as the base for all classes that can be included within a ComposedStructure.
AssemblyContexts and Connectors are de�ned as Containable elements in this

language component. The repository language component encompasses the

fundamental abstractions of the repository view type. The repository compo-

199

6. Case Studies

Paradigm π

Domain Δ

Quality Ω

identifier

base variables

stoex

probfunction

units

annotations composition repository seff

usage

environment

software
composition

software
repository

software
usage resources

resource
interfaces

software
seff

abstract
component typesinfrastructure allocation

eventsinternal
behaviour

performance
annotations

performance
reliability

annotations

reliability

Language Component Language Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 6.1.:Dependency Structure of the modular PCM [SHR18]

nent comprises Components, Interfaces, and their associated relationships

(Roles).

Domain Layer: The domain layer contains the language components that

are required for the domain of architecture and behaviour modelling of soft-

ware systems. Therefore, the basic building blocks from the paradigm layer

are extended to allow the user to model the architecture of software sys-

tems. The software composition extends the composition component; further

specialisations are the software repository to store modelled software compo-

nents, and the software se� and the software usage to model the behaviour of

software components. The software repository language component extends

its counterpart on the paradigm layer by incorporating domain-speci�c ele-

ments, including exceptions and interfaces that provide operations. It also

de�nes an atomic component with an abstract class that serves as a generic

200

6.2. The Palladio Simulator

extension point to specify the e�ects of services. While using this exten-

sion point, the language component for describing behaviour software se� is

not limited to behaviour-speci�c speci�cations and can be utilised for other

service e�ect speci�cations. As a result, the software repository language

component is devoid of behaviour-related content. The software repository
language component can be utilised to de�ne software components, their

interfaces, and operations. However, it is commonly used with the compo-
sition and se� language components. The environment component of the

paradigm layer gets extended to allow the modelling of resources like Hard

Disk Drives (HDDs) and Central Processing Units (CPUs), which can be allo-
cated by di�erent software components. The resources language component

extends the functionality of the environment language component by incor-

porating hardware resource speci�cations into its containers and links. These

speci�cations serve dual purposes; they can either be utilised solely for docu-

mentation or to simulate performance. These resources process the resource

demands that can be extended into Service E�ect Speci�cations (SEFFs). In

addition to the dependency on the environment language component, the

resources language component also relies on units. The software composition
language component extends the concepts from the composition language

component on the paradigm layer by domain-speci�c abstractions. It provides

concrete implementations of abstract composition concepts through several

classes, including System, CompositeComponent, SubSystem, and various

Connectors. This language component is designed to be utilised with the

software repository language component to describe the internal structure

of ComposedStructures such as Systems and CompositeComponents. The

infrastructure language component is an extension of the se�, repository, and

composition view types. It introduces new abstractions, such as component

types, interfaces, roles, connectors, and calls, referred to as infrastructure, to

model middleware.

Quality Layer: On the quality layer, they annotated the two quality attributes

performance and reliability. The quality layer introduces the analysis of two

quality properties. First, it provides the performance and the performance
annotations components that allows the user to analyse the performance

of a software system. Second, it provides the reliability and the reliability
annotations components that allows the user to analyse the reliability of a

software system.

201

6. Case Studies

6.3 Camunda – Business Process Workflow and
Simulation Engine

We selected the model-based analysis Camunda as our second case study.

The analysis Camunda is a work�ow and simulation engine that uses mod-

els of business processes. These business process models are based on the

DSML BPMN2, developed by the Object Management Group (OMG). The

BPMN2 standard serves as an ISO standard for modelling business processes.

It provides symbols for domain experts to model and document business

processes and work�ows. The standard contains a formal description of the

execution semantics for each model element. In the model instances, it is

possible to compose and correlate events, supporting the description of hu-

man interaction in processes. The BPMN2 model is a type of �owchart which

follows the tradition of programme sequence visualisation. The BPMN2 is re-

lated to Event-driven Process Chains (EPC), also used for modelling business

processes.

The model-based analysis Camunda is also a software project developed as

Open Source software; thus, it ful�ls our �rst requirement for case studies.

The developers of Camunda also use a source code versioning system, which

ful�ls our third requirement. It covers the additional domain of business

process analysis, besides the standard BPMN2, it also supports the Case Man-

agement Model and Notation (CMMN 1.1) and the Decision Model Notation

(DMN 1.1). Camunda is a fork of the free work�ow management system Ac-

tiviti, developed in 2010. In 2013 Camunda BPM was forked from Activiti as

an open-source project by the company Camunda in Berlin. Our refactorings

focus on the Camunda BPM Platform, consolidating the metamodel’s depen-

dencies. Due to the size of the Camunda BPM Platform (over 500,000 lines of

code), we were unable to refactor it in a reasonable time frame; therefore, we

focused our refactorings on our scenarios’ a�ected components and �les.

Figure 6.2 depicts an excerpt of the modular BPMN2 DSML [SHR18]. The

DSML is separated into three layers, the paradigm layer, the domain layer,

and a layer that does not correspond to the reference architecture for DSMLs

by Heinrich et al. [HSR19].

Paradigm Layer: The paradigm layer contains the fundamental features

for �ow diagrams like activities, resources, or �ows. Furthermore, it contains

the core component, which implements fundamental concepts in BPMN2

202

6.3. Camunda

Paradigm π

Domain Δ

Diagram Layer

Language Component Language Component Dependency Layer Separator

π
Paradigm

Δ
Domain

BPMN Diagram
Interchange

Diagram
Interchange

Diagram
Commons

process
resources

advanced event
expressions choreographies

collaborations

conversations

human
resources

advanced
events

auditing and
monitoring

human
interaction processes

expressions

resources

activities

flowscorrelations

services

externals

core

messaging

Figure 6.2.:Dependency Structure of the Modular BPMN2 DSML [SHR18]

modelling, including De�nitions (root container for all models), RootEle-

ment (superclass for all primary concepts), Documentation, and BaseElement

(provides ID and documentation reference). It also contains the language

component expressions, which implements informal and formal expressions.

Many BPMN2 concepts, such as Gateways, Subprocesses, Loops, Correlations,

and Resources, use expressions to express conditions. The BPMN2 speci�-

203

6. Case Studies

cation provides a services package that serves as a language component for

modelling services. This package de�nes interfaces consisting of operations

and service endpoints that can be extended externally. The services language

component relies on the messaging component. Furthermore, this language

component also has a transitive dependency on the core module. The DSML

contains the resources language component on the paradigm layer for allocat-

ing resources to activities. According to the BPMN2 speci�cation, correlation
is utilised to link a speci�c message to an ongoing conversation between two

process instances.

Domain Layer: The language components required to model business pro-

cesses are on the domain layer. It allows modelling human interaction of

activities and human resources. The language component human resources
provides speci�c concepts related to human resources in BPMN2 modelling.

Its sole dependency is on the resources language component. The concept of

processes is introduced on the domain layer. It is part of the domain layer due

to domain-speci�c properties. The processes depends on artefacts and services.
The advanced events contains BPMN2 speci�c events that are too speci�c to

be part of the paradigm layer. Collaborations are employed to express the

interaction between processes. As such, the collaboration language compo-

nent references the process language component. Choreographies are utilised

to specify the sequential interaction between processes. The choreographies
language component depends on the collaborations language component,

as choreography is a specialisation of collaboration. Conversations provide

an overview of participant interaction. They may reference collaborations
between participants.

Diagram Layer: The diagram layer is an exception to the reference architec-

ture for DSMLs; it contains exchange-speci�c information that should not be

part of the DSML. However, because the DSML follows the BPMN2 standard,

the features on the diagram layer remain in the DSML.

6.4 KAMP and KAMP4aPS – Change Propagation
Analysis

We selected the model-based analysis KAMP4aPS as our third case study.

The DSML used by the KAMP4aPS model-based analysis is a single-purpose

204

6.4. KAMP and KAMP4aPS

DSML; its metamodel is only used by a single model-based analysis. Although

the methodology [HBK18] of the KAMP-Framework is designed to support

the domains of software systems [Ros+15], business processes [Ros+17],

production systems [Hei+18], and the software of automated production

systems that runs on Programmable Logic Controllers (PLCs) [Bus+18], each

domain requires a dedicated analysis and metamodel. The analysis must

contain the change propagation rules for the change scenarios that work

on instances of their domain metamodel. For example, in the domain of

automated Production System (aPS), the KAMP4aPS analysis contains the

metamodel that allows the analysis user to model aPS.

The KAMP4aPS DSML was used as a case study by Heinrich et al. [HSR19];

as we need a modularised DSML for our evaluation, we will focus on the

KAMP4aPS. In addition to the Palladio Simulator and Camunda, the DSML

KAMP4aPS does cover an additional domain. Thus, we can further extend

the diversity of our case studies. The KAMP4aPS metamodel and analysis

has been under development since 2016; it contains six components, one of

which consolidates the dependencies on the metamodel.

Figure 6.3 depicts an excerpt of the modular KAMP4aPS DSML. The DSML

is separated into three layers, the paradigm layer, the domain layer, and the

quality layer. The domain is further separated into three layers; due to the

separation, the DSML architect can model the dependencies from a concrete

aPS (Pick and Place Unit (PPU)) to the more generic aPS and the most generic

Automated System (AS) domain.

Paradigm Layer: The paradigm layer contains the fundamental features for

entity handling and modi�cations. It contains the basic language component,

allowing model entities with a unique identi�er and a name. The modi�ca-
tion marks language component provides the starting point for the change

propagation analysis, where an arbitrary entity can be selected as the initial

change.

Domain Layer: The domain layer contains the features required to model

production systems. Strittmatter et al. [Str20] decided to separate the domain

layer. They created three layers: one for the modelling of a wide range of

automated systems (as); another layer for modelling specialised as automated

production systems (aps). Moreover, the last domain layer allows modelling

a pick-and-place-unit (ppu), a subset of automated production systems. The

domain layer also contains the language components for modelling non-

structural elements. In the context of the KAMP framework, these non-

205

6. Case Studies

Language Component Language Component
Dependency

Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Paradigm π

Domain Δ (as)

Quality Ω

basic modification marks

as K4aPS AS

aps

Domain Δ (aps)

ppu
Domain Δ (ppu)

as foaa as modification
marks

aps modification
marks

ppu modification
marks

K4aPS APS

K4aPS PPU

K4aPS FoAA

Figure 6.3.:Dependency Structure of the Modular KAMP4aPS DSML [SHR18]

structural elements are called Field of Activity Annotations (FoAA). These

FoAAs allow annotating additional elements like tests or documentation to

the aPS elements. This allows re�ning the change impact analysis to consider

artefacts that are not part of the aPS but are also a�ected by a change.

Quality Layer: On the quality layer are the features contained that allow

the user to model modi�cation information and further a�ected elements

that are not part of the domain. The layer encompasses the as foaa language

206

6.5. SmartGrid

components, which implement modular design and solely incorporate the

most generic concepts from the AS language component. Such elements are,

for example, documentation or tests. All language components within the

layer are situated here as they establish abstract representations required for

evaluating the sustainability of a given automated system. Also, the quality

layer introduces speci�cation for the modi�cation marks for the three domains

(as, aps, and ppu).

6.5 SmartGrid – Energy Network Simulation

Like the model-based analysis KAMP4aPS, the model-based analysis Smart-

Grid also works with a single-purpose DSML. The SmartGrid energy network

simulation performs an impact and resilience analysis. The metamodel is used

to model topologies of smart grid energy networks. It also adds the domain

of energy network analysis to our case studies; it is the second-youngest

analysis; the development started in 2014.

Figure 6.4 depicts an excerpt of the modular SmartGrid DSML. The DSML

is separated into three layers, the paradigm layer, the domain layer, and the

quality layer.

Paradigm Layer: The paradigm layer contains the fundamental features for

entity handling and graph notation. The base language component constitutes

an abstract superclass and acts as a foundational element of all other language

components. It inherits the attributes of both name and ID to its dependent

components. Owing to its wide usage, dependencies on the base language

component are not explicitly stated. Additionally, it is independent of any

external components and has no incoming dependencies. Notably, the base
language component is not a language construct and was factored out to serve

the needs of multiple language components that required its functionality.

The graph language component is an abstract representation that de�nes a

basic network graph structure. The nodes in this graph are interlinked by

logical and physical connections and can be attached to a power supply. This

structure serves as the foundation for more complex network con�gurations,

providing a clear and concise representation of the relationships between

nodes in the network.

207

6. Case Studies

Paradigm π

Domain Δ

Quality Ω

base graph

topo typerepo

input output

SGT.Topology

SGT.DeviceTypes

SGT.ImpactAnalysis

SGT.Input SGT.Output

Language Component Language Component
Dependency

Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 6.4.:Dependency Structure of the Modular SmartGrid DSML [SHR18]

Domain Layer: The domain layer contains the features required to model

topologies of di�erent types. The devices language component provides a

suite of device types tailored explicitly for use in smart grid systems. These

device types are integrated into the network graph structure through sub-

typing. As a result, this language component is dependent on the graph
language component. The devices language component provides a well-

de�ned and specialised set of device types for use in smart grid networks.

This language component enables the construction of complex network con-

�gurations, where the various components of the grid are represented as

interconnected devices. The typerepo language component extends the graph

208

6.5. SmartGrid

and topo language components. The types of the typerepo are stored in a

separate repository, independent of any speci�c smart grid topology. The

extended classes reside within the topo and graph language components. The

typerepo language component provides a centralised repository for manag-

ing di�erent types of smart grid components, enabling a clear separation of

concerns and simplifying the maintenance and evolution of the smart grid

system.

Analysis Layer: The features contained on the quality layer allow the user

to model the input and outputs required for the analysis.

209

7. Reference Architecture
Evaluation

In this chapter, we present the evaluation of our reference architecture for

model-based analyses. In Section 7.1, we discuss whether our reference

architecture ful�ls the requirements, and in Section 7.2, we explain the goals

and metrics for the evaluation. In Section 7.3, we present the design of our

evaluation, and in Section 7.4, we present the results of the evaluation. In

Section 7.5, we discuss the threats to validity. Finally, in Section 7.6, we

summarise our �ndings and discuss the evaluation. In our evaluation, we use

analysis components and not the analysis features for our discussion because

we evaluate the source code of the case studies.

7.1 Discussion of the Requirements

In Chapter 6, we introduced the case studies we use throughout this thesis.

Before we introduce our goals and metrics that show whether the require-

ments are met, we discuss the requirements that we can show are ful�lled by

refactoring these four case studies.

The �rst requirement we discuss is R2 (Non-intrusive Extension). During

the refactoring process on the case study model-based analyses, we had to

analyse the models that the system uses, identify the system’s features, and

then refactor the case studies to make them more modular and extensible. By

analysing the models, we gained a deeper understanding of the case studies

underlying structures, which have informed our decision-making during the

refactoring process. Identifying the system’s analysis features has helped

us determine which parts of the system were only part of the model-based

analysis and which parts represent the features of the corresponding DSML.

We also identi�ed when we had to introduce an extension inherited from

211

7. Reference Architecture Evaluation

more generic classes and analysis components. If the extension required to

extend multiple classes, we had to introduce new interfaces, as Java does not

allow multiple inheritance. As an interface alternative, we use aggregation

or composition to introduce extensions. All these types of extensions have in

common that they do not a�ect the more generic classes and analysis compo-

nents, as none of the extended classes becomes altered. Thus, we can state that

our reference architecture for model-based analyses meets the requirement

R2, as extensions follow the structure of the DSML transitively.

The following requirement we discuss is R3 (Consistent Dependencies). This

thesis hypothesises that transferring the reference architecture for DSMLs

to model-based analysis improves the evolvability, understandability, and

reusability of the resulting model-based analyses. This hypothesis is based

on the assumption that the concepts of the reference architecture for DSMLs

provide a consistent and structured approach to modelling that can be trans-

ferred from one domain (DSMLs) to another (model-based analyses). To test

this hypothesis, we refactored the case studies to follow the structure of their

corresponding DSMLs. This involved making the structure of the DSML and

its corresponding model-based analysis consistent, as outlined in Section 3.2.

Through the process of refactoring the case studies, we were able to achieve a

consistent structure of DSML and corresponding model-based analysis. This

consistency demonstrates that the reference architecture for model-based

analyses meets requirement R3, providing a structured approach to modelling

that can be applied across di�erent domains, leading to increased evolvability,

understandability, and reusability of resulting models.

The third requirement we discuss is R4 (Need-speci�c Reuse). Our reference

architecture for model-based analyses uses feature models and the feature no-

tation to modularise a model-based analysis. This way, the analysis architect

can specify features of a model-based analysis. Each con�guration (i. e., sub-

graph) in our reference architecture can be reused in another, model-based

analysis. An analysis architect can also use a con�guration as an individ-

ual model-based analysis. A con�guration of a model-based analysis is a

valid subset of the whole feature model of the model-based analysis. This is

only possible because the requirement R2 (Non-intrusive Extensions) is met

by our reference architecture; the only constraint is that the con�guration

must not depend on other con�gurations. Therefore, we can state that our

reference architecture for model-based analyses meets the requirement R4
(Need-speci�c Reuse).

212

7.2. Research Goals and Metrics

The following requirement we discuss is R5 (Need-speci�c Use). The analysis

architect can also choose to extend a con�guration to create a new or extend

an already existing model-based analysis. Another possibility is that the

analysis architect uses two con�gurations separately, for example, perfor-

mance and reliability. If the analysis architect needs a performability analysis,

they can combine these two con�gurations to create a new model-based

analysis. Ideally, they can combine those two con�gurations; in a real-world

example, they must add new features so that the two con�gurations can

work together. Therefore, we can state that our reference architecture for

model-based analyses meets the requirement R5 (Need-speci�c Use).

The last requirement we want to discuss is R1 (Improved Evolvability). Re-

garding the requirement R1 (Improved Evolvability), we cannot determine

whether it is satis�ed by merely discussing the application of the reference

architecture for model-based analyses to our four case studies, especially

the evolvability of such complex systems, as our four case studies require

additional research. Therefore, we present and run a GQM-based [CR94]

evaluation to determine whether our reference architecture for model-based

analyses improves the evolvability and understandability of our four case

studies.

7.2 Research Goals and Metrics

We separated the goals and metrics section into three parts. The �rst part

introduces our two research goals regarding the requirement R1 (Improved

Evolvability). The second part introduces our metrics to evaluate whether

we reached our goals. Finally, the third part describes the structure of the

scenario-based evaluation.

The �rst goal (G1) we derived from R1 (Improved Evolvability) is:

Research Goal 7.1
We want to analyse whether our reference architecture for model-based

analyses improves the evolvability of model-based analyses.

The second goal (G2) we derived from R1 (Improved Evolvability) is:

213

7. Reference Architecture Evaluation

Research Goal 7.2
We want to analyse whether our reference architecture for model-based

analyses improves the understandability of model-based analyses.

For both research goals G1 and G2, we use the four case studies introduced

in Chapter 6. We compare the original, monolithic model-based analysis

with its modular model-based analysis counterpart for each case study. We

modularised each modular model-based analysis according to our reference

architecture. Due to the size of the case studies, we focused on the metrics of

the refactored scenarios. Modularising the whole model-based analyses is

not feasible, as it does not alter the evaluation results (cf. Section 7.3). Also,

we use the same metrics for both research goals G1 and G2 the same metrics

to determine evolvability and understandability for both research goals.

We apply the properties of the software evolvability model by Breivold et

al. [BCE08] to determine the evolvability of our approach. This model com-

prises the sub-characteristics of analysability, integrity, changeability, exten-

sibility, portability, and testability. Regarding the ISO/IEC 25010 software

quality model [ISO10], the characteristic of maintainability and portabil-

ity map to the sub-characteristics of the software evolvability model. The

sub-characteristics analysability, changeability, stability, and testability are

part of the maintainability characteristic of ISO/IEC 25010, and the sub-

characteristics of adaptability, installability, co-existence, and replaceability

are part of the portability characteristic of ISO/IEC 25010. According to Briand

et al. [BWL01], and Cruz-Lemus et al. [Cru+10], cognitive complexity a�ects

the analysability and modi�ability of software. To measure the cognitive

complexity of a system, we refer to the amount of structural information

within a system. We choose the same metrics as Heinrich et al. [HSR19]

to measure the cognitive complexity of a system. They use the hypergraph

metrics of Allen et al. [AGG07], which uses information size, complexity,

and coupling to measure the information entropy of a software system. The

formal de�nitions by Briand et al. [BMB96] are the foundation for the metrics

by Allen et al. [AGG07].

The hypergraph metrics to evaluate our case studies are presented in Sec-

tion 2.2.2.

214

7.3. Evaluation Design

7.3 Evaluation Design

In this section, we explain the reasoning behind the evaluation design. We

explain which types of evolution scenarios we consider and how we selected

the concrete evolution scenarios for each case study.

7.3.1 Evolution Scenarios

In general, we distinguish between modi�cation changes and extension

changes. However, these two changes are identical regarding the devel-

oper’s e�ort. The analysis developer must understand the code base before

modifying or extending the model-based analysis. Therefore, our evaluation

does not distinguish between modi�cation and extension changes to deter-

mine evolvability and understandability. An evaluation scenario represents

changes in a model-based analysis. Ideally, each evolution scenario repre-

sents a change in one of the case studies. However, deriving real changes is

sometimes possible (i. e., lost commit history, restricted access). Therefore,

we distinguish three types of evolution scenarios. We present the types from

the best (most representative) to the worst (least representative).

Historical Evolution Scenarios: The �rst type is the historical evolution
scenario. A historical evolution scenario is derived from real changes in one

case study. In the development history of a model-based analysis, analysis

developers must adapt or extend a model-based analysis based on changes

to the corresponding DSML. For example, when new features are added to

the DSML, they can change existing components, resulting in a historical

change. We searched the commit history of our four case studies to �nd such

historical changes. The only constraint is that the change a�ects classes that

depend on the DSML. It is su�cient if only one class has such a dependency;

otherwise, our selection criteria are too strict about yielding results.

Potential Evolution Scenarios: The second type is the potential evolution
scenario. Potential evolution scenarios were the �rst fallback when the search

for historical evolution scenarios yielded insu�cient results. If, for example,

the commit history is lost, incomplete, or not accessible, the potential evolu-

tion scenarios can serve as an alternative to generating evolution scenarios.

To generate a potential evolution scenario, the evaluation conductor must

analyse the source code of the model-based analysis. They must identify

215

7. Reference Architecture Evaluation

classes that could be a�ected by a change. An example is to search for classes

containing analysis algorithms with dependencies on language features of

the DSML.

Random Evolution Scenarios: The third and last type is the random evolu-
tion scenario. The random evolution scenario is the last resort to generating

evolution scenarios. If the conductor of the evaluation cannot access histori-

cal data and cannot identify potential evolution scenarios, they have to create

random evolution scenarios. In such a scenario, the conductor randomly

picks classes of the model-based analysis and groups them into one evolution

scenario.

We created 40 evolution scenarios from historical data for our four case studies.

Nonetheless, we decided to contain the potential and random evolution

scenario as an option for further case studies. Our evaluation scenarios and

raw results are available in our supplementary material [KHR22b] and our

technical report [KHR22a].

7.3.2 Conduction of the Evaluation

We use the four case studies presented in Chapter 6 for the evaluation. For

each case study, we selected ten evolution scenarios. The repositories of

the case studies are all publicly available; thus we were able to extract ten

historical evolution scenarios per case study. After we selected the historical

evolution scenarios, we extracted the a�ected classes per scenario.

We refactored each scenario according to our reference architecture. For the

refactoring, we used the refactoring techniques presented in Section 3.3.3.

We also used our tool Refactor Lizar to fasten the refactoring process (cf. Sec-

tion 3.6).

We compare the original evolution scenario to the refactored evolution sce-

nario to assess whether the evolvability and understandability have improved.

The refactoring can result in a di�erent number of classes. We only consider

the classes that would be a�ected by the change of the evolution scenario.

For example, a change can a�ect only one line in a class method with over

500 lines of code. After the refactoring, we might have moved the method to

another class; thus, the change would no longer a�ect the original class. As a

result, we omit classes that are no longer a�ected by a change.

216

7.3. Evaluation Design

For each evolution scenario before and after the refactoring, we calculate the

complexity, coupling, and cohesion according to Section 2.2.2. To calculate

the metrics, we also use our tool Refactor Lizar (cf. Section 3.6). We present

the results in the following section.

7.3.3 SimuLizar Refactoring

We started the modularisation with the release of version 4.3 of the Palladio-

Simulator and used the modularised PCM presented in [HSR19; SHR18].

Before modularising SimuLizar, we had to exchange the PCM with its mod-

ularised counterpart, the modular PCM. In order to exchange the PCM, we

had to change each dependency of SimuLizar from the PCM on the modular

PCM. Changing the dependencies is necessary, as the modular PCM is not

used in the Palladio-Simulator. After changing the dependencies, we analysed

SimuLizar regarding the problems like the accumulation of dependencies,

the scattering of dependencies, layer violations or cycles. We used our tool

Refactor Lizar to �nd an accumulation of dependencies to identify which

classes we have to separate the components into the three desired layers. The

scattering of dependencies indicates which classes and components could

be merged, as the refactoring of the accumulation of dependencies results

in many small classes. The accumulation of dependencies analysis resulted

in 18 occurrences, and the scattering of dependencies analysis resulted in 33

occurrences. The cycles and layer violations occurred during the refactoring;

thus, we have no initial number of occurrences or �xes. First, we focused

on accumulating dependencies of components that are supposed to be on

di�erent layers. Therefore, we applied horizontal-split refactoring to separate

the analysis component in the layers π , ∆, and Ω, which resulted in three

components. Then, we applied vertical-split refactorings to the three layers

to separate the accumulation of dependencies still present in these layers.

The �nal step was to merge the components where the language features

were scattered over di�erent classes and components. We could not �x all

occurrences of the scattering of dependencies; for certain analysis opera-

tions, multiple language features are required. The model observing part

of SimuLizar requires the modelobserver language feature and the software
usage language feature. This resulted in nine components on π , 22 on ∆,

and one on Ω. The component count increased from one component to 32

components. We reduced the number of accumulating dependencies from

18 to zero and the number of scattering dependencies from 33 to ten. In the

217

7. Reference Architecture Evaluation

following sections 7.3.4.1 and 7.3.4.2, we present detailed information about

the modular structure of SimuLizar after refactoring. The details regarding

the refactoring, especially the classes before and after the refactoring, can be

found in our supplementary material [KHR22b].

org.palladiosimulator
.simulizar

Language
Feature analyses optional mandatory

Figure 7.1.: SimuLizar Dependencies on the mPCM, simpli�ed [KHR22a]

7.3.4 Modular SimuLizar– mSimuLizar

Figure 7.2 depicts the structure of SimuLizar after the modularisation. In

Figure 7.2, we exclude the analysis components without representation in

the language, e. g. events, the interpreter component, or the recon�guration

component, as most analysis components depend on them. Including these

additional components renders the already complex �gure unintelligible.

7.3.4.1 Paradigm Layer

Composition: The composition component handles the assembly of resources

of the PCM. On the paradigm layer, the functionality of the composition

component is prepared to handle any resources. The assembly of component

types includes the preparation of resources. Preparing a resource means

setting the context and the context hierarchy of the resource. The composition

218

7.3. Evaluation Design

runconfig

paradigm
runtimestate

paradigm
utils

domain
utils

constants

composition

repositoryseff usage variables

behavior seff

Infrastructure
composition

modelobserver

modelobserver
environment

domain
repository

runtimestate simulated
component

software
composition

software repositorysoftware usage

usage
model

notification

Paradigm π
Domain Δ

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Figure 7.2.: Refactored SimuLizar, simpli�ed

component provides functionality for adding or deleting a resource and the

connectors required to compose resources.

Constants: The constants component provides the constants required by the

analysis of all PCM instances.

Repository: The repository component on the paradigm layer manages the

roles de�ned in the PCM. The PCM de�nes required and provided roles for

components. In this component, the roles, e. g. provided and required roles

are managed. It provides interfaces to receive these roles, and also it provides

interfaces to receive the signatures de�ned in the PCM. The central portion

of the repository component is the repository switch. The switch contains the

interpretation of the roles. It also contains the analysis code concerning the

219

7. Reference Architecture Evaluation

required and provided roles. The signatures are implicitly used throughout

the analysis code.

Runtimestate: The runtimestate component provides abstract classes and

interfaces for managing the state of the analysis. It holds the PCM instance,

the event noti�cation helper, and a registry of the analysed components. The

component registry is an interface for validating whether a component is

available for analysis. It also provides add and fetch operations for the PCM

components. The event noti�cation helper is an interface for �ring events and

removing listeners.

Se�: The SEFF in the PCM represents the basic actions of a component.

The se� component provides the interpretation and the analysis code for the

elements of the se� language feature of the PCM. The se� component contains

the interpreter for the se� types. For each se� type, the se� component

contains the analysis code required for the elements.

Usage: The usage component provides the handling of probabilities de�ned

in the usage language feature of the PCM. Probabilities are required when

the analysis encounters a branch. The usage component determines in which

direction the analysis must proceed. Besides branches, the usage component

also provides the scheduling of delays. Another part of the usage component

is the handling of loops. Based on the size of a loop, the usage component

determines the time required to �nish the loop. Furthermore, the usage

component provides an interface to manage user actions.

Variables: The variables component provides the evaluation of the model

instance. It creates an evaluator instance containing the variable characterisa-

tion of the PCM and the model evaluator. The evaluation provides a condition

checker, which checks whether a boolean expression in a condition holds.

The variable component also provides the generation of random variables.

7.3.4.2 Domain Layer

Behaviour Se�: The behaviour se� component provides the analysis code

for the PCM model elements external call action, acquire action, collection
iterator action, set variable action, and release action. The analysis code re-

quires information about the infrastructure; thus, the dependencies remain

on the infrastructure language feature in this component. The behaviour se�

220

7.3. Evaluation Design

component also provides analysis code determining probabilistic transitions

when encountering branches.

Domain Repository: The domain repository component provides an inter-

face for implementing the analysis code for the PCM model elements provided
role and signature.

Infrastructure Composition: The infrastructure composition component

provides the analysis code for the PCM model elements assembly infrastructure
connector and required infrastructure delegation connector. The component

utilises the composition and repository component of the π layer.

Modelobserver: The modelobserver component provides the analysis code

for the PCM model elements: communication link resource speci�cation, linking
resource, processing resource speci�cation, resource container, workload, closed
workload, open workload, and usage scenario. In addition to the modelobserver

language feature, the component requires the software usage language feature;

thus, it holds dependencies on PCM types of these two language features.

Modelobserver Environment: The modelobserver environment component

provides the analysis code for the PCM model element resource environ-
ment. This component handles the modelobserver component and provides

observers for the said model and the resource environment.

Noti�cation: The noti�cation component provides the analysis code for the

PCM model elements: operation provided role, operation signature, external
call action, entry level system call, and usage scenario. This component has

dependencies on four language features to perform the analysis.

Runtimestate: The runtimestate component provides the analysis code for

the PCM model elements resource environment, and assembly context. The

runtimestate component has only two dependencies on two language features,

but it consolidates the state of the analysed system. It utilises direct knowledge

(i. e., usage model component), or it utilises the modelobserver component to

manage the runtime state of the analysis.

Simulated Component: The simulated component provides the analysis

code for the PCM model element passive resource. It represents two types

of components mSimuLizar can analyse. The �rst component is a basic

component that can be monitored, and it can acquire and release resources.

The second component is a composite component, consisting of a set of basic

components.

221

7. Reference Architecture Evaluation

Software Composition: The software composition component provides the

analysis code for the PCM model elements: assembly connector, required
delegation connector, and composite component.

Software Repository: The software repository component provides the anal-

ysis code for the PCM model elements basic component and service e�ect
speci�cation.

Software Usage: The software usage component provides the analysis code

for the PCM model elements: entry level system call, usage scenario, and usage
switch.

Usage Model: The simulated component provides the analysis code for the

PCM model elements: usage model, usage scenario, workload, closed workload,

open workload, software usage package.

Before the refactoring, the state of SimuLizar was that all dependencies on

the metamodel PCM were consolidated in one analysis component. First,

we applied horizontal-split refactoring to separate the analysis component

in the layers π , ∆, and Ω, which resulted in three components. Then, we

applied vertical-split refactorings to the three layers to separate the language

blobs still present on these layers. This resulted in 9 components on π ,

22 components on ∆, and 1 component on Ω. The analysis grew from 21

components to 52 components.

7.3.5 SimuLizar Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-

based analysis use some source code versioning. In the case of SimuLizar, the

developers �rst used Apache Subversion (SVN) and then they migrated the

source code to git. The commit history was migrated from SVN to git; thus,

we had access to the whole commit history. The source code is available on

GitHub
1
. In Section 7.3.5, we provide an overview of the historical evolution

scenarios extracted from the commit history of SimuLizar. Tor transparency

reasons, we also provide the commit hash and the number of a�ected �les if

someone wants to recreate the change scenarios themselves.

1
https://github.com/PalladioSimulator/Palladio-Analyzer-SimuLizar

222

7.3. Evaluation Design

Sc
en

ar
io

N
o.

N
am

e
C
om

m
it
ID

N
o.

A
�
ec
te
d
Fi
le
s

S
c
e
n

a
r
i
o

0
1

R
e
p

o
s
i
t
o

r
y

C
o

m
p

o
n

e
n

t
S
w

i
t
c
h

E
x
t
e
n

s
i
o

n
7
5
4
2
1
3
4
2

4

S
c
e
n

a
r
i
o

0
2

D
e
l
e
t
e
d

M
o

d
e
l
A

c
c
e
s
s

C
l
a
s
s

5
3
4
d

5
5
2
1

2
8

S
c
e
n

a
r
i
o

0
3

F
i
x

P
r
o

j
e
c
t

S
t
r
u

c
t
u

r
e

0
2
5
1
1
a
3
7

5

S
c
e
n

a
r
i
o

0
4

E
x
p

l
i
c
i
t
l
y

S
w

i
t
c
h

B
a
s
e
d

o
n

S
u

p
e
r
c
l
a
s
s

d
9
7
3
5
1
1
5

3

S
c
e
n

a
r
i
o

0
5

A
d

d
M

o
n

i
t
o

r
R

e
p

o
s
i
t
o

r
y

t
o

F
e
a
t
u

r
e

D
e
p

e
n

d
e
n

c
i
e
s

(
S
V

N
)

r
3
4
1
8
1

4

S
c
e
n

a
r
i
o

0
6

F
i
x
e
d

M
e
t
a
d

a
t
a

f
o

r
t
h

e
H

D
D

P
a
t
c
h

(
S
V

N
)

r
3
3
8
2
0

2

S
c
e
n

a
r
i
o

0
7

I
n

c
l
u

d
e

N
e
w

A
g

g
r
e
g

a
t
i
o

n
P

l
u

g
i
n

(
S
V

N
)

r
3
2
8
0
4

7

S
c
e
n

a
r
i
o

0
8

O
n

l
y

R
e
c
o

r
d

R
u

n
t
i
m

e
M

e
a
s
u

r
e
m

e
n

t
s

(
S
V

N
)

r
3
2
4
1
6

2
5

S
c
e
n

a
r
i
o

0
9

G
e
n

e
r
a
l
i
z
e
d

R
e
s
p

o
n

s
e

T
i
m

e
s

A
g

g
r
e
g

a
t
o

r
(
S
V

N
)

r
3
2
1
6
6

4

S
c
e
n

a
r
i
o

1
0

A
d

d
M

i
s
s
i
n

g
R

e
c
o

n
�

g
u

r
a
t
i
o

n
R

u
l
e

(
S
V

N
)

r
3
1
8
0
0

6

Ta
bl
e
7.
1.
:O

v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l

E
v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
S
i
m

u
L

i
z
a
r

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e

R
e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

223

7. Reference Architecture Evaluation

analysis components
to modify

language components remaining analysis
components

Figure 7.3.:Camunda BPM Platform Dependency Structure

7.3.6 Camunda Refactoring

Before we modularised Camunda, we had to exchange the BPMN2 DSML with

its modularised counterpart the modular BPMN2 (mBPMN2) [HSR19; SHR18].

In order to exchange the BPMN2 DSML, we had to change each dependency of

Camunda from the BPMN2 DSML on mBPMN2 DSML. Changing the depen-

dencies is necessary, as the mBPMN2 is not used in Camunda. The turquoise

nodes in Figure 7.3 are the modules that had to be modi�ed. The dependen-

cies of the Camunda BPM Platform regarding the mBPMN2 metamodel are

similar to the structure shown in Figure 7.1. In the org.camunda.bpm.model
module is the dependencies on the mBPMN2 metamodel consolidated. The

details regarding the refactoring, especially the classes before and after the

refactoring, can be found in our supplementary material [KHR22b].

224

7.3. Evaluation Design

7.3.7 Modular Camunda –mCamunda

Figure 7.4 depicts the structure of Camunda after the modularisation of the

scenarios. We did not refactor the whole analysis. Therefore, we present only

the components of Camunda that are a�ected by our refactoring and relevant

for our calculation of the metrics complexity, coupling, and cohesion.

user task timer

event catcher

BPMN Events

events

core

human
interaction

flowsartifacts

messaging

Paradigm π
Domain Δ

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Figure 7.4.: Refactored Camunda, simpli�ed [KHR22a]

7.3.7.1 Paradigm Layer

Core: The ecore component of Camunda contains the BaseElement class. It

also provides a builder to create elements in the analysis context. We placed

the BPMN2 class also in this component, as it de�nes and, thus, contains all

identi�ers of the BPMN2 entities. Furthermore, variables are also de�ned in

this component.

Flows: The �ow component provides the notion of �ows and classes to build

�ows. We placed the AbstractFlowNodeBuilder in this component. In addition

to regular �ows, the component also handles the sequencing of �ows.

Messaging: The messaging component provides the foundation for the mes-

saging in the analysis. It allows the user to build sender and receiver in the

context of the Business Process Modeling Notation (BPMN) analysis. We had

to refactor the AbstractSendTaskBuilder and the AbstractReceiveTaskBuilder.

225

7. Reference Architecture Evaluation

Events: In the events component were the most changes located. In total,

we had to refactor 98 classes across all ten scenarios that are correlated to

this component. A class could be part of multiple scenarios; therefore the

number of 98 classes represents not the number of di�erent classes. The

events component de�nes events in the context of the BPMN analysis. The

StartEvent, EndEvent, and ThrowEvent are related to this component.

Event Catcher: The event catcher component is a utility component that

manages the aggregation of events in the analysis.

Artefacts: The artefacts component is the abstract representation of model

elements in the analysis. In the context of our refactoring, we had no classes

that belonged to that component; however, the AbstractFlowNodeBuilder class

located at the �ows component hat dependencies to the language component

artefacts that we were unable to refactor.

7.3.7.2 Domain Layer

User Task: The user task component is only part of the model-based analysis

and is not part of the DSML. This component de�nes the analysis task and

correlates to the tool user.

Time: The time component represents the notion of time in the analysis

context. This component is only part of the model-based analysis and not

part of the DSML.

Advanced Events: The advanced events component represents specialised

events that are tailored to the domain of the business process analysis. Thus,

it has dependencies of the language componentadvanced events.

Human Interaction: The human interaction component integrates the mod-

elled human interaction into the analysis.

7.3.8 Camunda Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-

based analysis use some sort of source code versioning. In the case of Ca-

munda, the source code is versioned with git. The source code is available on

226

7.3. Evaluation Design

GitHub
2
. In Section 7.3.8, we provide an overview of the historical evolution

scenarios we extracted from the commit history of Camunda. Tor trans-

parency reasons, we also provide the commit hash and the number of a�ected

�les if someone wants to recreate the change scenarios by themselves.

7.3.9 KAMP4aPS Refactoring

Before we modularised the analysis KAMP4aPS, we had to exchange the

KAMP4aPS DSML with its modularised counterpart, the modular KAMP4aPS

DSML [HSR19; SHR18]. In order to exchange the KAMP4aPS DSML, we had

to change each dependency of the KAMP4aPS analysis from the KAMP4aPS

DSML on the modular KAMP4aPS DSML. Changing the dependencies is neces-

sary, as the modular KAMP4aPS DSML is not used in the analysis KAMP4aPS.

The dependencies of the analysis regarding the modular metamodel are

like the structure shown in Figure 7.1. The dependencies on the modular

KAMP4aPS metamodel are consolidated in the KAMP4aPS module.

The details regarding the refactoring, especially the classes before and after

the refactoring, can be found in our supplementary material [KHR22b].

7.3.10 Modular KAMP4aPS –mKAMP4aPS

Figure 7.5 depicts the structure of the analysis KAMP4aPS after the modulari-

sation of the scenarios. We did not refactor the whole analysis. Therefore, we

present only the components of Camunda that are a�ected by our refactoring

and relevant for our calculation of the metrics complexity, coupling, and

cohesion.

7.3.10.1 Paradigm Layer

Activity: The activity component represents the user’s activity to change

the desired domain or system. KAMP4aPS analyses the domain of aPS; thus,

the extension will handle the activities that are required to perform changes

2
https://github.com/camunda/camunda-bpm-platform

227

7. Reference Architecture Evaluation

Scenario
N
o.

N
am

e
C
om

m
itH

ash
N
o.A

�
ected

Files

S
c
e
n

a
r
i
o

0
1

A
d

d
T

i
m

e
o

u
t

T
a
s
k

L
i
s
t
e
n

e
r

d
5
3
5
8
3
a
1

8

S
c
e
n

a
r
i
o

0
2

I
n

t
r
o

d
u

c
e

E
r
r
o

r
M

e
s
s
a
g

e
1
d

b
5
4
6
9
e

2

S
c
e
n

a
r
i
o

0
3

A
d

d
V

a
r
i
a
b
l
e

S
p

e
c
i
�

c
a
t
i
o

n
1
4
a
d

9
7
a
e

7

S
c
e
n

a
r
i
o

0
4

R
e
m

o
v
e

I
n

c
r
e
m

e
n

t
a
l

I
n

t
e
r
v
a
l
s

P
r
o

p
e
r
t
y

a
3
3
7
b
8
f
6

1
0

S
c
e
n

a
r
i
o

0
5

S
e
t

M
a
r
k

e
r

i
n

E
x
c
l
u

s
i
v
e

G
a
t
e
w

a
y

7
c
f
3
c
d

�
2

S
c
e
n

a
r
i
o

0
6

R
e
m

o
v
e
d

E
r
r
o

r
M

e
s
s
a
g

e
A

t
t
r
i
b
u

t
e

4
a
5
d

7
b

c
7

1
1

S
c
e
n

a
r
i
o

0
7

A
d

d
e
d

E
r
r
o

r
D

e
�

n
i
t
i
o

n
V

a
r
i
a
b
l
e
s

3
1
e
9
a
1
3
2

1
8

S
c
e
n

a
r
i
o

0
8

A
d

d
C

o
n

v
e
n

i
e
n

c
e

M
e
t
h

o
d

s
1
d

2
a
5
0
8
c

7

S
c
e
n

a
r
i
o

0
9

M
e
s
s
a
g

e
w

i
t
h

t
h

e
F
l
u

e
n

t
B

u
i
l
d

e
r

6
7
7
b
3
c
6
b

7

S
c
e
n

a
r
i
o

1
0

A
d

d
S
u

p
p

o
r
t

f
o

r
C

o
n

n
e
c
t
o

r
E

x
t
e
n

s
i
o

n
c
3
0
d

b
c
8
e

6

Table
7.2.:

O
v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l

E
v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
C

a
m

u
n

d
a

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e

R
e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

228

7.3. Evaluation Design

workplanactivity

modulecomponent

module changescomponent changes

change propagationlabeling

interface changes

interface

versioning persistency

Paradigm π
Domain Δ

Quality Ω

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

Figure 7.5.: Refactored KAMP4aPS, simpli�ed [KHR22a]

in an aPS. None of the classes located on the ∆ or Ω layer were included in

the scenarios; thus, the activity component has no incoming dependencies.

Workplan: Theworkplan component provides the functionality to derive and

create a work plan. The components on the domain layer are specialisations

of types that are analysed to create a work plan.

Versioning: The KAMP4aPS analysis provides the functionality to analyse

di�erent versions of a system to derive changes. Although we had to refactor

a class part of this component, it had no signi�cant role in the evolution

scenarios. Thus, the versioning component has no incoming dependencies.

Persistency: The persistency component allows the tool user to generate

task lists containing the derived tasks necessary to perform changes in the

analysed system. Although we had to refactor a class part of this component,

it had no signi�cant role in the evolution scenarios. Thus, the persistency

component has no incoming dependencies.

229

7. Reference Architecture Evaluation

7.3.10.2 Domain Layer

Interface: The interface component contains aPS interfaces. For example,

it does contain the BusInterface with specialised classes for a di�erent bus

system that can be used in an aPS. Besides the bus types, it also contains

mechanical interfaces like screws and bolts.

Component: The component component contains the basic building blocks

of an aPS. Such building blocks are, for example, sensors and actors that are

used in a production plant.

Module: The module component is a container that can contain other aPS

components or modules. The di�erentiation is required by the tool user,

as they have to distinguish aPS components from modules that can also be

complex entities like a conveyor belt or a robotic arm.

7.3.10.3 Quality Layer

Interface Changes: The interface change component contains the change

propagation rules for all interfaces in an aPS. These rules determine if an

interface has to be changed, which can also a�ect other entities connected to

the interface.

Component Changes: The component change component contains the

change propagation rules for all aPS components. These rules determine if a

component has to be changed, and other entities connected to the component

can also be a�ected by the change.

Module Changes: The module change component contains the change prop-

agation rules for all modules in an aPS. These rules determine if a module

has to be changed, and the change can also a�ect other entities connected to

the module.

Labeling: The labelling component annotates roles and documents to tasks.

It also can annotate the estimated time required to perform a task. The

estimated time is required when the tool user analyses multiple change

scenarios. If the costs are annotated, they can select the most cost-e�ective

scenario.

Change Propagation: The change propagation component coordinates the

initial changes. The initial changes determine where the starting point of the

230

7.3. Evaluation Design

analysis is located. It also coordinates the change impact analyses between

the modules, components and interfaces.

7.3.11 KAMP4APS Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-

based analysis use some source code versioning. In the case of KAMP4aPS,

the source code is versioned with git. The source code is available on GitHub
3
.

In Section 7.3.11, we provide an overview of the historical evolution scenarios

extracted from the commit history of KAMP4aPS. Tor transparency reasons,

we also provide the commit hash and the number of a�ected �les if someone

wants to recreate the change scenarios themselves.

7.3.12 SmartGrid Refactoring

Before we modularised the analysis SmartGrid, we had to exchange the

SmartGrid DSML with its modularised counterpart, the modular SmartGrid

DSML [HSR19; SHR18]. In order to exchange the SmartGrid DSML, we had to

change each dependency of the SmartGrid analysis from the SmartGrid DSML

on the modular SmartGrid DSML. Changing the dependencies is necessary,

as the modular SmartGrid DSML is not used in the analysis SmartGrid. The

dependencies of the SmartGrid regarding the modular SmartGrid metamodel

are like the structure shown in Figure 7.1. The dependencies on the modular

SmartGrid metamodel are consolidated in the smartgrid.attackersimulation
and the smartgrid.impactanalysis module. Although technically, these two

modules represent two di�erent analyses; we consider them one. Each rep-

resents an analysis feature of the SmartGrid analysis. The details regarding

the refactoring, especially the classes before and after the refactoring, can be

found in our supplementary material [KHR22b].

7.3.13 Modular SmartGrid –mSmartGrid

Figure 7.6 depicts the structure of the analysis SmartGrid after the modulari-

sation of the scenarios. We did not refactor the whole analysis. Therefore, we

3
https://github.com/KAMP-Research

231

7. Reference Architecture Evaluation

Scenario
N
o.

N
am

e
C
om

m
itH

ash
N
o.A

�
ected

Files

S
c
e
n

a
r
i
o

0
1

I
m

p
l
e
m

e
n

t
K

A
M

P
4
a
P

S
E

v
a
l
u

a
t
i
o

n
S
c
e
n

a
r
i
o

3
1
2
6
5
8
0
b

5

S
c
e
n

a
r
i
o

0
2

U
p

d
a
t
e

K
A

M
P

4
a
P

S
S
c
e
n

a
r
i
o

2
d

3
7
d

c
0
2

5

S
c
e
n

a
r
i
o

0
3

A
d

d
C

l
a
s
s

f
o

r
M

i
c
r
o

S
w

i
t
c
h

C
h

a
n

g
e

c
1
7
f
9
8
6
e

7

S
c
e
n

a
r
i
o

0
4

A
d

d
M

e
t
a
c
l
a
s
s

f
o

r
C

h
a
n

g
e

1
f
7
8
d

0
c
0

1
4

S
c
e
n

a
r
i
o

0
5

U
p

d
a
t
e

L
a
s
t

S
c
e
n

a
r
i
o

3
f
5
a
c
d

2
9

2

S
c
e
n

a
r
i
o

0
6

A
p

p
l
y

R
e
n

a
m

e
d

C
l
a
s
s
e
s

8
4
9
1
d

d
9
b

4

S
c
e
n

a
r
i
o

0
7

H
M

I
I
m

p
l
e
m

e
n

t
e
d

d
5
4
5
1
1
f
e

5

S
c
e
n

a
r
i
o

0
8

C
h

a
n

g
e
-
i
m

p
a
c
t

A
n

a
l
y

s
i
s

M
o

d
i
�

e
d

5
d

a
e
8
8
0
b

6

S
c
e
n

a
r
i
o

0
9

A
d

a
p

t
A

n
n

o
t
a
t
i
o

n
L

o
o

k
-
U

p
a
5
d

c
c
0
0
c

5

S
c
e
n

a
r
i
o

1
0

A
d

a
p

t
M

o
d

e
l

L
o

o
k

-
U

p
2
9
9
1
9
9
f
0

3

Table
7.3.:

O
v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l

E
v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
K

A
M

P
4
a
P

S
C

a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e

R
e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

232

7.3. Evaluation Design

Analysis Component Analysis Component Dependency Layer Separator

π
Paradigm

Δ
Domain

Ω
Quality

output

simulation
controller

topo

graph

impact
analysis

controller

time
Paradigm π
Domain Δ

Quality Ω

Figure 7.6.: Refactored SmartGrid, simpli�ed [KHR22a]

present only the components of Camunda that are a�ected by our refactoring

and relevant for our calculation of the metrics complexity, coupling, and

cohesion.

7.3.13.1 Paradigm Layer

Graph: The graph component represents a network graph structure. Either

logical or physical edges can connect the nodes in this graph.

Simulation Controller: The simulation controller component provides the

building blocks for running the simulation. This component is only part of

the model-based analysis and has no representation in the DSML.

Time: The time component provides a notion of time for the analysis. In

the attacker propagation analysis, the time component is not used. This

component is only part of the model-based analysis and has no representation

in the DSML.

7.3.13.2 Domain Layer

Topo: The devices in a smart-grid topology are contained in the topo compo-

nent. This topology uses the graph structure provided in the π domain.

233

7. Reference Architecture Evaluation

Controller: The controller component extends the simulation controller

component of the π layer. It can handle the simulation and analysis of the

smart-grid topology. This component is only part of the model-based analysis

and has no representation in the DSML.

7.3.13.3 Quality Layer

Impact Analysis: The impact analysis component utilises change propaga-

tion rules, similar to the rules in KAMP4aPS, to determine the vulnerability of

a smart-grid topology. It de�nes di�erent types of attackers that can traverse

through the system.

Output: The output component provides the information the analysis pro-

duces. Regarding the de�nition of our reference architecture for model-based

analysis, the output should not be located at the Ω layer. However, we apply

the reference architecture regarding the structure of the DSML and ignore

possible bugs and errors. Therefore, we did not �x the layering issue.

7.3.14 SmartGrid Historical Evolution Scenarios

The third requirement for the case studies is that the developers of the model-

based analysis use some sort of source code versioning. In the case of Smart-

Grid, the source code is versioned with git. The source code is available on

GitHub
4
. In Section 7.3.14, we provide an overview of the historical evolution

scenarios extracted from the commit history of SmartGrid. Tor transparency

reasons, we also provide the commit hash and the number of a�ected �les if

someone wants to recreate the change scenarios themselves.

7.4 Evaluation Results

In this section, we present the evolvability and understandability evalua-

tion results. In the presented results, we compare our scenarios’ cohesion,

coupling, and complexity before and after the refactoring.

4
https://github.com/kit-sdq/Smart-Grid-ICT-Resilience-Framework

234

7.4. Evaluation Results

Sc
en

ar
io

N
o.

N
am

e
C
om

m
it
H
as
h

N
o.

A
�
ec
te
d
Fi
le
s

S
c
e
n

a
r
i
o

0
1

P
a
s
s

D
a
t
a

t
o

P
o
w

e
r

L
o

a
d

d
f
e
1
9
9
8
1

2

S
c
e
n

a
r
i
o

0
2

R
e
p

o
r
t

G
e
n

e
r
a
t
i
o

n
c
8
2
8
0
9
3
9

2

S
c
e
n

a
r
i
o

0
3

S
u

p
p

o
r
t

S
t
r
i
n

g
I
D

s
7
2
e
c
a
a
7
3

2

S
c
e
n

a
r
i
o

0
4

A
d

d
P

a
r
a
m

e
t
r
i
s
e
d

I
n

i
t
i
a
l
i
s
a
t
i
o

n
2
d

7
a
9
c
4
6

8

S
c
e
n

a
r
i
o

0
5

S
e
a
r
c
h

f
o

r
V

i
r
a
l

H
a
c
k

e
r

1
6
4
8
6
3
6
e

4

S
c
e
n

a
r
i
o

0
6

F
i
n

a
l
i
z
i
n

g
R

C
P

C
o

m
m

a
n

d
s

a
a
e
4
a
8
9
4

1
0

S
c
e
n

a
r
i
o

0
7

R
e
m

o
v
e

L
a
u

n
c
h

C
o

n
�

g
u

r
a
t
i
o

n
6
3
a
e
1
f
4
9

4

S
c
e
n

a
r
i
o

0
8

R
a
n

d
o

m
l
y

H
a
c
k

i
n

g
o

f
N

o
d

e
s

3
d

8
1
d

a
9
e

1

S
c
e
n

a
r
i
o

0
9

A
t
t
a
c
k

e
r

S
i
m

u
l
a
t
i
o

n
D

i
s
a
b
l
i
n

g
R

o
o

t
5
e
e
7
2
f
7
0

2

S
c
e
n

a
r
i
o

1
0

A
t
t
a
c
k

e
r

S
i
m

u
l
a
t
i
o

n
U

s
a
b
l
e

A
t
t
r
i
b
u

t
e
s

4
c
2
5
7
b

e
a

2

Ta
bl
e
7.
4.
:O

v
e
r
v
i
e
w

o
f

t
h

e
H

i
s
t
o

r
i
c
a
l

E
v
o

l
u

t
i
o

n
S
c
e
n

a
r
i
o

s
o

f
t
h

e
S
m

a
r
t
G

r
i
d

C
a
s
e

S
t
u

d
y

f
o

r
t
h

e
E

v
o

l
v
a
b
i
l
i
t
y

a
n

d
R

e
u

s
a
b
i
l
i
t
y

E
v
a
l
u

a
t
i
o

n
o

f
t
h

e

R
e
f
e
r
e
n

c
e

A
r
c
h

i
t
e
c
t
u

r
e

f
o

r
M

o
d

e
l
-
b
a
s
e
d

A
n

a
l
y

s
e
s

235

7. Reference Architecture Evaluation

SIMULIZAR Complexity Coupling Cohesion
before after before after before after

Scenario 01 580.92 360.81 7.99 7.99 0.0309 0.0114
Scenario 02 1210.85 992.80 123.08 26.37 0.0011 0.0011

Scenario 03 0 0 0 0 0.0148 0.0148

Scenario 04 202.96 106.86 11.99 7.99 0.0721 0.0637

Scenario 05 578.92 234.91 7.99 0 0.0309 0.0288

Scenario 06 415.04 127.03 0 0 0.0744 0.0803
Scenario 07 674.65 666.09 9 7.07 0.0064 0.0064

Scenario 08 1042.06 876.01 120.85 41.90 0.0019 0.0016

Scenario 09 373.43 334.59 15.14 4 0.0199 0.01629

Scenario 10 242.44 122.75 0 0 0.0080 0.0090

Table 7.5.: Evolvability Metric Results for the Case Study SimuLizar

0

1
SimuLizar (PCM) Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.7.:Normalised Evolvability Metric Results for the Case Study SimuLizar

We present the raw results and the visualised results for each case study. To

visualise our evaluation results, we created four diagrams. Each diagram

represents the results of one of the four case studies. Figure 7.7 shows the

results for the case study SimuLizar, Section 7.4 shows the results for the case

236

7.4. Evaluation Results

CAMUNDA Complexity Coupling Cohesion
before after before after before after

Scenario 01 131.54 53.67 0 0 1.55e-2 5.29e-2
Scenario 02 119.42 10.56 0 0 2.93e-2 3.35e-2
Scenario 03 85.04 74.43 20 31.90 4.18-5 1.46e-5

Scenario 04 208.67 186.08 19.02 8 8.74e-5 9.72e-5
Scenario 05 152.58 145.24 0 0 0.0054 0.0073
Scenario 06 119.43 39.50 0 8 5.64e-5 1.21e-5

Scenario 07 115.68 33.77 8 18.25 5.61e-5 5.94e-5
Scenario 08 117.41 115.92 0 0 6.25e-4 6.91e-4
Scenario 09 160.40 37.22 0 0 9.94e-4 1.4e-2
Scenario 10 206.14 206.14 47.12 47.12 8.80e-5 8.93e-5

Table 7.6.: Evolvability Metric Results for the Case Study Camunda

0

1
Camunda (BPMN2) Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.8.:Normalised Evolvability Metric Results for the Case Study Camunda

study Camunda, Section 7.4 shows the results for the case study KAMP4aPS,

and Section 7.4 shows the results for the case study SmartGrid. Each diagram

is separated into three rows to represent the metrics we used in the evaluation.

The rows are labelled on the right side. The results for the complexity metric

237

7. Reference Architecture Evaluation

are shown in the �rst row. In the second row, the results of the coupling

metric are shown. The results for the cohesion metric are shown in the third

row.

KAMP4APS Complexity Coupling Cohesion
before after before after before after

Scenario 01 146.30 46.28 27.08 0 9.85e-3 7.75e-3

Scenario 02 387.13 121.55 34.79 86.73 1.09e-2 3.13-3

Scenario 03 303.31 119.64 8 0 1.23e-2 1.06e-2

Scenario 04 251.17 95.46 64.10 65.29 2.65e-3 5.39e-3
Scenario 05 218.45 121.02 8 0 4.46e-2 5.46e-2
Scenario 06 43.04 43.04 0 41.24 2.16e-2 7.69e-4

Scenario 07 563.83 177.92 108.20 0 9.31e-3 1.43e-2
Scenario 08 538.55 265.57 57.88 16 7.42e-3 7.98e-3
Scenario 09 686.31 257.64 63.48 0 7.25e-3 6.33e-3
Scenario 10 444.12 117.31 24.77 0 1.17e-2 4.28e-3

Table 7.7.: Evolvability Metric Results for the Case Study KAMP4aPS

0

1
KAMP4aPS (KAMP) Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.9.:Normalised Evolvability Metric Results for the Case Study KAMP4aPS

238

7.4. Evaluation Results

SMART. Complexity Coupling Cohesion
before after before after before after

Scenario 01 187.457 32.729 0 0 0.027 0.025

Scenario 02 8.264 2.75 0 0 0.133 0.172
Scenario 03 797.130 898.998 0 589.431 0.090 0.015

Scenario 04 1007.02 156.265 8.264 8.265 0.018 0.007
Scenario 05 372.145 103.701 5.510 5.510 0.007 0.008
Scenario 06 601.112 278.481 103.364 70.421 0.003 0.003

Scenario 07 315.851 45.995 7.489 2.75 0.115 0.009
Scenario 08 153.047 154.547 0 29.510 0.112 0.057
Scenario 09 256.969 88.281 0 0 0.041 0.567
Scenario 10 16.223 16.223 0 2.755 0.113 0.062

Table 7.8.: Evolvability Metric Results for the Case Study SmartGrid

0

1
Smart Grid Topology Monolith Modular

0

1

1 2 3 4 5 6 7 8 9 10
Scenario

0

1

C
oh

es
io

n
C

ou
pl

in
g

C
om

pl
ex

it
y

Figure 7.10.:Normalised Evolvability Metric Results for the Case Study SmartGrid

We normalised the results to the range of zero to one. The results of the

scenarios vary; for example, a low value like 0.0000121 and a high value

like 206.14. The value range of the raw results is unbound. Due to the high

variance of the results, we could not print the results in a meaningful way,

239

7. Reference Architecture Evaluation

and some results would not be visible. The normalisation is unproblematic,

as we only compare the results of one scenario to each other. Ergo, the results

per metric and scenario are shown on an ordinal scale. We set the higher

value to 1.0 and calculated the smaller value concerning the higher value.

This was necessary, as the di�erence was too big for some scenarios, so the

di�erence could not be shown.

The value scale is shown on the y-axis, and the scenario number is shown on

the x-axis. The results of the case study before the refactoring are shown in

black, and the results of the refactored case study after the refactoring are

shown in grey.

The results do not show a bar when the a�ected classes do not depend on one

another. We can determine the ratio of our current cohesion concerning the

cohesion of the maximal cohesive graph based on the results of the cohesion

calculation. We were required to normalise the results because, without

doing so, some graphs would have been illegible. A high level of cohesion is

a positive indicator since it indicates that the classes have fewer outbound

dependencies, which means that changes made to one class are less likely to

a�ect the other classes.

7.5 Threats to Validity

In this section, we discuss the four types of validity by Runeson et al. [Run+12].

The four validity types are explained in Section 2.6.1.

7.5.1 Internal Validity

In our evaluation, we analysed four case studies regarding their evolvability

and reusability. We extracted scenarios from historical change scenarios, ten

per case study. We modularised the a�ected classes in each scenario according

to our reference architecture for model-based analyses. Then we compared

the metrics complexity, coupling, and cohesion for each scenario in its state

before and after the refactoring. To address the internal validity, we have to

ensure that the structure of the reference architecture we have applied to the

scenarios created the metrics changes. One possible cause for the change in

the results is when we also �xed bugs and bad smells (cf. Chapter 4) unrelated

240

7.5. Threats to Validity

to the reference architecture. Therefore, we only applied refactorings that

helped us to apply the reference architecture to the case studies.

Two di�erent developers refactored the four case studies. The case studies

SimuLizar, Camunda, and KAMP4aPS were refactored by the same developer,

and the case study SmartGrid was refactored by another developer. Although

the structure of the reference architecture is the same for each case study,

how a developer selects and sequences the refactorings to reach the desired

structure can di�er. Thus, the result also might di�er, depending on the

developer who refactors the case study. Using more than one developer

ensures that the developer’s experience does not in�uence the results.

7.5.2 External Validity

Selecting a sample case study that is not as generic as possible to represent a

concrete system can allow gaining deeper insight and better realism of the

system under study [Run+12]. The selected case studies represent no generic

case study covering every model-based analysis possible. Ergo, the results

we generated by analysing the four case studies do not represent every other

arbitrary model-based analysis. Each case study has its individual properties.

The case studies, however, emerge from di�erent domains, and thus, they

allow us to gain insights and model-based analyses with similar properties.

In addition, our reference architecture might need to be more helpful or

practical for generic model-based analysis depending on the circumstances.

We decided to go with heterogeneous model-based studies so that we could

address this threat. Chapter 6 provides details regarding our selection process

and the case studies in general.

7.5.3 Construct Validity

The construct validity would be compromised if we selected case studies that

would bene�t the most when transferring them to our reference architecture,

for example, a highly monolithic model-based analysis. We selected the same

case studies as Heinrich et al. [HSR19] to avoid this case. They selected case

studies with di�erent degrees of modularity. Although they focussed on

the DSML of the case studies, we reviewed the corresponding model-based

analyses regarding their modularity. The model-based analyses also have

241

7. Reference Architecture Evaluation

di�erent levels of modularity. This is the case because their structure is similar

to their corresponding DSMLs. As a result, we could reuse these case studies,

as their model-based analyses also show di�erent levels of modularity. Due

to our �ndings, we came to the knowledge that the more modular an analysis

was and the model-based analysis was aligned with its corresponding DSML;

the less improvement regarding the complexity metric we could see. For

example, the case study Camunda was already well modularised. This case

study shows where the analysis was already well modularised and, in some

cases, well adapted to the structure of the DSML. Although Camunda was

well modularised, adapting it to our reference architecture has shown that

the results we got present improvements regarding complexity.

To address this threat further, we selected case studies rooted in di�erent

domains (i. e., information systems, business processes, production automa-

tion, and smart grids). Due to the di�erent domains, we can ensure that the

bene�ts of our reference architecture are not restricted to a single domain.

We can conclude that model-based analyses of the domains we selected to

bene�t from our reference architecture for model-based analyses.

We focused only on the scenarios and the a�ected source code �les instead of

the whole model-based analyses. Furthermore, we do not test the functional-

ity after the refactoring, which can be another threat to construct validity.

However, the refactorings we perform only change the structure of the model-

based analysis but not its behaviour. Our reference architecture does not

a�ect the analysis algorithms; therefore, we consider this a minor threat.

Our selection process for the evolution scenario could also threaten the con-

struct validity. How we selected the case studies is explained in Chapter 6,

and how we selected the evolution scenarios is explained in Section 7.3. To

address this threat, we de�ned three evolution scenarios: historical, potential,

and randomised synthetic. The historical evolution scenarios present a minor

threat because these evolution scenarios are derived from actual change sce-

narios of the model-based analyses. These changes in the historical evolution

scenarios were applied in the past. The potential evolution scenarios threaten

the construct validity as they represent changes that have the potential that

the analysis developers will apply them. A guarantee, however, does not exist.

The randomised synthetic evolution scenarios present a signi�cant threat to

the construct validity as they are changes that were selected randomly. Such

changes have the potential that they will always be kept the same. Due to the

very well-documented and accessible commit history of all our case studies,

242

7.6. Discussion

we could derive only historical evolution scenarios. Thus, we could avoid our

fall-back scenarios of potential and randomised synthetic scenarios.

7.5.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evalua-

tion, we use objective metrics based on information theory. These metrics

provide reasonable proof and limit the need for interpretation, eliminating

the possibility of a researcher providing their subjective interpretation of the

data. The purpose of the evaluation is to discredit the e�ects that could be

attributed to the interpretation of a single researcher. If the evaluation is

repeated for more case studies in the future, this will contribute statistically

to the con�rmation of the results.

7.6 Discussion

In this section, we discuss the results of the evolvability/understandability

evaluation of our reference architecture for model-based analyses. We inves-

tigate the factors that led to the di�erences in �ndings between the modular

and the original version of the evolution scenarios, as well as the implications

of those distinctions.

7.6.1 Complexity

The lower the value for the complexity metric, the better the result. Regarding

the 40 evolution scenarios, 34 of them showed a decrease in complexity after

we refactored them. In four scenarios, complexity has neither improved nor

worsened. The complexity of the remaining two scenarios increased after

the refactorings. The complexity of nine scenarios dropped for each of the

case studies SimuLizar, Camunda, and KAMP4aPS. One scenario for each of

these three case studies stayed the same. In the SmartGrid case study, the

level of complexity for seven di�erent scenarios was reduced, while the level

of complexity for two other scenarios grew, and one scenario maintained its

previous level of complexity.

243

7. Reference Architecture Evaluation

Scenario 1 2 3 4 5

SimuLizar +38% +18% +-0% +47% +59%

Camunda +59% +91% +13% +11% +5%

KAMP4aPS +68% +69% +61% +64% +45%

SmartGrid +83% +67% -11% +84% +72%

Scenario 6 7 8 9 10

SimuLizar +69% +1% +16% +10% +49%

Camunda +67% +71% +1% +77% +-0%

KAMP4aPS +-0% +68% +51% +62% +74%

SmartGrid +54% +85% -1% +66% +-0%

Table 7.9.:Overview – Changes of the Complexity Metric After the Refactoring

In the 34 scenarios where the complexity was improved, we can relate the

improvement to the restrictive nature of our reference architecture for model-

based analysis. Especially the analysis architect and the analysis component

developer are limited regarding the design of the dependencies. The limitation

results from the separation into layers and the strict layering. In addition, does

our reference architecture permit dependency cycles and the model-based

analysis must be aligned with the DSML. Also, is the design space restricted

regarding slicing the remaining analysis features and analysis components.

Each model-based analysis speci�c feature has a de�ned place on one of

the layers. The only freedom the analysis architect has is how to separate

features of the model-based analysis. This structure resulted in analysis

components that are small and specialised. Due to the specialisation, the

analysis components have ideally no overlap with other analysis features. The

four evolution scenarios that show neither improved nor worsened complexity

were already aligned with the DSML; thus, they did not need much change.

The two outlier scenarios, in which the complexity was increased, were the

result of many changes with di�erent intentions. As a consequence, this led

to a large commit that a�ected a large number of �les; consequently, the

number of �les a�ected in the modularised version was signi�cantly higher.

The overall complexity of the case studies remained the same. However, we

discovered that the complexity of the model-based analysis is lowered in the

244

7.6. Discussion

sections of the analysis that are relevant for the analysis developer who is

working on an evolution scenario.

7.6.2 Coupling

The lower the value for the coupling metric, the better the result. The results

for the coupling metric of all four evolution scenarios are mixed. In 16 out of

40 evolution scenarios, we were able to reduce the coupling. For 14 evolution

scenarios, the coupling did not change, despite our refactorings. The coupling

of ten evolution scenarios increased due to our refactorings.

The only case study where the coupling did not increase is SimuLizar. In six

of ten evolution scenarios, we could decrease the coupling. The remaining

four scenarios stayed the same.

For the case study Camunda, in one out of ten evolution scenarios, the

coupling did decrease. In six of ten evolution scenarios, the coupling stayed

the same. In the remaining three scenarios, the coupling increased.

The case study with the most improvements in the coupling metric is the

model-based analysis KAMP4aPS. In seven of ten evolution scenarios, the cou-

pling decreased. The remaining three evolution scenarios decreased regarding

the coupling metric.

For the case study SmartGrid, in two out of ten evolution scenarios did, the

coupling decrease. In four of ten evolution scenarios, the coupling stayed the

same. In the remaining four scenarios, the coupling increased. The SmartGrid

case study yields the worst results regarding the coupling metric.

7.6.3 Cohesion

The higher the value for the cohesion metric, the better the result. The cohe-

sion metric produces mixed results for the four scenarios as well; however,

the results are more drastic. In 17 of the 40 scenarios, cohesion was increased;

in four cases, it stayed unchanged, and in 19 cases, it was decreased. For the

case study SimuLizar, cohesion increased in two scenarios, deteriorated in

�ve, and remained constant in three. For the case study Camunda, cohesion

improved in eight scenarios while remaining unchanged in two. For the case

study KAMP4aPS, cohesion improved in four scenarios while it deteriorated

245

7. Reference Architecture Evaluation

in six others. For the case study SmartGrid, cohesion increased in three

scenarios, deteriorated in six, and remained constant in one. The key element

that resulted in the worst results is the separation of components and classes,

as they convert sections of component cohesion into coupling. Methods in

large classes relied on private methods in the same class; splitting such a class

resulted in extra dependencies and, as a result, increased coupling. The cou-

pling was not impacted; however, the cohesion was reduced by lowering class

internal calls. We skipped refactoring methods to add more private methods,

address object-oriented design smells, and improve cohesiveness.

246

8. Evaluation of Bad Smells in
Model-based Analyses

In this section, we present the evaluation of the bad smells we de�ned in

Chapter 4. In Section 8.1, we explain the goals and metrics of our evalu-

ation. In Section 8.2, we present the evaluation design; in Section 8.3, we

present the results of the evaluation. In Section 8.4, we discuss the threats to

validity. Finally, in Section 8.5, we summarise our �ndings and discuss the

evaluation.

8.1 Research Goals and Metrics

We split the goals and metrics section for the bad smells evaluation into three

parts. The �rst part introduces our research goals regarding the e�ect of

bad smells on the evolvability of model-based analyses and the relevance of

bad smells in general. The second part introduces our metrics to evaluate

whether we reached our goals. Finally, the third part explains the structure

of our scenarios and their use in the evaluation.

We derive the �rst research goal (G1) from our hypothesis (cf. Hypothesis 2)

and the �rst research question (cf. Research Question 4.1), which bad smells

arise from the co-dependency of DSMLs and model-based analyses:

Research Goal 8.1
We want to determine whether the bad smells we de�ned exist in model-

based analyses.

The second research goal (G2) we derived from our hypothesis (cf. Hypoth-

esis 2) and the second (cf. Research Question 4.2) and third (cf. Research

247

8. Evaluation of Bad Smells in Model-based Analyses

Question 4.3) research questions. The second research question asks how to

refactor bad smells for model-based analyses, and the third research question

asks how bad smells a�ect the evolvability and reusability of model-based

analyses and their corresponding DSMLs.

Research Goal 8.2
We want to determine whether the bad smells we identi�ed negatively

a�ect the evolvability and reusability of model-based analyses.

In order to determine whether we reached the goals G1 and G2 we utilise

the four case studies we introduced in Chapter 6. For each case study, we

determine the number of bad smells in their source code, and we refactor each

bad smell to determine the e�ect on the evolvability of the a�ected �les. Each

bad smell is searched by utilising the identi�cation description we provide in

Chapter 4, and to �x the bad smells, we utilise the refactoring description,

also provided in Chapter 4. Due to the size and complexity of the case studies,

we focus on �ve occurrences per bad smell per case study.

Breivold et al. [BCE08] presented the software evolvability model. This

model comprises the sub-characteristics of analysability, integrity, change-

ability, extensibility, portability, and testability. Regarding the ISO/IEC 25010

software quality model [ISO10], the characteristic of maintainability and

portability map to the sub-characteristics of the software evolvability model.

The sub-characteristics analysability, changeability, stability, and testability

are part of the maintainability characteristic of ISO/IEC 25010, and the sub-

characteristics of adaptability, installability, co-existence, and replaceability

are part of the portability characteristic of ISO/IEC 25010. According to Briand

et al. [BWL01], and Cruz-Lemus et al. [Cru+10], cognitive complexity a�ects

the analysability and modi�ability of software. To measure the cognitive

complexity of a system, we refer to the amount of structural information

within a system. We choose the same metrics as Heinrich et al. [HSR19]

to measure the cognitive complexity of a system. They use the hypergraph

metrics of Allen et al. [AGG07], which uses information size, complexity,

and coupling to measure the information entropy of a software system. The

formal de�nitions by Briand et al. [BMB96] are the foundation for the metrics

by Allen et al. [AGG07].

The hypergraph metrics to evaluate our case studies are presented in Sec-

tion 2.2.2.

248

8.2. Evaluation Design

8.2 Evaluation Design

In this section, we present our evaluation design for bad smells in model-

based analyses. In Section 8.2.1, we introduce the evaluation scenarios and

their selection process. How we conducted the evaluation is presented in

Section 8.2.2.

8.2.1 Evolution Scenarios

To answer research questions 3.1 to 3.3 and to check whether we reached

our goals G1 and G2, we have to refactor the bad smells of the case stud-

ies and determine whether our refactorings can improve the evolvability

and reusability of the case studies. These varied case studies allow us to

empirically evaluate whether our approach improves model-based analysis

evolvability and reusability. Wohlin [Woh21] states that an empirical case

study must be a contemporary, real-world phenomenon. All case studies are

actively developed, making them relevant. Instead of comparing the source

code of a whole case study before and after the refactoring, we derive change

scenarios of the case studies to determine the e�ect of our refactorings regard-

ing evolvability and reusability. We decided to use change scenarios because

when implementing a change, it is unnecessary for the analysis developer

to modify the whole class; instead, they must change parts of a class of the

model-based analysis. It is also unnecessary for the analysis developer to

understand classes of the model-based analysis una�ected by the change.

Thus, change scenarios better represent how changes occur in a software

system. If we did not �nd occurrences of a bad smell, we would discuss the

implications of their absence and possible adverse e�ects on evolvability and

reusability.

In the context of this evaluation, we distinguish two types of change scenarios.

The �rst type is derived from actual changes made in the case study; thus,

we call them historical evolution scenarios. During the development of a

model-based analysis, the analysis developer makes changes that a�ect code

containing bad smells. To derive a historical change scenario, we searched

the commit history of a case study for commits that contain a bad smell.

A historical evolution scenario contains a set of classes that are part of the

commit. It is irrelevant at which point of the commit history we extract the

set as long as the classes before and after the refactoring originate from the

249

8. Evaluation of Bad Smells in Model-based Analyses

same commit. If the commit history does not contain commits that a�ect �les

with bad smells, we derive potential evolution scenarios. A potential evolution

scenario represents an arti�cial change scenario that could occur in the future.

For example, extending an interface or changing an analysis technique can

lead to changing a set of classes.

For our four case studies, we were able to derive 13 evolution scenarios

for the bad smell Duplicate Abstraction, 20 evolution scenarios for the bad

smell Missing Abstraction, ten evolution scenarios for the bad smell Degraded
Modularity, and 16 evolution scenarios for the bad smell Rebellious Modularity.

We were able to derive 59 evolution scenarios in total.

8.2.2 Conduction of the Evaluation

In Chapter 4, we presented twelve bad smells that we derived from the co-

dependency of bad smells in open-source software and DSMLs. To check

whether we achieved the goals G1 and G2, we use the four case studies

presented in Chapter 6. For the �rst research goal G1, we analyse how

often each bad smell occurs per case study (Frequency of Occurrence) and for

the second research goal G2, we determine how these bad smells a�ect the

evolvability and reusability of the scenarios (Evolvability and Reusability).

To identify the frequency of occurrences of our twelve bad smells, evaluating

goal G1, we determine how often each bad smell occurs in the four case

studies. In order to calculate the number of bad smells, we use our tool

RefactorLizar, where we implemented the identi�cation algorithms for each

bad smell presented in Section 4.2.

For the evaluation of goal G2, to assess whether the evolvability and reusabil-

ity have improved after refactoring a bad smell, we compare the original

evolution scenario to the refactored evolution scenario. The refactoring can

result in a di�erent number of classes. We only consider the classes that

would be a�ected by the change of the evolution scenario. For example, a

change can a�ect only one line in a class method with over 500 lines of code.

After the refactoring, we might have moved the method to another class;

thus, the change would no longer a�ect the original class. As a result, we

omit classes that are no longer a�ected by a change.

For each evolution scenario before and after the refactoring, we calculate the

cohesion, coupling, and complexity according to the metrics presented in

250

8.2. Evaluation Design

Section 2.2.2. We also use our tool RefactorLizar to calculate the metrics. We

present the results in the following section.

We cannot evaluate the second goal G2 for every bad smell, either because

�xing the bad smell would mainly a�ect the DSML and not the model-based

analysis, or the bad smell was not present in any of our case studies. The

bad smells we were unable to evaluate are Unused Abstraction, De�cient
Encapsulation, all Hierarchy smells, Broken Modularity, Missing Modularity,

and Weakened Modularity.

The Unused Abstraction smell contains the language types not used in the

model-based analysis. The unused language types must be removed from the

DSML to �x this bad smell; however, �xing this bad smell does not a�ect the

metrics complexity, coupling and cohesion of the analysis code because the

model-based analysis will not change. However, removing language types of

the DSML does improve the evolvability of the DSML, as it reduces the total

number of elements in the DSML.

The De�cient Encapsulation smell indicates that some language types of the

DSML are always used together and, thus, that the language types could

be merged. To �x this bad smell, the language architect must merge the

language types, which reduces the complexity of the models, as there are

fewer types to consider. We did not �x this bad smell, as we need to know

whether these types are always used together in every model-based analysis

that uses the DSML. However, merging language types reduces the coupling

of the model-based analysis and the DSML, as the number of dependencies is

reduced. Ergo, we can deduce that merging language types a�ected by the

De�cient Encapsulation improves the metrics coupling and complexity of a

model-based analysis.

The Hierarchy smells, and the Broken Modularity smell depend on a hierar-

chical structure of the DSML and the model-based analysis. We present a

reference architecture for model-based analyses in Chapter 3; this reference

architecture introduces such a hierarchical structure. We evaluate the bene�ts

of the reference architecture for model-based analyses in Chapter 7; thus, we

omit the evaluation in this section.

Fixing the Broken Modularity smell would require modifying the DSML when

the DSML has dependencies on the model-based analysis. In the context of

our four case studies, we did not �nd occurrences of the Broken Modularity
smell; thus, we could not evaluate the impact on the metrics’ complexity,

251

8. Evaluation of Bad Smells in Model-based Analyses

coupling, and cohesion. Nevertheless, we can deduce that when the DSML

depends on a model-based analysis, the complexity of the DSML increases

due to unnecessary dependencies.

Cyclic dependencies make code challenging to comprehend and di�cult to

maintain over time. This, in turn, opens the door to software systems that are

prone to errors and are challenging to test. If an architecture contains circular

dependencies, any modi�cation to a single module would probably produce

a ripple e�ect of errors for the rest of the components in the cycle. We focus

on cycles that form between the DSML and its corresponding model-based

analysis. Dependency cycles negatively a�ect the maintainability of software

systems, and they can increase the technical debt in such a system [Lil19]. As

we could not �nd occurrences of the Broken Modularity smell, the Weakened
Modularity smell can also not occur.

8.2.3 Refactoring Scenarios

In this section, we present the refactoring scenarios we selected to evaluate

the e�ect of refactoring the bad smells on the evolvability and reusability of

model-based analyses.

8.2.3.1 Refactoring Scenarios – Duplicated Abstraction

The Duplicated Abstraction smell occurs when two analysis classes depend

on the same set of language classes. We ignored when two analysis classes

depend on exactly one or two language classes. To refactor the Duplicated
Abstraction smell, we introduce an indirection layer that encapsulates the

access of the language components.

SimuLizar: For refactoring the Duplicated Abstraction smell, we selected

three occurrences of the bad smell in the SimuLizar case study. In the �rst

scenario DA_S_S1, the class EventNoti�cationHelper and the class LogDe-
bugListener depend on four types of the DSML PCM. These language types

are OperationSignature, ExternalCallAction, UsageScenario, and EntryLevelSys-
temCall. We identi�ed one commit with the id 3aad7b that a�ects both the

EventNoti�cationHelper and the LogDebugListener class.

In the second scenario DA_S_S2, the class ComposedStructureInnerSwitch and

the class RepositoryComponentSwitch depend on four types of the DSML.

252

8.2. Evaluation Design

These types are AssemblyContext, ComposedStructure, Signature, and Connec-
tor. We found one commit with the id fdc988 that a�ects both the Composed-
StructureInnerSwitch and the RepositoryComponentSwitch class.

In the third and last scenario DA_S_S3, the class AbstractInterpreterListener
and the classAbstractProbeFrameworkListener also depend on four types of the

DSML. These types of the DSML are OperationSignature, ExternalCallAction,

UsageScenario, and EntryLevelSystemCall. We identi�ed one commit with the

id 3aad7b that a�ects both classes.

KAMP4aPS: For refactoring theDuplicated Abstraction smell, we selected �ve

occurrences of the bad smell in the KAMP4aPS case study. In the �rst scenario

DA_K_S1, the class SignalInterfacePropagation and the class InterfaceChanges
depend on �ve types of the DSML. These types are Interface, ModifyInterface,
ModifyComponent, ChangePropagationDueToHardwareChange, and Compo-
nent. We were unable to �nd a commit that a�ects both classes; therefore,

we created a potential evolution scenario, which contains the classes Inter-
faceChanges, ScrewingChanges, and SignalInterfacePropagation. The screwing

in the context of the KAMP4aPS metamodel is an interface that connects two

hardware components of an aPS. These changes a�ect the generic class Inter-
faceChange and can also a�ect the screwing, as screwing is a specialisation

of the Interface class. Such a change can also a�ect the propagation of the

element type, in this case, the propagation between interfaces.

In the second scenario DA_K_S2, the class RampChange and the class SignalIn-
terfacePropagation depend on four types of the DSML. These types are Modify-
Interface, ModifyComponent, ChangePropagationDueToHardwareChange, and

Component. We were unable to �nd a commit that a�ects both classes; there-

fore, we created a potential evolution scenario, which contains the classes

ComponentChanges, RampChange, and SignalInterfacePropagation. The ramp

in an aPS is a hardware component used as a slider to move elements in the

system. Changes that a�ect the generic component can also a�ect changes

in any specialised component, such as a ramp. The components in an aPS

are connected via hardware interfaces; changes to the components can also

a�ect the change propagation between the components via the interfaces;

hence, the SignalInterfacePropagation can also be a�ected by a change.

In the third scenario DA_K_S3, the class SignalInterfacePropagation and the

class SwitchChanges depend on four types of the DSML. These types are

Interface, ModifyInterface, ChangePropagationDueToHardwareChange, and

253

8. Evaluation of Bad Smells in Model-based Analyses

Component. We were unable to �nd a commit that a�ects both classes; there-

fore, we created a potential evolution scenario, which contains the classes

Change, SignalInterfacePropagation, and SwitchChange. The generic class

Change can a�ect a speci�c change like the SwitchChange and how changes

propagate through the system. Hence the SignalInterfacePropagation can also

be a�ected.

In the fourth scenario DA_K_S4, the class ScrewingChanges and the class

SignalInterfacePropagation depend on four types of the DSML. These types

are Interface, ModifyInterface, ModifyComponent, and ChangePropagation-
DueToHardwareChange. We were unable to �nd a commit that a�ects both

classes; therefore, we created a potential evolution scenario, which contains

the classes InterfaceChanges, ScrewingChanges, SensorChanges, and SignalIn-
terfacePropagation. The screwing of a component in an aPS is an interface that

connects components in the system, and a sensor can be such a component

that needs to be screwed on another component in the aPS.

In the �fth scenario DA_K_S5, the class SwitchChanges and the class Sig-
nalInterfacePropagation depend on four types of the DSML. These types are

ModifyInterface, ChangePropagationDueToHardwareChange, Component, and

Interface. We were unable to �nd a commit that a�ects both classes; there-

fore, we created a potential evolution scenario, which contains the classes

Change, InterfaceChanges, ScrewingChanges, and SignalInterfacePropagation.

If the generic class Change is modi�ed, this can a�ect the speci�c classes

InterfaceChanges and ScrewingChanges, and it also can a�ect the propagation

rules; therefore, it can a�ect the class SignalInterfacePropagation.

SmartGrid: For refactoring the Duplicated Abstraction smell, we selected �ve

occurrences of the bad smell in the SmartGrid case study. In the �rst scenario

DA_SG_S1, the class DFSStrategy and the class GraphAnalyzer depend on four

types of the DSML. These four types are On, EntityState, NamedEntity, and

Cluster. We were unable to �nd commits that a�ect both the class DFSStrategy
and the class GraphAnalyzer; therefore, we created a potential evolution

scenario, which contains the classes DFSStrategy and GraphAnalyzer. Both

classes could change together, as the strategy for a depth-�rst search (DFS)

determines how to search a graph.

In the second scenario DA_SG_S2, the class LoadOutputModelConformity-
Helper and the class GraphAnalyzer depend on six types of the DSML. These

six types are SmartGridTopology, EntityState, NetworkEntity, Identi�er, and

254

8.2. Evaluation Design

ScenarioResult. We were unable to �nd commits that a�ect both the LoadOut-
putModelConformityHelper class and the GraphAnalyzer class; therefore, we

created a potential evolution scenario which contains the classes GraphAn-
alyzer and LoadOutputModelConformityHelper. These classes could change

together when the loaded model is changed, a�ecting how the graphs are

analysed.

In the third scenario DA_SG_S3, the class ViralHacker and the class GraphAn-
alyzer depend on �ve types of the DSML. These �ve types are SmartGridTopol-
ogy, On, EntityState, Identi�er, Cluster, and ScenarioResult. We were unable to

�nd commits that a�ect both the ViralHacker and the GraphAnalyzer class;

therefore, we created a potential evolution scenario which contains the classes

GraphAnalyzer, ScenarioModelHelper, and ViralHacker. These three classes

may change together; the models the scenario model helper handles can a�ect

how a viral hacker model is handled.

In the fourth scenario DA_SG_S4, the class GraphAnalyzer and the class At-
tackStrategies depend on seven types of the DSML. These seven types are

On, EntityState, CommunicatingEntity, LogicalCommunication, NetworkEntity,

Cluster, and PhysicalConnection. We were unable to �nd commits that a�ect

both the GraphAnalyzer class and the AttackStrategies class; therefore, we

created a potential evolution scenario which contains the classes AttackStrate-
gies, BFSStrategy, DFSStrategy, and GraphAnalyzer. These three classes may

change together when the strategies change.

In the �fth scenario DA_SG_S5, the class LoadOutputModelConformityHelper
and the class ScenarioModelHelper depend on four types of the DSML. These

four types are SmartGridTopology, EntityState, NamedEntity, and ScenarioRe-
sult. We were unable to �nd commits that a�ect both the LoadOutputMod-
elConformityHelper class and the ScenarioModelHelper class; therefore, we

created a potential evolution scenario which contains the classes LoadOutput-
ModelConformityHelper, ScenarioModelHelper, and ViralHacker. The helper

classes may change together, a�ecting the viral hacker model.

8.2.3.2 Refactoring Scenarios – Missing Abstraction

The Missing Abstraction smell occurs when the model-based analysis uses

primitive types instead of dedicated types. To refactor the Missing Abstrac-

255

8. Evaluation of Bad Smells in Model-based Analyses

tion smell, we introduce dedicated types and replace the occurrences of the

primitive types with the new dedicated types.

SimuLizar: For the refactoring of the Missing Abstraction smell, we selected

�ve occurrences in the SimuLizar case study. In the �rst scenario MA_S_S1,

the class QVToRecon�gurationTest uses primitive types for measurements

and paths. Instead of strings for the path, we use the Path class by the java.io

package, and for the measurements, we introduce a dedicated type. The

commit with the id be9224 a�ects the QVToRecon�gurationTest class; thus,

we selected this commit for the �rst scenario.

For the second scenario MA_S_S2, we found primitive types in the class

ResourceUtil that are used to transport �le and path information. We introduce

a new class for �le handling, and for path handling, we utilise the java.io

package. The commit with the id 8277cd a�ects the ResourceUtil class; thus,

we selected this commit for the second scenario.

In the third MA_S_S3, and fourth MA_S_S4 scenario, the SimulatedBasicCom-
ponentInstance uses multiple primitive types to represent the notion of time.

We replaced these primitive types with a time class representing the notion

of time. A�ected by this change is the SimulatedBasicComponentInstance;
therefore, we searched for a commit that at least a�ects the SimulatedBasic-
ComponentInstance class. The commit with the id 534d55 is suitable for this

scenario; therefore, we selected it for the third scenario. The commit with the

id a55386 �ts as a scenario; therefore, we selected it for the fourth scenario.

Camunda: For the refactoring of the Missing Abstraction smell, we selected

�ve occurrences in the Camunda case study. In the �rst scenario MA_C_S1,

the identi�er of a job in the analysis is submitted as a string instead of a

dedicated type. Thus, we introduced a new identi�er class and replaced the

primitive ids with the dedicated type. One class a�ected by that change is the

ManagementServiceImpl class. We chose the commit with the id 5e6d48 for the

historical evolution scenario because it a�ects the ManagementServiceImpl
class.

For the second scenario MA_C_S2, in the ActivityImpl class, the exclusiveness

of an asynchronous activity is set with a primitive boolean type. However, in

addition to one boolean parameter that sets the exclusiveness of the activity,

further parameters of the same primitive type are always used together.

Instead of introducing a new type, we restructured the ActivityImpl class to

reduce the parameters to one boolean per method. We chose the commit

256

8.2. Evaluation Design

with the id 01b4b3 for the historical evolution scenario because it a�ects the

ActivityImpl class.

In the third scenario MA_C_S3, the identi�er of a worker in the analysis is

submitted as a string instead of a dedicated type. Thus, we introduced a new

identi�er class and replaced the primitive identi�ers with the dedicated type.

One class a�ected by that change is the ExternalTaskService class. We chose

the commit with the id 3b3e99 for the historical evolution scenario because it

a�ects the ManagementServiceImpl class.

In the fourth scenario MA_C_S4, the results of an analysis task are submitted

as an integer instead of a dedicated type. We introduce a new dedicated

class that can store integer-based results to replace the primitive result types.

Two classes a�ected by that change are the OptimizeHistoricVariableUpdate-
QueryCmd and the OptimizeService class. We chose the commit with the id

8ebe48 for the historical evolution scenario because it a�ects the two afore-

mentioned classes.

For the �fth scenario MA_C_S5, we changed the handling of databases and

database statements. The database type and the database statements are

submitted as primitive strings. We introduced new classes that represent the

database and the database statements. A�ected by this change is the class

DbSqlSessionFactory. We chose the commit with the id 18b7ed for the historical

evolution scenario because it a�ects the DbSqlSessionFactory class.

KAMP4aPS: For the refactoring of the Missing Abstraction smell, we selected

�ve occurrences in the KAMP4aPS case study. In the �rst scenario MA_K_S1,

we found primitive types in the class APSArchitectureVersionPersistency that

are used to transport �le and path information. For the �le and the path

handling, we utilise the java.io package instead of the primitive type string.

We chose the commit with the id 5dae88 for the historical evolution scenario

because it a�ects the aforementioned class.

For the second scenario MA_K_S2, we found primitive types in the class that

are used to represent the version of an architecture version. We introduce a

new dedicated type that represents the version of an architecture, for example,

the version number and version name. As mentioned earlier, we chose the

commit with the id 5dae88 for the historical evolution scenario because it

a�ects the class.

In the third MA_K_S3, fourth MAK_S4, and �fth scenario MAK_S5, the identi-

�er of a label in the analysis is submitted as a string instead of a dedicated

257

8. Evaluation of Bad Smells in Model-based Analyses

type. Thus, we introduced a new identi�er class and replaced the primitive

ids with the dedicated type. One class that is a�ected by that change is the

LabelCustomizing class. The commit with the id 47d3cc �ts as a scenario;

thus, we selected it for the third historical evolution scenario. We chose the

commit with the id 8e7cb9 for the fourth historical evolution scenario. We

chose the commit with the id 69ab43 for the �fth historical evolution scenario

because they a�ect the LabelCustomizing class.

SmartGrid: For the refactoring of the Missing Abstraction smell, we selected

�ve occurrences in the SmartGrid case study. In the �rst MA_SG_S1, second

MA_SG_S2 and fourth scenario MA_SG_S4, in the class LocalHacker the

primitive type string is used to represent the hacking style and hacking speed

of a hacker in the system. We introduce a dedicated type that contains the

hacking style and speed to replace the occurrences of the primitive types. For

the �rst historical evolution scenario MA_SG_S1, we chose the commit with

the id 4b7c2b because it a�ects the LocalHacker class. We chose the commit

with the id 2d7a9c for the second historical evolution scenario MA_SG_S2

because it a�ects the class as mentioned above. For the fourth historical

evolution scenario MA_SG_S4, we chose the commit with the id 1f8a57 f

because it a�ects the LocalHacker class.

In the third MA_SG_S3 and �fth scenario MA_SG_S5, we found primitive

types in the class RmiServer that are used to transport �le and path infor-

mation. For the �le and path handling, we utilise the java.io package. We

chose the commit with the id 0fd5fe for the third historical evolution scenario

because it a�ects the aforementioned RmiServer class. We chose the commit

with the id 0a4229 for the �fth historical evolution scenario because it a�ects

the aforementioned RmiServer class.

8.2.3.3 Refactoring Scenarios – Degraded Modularity

The Degraded Modularity smell occurs when components of the model-based

analysis depend on the same language component of the DSML. To refactor

the Degraded Modularity smell, we merge classes of the analysis components

and move them to a common analysis component. When the classes depend

on di�erent language components, we split the classes before we are able to

merge them.

258

8.2. Evaluation Design

SimuLizar: For the refactoring of the Degraded Modularity smell, we selected

�ve occurrences in the SimuLizar case study. In the �rst scenario DM_S_-
S1, the analysis classes ControllerMappingImpl, EventNoti�cationHelper, and

ControllerMapping depend on the language type OperationProvidedRole. To

�x this bad smell, we moved the dependencies on the language type into

a dedicated class. We could not �nd a commit that a�ects all three classes;

therefore, we created the �rst potential evolution scenario containing the

classes mentioned above.

For the second scenario DM_S_S2, we selected the Degraded Modularity

smell that a�ects the analysis classes QVToRecon�gurationTest, Composed-
StructureInnerSwitch, and RepositoryComponentSwitch that depend on the

language type Connector. To �x this bad smell, we moved the dependencies

of the classes ComposedStructureInnerSwitch and RepositoryComponentSwitch
that depend on the language type Connector into a dedicated class. The test

class is not part of the model-based analysis; thus, we did not refactor it. We

found a commit that a�ects the class RepositoryComponentSwitch; as a result,

we created the second evolution scenario as a historical evolution scenario

based on the commit with the id e0facd.

Based on the Degraded Modularity smell of the second scenario, we derived

further historical evolution scenarios for the evaluation. For the third scenario

DM_S_S3, we were able to select a commit that a�ects the classes Composed-
StructureInnerSwitch, RepositoryComponentSwitch and 20 more. As a result,

we created the third evolution scenario as a historical evolution scenario

based on the commit with the id fdc988. For the fourth scenario DM_S_S4,

we were able to select a commit that a�ects the classes ComposedStructureIn-
nerSwitch, RepositoryComponentSwitch and twelve more. As a result, we

created the third evolution scenario as a historical evolution scenario based

on the commit with the id 7e1b98. For the �fth scenario DM_S_S5, we were

able to select a commit that a�ects the classes ComposedStructureInnerSwitch,

RepositoryComponentSwitch and six more. As a result, we created the third

evolution scenario as a historical evolution scenario based on the commit

with the id 657cbf.

SmartGrid: For the refactoring of the Degraded Modularity smell, we se-

lected �ve occurrences of it in the SmartGrid case study. In the �rst scenario

DM_SG_S1, the analysis classes ScenarioModelHelper, GraphAnalyzer, and

LoadInputModelConformityHelper depend on the language type ScenarioState.

259

8. Evaluation of Bad Smells in Model-based Analyses

To �x this bad smell, we moved the dependencies on the language type Sce-
narioState into a dedicated class. We were unable to �nd a commit that a�ects

all three classes; therefore, we created the �rst potential evolution scenario

that contains the aforementioned classes.

For the second scenario DM_SG_S2, we selected the Degraded Modularity

smell that a�ects the analysis classes ScenarioModelHelper, GraphAnalyzer,
LoadInputModelConformityHelper, ViralHacker, and LoadOutputModelCon-
formityHelper that depend on the language type SmartGridTopology. To �x

this bad smell, we moved the dependencies that depend on the language

type into a dedicated class. We were unable to �nd a commit that a�ects the

aforementioned classes; as a result, we created the second evolution scenario

as a potential evolution scenario.

In the third DM_SG_S3, fourth DM_SG_S4, and �fth DM_SG_S5 scenario,

we selected commits of the case study SmartGrid that a�ect a subset of the

classes that are part of the Degraded Modularity smell. For the third scenario,

we selected a commit that a�ects the classes GraphAnalyzer, ViralHacker
and �ve other classes. As a result, we created the third evolution scenario

as a historical evolution scenario based on the commit with the id 430554.

For the fourth scenario, we were able to select a commit that a�ects the

classes GraphAnalyzer, LoadOutputModelConformityHelper, ViralHacker and

three other classes. As a result, we created the fourth evolution scenario as a

historical evolution scenario based on the commit with the id 959f06. For the

�fth scenario, we selected a commit that a�ects the classes GraphAnalyzer and

LoadInputModelConformityHelper. As a result, we created the �fth evolution

scenario as a historical evolution scenario based on the commit with the id

64d4fc.

8.2.3.4 Refactoring Scenarios – Rebellious Modularity

The Rebellious Modularity smell occurs as an analysis component of the model-

based analysis depending on multiple language components of the DSML.

To refactor the Rebellious Modularity smell, we split the analysis classes to

separate the dependencies on the language types into dedicated analysis

classes or analysis components. We created historical evaluation scenarios

based on the same commits, as di�erent �les are a�ected by the bad smells in

the scenarios. For example, the scenarios RM_K_S4 and RM_K_S5 have the

same commit, but the commit contains multiple Rebellious Modularity smells.

260

8.2. Evaluation Design

We only refactored one bad smell and left the remaining unchanged not to

spoil our evaluation results.

SimuLizar: For the refactoring of the Rebellious Modularity smell, we se-

lected �ve occurrences in the SimuLizar case study. In the �rst scenario

RM_S_S1, the class LogDebugListener depends on the language components

mpcm.domain.repository, mpcm.domain.se�, and mpcm.domain.usage. After

the refactoring, we identi�ed the commit with the ba19f7 that includes the

LogDebugListener and twelve other classes. Based on the commit, we created

the �rst historical evolution scenario.

For the second scenario RM_S_S2, we found that the analysis class Moni-
torRepositoryUtil depends on the language components mpcm.domain.se�,

mpcm.domain.usage, mpcm.paradigm.se�, and mpcm.paradigm.repository.

After the refactoring, we selected the commit with the id 055e9a that includes

the MonitorRepositoryUtil. Regarding the commit, we created the second

historical evolution scenario to evaluate the Rebellious Modularity smell in

the SimuLizar case study.

In the third scenario RM_S_S3, the class PeriodicallyTriggeredUsageEvolver
depends on the language components mpcm.domain.usage and mpcm.paradi-

gm.variables. After the refactoring, we selected the commit with the id 2d215c
that includes the PeriodicallyTriggeredUsageEvolver and 24 other classes.

Based on the commit, we created the third historical evolution scenario.

For the fourth scenario RM_S_S4, we found that the analysis class Abstract
InterpreterListener depends on the language components mpcm.domain.repos-

itory, mpcm.domain.se�, mpcm.domain.usage, and mpcm.paradigm.reposi-

tory. After the refactoring, we selected the commit with the id f066ea that

includes the AbstractInterpreterListener and �ve other classes. Based on the

commit, we created the fourth historical evolution scenario.

In the �fth scenario RM_S_S5, the class RepositoryComponentSwitch depends

on the language components mpcm.domain.repository, mpcm.domain.compo-

sition, mpcm.paradigm.composition, mpcm.paradigm.base, mpcm.paradigm.

repository, and mpcm.quality.performance. After the refactoring, we selected

the commit with the id 45e128 that includes the RepositoryComponentSwitch
and �ve other classes. Based on the commit, we created the �fth historical

evolution scenario.

Camunda: For the refactoring of the Rebellious Modularity smell, we selected

one occurrence in the Camunda case study. In the only scenario RM_C_S1,

261

8. Evaluation of Bad Smells in Model-based Analyses

the class BpmnModelExecutionContext depends on the language components

�ows-paradigm and core-classes. After the refactoring, we identi�ed the

commit with the id b85d83 that includes the BpmnModelExecutionContext and

13 other classes. Based on the commit, we created the historical evolution

scenario for refactoring Camunda in the context of the Rebellious Modularity
smell.

KAMP4aPS: For the refactoring of the Rebellious Modularity smell, we se-

lected �ve occurrences in the KAMP4aPS case study. In the �rst scenario

RM_K_S1, the class SensorChanges depends on the language components

mkamp.as.mm, mkamp.aps.mm, edu.kit.ipd.sdq.kamp.model.modi�cation-

marks, and mkamp.aps. After the refactoring, we identi�ed the commit with

the 1f78d0 that includes the SensorChanges class and nine other classes. Based

on the commit, we created the �rst historical evolution scenario.

For the second scenario RM_K_S2, we found that the analysis class Signal-
InterfacePropagation depends on the language components mkamp.as.mm

and mkamp.as. After the refactoring, we selected the commit with the id

1f78d0 that includes the SignalInterfacePropagation and nine other classes.

Regarding the commit, we created the second historical evolution scenario to

evaluate the Rebellious Modularity smell in the KAMP4aPS case study.

In the third scenario RM_K_S3, the class SwitchChanges depends on the

language components mkamp.as.mm, mkamp.aps.ppu, mkamp.as, edu.kit.ipd.

sdq.kamp.model.modi�cationmarks, and mkamp.aps. After the refactoring,

we selected the commit with the id 47d3cc that includes the SwitchChanges
and 24 other classes. Based on the commit, we created the third historical

evolution scenario.

For the fourth scenario RM_K_S4, we found that the analysis class Ram-
pChange depends on the language components edu.kit.ipd.sdq.kamp4aps.

basic, mkamp.as.mm, mkamp.as, and mkamp.aps. After the refactoring, we

selected the commit with the id 2d37dc that includes the RampChange and

three other classes. Based on the commit, we created the fourth historical

evolution scenario.

In the �fth scenario RM_K_S5, the class ModuleChanges depends on the lan-

guage components mkamp.as.mm, edu.kit.ipd.sdq.kamp4aps.basic, mkamp.as,

and edu.kit.ipd.sdq.kamp.model.modi�cationmarks. After the refactoring,

we selected the commit with the id 2d37dc that includes the ModuleChanges

262

8.2. Evaluation Design

and three other classes. Based on the commit, we created the �fth historical

evolution scenario.

SmartGrid: For the refactoring of the Rebellious Modularity smell, we se-

lected �ve occurrences in the SmartGrid case study. In the �rst scenario of

the SmartGrid case study, RM_SG_S1, the class GraphAnalyzer depends on

the language components msmartgrid.paradigm.graph, msmartgrid.domain.

topo, msmartgrid.paradigm.base, msmartgrid.analysis.output, and msmart-

grid.analysis.input. After the refactoring, we identi�ed the commit with the

e4ce4f that includes the GraphAnalyzer class and two other classes. Based on

the commit, we created the �rst historical evolution scenario.

For the second scenario RM_SG_S2, we found that the analysis class Attack-
Strategies depends on the language components msmartgrid.paradigm.graph

and msmartgrid.analysis.output. After the refactoring, we selected the com-

mit with the id a2dc4f that includes the AttackStrategies class and ten other

classes. Regarding the commit, we created the second historical evolution

scenario to evaluate the Rebellious Modularity smell in the SmartGrid case

study.

In the third scenario RM_SG_S3, the class LocalHacker depends on the lan-

guage components msmartgrid.domain.topo, and msmartgrid.analysis.output.

After the refactoring, we selected the commit with the id d06686 that includes

the LocalHacker and 26 other classes. Based on the commit, we created the

third historical evolution scenario.

In the fourth scenario RM_SG_S4, the class GraphAnalyzer depends on the

language components msmartgrid.paradigm.graph, msmartgrid.domain.topo,

msmartgrid.paradigm.base, msmartgrid.analysis.output, and msmartgrid.anal-

ysis.input. After the refactoring, we identi�ed the commit with the d06686
that includes the GraphAnalyzer class and 26 other classes. Based on the

commit, we created the fourth historical evolution scenario.

In the �fth scenario RM_SG_S5, the class ViralHacker depends on the lan-

guage components msmartgrid.domain.topo, msmartgrid.paradigm.base, and

msmartgrid.analysis.output. After the refactoring, we selected the commit

with the id a2dc4f that includes the ViralHacker and three other classes. Based

on the commit, we created the �fth historical evolution scenario.

263

8. Evaluation of Bad Smells in Model-based Analyses

Sim
uL
iza
r

Ca
m
un
da

KA
M
P4
aP
S

Sm
ar
tG
rid

Duplicated Abstraction 15 0 76 18

Missing Abstraction 41 1153 5 12

Unused Abstraction 891 270 169 75

De�cient Encapsulation 6 1 9 4

Folded Hierarchy 0 0 0 0

Missing Hierarchy 0 0 0 0

Unexploited Hierarchy 0 0 0 0

Broken Modularity 0 0 0 0

Degraded Modularity 9 0 0 15

Missing Modularity 441 2201 28 60

Rebellious Modularity 13 4 21 11

Weakened Modularity 0 0 0 0

Table 8.1.:Number of Occurrences of the Bad Smells in the Four Case Studies.

8.3 Evaluation Results

In this section, we present the results for the Frequency of Occurrences of the

bad smells in the four case studies to determine whether we reached our goal

G1, and we present the results for the Evolvability and Reusability. We also

present the results for the Frequency of Occurrences to determine whether

we reached our goal G2; we show the number of bad smells for each case

study. In the results for the Evolvability and Reusability, we compare our

scenarios’ metrics cohesion, coupling, and complexity before and after the

refactoring.

8.3.1 Frequency of Occurrence Results

The Duplicated Abstraction smell predominately occurs in the KAMP4aPS case

study and only in the Ecore-based model-based analyses. In KAMP4aPS, the

smell does occur 76 times, in SmartGrid 18 times, and in SimuLizar 15 times.

In the case study Camunda, we could not �nd occurrences of the Duplicated
Abstraction smell. The Missing Abstraction smells occurs predominately in

264

8.3. Evaluation Results

the Camunda case study, 19 times more than in the remaining three case

studies combined. In Camunda, the smell occurs 1153 times, in SimuLizar

41 times, in SmartGrid 12 times and in KAMP4aPS �ve times. The Unused
Abstraction smell occurs predominately in the SimuLizar case study, 1,7 times

more than in the remaining three case studies combined. In the case study

SimuLizar, the smell occurs 891 times, in Camunda 290 times, in KAMP4aPS

169, and in Smart Grid 75 times. The number De�cient Encapsulation smells

in the case studies is low. In the case study SimuLizar, the smell occurs six

times, in Camunda one time, in KAMP4aPS nine times and in SmartGrid four

times. The Folded Hierarchy smell occurs predominately in the SmartGrid

and the SimuLizar case studies. The smell occurs 80 times in SmartGrid

and 72 times in SimuLizar. In the KAMP4aPS case study, the smell occurs

26 times, and the Camunda case study has the lowest number with four

occurrences. We could not �nd occurrences of the Missing Hierarchy smell

in any of the four case studies. Why we could not �nd the smell and why

the smell is still relevant will be discussed in Section 8.5. The Unexploited
Hierarchy smell only occurs in the SmartGrid case study with 19 �ndings.

The Degraded Modularity smell occurs in the SimuLizar and the SmartGrid

case study with 9 and 15 occurrences, respectively. The bad smell with the

highest number of �ndings in total and the highest number of �ndings in one

case study is the MissingModularity smell. In the case study SimuLizar the

smell occurs 441 times, in Camunda 2201 times, in KAMP4aPS 28 times and

in SmartGrid 60 times. The Rebellious Modularity smell predominately occurs

in the KAMP4aPS case study. In KAMP4aPS, the smell occurs 21 times, in

SimuLizar 13 times, in SmartGrid eleven times and in Camunda four times.

The last bad smell Weakened Modularity occurs in the case studies SimuLizar

and Camunda with 20 and seven occurrences, respectively.

8.3.2 Evolvability, Understandability, and Reusability Results

Before we can start presenting the refactoring results, we discuss why we

could not refactor all bad smells and why they are still relevant when we dis-

cuss recurring patterns that negatively a�ect the evolvability and reusability

of model-based analyses. The bad smells we were unable to refactor manu-

ally or automatically are Duplicated Abstraction, Unused Abstraction, Folded
Hierarchy, Missing Hierarchy, Unexploited Hierarchy, Broken Modularity, and

Missing Modularity.

265

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

DA_S_S1 1804 1785 253 254 1.68E-4 1.54E-4

DA_S_S2 1475 1430 355 355 9.70E-4 9.25E-4

DA_S_S3 1983 1983 265 265 1.59E-4 1.59E-4

Table 8.2.: SimuLizar– Duplicated Abstraction Refactoring

The bad smells related to the hierarchical structure of the DSML and its

corresponding model-based analysis are addressed when the reference ar-

chitecture for model-based analysis we present Chapter 3 is applied to the

model-based analysis. How the hierarchical structure and the compliance to

the reference architecture a�ects the evolvability and reusability is presented

in Chapter 7.

We could not evaluate the Broken Modularity smell, as the case studies consist

only of one model-based analysis that uses one of the DSMLs. We could not

investigate the e�ect of refactoring multiple model-based analysis that use

the same DSML. Nevertheless, the Broken Modularity smell negatively a�ects

the evolvability and reusability of model-based analysis. If the DSML depends

on one model-based analysis, changes to the model-based analysis can trigger

changes in the DSML, which can a�ect the other depending model-based

analysis. For example, suppose the DSML references the analysis engine of

a speci�c model-based analysis to use its notion of time (i. e., milliseconds).

In that case, all other model-based analyses must use the same notion of

time. If the notion of time changes, the DSML and all correlated model-based

analyses also have to change.

8.3.2.1 Duplicated Abstraction

In this section, we present the results for the Duplicated Abstraction refactor-

ings. The tables show for each scenario the complexity, coupling, and cohesion
before and after the refactoring.

The results for the case study SimuLizar are shown in Table 8.2. We refactored

three change scenarios from the case study SimuLizar. The complexity and

the cohesion improved in the �rst scenario DA_S_S1, but the coupling deteri-

orated. The complexity and cohesiveness improved in the second scenario

DA_S_S2, but the coupling remained unchanged. The refactorings of the third

266

8.3. Evaluation Results

Complexity Coupling Cohesion
before after before after before after

DA_K_S1 298 216 183 115 0.016651 0.016654
DA_K_S2 129 61 69 19 0.021 0.030
DA_K_S3 30 27 13 10 0.038 0.038

DA_K_S4 295 206 183 113 0.01311 0.01305

DA_K_S5 320 207 197 109 0.01402 0.01406

Table 8.3.:KAMP4aPS – Duplicated Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

DA_SG_S1 991 909 110 98 0.060 0.056

DA_SG_S2 1001 920 110 111 0.053 0.056
DA_SG_S3 1200 1130 160 161 0.021 0.020

DA_SG_S4 997 971 114 145 0.037 0.032

DA_SG_S5 251 221 55 45 0.0126 0.0135

Table 8.4.: SmartGrid – Duplicated Abstraction Refactoring

scenario DA_S_S3 had no in�uence on the metrics’ complexity, cohesion, or

coupling.

The case study KAMP4aPS results are shown in Table 8.3. We refactored �ve

change scenarios from the case study KAMP4aPS. After the refactoring, the

complexity in the �rst DA_K_S1 and second scenario DA_K_S2 improved, as

did the coupling and cohesion. Only the complexity and coupling improved

in the third scenario DA_K_S3, while the cohesion did not change. The

complexity and coupling improved in the fourth scenario DA_K_S4, but the

cohesion deteriorated. The three metrics complexity, coupling, and cohesion

improved for the �nal scenario DA_K_S5.

Table 8.4 displays the results for the case study SmartGrid. We also refactored

�ve scenarios from the SmartGrid case study. The complexity in the �rst sce-

nario DA_SG_S1 improved, as did the coupling, but the cohesion deteriorated.

The complexity and cohesion improved in the second scenario DA_SG_S2, but

the coupling deteriorated. Only the complexity improved in the third scenario

DA_SG_S3, while the coupling and cohesion deteriorated. The complexity

improved in the fourth scenario DA_SG_S4, but the coupling and cohesion

267

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

MA_S_S1 1023 1077 109 155 0.00264 0.00251

MA_S_S2 348 341 76 81 8.88E-3 6.97E-3

MA_S_S3 2421 2429 510 510 2.5E-4 2.6E-4
MA_S_S4 70 83 11 11 0.105 0.107

Table 8.5.: SimuLizar – Missing Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

MA_C_1 286 267 82 87 2.7E-4 2.6E-4

MA_C_2 166 112 40.5 40.9 2.3E-4 1.9E-4

MA_C_3 30 30 12 12 1.34E-3 1.34E-3

MA_C_4 101 103 11 14 0.023 0.021

MA_C_5 647 648 173 174 2.71E-3 2.66E-3

Table 8.6.:Camunda – Missing Abstraction Refactoring

worsened. The three metrics complexity, coupling, and cohesion improved

for the �nal scenario DA_SG_S5.

8.3.2.2 Missing Abstraction

In this section, we present the results for the Missing Abstraction refactorings.

The tables show for each scenario the complexity, coupling, and cohesion
before and after the refactoring.

The results for the case study SimuLizar are shown in Table 8.5. We refactored

four cases from the case study SimuLizar. The metrics complexity, coupling,

and cohesion deteriorated in the �rst scenario MA_S_S1. The complexity

improved in the second scenario MA_S_S2, but the coupling and cohesion

worsened. Only the cohesion improved in the third scenario, MA_S_S3, while

the coupling remained unchanged and the complexity deteriorated. The

complexity of the fourth scenario MA_S_S4 decreased; the coupling did not

change, but the cohesion improved.

The results for the case study Camunda are shown Table 8.6. We refactored

�ve cases from the case study Camunda. The metrics complexity and cohesion

268

8.3. Evaluation Results

Complexity Coupling Cohesion
before after before after before after

MA_K_S1 991 1023 445 477 4.2E-3 3.9E-3

MA_K_S2 991 769 445 366 4.2E-3 4.9E-3
MA_K_S3 5499 5553 2259 2222 1.81E-4 1.80E-4

MA_K_S4 68 11 8 21 1.09E-5 1.08E-5

MA_K_S5 179 181 65 51 1.3E-3 1.2E-3

Table 8.7.:KAMP4aPS – Missing Abstraction Refactoring

Complexity Coupling Cohesion
before after before after before after

MA_SG_S1 352 351 41 37 0.030 0.026

MA_SG_S2 1321 1316 161 157 0.020 0.018

MA_SG_S3 312 314 76 77 0.03 0.02

MA_SG_S4 198.7 198.2 22 17 0.06 0.05

MA_SG_S5 312 314 76 77 0.03 0.02

Table 8.8.: SmartGrid – Missing Abstraction Refactoring

improved in the �rst MA_C_S1 and second MA_C_2 scenarios, while the

coupling worsened. The metrics did not change in the third scenario MA_-
C_3. The complexity, coupling, and cohesion all deteriorated for the fourth

MA_C_4 and �fth MA_C_5 scenarios.

The case study KAMP4aPS results are shown in Table 8.7. We refactored �ve

scenarios from the case study KAMP4aPS. The metrics complexity, coupling,

and cohesion deteriorated in the �rst scenario, MA_K_S1. The metrics com-

plexity, coupling, and cohesion improved for the second scenario, MA_K_S2.

The metric coupling improved while the metrics complexity and cohesion

deteriorated in the third scenario, MA_K_S3. The metrics complexity and

cohesion improved, while the metric coupling deteriorated in the fourth sce-

nario, MA_K_S4. The metric coupling improved, but the metrics complexity

and cohesion deteriorated in the �fth scenario, MA_K_S5.

The results for the case study SmartGrid are shown in Table 8.8. We refactored

�ve scenarios from the SmartGrid case study. The metrics complexity and

coupling improved in the �rst MA_SG_S1 and second MA_SG_S2 scenarios,

whereas metric cohesion deteriorated. The metrics complexity, coupling,

and cohesion deteriorated in the third scenario, MA_SG_S3. The metrics

269

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

DM_S_S1 403 379 63 52 0.019 0.018

DM_S_S2 105 97 11 10 0.12 0.16
DM_S_S3 1475 1431 355 347 9.7E-4 9.6E-4

DM_S_S4 1254 1235 252 253 2.78E-3 2.81E-3
DM_S_S5 892 872 55 54 5.8E-3 5.9E-3

Table 8.9.: SimuLizar – Degraded Modularity Refactoring

Complexity Coupling Cohesion
before after before after before after

DM_SG_S1 1050.39 1050.30 143 143 0.022 0.023
DM_SG_S2 528 554 75 86 0.01 0.01

DM_SG_S3 42 35 14 13 0.027 0.033
DM_SG_S4 374 373 61 65 4.8E-3 5.0E-3
DM_SG_S5 4600 4600 1131 1129 1.0E-4 1.0E-4

Table 8.10.: SmartGrid – Degraded Modularity Refactoring

complexity and coupling improved, but the metric cohesion deteriorated

in the fourth scenario, MA_SG_S4. The metrics complexity, coupling, and

cohesion deteriorated in the �fth scenario, MA_SG_S5.

8.3.2.3 Degraded Modularity

The results for the case study SimuLizar are shown in Table 8.9. We refactored

�ve cases from the SimuLizar case study. The metrics complexity and coupling

improved while metric cohesion deteriorated in the �rst scenario, DM_S_-
S1. The metrics complexity, coupling, and cohesion improved in the second

scenario, DM_S_S2. For the third scenario, DM_S_S3, the metrics complexity

and coupling improved while the metric cohesion deteriorated. The metrics

complexity and cohesion improved, and the metric coupling decreased in the

fourth scenario, DM_S_S4. The complexity, coupling, and cohesion metrics

improved in the �fth scenario, DM_S_S5.

The results for the case study SmartGrid are displayed in Table 8.10. Five

scenarios were refactored from the SmartGrid case study. The metric com-

270

8.3. Evaluation Results

Complexity Coupling Cohesion
before after before after before after

RM_S_S1 303 296 62 66 0.0016 0.0021
RM_S_S2 93 93 60 60 0.01 0.01

RM_S_S3 805 790 23 22 8.26E-4 8.34E-4
RM_S_S4 306 306 47 47 0.006 0.008
RM_S_S5 675 652 43 46 0.009 0.010

Table 8.11.: SimuLizar – Rebellious Modularity Refactoring

Complexity Coupling Cohesion
before after before after before after

RM_C_S1 3532 3526 368 357 4.93E-4 4.94E-4

Table 8.12.:Camunda – Rebellious Modularity Refactoring

plexity improved, the metric coupling did not change, and the metric cohesion

improved in the �rst scenario, DM_SG_S1. The metrics complexity and cohe-

sion declined in the second scenario, DM_SG_S2, while coupling remained

unchanged. The metrics complexity, coupling, and cohesion improved for the

third scenario,DM_SG_S3. The metrics complexity and cohesion improved

while the metric coupling deteriorated in the fourth scenario, DM_SG_S4.

The metrics complexity and cohesion did not change in the �fth scenario,

DM_SG_S5, and coupling improved.

8.3.2.4 Rebellious Modularity

The results for the case study SimuLizar are shown in Table 8.11. We refac-

tored �ve cases from the case study SimuLizar. The metric complexity and

cohesion improved in the �rst scenario RM_S_S1, but the metric coupling

deteriorated. The metrics complexity and cohesion deteriorated in the second

scenario, but coupling stayed unchanged in the second scenario RM_S_-
S2. The metrics complexity, coupling, and cohesion improved for the third

scenario,RM_S_S3. For the fourth scenario, RM_S_S4, the metric cohesion

improved while the metrics complexity and coupling remained the same.

The metrics complexity and cohesion improved, while the metric coupling

deteriorated in the �fth scenario RM_S_S5.

271

8. Evaluation of Bad Smells in Model-based Analyses

Complexity Coupling Cohesion
before after before after before after

RM_K_S1 844 841 520 517 0.0021 0.0022
RM_K_S2 844 844 520 520 0.002 0.002

RM_K_S3 1007 997 545 543 5.0E-3 5.1E-3
RM_K_S4 1007 989 545 534 5.02E-3 5.03E-3
RM_K_S5 5499 5470 2259 2231 2.0E-4 2.0E-4

Table 8.13.:KAMP4aPS – Rebellious Modularity Refactoring

Complexity Coupling Cohesion
before after before after before after

RM_SG_S1 1181 1147 207 211 0.0220 0.0223
RM_SG_S2 540 549 142 148 0.003 0.003

RM_SG_S3 6289 6041 2239 2012 0.002 0.002

RM_SG_S4 6696 6289 2559 2239 1.548E-3 1.546E-3

RM_SG_S5 540 573 142 163 0.003 0.003

Table 8.14.: SmartGrid – Rebellious Modularity Refactoring

The �ndings from the Camunda case study are presented in Table 8.12. We

refactored one scenario from the Camunda case study. The complexity, cou-

pling, and cohesion metrics improved for scenario RM_C_S1.

The results for the case study acKAMP4APS are shown in Table 8.11. We

refactored �ve scenarios from the case study KAMP4aPS. Complexity, cou-

pling, and cohesion metrics all improved in the initial scenario RM_K_S1.

The complexity, coupling, and cohesion metrics were unchanged in scenario

RM_K_S2. Complexity, coupling, and cohesion metrics all improved for sce-

nario RM_K_S3. The metrics complexity, coupling, and cohesion increased

for scenario RM_K_S4. Improvements were made for the metrics complexity,

coupling, and cohesion in scenario RM_K_S5.

The results for the case study SmartGrid are shown in Table 8.14. We refac-

tored �ve scenarios from the SmartGrid case study. The metrics complexity

and cohesion improved in the �rst scenario RM_SG_S1, while the metric

coupling declined. The metrics complexity and coupling deteriorated in the

second scenario RM_SG_S2, while metric cohesion remained unchanged. The

metrics complexity and coupling improved for the third scenario, RM_SG_S3,

while metric cohesion remained unchanged. The metrics complexity and

272

8.4. Threats to Validity

coupling improved, whereas the metric cohesion degraded in the fourth sce-

nario, RM_SG_S4. The metrics complexity and coupling declined in the �fth

scenario RM_SG_S5, while the metric coupling remained unchanged.

8.4 Threats to Validity

In this section, we discuss the four types of validity by Runeson et al. [Run+12].

The four validity types are explained in Section 2.6.1.

8.4.1 Internal Validity

In our evaluation, we analysed four case studies regarding 12 bad smells

dedicated to model-based analyses. We investigated the relevance of the bad

smells in four case studies and how they a�ect evolvability and reusability.

We identi�ed the occurrences of each bad smell in each case study. Based

on these occurrences, we derived change scenarios based on historical or

potential changes. Then, we compared the metrics complexity, coupling, and

cohesion for each scenario before and after the refactoring. To address the

internal validity, we have to ensure that the refactoring of the bad smell we

have applied to the scenarios created the changes in the metrics. One possible

cause for the change in the results is when we also �xed bugs and bad smells

(cf. Chapter 4) unrelated to the bad smell under study. Therefore, we only

applied refactorings that helped us to �x the bad smell under study to the

case studies.

8.4.2 External Validity

Choosing a sample case study that is not as general as possible to depict a

concrete system will provide greater insight and a better understanding of

the system under investigation [Run+12]. The case studies we chose do not

represent a generic case study that covers all possible model-based analyses.

As a result, the �ndings from the four case studies do not represent every

other arbitrary model-based research. On the other hand, the case studies

derive from distinct domains, allowing us to get insights into model-based

analyses with similar qualities. To counter this issue, we chose to conduct

273

8. Evaluation of Bad Smells in Model-based Analyses

heterogeneous model-based analyses. Chapter 6 goes through our selection

procedure and the case studies in general.

8.4.3 Construct Validity

The construct validity will be compromised if we choose case studies that

would pro�t the most from �xing the bad smells, such as those with many

bad smells. We chose the same case studies as Heinrich et al. [HSR19] to

avoid this issue. Heinrich et al. focussed on the DSML and its evolvability and

reusability; we, on the other hand, reviewed the corresponding model-based

analyses regarding the occurrences of the bad smells. Each case study that

we analysed has a di�erent number of bad smells. Based on our �ndings,

we concluded that removing bad smells can improve the complexity of a

model-based analysis.

In order to better address this threat, we chose case studies that originated

from various diverse domains (i. e., information systems, business processes,

production automation, and smart grids). Because of the several domains, we

ensure that the bene�ts of removing bad smells are not limited to a single

domain. We can conclude that improving the internal quality by removing

bad smells in model-based analyses would be bene�cial to the model-based

analyses of the domains we choose.

Our decision-making process for the evolution scenario could likewise jeopar-

dise the construct validity. Chapter 6 explains how we chose the case studies,

and Section 7.3 explains how we choose the evolution scenarios. To handle

this issue, we established two evolution scenarios: historical and potential.

The historical evolution scenarios pose the least risk because they are gen-

erated from actual change scenarios of the model-based analyses. These

historical evolution scenario changes were used in the past. The potential

evolution scenarios risk the construct’s validity because they indicate changes

the analysis developers may apply, but we cannot guarantee these changes

will occur. We were able to extract historical and potential evolution scenarios

from the very well-documented and available commit history of all of our

case studies.

274

8.5. Discussion

8.4.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evalua-

tion, we use objective metrics based on information theory. These metrics

provide reasonable proof and limit the need for interpretation, eliminating

the possibility of a researcher providing their subjective interpretation of the

data. The purpose of the evaluation is to discredit the e�ects that could be

attributed to the interpretation of a single researcher. If the evaluation is

repeated for more case studies in the future, this will contribute statistically

to the con�rmation of the results.

8.5 Discussion

In this section, we discuss if the �ndings of the existence and relevance

evaluation of our bad smells for model-based analyses indicate that we have

accomplished our objectives.

8.5.1 Existence

The results for the existence evaluation show that we found seven out of 12

bad smells in the four case studies. The bad smells we did not �nd are smells

from the hierarchical category and the Weakened Modularity smell. We could

not �nd these bad smells because they exist only in model-based analyses

that follow our reference architecture for model-based analysis. Because

we did refactor the case studies according to our reference architecture for

model-based analyses, it is impossible that the model-based analysis contains

these bad smells, else they would violate the constraints of our reference

architecture. However, during the refactoring to apply our reference architec-

ture, we used our tool RefactorLizar to identify occurrences of the bad smells

to identify points in the model-based analysis that needed more refactor-

ing. Therefore, we conclude that although the initial results did not contain

occurrences of the hierarchical and the Weakened Modularity smell, the de�-

nition and identi�cation can guide the analysis developer to implement our

reference architecture for model-based analysis.

Regarding the Broken Modularity smell, we were unable to �nd occurrences of

it because the smell requires multiple model-based analysis that correspond

275

8. Evaluation of Bad Smells in Model-based Analyses

to one DSML However, we only investigated one model-based analysis per

DSML. Thus, the BrokenModularity is the only bad smell we cannot determine

whether it exists in model-based analyses.

Surprisingly, Camunda, as an industrial product, has more bad smells than,

for example, SimuLizar, which was developed exclusively in a university

context. An industrial product intending to thrive and be maintainable and

evolvable should have enough resources available to improve and polish the

product over time. We put the higher number of bad smells down to the

di�erence in the size of the case studies; the more extensive the case study,

the more bad smells can occur.

We demonstrated that of the remaining seven bad smells, all can be found

in our case studies. The most common bad smells we found are the Miss-
ing Modularity smell with a total number of 2730 occurrences, the Unused
Abstraction with 1405 occurrences, and the Missing Abstraction smell with

1211 occurrences in the four case studies. The high number of occurrences

of the Missing Modularity smell is an exception because the case studies we

investigated have no layering structure; thus, each component corresponds to

one bad smell. In model-based analyses with a layered structure, the Missing
Modularity smell can help �nd classes and components that are not part

of a layer in the system. The smell Unused Abstraction occurs 1405 times,

and the Missing Abstraction smell occurs 1211 times in all four case studies

combined. The reason that the smell of Unused Abstraction is a typical bad

smell can be explained by the fact that not all types from the language are

needed in the analyses. The analysis SimuLizar, for example, is specialised in

performance simulation and therefore does not need the types in the PCM

that cover e. g. failure probabilities of components. The number of Missing
Abstraction smells can be explained by the evolutionary development process

and the size of the case studies. At the beginning of the development, it is

often unclear what kind of specialised types are needed; thus, the analysis

developer sticks with basic types. The bigger the analysis, the more e�ort the

developer requires to replace primitive types with dedicated types, which are

often discarded because new features are prioritised. This explains why the

smell Missing Abstraction occurs more frequently in the largest case study

Camunda than in the remaining smaller ones. The remaining bad smells

Duplicated Abstraction, De�cient Encapsulation, Degraded Modularity, and

Rebellious Modularity occur under 200 times per bad smell. Nevertheless,

except for the Broken Modularity, each bad smell occurs in the case studies we

investigated. As a result, we conclude that the bad smells we de�ned exist in

276

8.5. Discussion

model-based analyses. The following section discusses the results regarding

the relevance of the bad smells.

8.5.2 Relevance

The results for the relevance evaluation show that the Duplicated Abstraction
smell negatively a�ects the complexity of a model-based analysis and its

evolvability; a system that is hard to comprehend, due to its complexity, is

also hard to evolve and maintain, as the e�ects of changes are unpredictable.

Although we did not �nd the Duplicated Abstraction smell in each case study

and the number of �ndings ranged from 15 to 76 occurrences, we determine

the Duplicated Abstraction smell as a relevant bad smell that, when �xed,

positively impacts the evolvability and reusability of model-based analyses.

Therefore, it is worth �xing the Duplicated Abstraction smell.

The results for the Missing Abstraction smell need to be clari�ed. After the

refactoring, the complexity is reduced in ten scenarios and worsened in

eight. Introducing dedicated types can add more complexity to a model-based

analysis, especially when it is a one-to-one substitution. If, for example, in a

method signature, one primitive type is replaced by one dedicated type, the

developer does not gain any advantage. The scenarios where the complexity

worsened were such one-to-one substitutions. However, if �xing the Missing
Abstraction smell means that multiple method parameters can be replaced,

the complexity can be reduced. The scenarios where the complexity improved

were such substitutions. Therefore, we determine that the analysis developer

must decide whether introducing dedicated types to the model-based analysis

has any positive e�ects on the existing code base. Alternatively, the analysis

developer can accept a deterioration of the complexity in the short-term, for

the possibility to avoid the Missing Abstraction smell in the future. Thus,

we determine the Missing Abstraction smell as relevant in developing model-

based analyses.

The results for the Degraded Modularity show that it negatively a�ects the

complexity of model-based analyses. Of the ten scenarios we refactored,

the complexity improved for eight of the ten scenarios when we �xed the

Degraded Modularity smell. The Degraded Modularity smell only occurred

in 50% of our case studies with a total number of 24. Although the smell

occurred not often, in 80% of the scenarios, we improved the complexity of

the evolution scenarios. Fixing the Degraded Modularity smell requires that

277

8. Evaluation of Bad Smells in Model-based Analyses

the analysis developer moves dependencies from analysis classes on language

types. As we provide refactorings (cf. Section 3.3.3) to �x this bad smell, we

determine the e�ort of �xing it as mitigable. Due to the positive e�ect on the

internal quality when �xing the bad smell, and the rare occurrences of the

bad smell as well as the mitigable e�ort that is required to �x the bad smell,

we determine the Degraded Modularity smell as a relevant bad smell that is

worth �xing.

The results for the Rebellious Modularity show that it negatively a�ects the

complexity of model-based analyses. Of the eleven scenarios we refactored,

the complexity improved for eight scenarios when we �xed the Degraded
Modularity smell, and the remaining three did not change. The Rebellious
Modularity smell occurs in every case study we analysed with a total number

of 49 occurrences. Fixing the bad smell requires access to the DSML, with

the possibility of making changes or splitting the a�ected analysis class.

The best refactoring is di�erent for each case, but for the refactoring of the

model-based analysis, we provide refactorings on class and component level

(cf. Section 3.3.3). We determine the e�ort of refactoring the model-based

analysis as mitigable, especially if we consider the improved evolvability

when �xing the bad smell. Due to the positive e�ect on the internal quality

when �xing the bad smell, and the mitigable e�ort that is required to �x

the bad smell, we determine the Degraded Modularity smell as a relevant

Therefore, we determine the Rebellious Modularity smell as a relevant bad

smell worth �xing.

Relevance of the remaining bad smells: In this section, we discuss why

the bad smells we did not evaluate with the complexity, coupling, and co-

hesion metrics are nonetheless relevant for the evolvability and reusability

of model-based analyses and their corresponding DSML. The Unused Ab-
straction smell does not directly a�ect the evolvability and reusability of a

model-based analysis; however, if types of a DSML are not used, the language

is unnecessarily complex. The unused type can lead the tool user to make

false assumptions regarding the e�ect of types on the analysis result. If, for

example, the analysis does not use the de�ned bandwidth that can be mod-

elled with the DSML, the tool user could connect the result to the irrelevant

bandwidth. Furthermore, the model can be unnecessarily complex, as unused

types can still be modelled.

The De�cient Encapsulation smell also does a�ect primarily the DSML and

not the model-based analysis. Across all model-based analysis that use a

278

8.5. Discussion

DSML, if types are always used together, merging them reduces the number

of types and the dependencies between types and components of a language.

As a result, the DSML becomes cleaner and easier to understand for the tool

user.

The Folded Hierarchy smell a�ects the dependencies of specialised anal-

ysis classes on more generic language classes. According to Heinrich et

al. [HSR19], these dependencies will change more specialised classes if gener-

ics change. It results in unnecessary changes and more e�ort for the anal-

ysis developer when the corresponding DSML changes. In Chapter 3 and

Chapter 7, we present a layered reference architecture for model-based anal-

yses. The remaining bad smells related to the hierarchical structure and

the modularity of the DSML and the model-based analysis are evaluated in

Chapter 7.

279

9. Evaluation of the Model-based
Analysis Specification and Reuse
of Model-based Analysis
Components

In this section, we present the evaluation of our approach to specify and com-

pare simulation components. The evaluation goals and metrics are presented

in Section 9.1. The evaluation results for the applicability of the simulation

speci�cation are presented in Section 9.2.1, and the results for the accuracy

of the approach to compare simulation components, based on their speci�ca-

tion, are presented in Section 9.2.2. The threats to validity are discussed in

Section 9.3, and the discussion of the results is presented in Section 9.4.

9.1 Research Goals and Metrics

We split the goals and metrics section to evaluate our speci�cation and com-

pare approaches into three parts. The �rst part introduces our research goals

regarding the applicability and accuracy of our speci�cation metamodel to

DESs. The second part introduces our metrics to evaluate whether we reached

our goals. Finally, the third part explains the structure of our scenarios and

their use in the evaluation.

We derive the �rst research goal (RG 9.1) from our hypothesis (cf. Hypothe-

sis 3) and the �rst research question Research Question 5.1, how to specify

model-based analysis components to enable analysis component compari-

son:

281

9. Speci�cation and Reuse Evaluation

Research Goal 9.1
We want to determine how applicable our DSML for the speci�cation

of DES is, which covers structural and behavioural information when it

is used to specify components of real-world DES.

The second and third research goals (RG 9.2 and RG 9.3) we derived from our

hypothesis (cf. Hypothesis 3) and the second research question (cf. Research

Question 5.2), how to compare and correctly identify similar model-based

analysis components:

Research Goal 9.2
We want to determine how accurately our approach can identify similar

simulation components based on their structure speci�cation.

Research Goal 9.3
We want to determine how accurately our approach can identify similar

simulation components based on their behaviour speci�cation.

We split the Research Question 5.2 into two goals because our approach is

separated into two steps. The �rst step is to compare the speci�cations of sim-

ulation components regarding their structure. The second step is to compare

the speci�cations of simulation components regarding their behaviour. We

use two di�erent DES that serve as case studies to evaluate our approach. The

evaluation of our speci�cation DSML and our comparing approach follow

the Goal Question Metric (GQM) approach [BCR94].

In order to determine whether we reached the goals RG 9.1, RG 9.2, and

RG 9.3, we utilise the case studies Palladio Simulator and Camunda that we

introduced in Chapter 6. We derive ten scenarios for each case study, each

containing one simulation component. We use our speci�cation language

to model each scenario to determine whether we can model the simulation

component with our speci�cation language, i. e., how applicable our speci�-

cation language is to real-world simulation components. After we modelled

the scenarios, we used our approach to compare the speci�cations of the

simulation components to each other. To compare speci�cations, we use our

282

9.1. Research Goals and Metrics

approach to compare the speci�cations of simulation components regarding

their structure (cf. Section 5.3) and to compare the speci�cations of simulation

components regarding their behaviour (cf. Section 5.4).

9.1.1 Applicability Metric

In this section, we introduce the applicability metric we used to check whether

we reached the Research Goal 9.1. We select components of a model-based

simulation to identify whether the metamodel to specify components of a

model-based simulation is suitable for modelling simulation components.

Then we model these components with our speci�cation language. How

we selected the components of the model-based simulations is described in

Section 9.1.3. For the evaluation, we use two of the case studies presented

in Chapter 6, Camunda and the Palladio Simulator. For each simulation

component, we identify the entities and events it contains. Regarding the

events, we have to identify how an event a�ects the simulation world, i. e.,

which attributes are changed and how the change a�ects the scheduled

delay of the event. Furthermore, we also have to identify which attributes

are read by an event and which other events are scheduled by each event.

As a result, events can schedule events of other simulation components;

therefore, we also have to identify these components and their events. After

identifying the simulation components’ entities and events, we modelled each

component. We checked whether we could model each entity and event with

our speci�cation DSML. We calculate for each simulation component how

many elements are covered by our DSML as follows:

Mn = Emodel +Vmodel

Sn = Esimulation +Vsimulation

Cn =
Mn

Sn

We calculate the coverage C for the simulation component n by dividing the

sum of the modelled entities of the component Emodel and the events of the

component Vmodel by the sum of entities in the component Esimulation and

the events in the component Vmodel . After calculating the coverage of each

simulation component, we determine the applicability A of our speci�cation

283

9. Speci�cation and Reuse Evaluation

language for simulation components by calculating the average coverage C
over the number of simulation components m.

A =

∑m
1
Cm

m

9.1.2 Accuracy Metric

To determine whether we reached the goals Research Goal 9.2 and Research

Goal 9.3, we also use a scenario-based evaluation to determine how accurate

our approach can identify similar simulation components based on their

structure and behaviour speci�cation. How we selected the components of the

model-based simulations for the scenarios is described in Section 9.1.3. First,

we compare the structure speci�cation of the simulation components of the

scenarios by using the graph-isomorphism approach presented in Section 5.3.

Then, if we could identify a structural match, we compare the behaviour

using our SMT-based approach presented in Section 5.4. We determine the

accuracy of our approach to �nding simulation components by comparing

their structure and behaviour speci�cation. To determine the accuracy, we

calculate the metric F1 score. The F1 score is the harmonic mean of precision

and recall. Precision and recall aggregate the number of true positives, false

positives, and false negatives. The number of true positives (tp), false positives

(fp), and false negatives (fn) is calculated by comparing the list of identi�ed

components with the list of components that should be identi�ed. Identifying

tp , tn , and fn is scenario speci�c. Therefore, we explain how we identify

them when we introduce the scenarios. Given the amount true positives, false

positives, and false negatives, precision and recall are calculated as [Pow20]:

precision =
tp

tp + fp

and

recall =
tp

tp + fn

The F1 score is calculated as the harmonic mean of precision and recall:

f1 = 2

precision × recall

precision + recall

284

9.1. Research Goals and Metrics

9.1.3 Scenarios

We developed �ve scenarios to answer the Research Question 5.2 and to show

whether our approach can �nd the right simulation component when it is

compared to other simulation components or to �nd a simulation component

in a set of simulation components that represent a whole DES. In addition to

the speci�cation of the simulation components CC1 to CC10 and CE1 to CE10,

we also added obfuscated simulation components O1 to O20. We obfuscated

the names of the entities, attributes, and events in the speci�cation of the

simulation components to have a di�erence in the naming of the elements.

For example, the event identify_task becomes a name with no relation to

other events or the domain of the simulation component. The scenarios

can be divided into two categories: The �rst category (scenarios S1 and S2)
evaluates whether the suitable simulation component can be identi�ed in a

set of simulation components by individually comparing each. The second

category (scenarios S3 to S5) evaluates whether a simulation component can

be identi�ed in a set of simulations representing a DES. We distinguish the

following scenarios:

The �rst scenario, S1, shows that our approach can identify the suitable simu-

lation component in a set of di�erent components. Therefore, the simulation

components of the two case studies are compared to �nd the correct match.

For example, we compare CC1 to the other simulation components of Ca-

munda CC2 to CC10 and itself. This example is correctly identi�ed when

CC1 is identi�ed as a matching simulation component. It counts as wrongly

identi�ed when the result is any of the other simulation components CC2 to

CC10. If the correct simulation component is identi�ed, we count it as tp ; if a

wrong simulation component is identi�ed, we count it as fp . If the simulation

component cannot be identi�ed, we count it as fn .

The second scenario, S2, shows that our approach can identify the suitable

simulation component in a set of obfuscated simulation components. There-

fore, each simulation component of the two scenarios is compared to each

obfuscated component O1 to O20 to �nd the correct match. For example, we

compare CC1 to the other obfuscated simulation components O1 to O20. This

example is correctly identi�ed whenO1 is identi�ed as a matching simulation

component. It counts as wrongly identi�ed when the result is any of the

other simulation components O2 to O20. If the correct simulation component

is identi�ed, we count it as tp ; if a wrong simulation component is identi�ed,

285

9. Speci�cation and Reuse Evaluation

we count it as fp . If the simulation component cannot be identi�ed, we count

it as fn .

The third scenario, S3, shows that our approach can identify a simulation

component in a set of simulation components that represent a DES. Therefore,

we modelled a simulation speci�cation CC0 that contains all the simulation

components CC1 to CC10 and the simulation speci�cation CE0 that contains

all the simulation components CE1 to CE10. The simulation speci�cation CC0

is searched for each component CC1 to CC10, and the simulation speci�cation

CE0 is searched for each component CE1 to CE10. For example, we search

CC0 for the simulation component CC1. This example counts as correctly

identi�ed when our approach �nds a mapping of the simulation component

CC1 that is contained in CC0 on CC1. It counts as wrongly identi�ed when

the result is any other mapping that does not contain the complete elements

of CC1. If the suitable simulation component is identi�ed in CC0 or CE0, we

count it as tp ; if a wrong simulation component is identi�ed, we count it as

fp . If the simulation component cannot be identi�ed, we count it as fn .

The fourth scenario, S4, demonstrates that our approach can identify a sim-

ulation component in a set of simulation components that represent a DES

even if it was obfuscated. Therefore, we created an obfuscated simulation

speci�cation O0 that contains all simulation components O1 to O20. The sim-

ulation O0 is searched for each simulation component CC1 to CC10 and CE1
to CE10. For example, we search O0 for the simulation component CC1. This

example counts as correctly identi�ed when our approach �nds a mapping

of the simulation component O1 that is contained in O0 on CC1. It counts

as wrongly identi�ed when the result is any other mapping that does not

contain the complete elements of CC1. If the proper component is identi�ed

in O0, we count it as tp ; if a wrong component is identi�ed, we count it as fp ,

and if the component cannot be identi�ed, we count it as fn .

The �fth scenario, S5, serves as an inverse example. It demonstrates that no

component can be identi�ed when another set of simulation components that

represent a DES, that does not contain any of the components CC1 to CC10

or CE1 to CE10 is searched for. For this example, we search the speci�cations

of Camunda for speci�cations of the Palladio Simulator, and we search the

Palladio Simulator speci�cation of Camunda. If a component is not identi�ed,

we count it as tp ; if a component is identi�ed, we count it as fp ; if the search

yields no result, we count it as fn . We count it a fn when the search takes

more than one minute and the search has to be terminated.

286

9.1. Research Goals and Metrics

9.1.4 Simulation Components of the Palladio Simulator used
for the Evaluation

The �rst case study is the simulator EventSim; EventSim is part of a simu-

lator for the quality analysis of software architectures, the Palladio Simula-

tor. The Palladio-Simulator is part of the Palladio approach [Reu+16]. This

tool-supported approach allows for the modelling and analysis of software

architectures for di�erent quality properties such as performance, reliabil-

ity [Bro+12], and maintainability [Ros+17]. EventSim represents a historically

grown and versatile model-based analysis that can analyse more than one as-

pect of software quality. As input, EventSim requires an instance of the PCM.

The PCM is also part of the Palladio approach; it allows for the speci�cation,

documenting, and analysis of software architectures. The components we

selected in our �rst case study should be reusable in the same domain; hence,

each component is related to performance simulation or software architecture

simulation. The following components we modelled consist of 48 entities and

60 events:

CE1– Add Process to Resource: This component takes a resource, for example,

a CPU or HDD, with a �xed set of computational capacity, for example, ten

CPU workload units per second. Moreover, it determines whether the demand

matches the available capacity of the resource, for example. If the check is

successful, the resource is blocked for the time the demand requires, and the

following process is added to the list of processes waiting to be processed by

the resource.

CE2– Calculate Resource Demand: This component calculates the demand for

a resource, such as a CPU or HDD, by considering the latency of a linking

resource, the demand for the resource, and the throughput.

CE3– Closed Workload: This component represents a closed workload with

a �xed population count that schedules processes if the queue is not empty.

A closed workload contains a �xed number of concurrent workers isolated

from one another and completes a de�ned sequence of tasks (the workload)

in a loop. If a process is �nished, the population count is increased.

CE4– OpenWorkload: In contrast to the closed workload, where the population

is �xed, the open workload determines an interarrival time and schedules

processes according to this time. The pace at which new workers are spawned

in an open workload is set. Workers are segregated from one another and

287

9. Speci�cation and Reuse Evaluation

complete a prede�ned set of tasks before being removed. Started workers are

autonomous, and new workers are launched independently of the status of

presently active workers.

CE5– External Call: This component calculates the demand when an external

resource is called. It contains the number of bytes transmitted to the external

resource and the throughput. The throughput can be ignored; then, a �xed

demand is returned. ExternalCallAction represents the execution of a service

de�ned in a required interface. As a result, it refers to a Role from which

the giving component can be determined and a Signature that speci�es the

called service. ExternalCallActions represent synchronous calls to necessary

services, in which the caller waits for the called service to complete execution

before resuming execution.

CE6– HDD Demand: This component calculates the demand for a hard disk

drive. It contains the read-and-write processing rate and considers the abstract

demand of a request when calculating the actual demand.

CE7– RDSEFF: This is a rather complex component; it represents the Resource

Demand (RD) of a SEFF. A SEFF is the abstract representation of the control

�ow of a software component. It simulates the e�ect of calling a speci�c

service of a basic component. To identify the speci�ed service, it refers to a

Signature from an Interface for which the component has a ProvidedRole. It

depends on CE1 and CE8, and CE7 invokes these two scenarios.

CE8– Release Resource: This component releases a resource if the demand for

the resource is ful�lled. Releasing a resource means that a task no longer

occupies it, and the resource is free for the next task.

CE9– Sharing Resources: Represents a processor sharing resource. It deter-

mines whether the capacity of a sharing resource is not exceeded and calcu-

lates the processing speed according to the capacity.

CE10– Usage Scenario: This component schedules delays and events provided

by other components.

9.1.5 Simulation Components of Camunda used for the
Evaluation

CC1– Handle External Task: CC1 receives a task and checks whether the task

exists and whether the task is unlocked, and then the task gets scheduled

288

9.1. Research Goals and Metrics

to be executed. CC1 consists of a Worker entity with an identi�er and an

External Task entity that can be locked. The initial event execute ofCC1 checks

whether the External Task exists and is not locked. When the conditions for

execute are met, the CC1’s second event is called: schedule task.

CC2– Lock External Task: CC2 receives a task and checks whether the task

exists, then the task gets locked when the expiration date for the lock is set

after the current simulation time. CC2 consists of a Task entity that can be

locked and has an expiration date until the task must be resolved. Besides

the Task entity, it also has a Date entity to represent the expiration date of

Task. The only event of CC2 is the execute event. It checks whether the lock

task is free and whether the expiration date has not passed. If all conditions

are met, the task is locked, and an expiration date is set.

CC3– Resolve Task: CC3 also receives a task and checks whether the task is

already resolved and if the task was scheduled by another task (parent task).

If the conditions are met, an update event is triggered. CC3 consists of a Task
entity with an assignee and a parent task. If the task is updated, it triggers

an event. The initial event execute of CC3 schedules the resolve event and the

trigger update event. The event resolve checks whether the task is �nished

and has an assignee to inform about the update of the task.

CC4– Save Task: CC4 takes the revision of a task as input, and if it is the �rst

time the task gets scheduled, the task gets initialised. Then the metrics of

the task get saved. CC4 consists of a Command Context entity, a Task entity,

a Metrics entity, and a Process Engine Con�guration entity. The initial event

execute of CC4 schedules the init event. The init event schedules the metrics
calculate event as well as the authorisation event. If the task is authorised, the

trigger update event is scheduled.

CC5– Set Task Priority: CC5 receives a task, sets its priority, and schedules an

update event so that the simulation can take the new priority of the task into

account. CC5 consists of a Task entity which can be updated. The initial event

execute of CC5 sets the task’s priority and schedules a trigger update event.

CC6– Unlock User: This component unlocks a user if the task is authorised and

has admin privileges. CC6 consists of a Context entity which checks whether a

user is an admin and whether a user is authorised. The User entity represents

the user. The initial event execute checks whether a user is an admin and

authorised, using the Context entity. If the conditions are met, the user gets

unlocked via the unlock user event.

289

9. Speci�cation and Reuse Evaluation

CC7– Job Retry: This component manages the retry of a job. It takes care that

a job’s retries are correctly handled. CC7 consists of the Job entity, which has

an identi�er and a retry count. If a retry is performed, the CC7 components

schedule the decrement retry event to manage the retry count of the Job
entity.

CC8– Fetch Events of a Task: This component is small compared to the remain-

ing components; it gets all the events of a task. CC8 consists of a Task entity

with an identi�er and contains a set of events. The execute event fetches all

events of a given task.

CC9– Handle Task Escalation: This component handles the escalated task by

verifying that the task still exists and then scheduling an escalation event.

CC9 consists of a Task entity which has an identi�er. It also is marked as

an active task. The component also consists of the Escalation and a Activity
Execution entity, which determines whether the task is running and which

escalation strategy has to be used. The initial event execute checks the task

by its identi�er and the escalation to schedule a escalation event depending

on the desired escalation strategy. The escalation event checks the active task

and sets the activity execution.

CC10– Execute Jobs: This component checks whether the job and execution

context is valid. Then that job is set as the current job, and an event is

scheduled that executes the selected job. CC10 consists of a Job entity which

consists of an identi�er and a Job Execution Context. The initial event execute
checks the job and its context, and after that, it schedules the check update
job and then sets the active job for execution.

9.2 Evaluation Results

In this section, we present the results for the applicability of our speci�cation

approach where we determine whether we reached our goal Research Goal 9.1:

how applicable is our DSML for the speci�cation of DES. We also present

the results for the accuracy of our approach to compare speci�ed analysis

components based on their structure and behaviour. We determine whether

we reached our goals Research Goal 9.2 and Research Goal 9.3: how accurate

our approach can identify similar simulation components based on their

structure and behaviour speci�cation.

290

9.2. Evaluation Results

9.2.1 Results for the Applicability Evaluation

C E
1

C E
2

C E
3

C E
4

C E
5

C E
6

C E
7

C E
8

C E
9

C E
1
0

To
ta
l

Emodel 2 4 10 8 3 3 4 1 2 7 44

Vmodel 2 2 14 13 1 1 7 2 1 12 55

Table 9.1.: Number of Entities and Events per Simulation Component – Palladio Simulator -

EventSim

The ten components (CE1 to CE10) of the case study Palladio Simulator –

EventSim contain 44 entities. The component with the most entities is CE3–
Closed Workload, with ten entities, and CE8– Release Resource, contains one

entity; this is the component with the least number of entities. We modelled

all 44 entities with our DSML. Besides the entities, the components also

contain 55 events in total. The component with the most entities is CE3–
Closed Workload with a total of fourteen events, and CE5– External Call, CE6–
HDD Demand, and CE9– Sharing Resources are the components that contain a

single event; thus, they are the components with the least number of events.

We modelled each of the 55 events of the case study Palladio Simulator –

EventSim.

C C
1

C C
2

C C
3

C C
4

C C
5

C C
6

C C
7

C C
8

C C
9

C C
1
0

To
ta
l

Emodel 2 2 1 4 1 2 1 1 3 2 19

Vmodel 2 1 3 6 2 2 1 1 2 6 26

Table 9.2.:Number of Entities and Events per Simulation Component – Camunda

The ten components (CC1 to CC10) of the case study Camunda contain 19

entities. We modelled all 19 entities with our DSML. Besides the entities, the

components also contain 26 events in total. Almost every component contains

an event called execute as its initial event. The behaviour of this event is

di�erent for each component; thus, we had to model each individually. We

were able to model each of the 26 events. We designed our DSML to model

the structure and behaviour of simulation components. The results show that

precisely this is the case. However, without further investigation regarding

291

9. Speci�cation and Reuse Evaluation

the identi�cation of components, the ability to model simulations has no

bene�t or additional value. Therefore, we need the results of the accuracy

evaluation to justify the existence of the DSML and our approach to compare

and �nd simulation components based on their speci�cation.

9.2.2 Results for the Accuracy Evaluation

The results for precision, recall and F1 are depicted in Table 9.3, Table 9.4,

and Table 9.5. In Table 9.3, we present the accuracy results for the case study

EventSim. In Table 9.4, we present the accuracy results for the case study

Camunda, and the total results for both case studies are shown in Table 9.5.

Regardless of identical components (S1) or obfuscated components (S2), the

results for scenarios S1 and S2 show that our approach can identify individual

components for both case studies. Also, for these scenarios, was no compo-

nent missing or misinterpreted. These results lead to a score of precision,

recall, and F1 of 1.0. Analysing a whole simulation with all components (S3)
and all obfuscated components (S4) yielded di�erent case study results. For

the EventSim case study in scenario S3, in three cases, we had to stop the

analysis manually, which resulted in seven tp and three fn , a precision of

0.70, a recall of 1.00 and F1 of 0.82. For the EventSim case study in scenario

S4, in one case, we had to stop the analysis manually, which resulted in nine

tp and one fn , a precision of 0.90, a recall of 1.00 and F1 of 0.95. For the

Camunda case study, in scenarios S3 and S4, our approach could identify all

ten components in the whole simulation with all components (S3) and the

whole simulation with all obfuscated components (S4). These results lead to

a score of precision, recall, and F1 of 1.0. The results for the �fth and �nal

scenario S5 show that for EventSim, all components were not present in the

other simulation. These results lead to a score of precision, recall, and F1 of

1.0. The results for Camunda show that eight of the ten components could

not be found in a di�erent simulation. Two components, CC7 and CC8 had

a match in EventSim. These results lead to a precision of 1.00, a recall of

0.80 and F1 of 0.88. In total, 94 components were identi�ed by our approach;

four were missing, and two were falsely identi�ed. The case study EventSim

yielded 0.92 for precession, 1.00 for recall, and 0.96 for the F1 score. The case

study Camunda yielded 1.00 for precession, 0.96 for recall, and 0.98 for the F1
score. The overall results for our evaluation are 0.96 for precision, 0.98 for

recall and 0.97 for F1.

292

9.2. Evaluation Results

E
v
e
n
t
S
i
m
S 1

E
v
e
n
t
S
i
m
S 2

E
v
e
n
t
S
i
m
S 3

E
v
e
n
t
S
i
m
S 4

E
v
e
n
t
S
i
m
S 5

To
ta
l

tp 10 10 7 9 10 46
fn 0 0 3 1 0 4
fp 0 0 0 0 0 0

Prec. 1.00 1.00 0.70 0.90 1.00 0.92
Rec. 1.00 1.00 1.00 1.00 1.00 1.00
F1 1.00 1.00 0.82 0.95 1.00 0.96

Table 9.3.: Results for the Accuracy Evaluation of the Case Study Palladio Simulator – EventSim

C
a
m

u
n
d
a
S 1

C
a
m

u
n
d
a
S 2

C
a
m

u
n
d
a
S 3

C
a
m

u
n
d
a
S 4

C
a
m

u
n
d
a
S 5

To
ta
l

tp 10 10 10 10 8 48
fn 0 0 0 0 0 0
fp 0 0 0 0 2 2

Prec. 1.00 1.00 1.00 1.00 1.00 1.00
Rec. 1.00 1.00 1.00 1.00 0.80 0.96
F1 1.00 1.00 1.00 1.00 0.88 0.98

Table 9.4.: Results for the Accuracy Evaluation of the Case Study Camunda

The results for comparing simulation components are promising. We can

identify components that match the structure and behaviour of individual

components. We had to terminate four searches in the EventSim case study

manually. Due to the size and complexity of the case studies, our approach is

better suited to search and identify individual components. The two outlier

results in scenario S5 of the Camunda case study are where our approach

identi�ed a matching graph in another simulation speci�cation, although

no results were expected. We assume that the components CC7 and CC8 are

too small and, therefore, can easily �nd a matching structure. Regarding the

behaviour, CC7 has a simple decrement operation, a common occurrence in

293

9. Speci�cation and Reuse Evaluation

E
v
e
n
t
S
i
m

C
a
m

u
n
d
a

To
ta
l

tp 46 48 94
fn 4 0 4
fp 0 2 2

Prec. 0.92 1.00 0.96
Rec. 1.00 0.96 0.98
F1 0.96 0.98 0.97

Table 9.5.: Results for the Accuracy Evaluation of the Case Studies Palladio Simulator and

Camunda Compared

software. CC8 is a simple fetch operation that is common in software. Thus,

it is no surprise that such small operations can be found in not only one

simulation.

9.3 Threats to Validity

Following the classi�cation of Runeson et al. [Run+12], we distinguish four

classes of threats to validity. The four validity types are explained in Sec-

tion 2.6.1.

9.3.1 Internal Validity

In our evaluation, we modelled twenty simulation components of two case

studies with our DSML to specify simulation components based on their

structure and behaviour. Based on the speci�ed simulation components, we

developed an approach to compare their structure and behaviour speci�ca-

tions. One of the case studies is a commercially used process simulation,

and the other is a publicly available software performance simulation. Both

are used outside a purely scienti�c context; thus, the case studies represent

real-world simulation examples. The evaluation results depend on the quality

of the simulation components that have been modelled.

294

9.3. Threats to Validity

9.3.2 External Validity

We evaluated the modelling and identi�cation of simulation components. As

a result, the �ndings may not be generalisable to other �elds. However, the

discipline of process and performance simulation comprises general aspects,

such as entities, scheduling events, and changing or reading the states of

entities. As a result, we demonstrated how our approach might be used

for various event-based simulations. The goal is to demonstrate how our

approach may help improve the reuse of simulation components.

9.3.3 Construct Validity

The case studies in our evaluation only represent some of the many types of

event-based simulations. On the other hand, we did not select an event-based

simulation that is just a small running example. We have chosen to extract the

simulation components from two open-source simulations used in scienti�c

and commercial environments. The application of our approach to an event-

based simulation demonstrates that using our approach for modelling and

�nding simulation components can identify already existing components.

Thus, it is possible to avoid implementing existing simulation components

and improve the reuse of simulation components.

9.3.4 Conclusion Validity

To omit that only one researcher must interpret the results of our evalua-

tion, we use objective metrics based on information theory. These metrics

provide reasonable proof and limit the need for interpretation, eliminating

the possibility of a researcher providing their subjective interpretation of the

data. The purpose of the evaluation is to discredit the e�ects that could be

attributed to the interpretation of a single researcher. If the evaluation is

repeated for more case studies in the future, this will contribute statistically

to the con�rmation of the results.

295

9. Speci�cation and Reuse Evaluation

9.4 Discussion

In this section, we discuss if the �ndings of the applicability and accuracy

evaluation of our approach for specifying and �nding simulation components

indicate that we have accomplished our objectives.

9.4.1 Applicability

The applicability evaluation results show that we could model all of the 20

simulation components of our case studies. We selected existing DES that

are established in the community of process analysis and process simulation

(Camunda) and the community of performance analysis (Palladio Simulator).

We selected ten simulation components for each case study that we speci�ed

with our DSL. We chose di�erent sizes of simulation components to have a

diverse set of simulation components. The smallest simulation component

contains one entity and one event; the biggest contains ten entities and

fourteen events. Due to the diversity of the simulation components and

our chosen established simulations, we could demonstrate that the �rst goal

Research Goal 9.1 is reached. The results show that our speci�cation language

can specify the structure, behaviour, or a real-world simulation.

9.4.2 Accuracy

The results for the accuracy evaluation show promising results regarding

identifying simulation components. Regarding the Research Goal 9.2, identi-

fying simulation components based on their structure, the results show that

our approach can identify similar structures. However, the structure alone

is insu�cient to identify a simulation component. The results also show

that our approach can reach the Research Goal 9.3, identifying simulation

components based on their behaviour. In a set of individual components, we

can identify components that match regarding structure and behaviour. For

the case study Palladio Simulator, we had in S3 three simulation components

and S4, we had one simulation component, where we had to stop the analysis.

We deduce that our approach is better suited to compare the speci�cation

of simulation components to each other instead of searching a whole DES

that consists of many speci�ed simulation components. For the case study

296

9.4. Discussion

Camunda, we had two outlier results in scenario S5. Our approach identi�ed

a matching graph in the overall simulation speci�cation, although no results

were expected. We assume that the size of the components CC7 and CC8

are too small, making it easy to �nd a matching structure. Regarding the

behaviour, CC7 has a simple decrement operation, a common occurrence in

software. CC8 is a simple fetch operation, a common occurrence in software.

Thus, it is of no surprise that such small operations can be found in not only

one simulation.

297

Part IV.

Epilogue

10. RelatedWork

In this thesis, we focus on improving the internal quality of software systems

that use models of other systems to gain insight without the need to have the

system at hand. In this thesis, we focus on models that are based on DSMLs,

and we also focus on software systems that take these models as input to

reason about them.

In our research, we concentrate on improving the internal quality properties

evolvability, understandability, and reusability of model-based analyses. In

contrast to the work of Heinrich et al. [HSR19] and Strittmatter [Str20], where

they focus on the internal quality of DSMLs or the wide range of improving the

internal quality of object-oriented software, we focus on the co-dependency of

DSMLs and model-based analyses. We are particularly interested in aligning

their architectural structure, i. e. having the same features, components, and

dependency structure, and how it a�ects the aforementioned internal quality

properties.

Aligning the structure of both the DSML and the model-based analysis re-

quires that the analysis developer modularises the source code of the model-

based analysis. Therefore, we are interested in related research that decom-

poses analysis code into components. Before the structure of the model-based

analysis can be aligned with its corresponding DSML, we are looking into

related research that allows the developer to modularise model-based analy-

ses. Besides the decomposition of model-based analyses, we are especially

interested in related work that creates model-based analyses from analysis

components. In particular, we looked into research that integrates com-

ponents of model-based analyses with a di�erent notion of time, di�erent

DSMLs or components that come from di�erent domains. Furthermore, we are

also looking into research that investigates the orchestration of model-based

analyses and model-based analyses components.

In addition to the decomposition and composition of model-based analyses,

we looked into related research that integrates DSMLs and model-based

301

10. Related Work

analyses. We focussed on language workbenches that could integrate a model-

based analysis into their development capabilities. In addition to language

workbenches, we looked into research that provides tools for developing

DSMLs and how they handle tools, especially model-based analyses, that

work with the developed DSMLs.

We also researched reoccurring patterns in the structure of DSMLs and model-

based analyses that negatively a�ect the evolvability, understandability, and

reusability of model-based analyses that result from the co-dependency of

both. Therefore, we looked into related research that copes with detecting

bad smells, especially in DSMLs and model-based analysis and how they in-

corporate their co-dependency. Furthermore, we looked into related research

that deals with �xing bad smells in both DSMLs and model-based analyses.

When a DSML and its corresponding model-based analysis follow a modular

structure, we wanted to provide an approach to �nd model-based analysis

components that already exist and �t into the requirements of another model-

based analysis. The goal is to enhance the reusability of already existing

model-based analysis components. In our research, we focus on model-based

simulation components, a sub-set of model-based analysis components. Nev-

ertheless, we looked into related research that allows the analysis developer to

compare analysis components on the code level. We focus on approaches that

support at least object-oriented source code, like code written in Java, C++,

or C#. Furthermore, we looked into related research that provides approaches

to specify and reuse simulations or parts of simulations.

This chapter is structured as follows: In Section 10.1, we introduce related

research related to the decomposition and composition of analyses. This

section looks into approaches that cover all kinds of analyses, not only model-

based analyses. First, in Section 10.1.1, we address related research that

focuses on integrating analyses. Second, in Section 10.1.2, we address related

research that focuses on the orchestration of analyses. In Section 10.2, we

introduce related research concerned with the integration of DSMLs and

model-based analyses. First, in Section 10.2.1, we address related research on

language workbenches. Second, in Section 10.2.2, we address related research

on language engineering tools. In Section 10.3, we look into related research

that covers bad smells in DSMLs and object-oriented software. First, in Sec-

tion 10.3.1, we address related research that focuses on detecting bad smells.

Second, in Section 10.3.2, we address related research that focuses on refac-

toring bad smells. In Section 10.4, we look into related research that covers

302

10.1. Decomposition and Composition of Model-based Analyses

the reuse of model-based simulation components. First, in Section 10.4.1, we

address related research that compares source code. Second, in Section 10.4.2,

we address related research that focuses on the speci�cation and reuse of

simulations. Finally, in Section 10.5, we summarise the related work and set

the contributions of this thesis in the overall context.

10.1 Decomposition and Composition of
Model-based Analyses

Research in the domain of decomposing and composing analyses has yielded

relevant contributions to reusing and composing analysis fragments to cre-

ate analyses. This section presents related approaches to decomposing and

composing fragments of analyses.

10.1.1 Analysis Integration

The coupling of analysis components is essential to integrating analyses

because the coupling describes how the desired analyses can be combined.

There are various coupling approaches for various analyses, some of which are

mentioned in the next paragraph. FMI [Blo+12], DIS [IEE95], and its successor

High-Level Architecture (HLA) [IEE10] enable the coupling of simulations on

one system but also across distributed systems. DIS and HLA were developed

for co-simulation. Co-simulation refers to combining numerous simulations

that were not designed to function together in the �rst place. An overview of

challenges and state-of-the-art of co-simulation is presented in [Gom+18].

There are extensions for FMI [Tav+16; Bog+15; FG19] and HLA [Awa+15].

The coupling of FMI and HLA is still the subject of current research [FG19].

Existing approaches for simulation coupling are limited to event exchange

to allow interoperability between simulations. However, in contrast to our

reference architecture, they only provide the technical structure to couple

simulations, but they do not provide a structure or a process of how the

components can be (de)composed. However, they focus on aligning the

concept of time but still need decomposition and composition concepts.

Another challenge when integrating analyses is the behavioural aspect, man-

ifested by which analysis component in�uences what [Lam78; MM79]. By

303

10. Related Work

synchronising each participating simulation, the decomposition of simula-

tions increases communication overhead. Approaches such as computation

allocation [Muz+10; VV14], bridging the hierarchical encapsulation [VV15],

or dead-reckoning models [Lee+00] make it possible to reduce the commu-

nication e�ort. Also, the decomposition and composition are left to the

user with these approaches. Ptolemy II [Pto14], a framework for actor mod-

elling, an orchestrator block is introduced to manage a set of connected

actors. Although an actor can be seen as a simulation unit composed of

simulation features, Ptolemy does not provide decomposition support for

existing simulations. There also are various approaches to model variabil-

ity (e. g., [KCO15], [Mén+16b]) utilising feature diagrams to apply product

line techniques. However, in contrast to our work, these approaches do not

provide a process for identifying and structuring analysis features.

An approach where analysis tools can be merged based on evidence is pro-

posed by Dwyer et al. [DE10]. The authors argue for a standard representation

and storage of analytical outcomes and meaningful composition of these re-

sults but disregard the analysis structure and the dependent metamodel or

language in contrast to our work. ToolBus [BK96] and the Electronic Tool In-

tegration (ETI) [BMW97] platform are two approaches to integrating analyses.

Both approaches share similar assumptions and goals: integrating existing

tools into foreign processes is a di�cult task that requires e�ective data ex-

change and communication channels with these technologies. The problem

is that, in contrast to our reference architecture, these approaches assume

nothing about the structuring of the analysis and do not incorporate any

dependent language or metamodel.

At a particular abstraction level, modelling analysis can also be regarded as a

form of model transformation. However, the typical model transformation

approaches [Tae+05] do not help to cope with the complexity of analytical

algorithms. Usually, analysis techniques include complex intermediate states

and data structures, but they are used in a straightforward sequential manner.

We do not regard the research �eld of model transformations as more relevant

for our endeavour and therefore omit a detailed discussion.

10.1.2 Analysis Orchestration

Analyses like discrete event-based simulations, for example, can be speci�ed

by the composition approaches Discrete Event System Speci�cation (DEVS)

304

10.1. Decomposition and Composition of Model-based Analyses

or Composable Discrete-Event Scalable Simulation (CoDES). Implementing

a simulation strictly according to the CoDES [TS08] speci�cation makes

a semantic composition of component-based simulations possible. DEVS

represents a formalism with which simulations can be modelled and anal-

ysed [Zei76]. Also, DEVS o�ers the possibility to specify parallel running

simulations [Cho96]. In contrast to our reference architecture, DEVS and

CoDES do not specify how to slice features or incorporate them into a simu-

lation. All these composition approaches also lack a decomposition concept

for already existing analyses.

Multi-Paradigm Modelling (MPM) is an approach that proposes to address the

challenges associated with the composition of analyses by viewing languages

and work�ows as distinct paradigms [Amr+19; Amr+21]. MPM is designed

to establish the foundations for formalising paradigms, accomplished by

representing them as the combination of languages and work�ows. In this

approach, languages are de�ned as sets of domain-speci�c concepts, syntax

rules, and semantics, while work�ows are sequences of actions executed

on a set of inputs to produce a set of outputs. By de�ning languages and

work�ows as paradigms, MPM aims to facilitate the development of a formal

framework for characterising and analysing paradigms. However, while MPM

has been proposed as a promising approach for addressing the challenges

associated with the composition of analyses, the outcomes of the approach

in the direction of formalisation have yet to be demonstrated. More research

is needed to determine the e�ectiveness of MPM in achieving its objectives

and to assess its potential for improving the e�ciency and e�ectiveness

of analysis composition. Furthermore, the development of MPM requires

the integration of multiple disciplines, including formal methods, domain-

speci�c languages, and work�ow management, which presents additional

challenges that must be addressed. Despite these challenges, MPM represents

a promising approach for advancing the �eld of analysis composition and is

an area of active research.

In conclusion, the current methods used for analysing coupling and orchestra-

tion in model-based analyses need to be revised to provide a comprehensive

semantic decomposition and composition of analyses. While these approaches

can manage the interoperability between model-based analyses, they need to

provide a deeper understanding of the meaning and relationships between

the di�erent components of the analyses. Coupling and orchestration are

essential concepts in model-based analyses, where multiple analyses are com-

bined to provide a more comprehensive understanding of a system or process.

305

10. Related Work

However, the current approaches often focus solely on the technical aspects of

interoperability, such as data exchange and synchronisation, while neglecting

the more nuanced semantic relationships between the di�erent components

of the analyses. More scienti�c and advanced methods are needed to provide

a deeper understanding of the meaning and relationships between the di�er-

ent components of the analyses. These methods should focus on semantic

decomposition and composition of the model-based analyses, allowing for a

more nuanced understanding of how the di�erent components of the analyses

relate to one another and how they contribute to the overall understanding

of the system or process being studied. Overall, the current approaches to

analysing coupling and orchestration in simulations need to be expanded to

provide a more comprehensive understanding of the meaning and relation-

ships between the di�erent components of the analyses. This can be achieved

by developing more advanced methods focusing on semantic decomposition

and composition of the analyses.

10.2 Integration of Domain-specific Modelling
Languages and Model-based Analyses

The �eld of software language engineering has made signi�cant contributions

to creating modelling languages by reusing and combining language frag-

ments. This section describes various approaches that have been developed

to combine modelling languages with model-based analyses.

10.2.1 LanguageWorkbenches

In this section, we present di�erent tools and workbenches that focus on

modelling, building and composition of modelling languages. Neverlang is

an open-source language workbench that allows developers to design and

implement programming languages and DSLs [CV13]. It provides a set of tools

and frameworks for creating and modifying language syntax and semantics,

as well as for generating parsers and compilers. The goal of Neverlang is

to simplify the process of language design and implementation, making it

more accessible to a wider range of developers and users. It allows for the

reuse and composition of language components. Neverlang is similar to

action-semantics modules [DM03] and role-based composition of language

306

10.2. Integration of DSMLs and Model-based Analyses

syntaxes with interpreters [Wen12], but it does not support the orchestration

of analysis features.

AToMPM, is a framework for building modelling languages and tools, with

support for graphical editors and code generation [Syr+13]. GEMOC Stu-

dio [CBW17] is an open-source development environment that allows users

to create speci�c DSMLs and their corresponding workbenches. The software

provides tools and frameworks, such as graphical editors, simulation engines,

model transformation engines, and code generation facilities, which facilitate

the creation of DSMLs and workbenches. With GEMOC Studio, users can

develop custom DSMLs and workbenches for diverse domains, including

software engineering, system engineering, and scienti�c modelling. The soft-

ware is based on the EMF, which o�ers a modular architecture and APIs for

modelling tools and applications. Additionally, GEMOC Studio can integrate

with other Eclipse-based plugins, like EMF, Xtext, and Sirius. However, the

compositionality of GEMOC is purely syntactic, based on the composition

mechanisms of the Java programming language. This means that GEMOC

Studio does not support the semantic composition of modelling languages and

analyses, unlike our reference architecture. LISA [Mer13] and Xtext [Bet16]

also support methods for reusing specialised syntax.

Further tools are, for example, MetaEdit+, which is a tool for creating mod-

elling languages and tools, which includes support for creating graphical

editors and code generation [TR03], and Papyrus, an open-source modelling

tool that provides support for designing and customising modelling languages

and tools, with an emphasis on UML modelling [Lan+09]. Meta Program-

ming System (MPS) [Völ11] is an open-source, language workbench and IDE

designed for building DSMLs and Language Oriented Programming (LOP)

systems. MPS is a software development tool that allows users to design and

develop languages. With MPS, users can create their own DSLs and build

customised IDEs that are tailored to their speci�c needs. MPS provides a

number of features to support DSL development, including a projectional

editor, language composition mechanisms, type-system support, code genera-

tion, and refactorings. MPS is written in Java and is built on top of the IntelliJ

IDEA platform, which provides a rich set of tools for software development.

It is also highly extensible and customisable, allowing users to add their own

plugins and tools to the IDE. Another tool for the generation of code, which

is based on the programming language python is TextX [Dej+17].

307

10. Related Work

However, none of these workbenches support the semantic composition of

model-based analyses, which is a key feature of our reference architecture.

10.2.2 Language Engineering Tools

The �eld of language engineering has contributed various tools that cater to

speci�c aspects of language artefacts, including syntax de�nition and trans-

formation speci�cation. Such tools aim to aid in the composition of language

artefacts. Some examples of such tools are ATL [Jou+06], Epsilon Trans-

formation Language [KPP08], and Xtend [Bet16] code generation language.

However, these tools do not provide support for the semantic composition

of analyses. EMF Splitter [Gar+14] is a tool that decomposes monolithic

metamodels based on their structure but neglects semantics. In contrast,

GTSMorpher [GTS23] is a tool based on GEMOC studio that facilitates the

safe composition of behavioural analyses through structured operational se-

mantics. Puzzle [Mén+16a] is an application that detects speci�cation clones

and extracts reusable language modules to facilitate the refactoring of mod-

elling languages. This tool helps to improve the maintainability of language

artefacts by reducing the duplication of code, which can lead to consistency

issues and increase the complexity of the system. EMF Refactor [Fou23] is

a tool that identi�es and refactors design smells based on model metrics in

modelling languages. This tool can help improve the quality of language arte-

facts by removing any design issues that may lead to incorrect or suboptimal

performance. In summary, the �eld of language engineering has produced a

variety of tools that cater to di�erent aspects of language artefacts, including

syntax de�nition, transformation speci�cation, the semantic composition of

analyses, and design refactoring. These tools aid in the development of high-

quality language artefacts by improving their maintainability, performance,

and consistency.

The aforementioned approaches rely on abstract syntaxes, either with re-

stricted variability of the abstract syntax or coupled with interpreters, but do

not account for the semantic structure of analyses. To address this limitation,

it is imperative for existing techniques to incorporate the semantics of analy-

ses when decomposing and composing modelling languages and model-based

analyses. Additionally, when modular model-based analyses are utilised, their

composition is strictly syntactic. Regrettably, current approaches disregard

the semantics of a given domain or quality attribute.

308

10.3. Bad Smells and Anti-Pattern in Model-based Analyses

10.3 Bad Smells and Anti-Pattern in Model-based
Analyses

Research in bad smell de�nition and detection has yielded relevant contribu-

tions to improve internal quality attributes of DSMLs and software systems.

In this section, we present related approaches regarding detecting and refac-

toring bad smells and anti-patterns in the domain of DSMLs and software

systems.

10.3.1 Bad Smell Detection

Catalogues of bad smells, for example, for code smells [Fow18], Dependency

Injection (DI) [Lai+22], or anti-patterns [Bro+98; Lar12] contain descriptions

of the bad smells and how they can be detected. However, in contrast to

our approach, bad smells that arise due to the co-dependency of DSMLs

and model-based analysis are not researched. Furthermore, our approach

can automatically detect the thirteen bad smells we found. Studies of code

smells [Lac+20; SSS14] focus on code in general; the speci�c context of DSMLs

and corresponding model-based analyses is not researched.

Strittmatter [Str20] proposes a set of bad smells and anti-patterns for DSMLs.

They derive bad smells from object-oriented design, and in contrast to a mere

catalogue, they provide automated detection of these bad smells. However,

they focus solely on DSMLs; the bad smells that arise from the co-dependency

of DSMLs and corresponding model-based analyses are not researched.

Llano et al. [LP09] analyse software systems based on their architecture. They

use UML-based anti-pattern speci�cations and propose transformations to

correct these anti-patterns. However, their approach focuses on anti-patterns

in object-oriented design; ergo, it analyses software on an architectural level.

In contrast to our work, it neither does analyse DSMLs regarding bad smells

and anti-patterns nor does their approach analyse bad smells that arise from

the co-dependency of DSMLs and model-based analyses.

Besides metric-based bad smell detection approaches exist machine learning

approaches Kovačević et al. [Kov+22] propose an approach with pre-trained

neural source code embeddings for code smell detection. They used pre-

trained Code Understanding BERT (CuBERT) embeddings that outperformed

309

10. Related Work

the detection of metric-based bad smell. Bidirectional Encoder Representa-

tions from Transformers (BERT) and CuBERT are used in the Natural Lan-

guage Processing (NLP) community for the pre-training of transformer-based

NLP models [Dev+18]. BERT can also be used to analyse architectural design

decisions [Kei+20] and for the classi�cation of requirements [Hey+20]. How-

ever, their approach is limited to detecting the God Class and Long Method

smells [Kov+22] or is unable to detect bad smells in DSMLs and model-based

analyses [Kei+20; Hey+20].

Tools like SonarQube [Son23] can detect duplicated code, and its capabilities

are well researched [Paa16]. The performance of SonarQube as the de facto in-

dustry standard is used to measure the capability of similar approaches [FS15].

However, SonarQube cannot handle DSMLs, let alone the co-dependency of

DSMLs and model-based analyses.

10.3.2 Bad Smell Refactoring

The e�ect of refactorings on the internal quality of the software is well-

researched. How refactorings a�ect the security of a system is analysed by

Almogahed et al. [AOZ22]. The e�ects on testability [EA09; EA11; EA12],

adaptability [EA11; EA12; MJ19], completeness [EA11; EA12; MJ19], and

reliability [AAE13], �exibility [AAE13] are well documented. Furthermore,

are the aspects of maintainability and the e�ect of refactorings [MC16; MJ19;

EA12] like understandability, abstraction, modi�ability and extensibility also

well researched [MC16]. These references show only a small part of the

research investigating the e�ects of refactorings on internal software quality.

However, these categories are not su�ciently comprehensive, as there is no

broad coverage of refactoring techniques and internal quality attributes. They

are limited to a set of refactoring techniques that do not cover the refactorings

of DSMLs and model-based analyses.

Strittmatter [Str20] proposes, in addition to the set of bad smells and anti-

patterns for DSMLs, refactoring operations to �x aforementioned bad smells

in DSMLs. However, as for the detection of their bad smells, they focus solely

on DSMLs; the bad smells that arise from the co-dependency of DSMLs and

corresponding model-based analyses are not researched.

The Move Method Refactoring Using Coupling, Cohesion, and Contextual

Similarity (MMRUC3) approach [Rah+18], developed by Rahmann et al., fo-

310

10.3. Bad Smells and Anti-Pattern in Model-based Analyses

cuses on the feature envy bad smell. It proposes a solution by analysing

the source code and providing the refactoring move method. The authors

showed that their approach improves the metrics coupling and cohesion.

Their MMRUC3 approach uses contextual information based on informa-

tion retrieval techniques, along with dependency information, to derive the

recommendations. To detect refactorings, MMRUC3 utilises the tools Ref-

Finder [Bav+15] and JDeodorant [Fok+11]. Although their approach helps

increase software modularisation by incorporating static and non-static enti-

ties in the recommendation process, their approach is limited to �xing one

bad smell. MMRUC3 recommends points in the could that could refactor

one bad smell; our approach, on the other hand, can identify up to twelve

bad smells. Furthermore, is the MMRUC3 approach limited to smells on the

code level, DSMLs and the co-dependency to model-based analysis is not

considered.

Carvalho et al. [Car+17b] developed the Refactoring Recommender System

(RESYS) approach to link the ontologies Ontology for Software Refactoring

(OSORE) and Ontology for Code smell Analysis (ONTOCEAN) [Car+17a]

for automatically chose refactorings and semantically link each refactoring

to the causing bad smell. The authors based their OSORE ontology on their

previous ontology ONTOCEAN. OSORE is a catalogue of refactorings that

can use semantic information to support the recommendation of refactorings.

It also contains a collection of templates to show how each refactoring can

be applied. Our approach and RESYS together with OSORE have in common

that both can point to the place in the code where the bad smell is located.

However, the approach by Carvalho et al. [Car+17b] is limited to smells on

the code level, DSMLs and the co-dependency to model-based analysis is not

considered.

Tsantalis et al. [Tsa+13] propose an approach to analyse the refactoring

activity in a software development project. The authors extract changes

between revisions of the code. Based on the revisions, their tool Refactoring
Miner and Ref-Detector create a simpli�ed UML model. With that model, they

derive whether a refactoring was applied in that revision. Their approach is

also able to determine which refactoring operation was applied. Cedrim et

al. [Ced+17; Ced+16] used the tools Refactoring Miner and Ref-Detector to

determine which refactoring operations are often used, whether a refactoring

reduced the total number of bad smells or even if the refactorings introduced

new bad smell. Although the overall analysis of the impact of refactorings is

311

10. Related Work

fascinating, unfortunately, the authors do not consider bad smells in DSMLs

or model-based analyses.

The tool JDeodorant [Fok+11] is a tool that supports the bad smells Fea-

ture Envy [TCC08; FTC07], Type/State Checking [TC10; TCC08], Long

Method [TC11], God Class [Fok+12; Fok+09] and Duplicated Code [TMK15;

TMR17]. This tool can detect bad smells in Java source code and recommend

refactorings to resolve the bad smells. Sehgal et al. [SMB17], for example, use

JDeodorant to determine the positive e�ect of refactorings on the internal

code quality. However, the JDeodorant is limited to code smells of Java source

code; thus, it cannot detect bad smells of DSMLs and the co-dependency to

model-based analysis.

Higo et al. [Hig+04] propose the tool CCShaper as a solution for identifying

and refactoring the bad smell Duplicated code. Their tool utilises the refactor-

ing operations Extract Method and Pull Up Method to �x the Duplicated code
smell. However, the CCShaper is limited to code smells of object-oriented

source code; thus, it cannot �nd bad smells that arise from the co-dependency

DSMLs and model-based analyses.

Liu et al. [Liu+16] propose an approach that analyses the e�ect of refactoring

methods on other methods. Their change impact analysis is limited to the

refactoring of moving a method. They utilise the approach Extract Method
Detector by Wenmei et al. [LL16] to identify methods that could be extracted.

In contrast to our approach, the change impact analysis focuses only on source

code; thus, it cannot handle bad smells that arise from the co-dependency of

DSMLs and model-based analyses.

Fontana et al. [FZZ15] propose their approach Duplicated Code Refactoring

Advisor (DCRA) that can detect the bad smell Duplicated code in Java source

code. Their approach also suggests refactorings that remove the Duplicated
Code smell. The claim is that their approach can suggest the best refactoring

that solves the Duplicated Code smell. Therefore, they classify code clones

intending to reduce manual interaction when refactoring the bad smell. In

contrast to our approach, the DCRA approach is limited to Java source code

and only one bad smell; as a result, it is unable to handle bad smells that arise

from the co-dependency of DSMLs and model-based analyses.

312

10.4. Reuse of Simulation Components

10.4 Reuse of Simulation Components

In this section, �rst, we present related research that is concerned with �nding

source code identical in structure and behaviour. Then, we present related

research that deals with the speci�cation and the reuse of simulations.

10.4.1 Source Code Comparison

Prechtel et al. [PMP02] propose JPlag, a tool to �nd similarities in Java, C#, C,

and C++ source code �les to detect software plagiarism. The tool JPlag takes

source code as input and compares �les pair-wise. For each pair, it computes

a similarity score and a set of similarity regions. As an output, it provides a

detailed, thorough hyperlink navigable report.

The tool SIM, developed by Gitchel et al. [GT99], can compare programs

written in the programming languages C, Java, Pascal, and Lisp. Similar to

JPlag, it uses a tokeniser approach to compare the source code. Furthermore,

SIM compares the correctness, style and uniqueness of a program. Each

programme is �rst parsed with a lexical analyser, producing a sequence

of tokens. The tokens for keywords, special characters and comments are

prede�ned, while the tokens for identi�ers are dynamically assigned and

stored in a common symbol table.

Schleimer et al. [SWA03] developed the tool Measure Of Software Similarity

(MOOS). According to Ahadi et al. [AM19], MOOS supports the program-

ming languages C, C++, Java, C#, Python, Visual Basic, JavaScript, FORTRAN,

ML, Haskell, Lisp, Scheme, Pascal, Modula2, Ada, Perl, TCL, Matlab, VHDL,

Verilog, Spice, MIPS assembly, a8086 assembly, a8086 assembly, MIPS assem-

bly, and HCL2. MOOS uses the k-gram approach that divides a document

into adjacent substrings. The distance k can be determined by the user of

MOOS.

Although similar source code �les exhibit similar behaviour, the focus of

JPlag, SIM and MOOS is �nding similarities in the source code structure and

not in the program’s behaviour.

Bonchi et al. [Bon+18] propose a simulation-based matching of cloud compo-

nents. Their approach considers the behaviour when matching applications

in a cloud environment. The approach by Bonchi et al. [Bon+18] extends the

313

10. Related Work

work of Brogi et al. [BS16] to identify whether operations of a component are

equivalent. Their approach de�nes management protocols to determine the

equivalence of component operations. Furthermore, the approach by Bonchi

et al. can substitute an operation with a sequence of other provided operations

to create the desired behaviour. Further approaches, for example, the match-

making for OWL-S services by Klusch et al. [KFS09] or a heuristic black-box

matching approach by Eshuis et al. [EG07], consider the input and output data

when matching software components. In their paper, Reussner et al. [RBF04]

outline an approach for adjusting components using parametric contracts,

which allow for the modi�cation of interfaces based on contextual properties

in a potentially more expressive manner than our approach. They utilise �nite

state machines to model interaction protocols. In contrast to the approaches

for matching components and interfaces, our approach does focus on the

events and the entities in a DES; none of the presented related approaches

considers the e�ects of events on the overall simulation state. Furthermore,

due to the focus on DES, the analysis developer can focus on modelling the

interaction of events and entities; thus, it is a lightweight approach as the

internal behaviour of a simulation component is not considered.

10.4.2 Simulation Specification and Reuse

In this section, we list related approaches and research concerned with reuse in

simulation and the description and comparison of discrete event simulations.

The FOCUS approach gives mathematical semantics for the structure and

behaviour of software systems [RR11], and it also supports the representation

of quality properties and domain-speci�c properties [Mao+17]. However,

these approaches are too broad and ambiguous for non-domain experts to

model DES. Various approaches to specifying DES are in use today. Graphical

approaches such as UML-based Activity Diagrams, Flow Diagrams or Activity

Cycle Diagrams can be used to describe the structure of a simulation and

specify the �ow of events [BM03]. These diagrams are well suited to convey

the behaviour of a simulation to other people but need a formal metamodel for

behaviour speci�cation. Usually, the edges are labelled in natural language,

complicating the automated comparison of behaviour. Heinrich et al. [HSR19]

propose a reference architecture for DSMLs used for quality analysis. Their

reference architecture focuses on improving the evolvability and reusability

of quality models. However, their reference architecture focuses only on the

input models of the quality analysis/simulation.

314

10.4. Reuse of Simulation Components

Approaches like �rst-order predicate logic [Tom13] investigate logical im-

plications for various forms of logic. Milner [Mil89] investigates relation

re�nement and various forms of (bi)-simulation dependencies. Clarke et

al. [CES86] investigate the satisfaction of temporal logic formulas by au-

tomata, and Richters et al. [RG00] check the consistency of object structures

regarding data structures (e. g., class structure). The DEVS formalism [ZPK00]

is a formal approach to describing and analysing discrete event systems. In

the DEVS formalism, a discrete event system model consists of a set of input

and output events, a set of states and functions that de�ne the lifetime of

states and how the state should be updated in response to input events or

the elapsed time of a state. The Coupled DEVS formalism allows the mod-

ularisation of system speci�cations by de�ning sub-components and their

connections. The simpli�cation of the simulation world to a set of states and

the behaviour to a sequence of input and output events are a drawback for

the speci�cation of a complex system where a set of entities with attributes

might be more desirable to describe the simulation world.

There are approaches to combining a formal simulation speci�cation with

an intuitive description language, such as the Condition Speci�cation Lan-

guage [ON85] or the OMNeT++ framework, primarily focused on network

simulation. Because of the imperative nature of the behaviour speci�cations

in these approaches (often in C- or Java-like code), it is di�cult to extract a de-

scription that can be compared between simulations. Our approach allows the

straightforward transformation of declarative expressions to SMT-instances

and their comparison with an SMT-solver.

The HLA, developed by the Modelling and Simulation Coordination Of-

�ce of the US Department of Defence, is standard de�ning an architecture

for distributed simulation with a focus on enabling interoperability and

reuse [IEE10]. The Object Model Template Speci�cation speci�es how HLA

federates exchange information through object models, e. g. the Federate

Object Model (FOM) that de�nes data objects and interactions a federation

provides. Moeller et al. [ML07] investigate how new developments in the

HLA standard can ease the reuse of federates with modular FOMs. The

FMI [Blo+12] is a standard de�ning an interface for exchanging informa-

tion and coupling between heterogeneous software systems used for Model

Exchange and Co-Simulation. Falcone et al. [FG19] combine the HLA and

FMI standards to facilitate the reuse of simulation models in complex engi-

neered systems with minimal changes to the reused system. However, these

315

10. Related Work

approaches need to cover the identi�cation of components/simulations that

match a given speci�cation.

10.5 Discussion

In this chapter, we discussed the related work regarding the three contri-

butions of this thesis. Regarding our �rst contribution, we discussed the

importance of coupling when integrating analyses, and we presented various

coupling approaches for simulations, such as FMI, DIS, and HLA. We also

highlighted the challenges of co-simulation and the limitations of existing

approaches. We have shown that the presented approach either lacks con-

cepts for the decomposition or the composition of model-based analyses. We

discussed the behavioural aspect of integrating analyses, such as the com-

munication overhead and decomposition and composition concepts, along

with various approaches to address them and that these approaches lack

processes for identifying or structuring analysis features. We also brie�y

touched upon other approaches to integrating analyses, such as ToolBus and

the ETI platform, but highlighted their limitations in incorporating dependent

language or metamodel. The predicament lies in the fact that, in opposition

to our reference architecture, these approaches make no presumptions about

the organisation of the analysis and neglect to integrate any interdependent

language or metamodel.

We have also discussed that the current approaches used for coupling and

orchestration of analyses require revision to provide a more comprehensive

semantic decomposition and composition of the analyses. While these ap-

proaches can manage the interoperability between the analysis component,

they need to provide a deeper understanding of the meaning and relationships

between the di�erent components of the analyses. In contrast to our contribu-

tion, current methods such as DEVS and CoDES lack a decomposition concept

and do not specify how to slice features or incorporate them into a simulation.

Advanced methods are required to provide a more nuanced understanding

of the meaning and relationships between the di�erent components of the

analyses. Our approach focuses on semantic decomposition and composition

of the analysis components, allowing for a more comprehensive understand-

ing of model-based analyses and their corresponding DSML. Overall, our

approach provides a more comprehensive understanding of the meaning and

316

10.5. Discussion

relationships between the di�erent components of the analyses, which is

necessary to advance the �eld of analysis composition.

Regarding the integration of DSMLs and model-based analyses, tools like

the GEMOC Studio that enable the creation of modelling languages using

metamodels with built-in interpretation and analyses focus only on syntac-

tic compositionality, whereas our reference architecture supports semantic

compositionality of modelling languages and analyses. Other tools also en-

able language component reuse and composition, but they do not support

orchestrating analysis features. Our reference architecture, on the other hand,

allows the orchestration of analysis features and analysis components with

regard to its corresponding DSML.

The �eld of language engineering has produced various tools that aid in the

development of language artefacts by addressing di�erent aspects, such as

syntax de�nition, transformation speci�cation, design refactoring, and seman-

tic composition of analyses. However, most of these tools do not incorporate

the semantics of analyses when decomposing and composing model-based

analyses. Current approaches only support the syntactic composition of

model-based analyses, but semantic compositionality is essential for more

e�ective and e�cient analysis. Therefore, our approach considers the se-

mantics of the domain or quality attributes when composing model-based

analyses.

Regarding our second contribution, bad smells and anti-patterns in model-

based analyses, we discussed various catalogues for bad smells, such as code

smells, design patterns, and anti-patterns, which provide descriptions of

the bad smells and how they can be detected. However, in contrast to our

contribution, these catalogues do not investigate bad smells arising from the

co-dependency of DSMLs and model-based analyses. On the other hand, we

have shown approaches for the automated detection of bad smells and anti-

patterns for DSMLs, but their approach is limited to DSMLs only. Similarly,

other approaches provide anti-patterns for software systems based on their

architecture and provide transformations to correct these anti-patterns, but

these approaches focus on anti-patterns in object-oriented design and do

not analyse bad smells that arise from the co-dependency of DSMLs and

model-based analyses. Additionally, machine learning approaches, such as

pre-trained neural source code embeddings, have been proposed for bad

smell detection, but they are limited in their ability to detect bad smells

in DSMLs and model-based analyses. Finally, industry-standard tools like

317

10. Related Work

SonarQube can detect duplicated code, but they cannot handle DSMLs or the

co-dependency of DSMLs and model-based analyses.

The impact of refactorings on the internal quality of software has been exten-

sively researched, with studies analysing their e�ects on security, testability,

adaptability, completeness, reliability, �exibility, and maintainability. How-

ever, these studies do not provide comprehensive coverage of all refactoring

techniques and internal quality attributes, with some studies limited to a set

of refactoring techniques that do not cover refactoring of DSMLs and model-

based analyses. Some studies have proposed solutions to speci�c bad smells

in DSMLs and on the code level, but none has addressed their co-dependency.

Other approaches focus on the feature of certain smells or use semantic infor-

mation to recommend refactorings. In contrast to our contribution, they are

all limited to smells on the code level and do not consider the co-dependency

between DSMLs and model-based analyses.

Regarding our third contribution, the reuse of simulation components, we

discussed tools for source code comparison. For example, JPlag is a tool that

uses a pairwise comparison of Java, C#, C, and C++ source code �les to detect

software plagiarism. It computes a similarity score and similarity regions

for each pair of �les and produces a detailed report. Similarly, the tool SIM,

uses a tokeniser approach to compare C, Java, Pascal, and Lisp programs

and evaluates their correctness, style, and uniqueness. In contrast to our

contribution, focus the presented tools on detecting similarities in source

code structure rather than program behaviour.

We also discussed various approaches and research related to simulation reuse

and the description of discrete event simulations. Some of the approaches

discussed include FOCUS, UML-based activity diagrams, �rst-order predicate

logic, DEVS formalism, and HLA and FMI standards. While these approaches

provide a formal and structured way of describing simulations, they may

be too broad or ambiguous for non-domain experts to use. In contrast, our

approach can identify simulation components that match a given speci�ca-

tion.

318

11. Conclusion and Future Work

In this chapter, we bring this thesis to an end. For each contribution, we sum-

marise our achievements and discuss whether we reached our research goals.

We identify the limitations of our contributions, and we address possible

future work. We discuss our �rst contribution in Section 11.1, the reference

architecture for model-based analyses. We discuss our second contribution,

the bad smells in model-based analyses, in Section 11.2. In Section 11.3, we

discuss our third contribution, the speci�cation and reuse of model-based

simulation components.

11.1 Decomposition and Composition of Model-based
Analyses

In this section, we conclude our �rst contribution, the reference architecture

for model-based analysis. First, in Section 11.1.1, we summarise the contri-

bution and set our �ndings into the context of our research questions. In

Section 11.1.2, we address the approach’s limitations; in Section 11.1.3, we

present possible future work.

11.1.1 Summary

As our �rst contribution, we presented a novel reference architecture for

model-based analyses. We used the concept of a reference architecture for

DSMLs to create a reference architecture for model-based analyses that con-

siders the architecture of its corresponding DSML. The reference architecture

for model-based analyses provides an approach for specifying model-based

analyses and an approach to modularise a model-based analysis according

to the structure of its associated DSML. By using the structure of the DSML

as a guideline for the model-based analysis, the analysis developer has a

319

11. Conclusion and Future Work

reference for designing and implementing features of a model-based analysis.

Due to the alignment of both the DSML and the model-based analysis, our

reference architecture for model-based analyses gives a solution for Prob-

lem Statement 1, the deterioration of the evolvability, understandability, and

reusability of model-based analyses due to evolutionary changes.

First, we improved the understandability of model-based analyses by in-

troducing a reference architecture for model-based analyses which follows

the structure of the reference architecture for DSMLs. Therefore, extended

the concept of language features and language components by Heinrich et

al. [HSR19] to introduce analysis features and analysis components. A lan-

guage feature is the expression of a concept, a system property, and a language

component is the implementation of a system property. We transferred the

concept of features and components to model-based analyses. In the context

of a model-based analysis is an analysis feature, the abstraction of the analysis

of a system property and the analysis component implements the analysis

of the system property. An analysis feature analyses the system property

represented by a language feature. The separation into features allows the

analysis developer to distinguish the concerns of a model-based analysis. Due

to the dependency between the DSML and the model-based analysis, the

reference architecture for model-based analyses considers the structure of

the model-based analysis and its corresponding DSML. In our approach, each

language feature has an associated analysis component; thus, we can ensure

that each language feature can be analysed.

Second, we improved the evolvability and reusability of model-based analy-

ses, by arranging the analysis features and components of an model-based

analysis into layers. Analysis components that implement an analysis feature

are located on the same layer as the analysis feature. The dependencies of

the analysis components are restricted. The reference architecture allows

only dependencies on analysis components on the same or a more generic

layer. Thus, components on the same layer are interchangeable, and changes

to components on a more speci�c layer do not a�ect components on a more

generic layer. In general, the number of layers is determined by the layers of

the DSML; however, in our contribution, we created an example instantiation

of our reference architecture for model-based quality analyses. Our reference

architecture for model-based quality analyses consists of �ve layers, which

supports four layers of the reference architecture for DSMLs (basic features

π , domain-speci�c features ∆, quality-related features Ω, and analysis con-

�guration Σ). In addition to these four layers, we added the experiment layer

320

11.1. Decomposition and Composition of Model-based Analyses

(Φ) to the structure of the reference architecture. The Φ layer is only part

of the model-based analysis; it does not a�ect the architecture of the DSML.

The layered architecture serves as a template structure, reducing internal

quality erosion. The template structure prevents the uncontrolled growth of

dependencies and the erosion of the project structure (cf. Section 3.2). Be-

cause of the layered architecture and the template structure, the model-based

analyses that use our reference architecture are better understood. A struc-

ture that is easier to understand is also better evolvable, as the architecture

of the model-based analysis follows strict dependency and extension rules.

The strict dependency rules improve the reusability of analysis features and

analysis components.

As a third measure to make model-based analyses better evolvable, under-

standable, and reusable, we present refactoring operations for analysis devel-

opers to transform an existing, arbitrary model-based analysis to our reference

architecture. The DSML must already conform to the reference architecture

for DSMLs that separates it into layers and ensures that dependencies are

directed in a speci�c way. The refactorings are divided into those that operate

on the analysis class level (splitting or merging classes, �xing dependency

cycles) and those that operate on the analysis component level (splitting

or merging components, extracting features). The refactorings are based

on previous work in DSML refactorings and object-oriented programming

refactorings. They transform a monolithic model-based analysis into a modu-

lar structure that follows our reference architecture. Suppose any problems

presented in Section 3.2 (i. e., project structure erosion, uncontrolled growth

of dependencies, and feature drift) occur in a model-based analysis. In that

case, the refactoring operations are designed to �x and prevent evolvability,

understandability, and reusability deterioration.

Besides the layered structure of the reference architecture, we provide pro-

cesses to apply our reference architecture for model-based analyses. We

di�erentiate three scenarios during the lifetime of a model-based analysis

where an analysis developer can apply the reference architecture: (i) refactor-

ing an existing model-based analysis, (ii) developing a model-based analysis

from scratch, and (iii) extending an existing model-based analysis. Although

the processes restrict the analysis developers’ freedom to design, implement,

and extend model-based analyses, they provide a structure for the analysis

developers can follow, which uni�es the design, development, and exten-

sion process [HSR19]. Because of the processes, analysis developers can

321

11. Conclusion and Future Work

easily apply our reference architecture, which in return makes the a�ected

model-based analyses better evolvable, understandable, and reusable.

For the evaluation of our approach, we refactored four case studies from

di�erent domains to our reference architecture for model-based analyses.

Due to the size of the case studies, we focussed on historical evolution sce-

narios. We derived these scenarios from the commit history of the case

studies. We refactored the historical evolution scenarios according to our

guidelines using the refactoring operations provided in Section 3.3.3. The case

studies are (i) the Palladio Simulator, a performance and reliability analysis

for component-based software systems; (ii) Camunda, a business process

analysis and work�ow engine; (iii) KAMP4aPS, a maintainability analysis for

automated production systems; and (iv) SmartGrid, an impact and resilience

analysis of energy networks.

We used the four case studies to evaluate whether the application of our refer-

ence architecture improved the evolvability, understandability, and reusability

of the model-based analyses, and thus, our �rst contribution solves Problem

Statement 1. We chose the entropy-based metrics complexity, coupling, and

cohesion. We calculated the metrics on hypergraphs that we transformed

from the source code of the case studies. The entropy-based metrics are better

suited than simple counting metrics. Per case study, we extracted ten histori-

cal evolution scenarios. After refactoring the forty evolution scenarios, we

compared the complexity, cohesion, and coupling of the modular model-based

analyses with the original, monolithic, model-based analyses’ complexity,

cohesion, and coupling. The results for cohesion and coupling show that they

are interchangeable. Improving one of them results in the deterioration of the

other. However, we could demonstrate that for the evolution scenarios, the

complexity was reduced. Therefore, the results show that our �rst hypothesis

(Hypothesis 1) is true: the evolvability, understandability and reusability of

model-based analyses improve when we transfer the concepts of the refer-

ence architecture for DSMLs to model-based analyses. We could transfer the

concepts of the reference architecture for DSMLs to model-based analyses.

With the evaluation, we have shown that our reference architecture reduced

the complexity of the refactored case studies; thus, we can answer Research

Question 3.1 and Research Question 3.2 that our reference architecture is able

to improve the evolvability and understandability of model-based analysis.

We could also answer Research Question 3.3, that due to the reduced com-

plexity, our reference architecture improves the reusability of model-based

analysis.

322

11.1. Decomposition and Composition of Model-based Analyses

11.1.2 Limitations

In this thesis, we investigated model-based analyses that work with EMOF-

based DSMLs. Therefore, we can only claim that our reference architecture

for model-based analyses improves the evolvability, understandability, and

reusability of model-based analyses that work with EMOF-based DSMLs.

Developers, for example, could use ontologies or grammars to create DSMLs;

however, we cannot claim that our reference architecture also works for

ontology-based or grammar-based DSMLs.

Another limitation is that the DSML must follow the reference architecture for

DSMLs. If the DSML cannot be changed, we cannot determine whether our

reference architecture has the same impact on the evolvability, understand-

ability, or reusability. Furthermore, we only evaluated model-based analyses

that analyse quality attributes of their corresponding DSML. As a result, we

cannot claim that our reference architecture for model-based analysis has the

same positive impact on other kinds of model-based analyses.

Furthermore, in our evaluation, we investigated three types of model-based

quality analyses. We have shown that our reference architecture improves

the evolvability, understandability, and reusability of discrete event simu-

lations, process analyses, and change propagation analyses. Our reference

architecture for model-based analysis is so designed that it applies to other

model-based analyses, as long as they work with a DSML. However, as we

only investigated the types of analyses mentioned above, we cannot claim

that our reference architecture for model-based analyses generally improves

the evolvability, understandability, and reusability of all kinds of model-based

analyses.

11.1.3 Future Work

The evaluation of our reference architecture for model-based analyses could

be extended to include case studies that analyse di�erent attributes of their

corresponding DSML instead of only quality attributes to address the limita-

tions. Furthermore, as long as the software works with a DSML, we could

investigate whether our reference architecture is applicable for model-based

software in general. Therefore, we must modularise further DSMLs and

software systems, preferably of di�erent domains.

323

11. Conclusion and Future Work

In this thesis, we focused on DSMLs that are used for quality analyses; how-

ever, DSMLs are also used for other purposes, for example, to model software

and generate code. Aligning the structure of the generated code or the trans-

formations that generate the code with the reference architecture could also

improve the understandability and reusability of the generated code and the

evolvability, understandability, and reusability of the transformations.

Furthermore, the tooling could be extended to create the foundation for an in-

tegrated tool-set to develop model-based analyses and model-based software.

The integrated tooling could support automated analysis and refactoring of

model-based software. In addition to the automation of our tooling, we plan

to add features for visualising the feature and component structure to allow

drag-and-drop actions to simplify the refactoring process.

11.2 Bad Smells in Model-based Analyses

In this section, we conclude our second contribution, the model-based analysis

bad smells. First, in Section 11.2.1, we summarise the contribution and set

our �ndings into the context of our research questions. In Section 11.2.2, we

address the approach’s limitations, and in Section 11.2.3, we present possible

future work.

11.2.1 Summary

As our second contribution, we presented 12 novel bad smells in model-based

analyses that arise because of the co-dependency of a DSML and their asso-

ciated model-based analyses. This contribution is the solution for Problem

Statement 2, avoiding the deterioration of the evolvability, understandability,

and reusability of model-based analyses because of the co-dependency of

model-based analyses and their corresponding DSML. In addition to describ-

ing the bad smells, we provided strategies to identify each bad smell and

proposed a refactoring strategy per bad smell. We discussed the potential for

bad smells in model-based analysis and the corresponding DSMLs, and we

found that the co-dependency of these areas regarding bad smells has not

been explored yet. We identi�ed bad smells speci�c to model-based analyses.

Therefore, we analysed existing model-based analyses and derived 12 bad

smells from bad smells in object orientation and bad smells in DSMLs. We

324

11.2. Bad Smells in Model-based Analyses

separated the 12 bad smells into four categories, introduced by Ganesh et

al. [GSS13]: abstraction, encapsulation, modularity, and hierarchy. The cate-

gories help the analysis developer to understand the cause and e�ect of the

bad smells on a broader scale. We found three bad smells for the categories

abstraction and hierarchy, respectively. We found �ve bad smells for the

category modularity, and for the category encapsulation, we found one bad

smell.

First, we presented the 12 bad smells we found. We analysed the bad smells

regarding their adverse e�ects on the evolvability, understandability, and

reusability of each bad smell and the causes that lead to the occurrences of

the bad smells. For each bad smell, we presented a process for the analysis

developer to identify and refactor them. These processes help the analysis

developer to better understand the root of the bad smell, and they provide a

solution to make the model-based analysis better evolvable, understandable,

and reusable. We started with the bad smells in the abstraction category. An

abstraction refers to identifying and representing an object’s fundamental

characteristics that distinguish it from other types of objects. This process

results in establishing clearly de�ned conceptual boundaries, as the observer

perceives.

Following the abstraction category, we presented the bad smells of the en-
capsulation and of the hierarchy category. Encapsulation is a software design

principle that involves modularising the elements of an abstraction that de-

termine its behaviour and structure. The primary objective of encapsulation
is to maintain the separation between the interface and implementation of

abstraction to promote encapsulation and maintain the integrity of the ab-

straction. A hierarchical organisation, or order, of abstractions, is referred

to as a hierarchy. In model-based analysis, bad smells of the hierarchical

type can be identi�ed when the analysis is developed following our reference

architecture for model-based analyses.

The modularisation category is the last one we discussed. Modularity refers

to the ability of a system to be divided into a collection of self-contained

and loosely coupled modules. In the context of model-based analysis, the

loose coupling of modules allows for modi�cations to be made to individual

modules without a�ecting the functionality of other modules. Additionally, a

well-de�ned dependency structure, such as that provided by a reference archi-

tecture for model-based analysis, can enhance the evolvability and reusability

of model-based analyses.

325

11. Conclusion and Future Work

For the evaluation of our second contribution, we analysed four case studies

from di�erent domains and whether they contained bad smells. Due to the

size of the case studies and the number of bad smells, we did not �x every bad

smell that occurred. We focussed on historical evolution scenarios derived

from the case studies commit history. The case studies are (i) the Palladio Sim-

ulator, a performance and reliability analysis for component-based software

systems; (ii) Camunda, a business process analysis and work�ow engine; (iii)

KAMP4aPS, a maintainability analysis for automated production systems;

and (iv) SmartGrid, an impact and resilience analysis of energy networks.

We used the four case studies to evaluate the relevance of the bad smells by

determining the number of occurrences of the bad smells. To count the occur-

rences of bad smells, we implemented an automated identi�cation analysis,

allowing us to analyse all case studies’ complete source code. Furthermore,

we evaluated the e�ects of the bad smells on evolvability, understandability,

and reusability. We chose entropy-based metrics complexity, coupling, and

cohesion that we extracted by transforming the source code into hypergraphs.

The entropy-based metrics are better suited than simple counting metrics. Per

case study and bad smell, we refactored up to ten occurrences. After refactor-

ing the bad smells, we compared the complexity, cohesion, and coupling of the

scenario with the original scenario’s complexity, cohesion, and coupling. We

could show that for the evolution scenarios, the complexity could be reduced

for the Duplicated Abstraction, the Degraded Modularity, and the Rebellious
Modularity smell. Fixing the Missing Abstraction, bad smells showed mixed

results because refactoring primitive types can result in more types and, thus,

more dependencies. The bad smells of the hierarchical type emerge due to

the wrong application of our reference architecture. The evaluation of our

reference architecture has shown that it positively a�ects the evolvability,

understandability, and reusability of model-based analyses. Therefore, the

results show that our �rst hypothesis (Hypothesis 2) is true: the evolvability,

understandability and reusability of model-based analyses improve when we

�x bad smells that originate from the co-dependency of model-based analyses

and their corresponding DSML.

We answered Research Question 4.1 by deriving bad smells from object-

oriented software development and DSML development and searching our

four case studies for the occurrences of the bad smells of model-based analyses.

We answered Research Question 4.2 by developing refactoring strategies and

applying these refactorings to the occurrences in our case studies. To answer

the last research question Research Question 4.3, we refactored the bad smells

326

11.2. Bad Smells in Model-based Analyses

we found in our four case studies. With the evaluation, we have shown that the

bad smells of model-based analyses impede the evolvability, understandability

and reusability of model-based analyses.

11.2.2 Limitations

We derived our bad smells by investigating model-based analyses that analyse

quality attributes of systems modelled with their corresponding DSML. Thus,

we cannot determine whether the bad smells also apply to model-based

analyses that analyse di�erent system attributes, even if the bad smells are

generally valid for model-based analyses. Furthermore, we looked only at

DSMLs based on the EMOF standard. Therefore, we can only claim that our

bad smells of model-based analyses a�ect the evolvability, understandability,

and reusability of model-based analyses that work with EMOF-based DSMLs.

We must determine if the number of bad smells we identi�ed is complete.

Another limitation is that the DSML must be changed to �x bad smells. When

the DSML cannot be changed, for example, because it follows a standard, we

cannot �x the bad smells that require a change of the DSML.

It can be di�cult for the analysis developer to identify the source of the smell.

In some cases, it can be challenging to pinpoint the exact source of a bad

smell in a software system, which can make it challenging to address the

problem. It can also be di�cult for the analysis developer to understand

the source code and the metamodel. Even if the source of a bad smell is

identi�ed, it may be challenging to understand the code, especially if it is a

legacy codebase or written by someone else. Due to the co-dependency of the

model-based analyses and its DSML, the impact on other system components

can be di�cult to determine before �xing the bad smell. Fixing bad smells in

one part of the system may have unintended consequences on other parts of

the system, which can be challenging to anticipate and address. The process of

�xing bad smells can be time-consuming. Identifying and �xing bad smells in

a model-based analysis can be tedious, especially if the model-based analysis

is large and complex.

327

11. Conclusion and Future Work

11.2.3 Future Work

To address the limitations, further model-based analyses, especially analyses

of di�erent domains, could be analysed to derive more bad smells. Especially

software that works with a DSML could be investigated �rst to determine

whether the bad smells also apply to model-based software in general and

second, to determine whether the bad smells can improve the evolvability, un-

derstandability, and reusability of model-based software in general. Further-

more, we plan to extend our tooling to create the foundation for an integrated

tool-set to develop model-based analyses and model-based software. The

integrated tooling could support automated analysis and refactoring of bad

smells of model-based software. In addition to the automation of our tooling,

we plan to add features for visualising the feature and component structure

to allow drag-and-drop actions to simplify the refactoring process.

11.3 Structure and Behaviour Specification and
Reuse of Model-based Analysis Components

In this section, we conclude our third contribution, the speci�cation and

reuse of the structure and behaviour of model-based analysis components.

First, in Section 11.3.1, we summarise the contribution and set our �ndings

into the context of our research questions. In Section 11.3.2, we address the

approach’s limitations; in Section 11.3.3, we present possible future work.

11.3.1 Summary

As our third contribution, we presented a novel domain-speci�c modelling

language for specifying simulation components’ structure and behaviour. Our

approach is dedicated to decreasing the e�ort required to reuse model-based

analysis components. This contribution serves as the solution to Problem

Statement 3, the increasing complexity and the reduced reusability of model-

based analyses due to historical changes. Developers can use the speci�cation

to compare and identify simulation components that match the desired speci-

�cation. The structure comparison transforms the speci�cation into a graph

notation. We use a graph-isomorphism approach to identify similar structures

328

11.3. Speci�cation and Reuse of Model-based Analysis

of speci�ed simulations based on the graph notation. The behaviour com-

parison transforms the speci�cation into an SMT notation, which we use to

identify similar behaviour of speci�ed simulations. Finding similar simulation

components enables developers to reuse existing simulation components and

reduce the e�ort required to develop new simulation components.

Our contribution involves identifying and refactoring bad smells in model-

based analysis, and we presented a process for modularising existing analyses.

The goal is to make a repository �lled with analysis components or publicly

available analysis components searchable. We did emphasise the importance

of modularisation for enabling the reuse of analysis components. We also

note that specifying and identifying a component with a desired structure

and behaviour is also a part of reusing an analysis component. When the

complexity of a model-based analysis increases, it becomes harder to under-

stand and maintain, extend, or reuse. To address this problem, we suggest

reusing model-based analysis components in future projects to save time

and resources. However, a model-based analysis for a speci�c domain or

system can limit its reusability for other domains or systems. We discussed

the di�culty of determining whether a discovered component is a semantic

match (i. e. exhibits the required behaviour) for a reuse candidate, as it may be

challenging to determine whether the component is a semantic match, mainly

if the number of components to be analysed large or the components are com-

plex. We presented an approach for specifying the structure and behaviour of

model-based analyses using a modelling technique based on metamodels and

a Domain-Speci�c Language (DSL). The approach also includes a method for

identifying similar model-based analysis components by comparing them in

structure and behaviour. The process of comparing components is divided

into two stages, �rst by comparing the structure of the components using

graph notation and graph-isomorphism analysis and second by comparing

their behaviour using Satis�able Modulo Theories (SMT) notation and an

SMT-solver.

For the evaluation of our third contribution, we used two case studies to

evaluate the applicability of the DSML. Then we modelled these components

with our speci�cation language. Therefore, we calculated the coverage by

counting the entities and events we could model for each simulation compo-

nent. Furthermore, we evaluated the accuracy of our approach to identifying

similar simulation components based on their structure and behaviour speci-

�cations. We developed �ve evaluation scenarios that cover the search for a

simulation component in a set of components and the search for the function-

329

11. Conclusion and Future Work

ality of a component in a larger component. Furthermore, we obfuscated the

components we searched for in three scenarios, showing that our approach

does not simply compare the names of the entities and events contained in the

speci�cations. We determined the accuracy of our approach by calculating

the F1 score, a metric that combines precision and recall. The F1 score is

calculated by comparing the identi�ed components with the expected com-

ponents and counting the number of true positives, false positives, and false

negatives. The identi�cation of these values is speci�c to the scenario being

considered.

The evaluation results show that our third hypothesis (Hypothesis 3) is true:

the reusability of model-based analyses improves when we reduce the barrier

of �nding reusable analysis components. We answered Research Question 5.1

by developing a DSL to specify model-based simulation components’ struc-

ture and behaviour. We evaluated this research question by specifying the

components of two simulations. By modelling these existing simulations, we

evaluated the applicability of our approach. Besides modelling the structure

and the behaviour of simulation components, we also evaluated the accu-

racy of identifying similar simulation components. We answered Research

Question 5.2 by comparing the speci�cations of the simulation components

and identifying the right match. We utilised our approach to compare the

speci�ed components with those of the case studies to assess the accuracy of

our approach. The �ndings show that our approach can identify simulation

components with similar structures and behaviour.

11.3.2 Limitations

In this work, however, we have only tested the applicability of our approach

by modelling and analysing two case studies. We plan to model more sim-

ulations to investigate our approach’s applicability further. We derived our

speci�cation DSL by investigating model-based analyses that analyse quality

attributes of systems modelled with their corresponding DSML. We looked

only at model-based DES and no other analyses. Therefore, we can only claim

that our approach improves the reusability of model-based DES. Another

limitation is that to specify simulation components, we need manual labour

for the creation. Thus, we cannot exclude manual errors and speci�cation

styles, which can negatively a�ect the result when comparing the speci�-

cations. Furthermore, we evaluated only model-based DES that analysed

330

11.3. Speci�cation and Reuse of Model-based Analysis

quality attributes of their corresponding DSML. As a result, we cannot claim

that our approach works for DES or even model-based analyses in general.

11.3.3 Future Work

To address the limitations, our approach to specifying and comparing model-

based simulation DES could be extended to include model-based DES com-

ponents that analyse di�erent attributes of their corresponding DSML. The

speci�cation approach could be extended to support model-based analyses

in general. In this case, the challenge is �nding a formalism that generalises

events. In this contribution, we focused on model-based simulations used for

quality analyses; however, simulations are also used for other purposes. Mak-

ing all kinds of analysis components searchable could improve the reusability

of analysis components in general. Furthermore, we plan to extend our tool-

ing to create the foundation for an integrated tool-set to develop model-based

analyses and model-based software. In the future, we intend to provide a

transformation to extract the simulation speci�cation automatically or semi-

automatically. We also intend to apply our approach to other domains to

investigate di�erent application areas.

331

Bibliography

[AAE13] M. Alshayeb, H. Al-Jamimi, and M. O. Elish. “Empirical taxon-

omy of refactoring methods for aspect-oriented programming”.

In: Journal of Software: Evolution and Process 25.1 (2013), pp. 1–

25.

[AGG07] E. B. Allen, S. Gottipati, and R. Govindarajan. “Measuring size,

complexity, and coupling of hypergraph abstractions of soft-

ware: An information-theory approach”. In: Software Quality
Journal 15.2 (2007), pp. 179–212.

[AK09] S. Apel and C. Kästner. “An overview of feature-oriented soft-

ware development.” In: J. Object Technol. 8.5 (2009), pp. 49–

84.

[All02] E. B. Allen. “Measuring graph abstractions of software: an

information-theory approach”. In: Software Metrics, 2002. Pro-
ceedings. Eighth IEEE Symposium on. 2002, pp. 182–193.

[AM19] A. Ahadi and L. Mathieson. “A Comparison of Three Popular

Source code Similarity Tools for Detecting Student Plagiarism”.

In: ACM International Conference Proceeding Series. Association

for Computing Machinery, 2019, pp. 112–117.

[Amr+19] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe,

and A. Wortmann. “Towards a Formal Speci�cation of Multi-

Paradigm Modelling”. In: 22nd International Conference onModel
Driven Engineering Languages and Systems Companion. IEEE.

2019, pp. 419–424.

[Amr+21] M. Amrani, D. Blouin, R. Heinrich, A. Rensink, H. Vangheluwe,

and A. Wortmann. “Multi-paradigm modelling for cy-

ber–physical systems: a descriptive framework”. In: Software
and Systems Modeling 20 (2021), pp. 611–639.

333

http://dx.doi.org/10.1145/3286960.3286974
http://dx.doi.org/10.1145/3286960.3286974
http://dx.doi.org/10.1007/s10270-021-00876-z
http://dx.doi.org/10.1007/s10270-021-00876-z

Bibliography

[AOZ22] A. Almogahed, M. Omar, and N. H. Zakaria. “Refactoring codes

to improve software security requirements”. In: Procedia Com-
puter Science 204 (2022), pp. 108–115.

[Ape+08] S. Apel, C. Lengauer, B. Möller, and C. Kästner. “An algebra for

features and feature composition”. In: Lecture Notes in Computer
Science 5140 LNCS (2008), pp. 36–50.

[Awa+15] M. U. Awais, W. Mueller, A. Elsheikh, P. Palensky, and E. Widl.

“Using the HLA for distributed continuous simulations”. In: Pro-
ceedings - 8th EUROSIM Congress on Modelling and Simulation.

IEEE, 2015, pp. 544–549.

[Bab16] L. Babai. “Graph isomorphism in quasipolynomial time”. In:

Proceedings of the forty-eighth annual ACM symposium on The-
ory of Computing. 2016, pp. 684–697.

[Bav+15] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba.

“An experimental investigation on the innate relationship be-

tween quality and refactoring”. In: Journal of Systems and Soft-
ware 107 (2015), pp. 1–14.

[BCE08] H. P. Breivold, I. Crnkovic, and P. J. Eriksson. “Analyzing Soft-

ware Evolvability”. In: 32nd Annual IEEE International Computer
Software and Applications Conference. 2008, pp. 327–330.

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach. “The goal question

metric approach”. In: Encyclopedia of Software Engineering 2

(1994), pp. 528–532.

[Bet16] L. Bettini. Implementing domain-speci�c languages with Xtext
and Xtend. Packt Publishing, 2016.

[BFT17] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard:
Version 2.6. Tech. rep. Department of Computer Science, The

University of Iowa, 2017.

[BK96] J. A. Bergstra and P. Klint. “The ToolBus coordination architec-

ture”. In: International Conference on Coordination Languages
and Models. Springer. 1996, pp. 75–88.

[BKL83] L. Babai, W. M. Kantor, and E. M. Luks. “Computational com-

plexity and the classi�cation of �nite simple groups”. In: 24th
Annual Symposium on Foundations of Computer Science. 1983,

pp. 162–171.

334

http://dx.doi.org/10.1007/978-3-540-79980-1_4
http://dx.doi.org/10.1007/978-3-540-79980-1_4
http://dx.doi.org/10.1109/EUROSIM.2013.96
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1.1.104.8626
http://dx.doi.org/10.1.1.104.8626
http://dx.doi.org/10.1109/SFCS.1983.10
http://dx.doi.org/10.1109/SFCS.1983.10

Bibliography

[BKR09] S. Becker, H. Koziolek, and R. Reussner. “The Palladio com-

ponent model for model-driven performance prediction”. In:

Journal of Systems and Software 82 (2009), pp. 3–22.

[Blo+12] T. Blockwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß, H.

Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumerkel,

H. Olsson, and A. Viel. “Functional Mockup Interface 2.0: The

Standard for Tool independent Exchange of Simulation Models”.

In: 9th International Modelica Conference. 2012.

[BM03] S. Balsamo and M. Marzolla. “Simulation modeling of UML soft-

ware architectures”. In: 17th European Simulation Mulitconfer-
ence. Vol. 3. Society for Modelling and Simulation International.

SCS European Publishing House, 2003, pp. 562–567.

[BMB96] L. C. Briand, S. Morasca, and V. R. Basili. “Property-based

software engineering measurement”. In: IEEE Transactions on
Software Engineering 22.1 (1996), pp. 68–86.

[BMW97] V. Braun, T. Margaria, and C. Weise. “Integrating tools in the

ETI platform”. In: International Journal on Software Tools for
Technology Transfer (STTT) 1 (1997), pp. 31–48.

[Bog+15] S. Bogomolov, M. Greitschus, P. G. Jensen, K. G. Larsen, M.

Mikucionis, T. Strump, and S. Tripakis. “Co-Simulation of Hy-

brid Systems with SpaceEx and Uppaal”. In: Proceedings of the
11th International Modelica Conference. Vol. 118. Linköping Uni-

versity Electronic Press, 2015, pp. 159–169.

[Bon+18] F. Bonchi, A. Brogi, A. Canciani, and J. Soldani. “Simulation-

based matching of cloud applications”. In: Science of Computer
Programming 162 (2018), pp. 110–131.

[Bro+12] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner.

“Architecture-Based Reliability Prediction with the Palladio

Component Model”. In: IEEE Transactions on Software Engineer-
ing 38.6 (2012), pp. 1319–1339.

[Bro+98] W. H. Brown, R. C. Malveau, H. W. S. McCormick, and T. J.

Mowbray. AntiPatterns: refactoring software, architectures, and
projects in crisis. John Wiley & Sons, Inc., 1998.

[BS01] M. Broy and K. Stølen. Speci�cation and Development of In-
teractive Systems. Focus on Streams, Interfaces and Re�nement.
Springer, 2001.

335

https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1016/j.jss.2008.03.066
https://elib.dlr.de/78486/
https://elib.dlr.de/78486/
http://dx.doi.org/10.3384/ecp15118159
http://dx.doi.org/10.3384/ecp15118159
http://dx.doi.org/10.1109/TSE.2011.94
http://dx.doi.org/10.1109/TSE.2011.94

Bibliography

[BS16] A. Brogi and J. Soldani. “Finding available services in TOSCA-

compliant clouds”. In: Science of Computer Programming 115

(2016), pp. 177–198.

[Bus+18] K. Busch, J. Rätz, S. Koch, R. Heinrich, R. Reussner, S. Cha, and

B. Vogel-Heuser. “A Metamodel-Based Approach to Calculate

Maintainability Task Lists of PLC Programs for Factory Au-

tomation”. In: 44th Annual Conference of the IEEE Industrial
Electronics Society (IECON). IEEE, 2018.

[But+19] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and A. Wortmann.

“Systematic Composition of Independent Language Features”.

In: Journal of Systems and Software 152 (2019), pp. 50–69.

[BWL01] L. C. Briand, J. Wüst, and H. Lounis. “Replicated Case Studies

for Investigating Quality Factors in Object-Oriented Designs”.

In: Empirical Software Engineering 6.1 (2001), pp. 11–58.

[Cai+21] D. Caivano, P. Cassieri, S. Romano, and G. Scanniello. “An Ex-

ploratory Study on Dead Methods in Open-Source Java Desktop

Applications”. In: Proceedings of the 15th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Mea-
surement. ESEM. Association for Computing Machinery, 2021.

[Car+17a] D. S. L. P. Carvalho, R. Novais, D. N. L. Salvador, and D. M. M. G.

Neto. “An ontology-based approach to analyzing the occurrence

of code smells in software”. In: ICEIS 2017 - Proceedings of the
19th International Conference on Enterprise Information Systems.
Vol. 2. 2017, pp. 155–165.

[Car+17b] L. P. d. S. Carvalho, R. L. Novais, L. d. N. Salvador, and M. G. d. M.

Neto. “An approach for semantically-enriched recommenda-

tion of refactorings based on the incidence of code smells”.

In: International Conference on Enterprise Information Systems.
Springer. 2017, pp. 313–335.

[CBW17] B. Combemale, O. Barais, and A. Wortmann. “Language Engi-

neering with the GEMOC Studio”. In: 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). 2017,

pp. 189–191.

[CE00] K. Czarnecki and U. W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley, 2000, p. 864.

336

http://dx.doi.org/10.1016/j.jss.2019.02.026
http://dx.doi.org/10.1145/3475716.3475773
http://dx.doi.org/10.1145/3475716.3475773
http://dx.doi.org/10.1145/3475716.3475773
http://dx.doi.org/10.5220/0006359901550165
http://dx.doi.org/10.5220/0006359901550165
http://dx.doi.org/10.1109/ICSAW.2017.61
http://dx.doi.org/10.1109/ICSAW.2017.61

Bibliography

[Ced+16] D. Cedrim, L. Sousa, A. Garcia, and R. Gheyi. “Does refactoring

improve software structural quality? a longitudinal study of 25

projects”. In: Proceedings of the 30th Brazilian Symposium on
Software Engineering. 2016, pp. 73–82.

[Ced+17] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de

Mello, B. Fonseca, M. Ribeiro, and A. Chávez. “Understanding

the impact of refactoring on smells: A longitudinal study of 23

software projects”. In: Proceedings of the 2017 11th Joint Meeting
on foundations of Software Engineering. 2017, pp. 465–475.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Ver-

i�cation of Finite-State Concurrent Systems Using Temporal

Logic Speci�cations”. In: ACM Trans. Program. Lang. Syst. 8.2

(1986), pp. 244–263.

[CG20] J. P. Castellanos Ardila and B. Gallina. “Separation of Con-

cerns in Process Compliance Checking: Divide-and-Conquer”.

In: Systems, Software and Services Process Improvement. Springer

International Publishing, 2020, pp. 135–147.

[Cho96] A. C. Chow. “Parallel DEVS: A parallel, hierarchical, modular

modeling formalism and its distributed simulator”. In: Transac-
tions of the Society for Computer Simulation 13.2 (1996), pp. 55–

67.

[CKM22] A. Cortinovis, D. Kressner, and S. Massei. “Divide-and-Conquer

Methods for Functions of Matrices with Banded or Hierarchical

Low-Rank Structure”. In: SIAM Journal on Matrix Analysis and
Applications 43.1 (2022), pp. 151–177.

[CLZ04] H. C. Cunningham, Y. Liu, and C. Zhang. “Using the divide

and conquer strategy to teach Java framework design”. In: Pro-
ceedings of the 3rd international symposium on Principles and
practice of programming in Java. 2004, pp. 40–45.

[Com+18] B. Combemale, J. Kienzle, G. Mussbacher, O. Barais, E. Bousse,

W. Cazzola, P. Collet, T. Degueule, R. Heinrich, J.-M. Jézéquel,

M. Leduc, T. Mayerhofer, S. Mosser, M. Schöttle, M. Strittmatter,

and A. Wortmann. “Concern-Oriented Language Development

(COLD): Fostering Reuse in Language Engineering”. In: Com-
puter Languages, Systems & Structures (2018).

[Cor22] S. Cordio. csb/neo4j-plugins/subgraph-isomorphism at master ·
msstate-dasi/csb. 2022.

337

http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1145/5397.5399
http://dx.doi.org/10.1137/21M1432594
http://dx.doi.org/10.1137/21M1432594
http://dx.doi.org/10.1137/21M1432594
https://github.com/msstate-dasi/csb/tree/master/neo4j-plugins/subgraph-isomorphism
https://github.com/msstate-dasi/csb/tree/master/neo4j-plugins/subgraph-isomorphism

Bibliography

[CR94] V. R. B. G. Caldiera and H. D. Rombach. “The goal question met-

ric approach”. In: Encyclopedia of software engineering (1994),

pp. 528–532.

[Cru+10] J. A. Cruz-Lemus, A. Maes, M. Genero, G. Poels, and M. Piattini.

“The Impact of Structural Complexity on the Understandability

of UML Statechart Diagrams”. In: Information Sciences 180.11

(2010), pp. 2209–2220.

[CV13] W. Cazzola and E. Vacchi. “Neverlang 2–Componentised Lan-

guage Development for the JVM”. In: International Conference
on Software Composition. Springer. 2013, pp. 17–32.

[Cza+12] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A.

Wąsowski. “Cool Features and Tough Decisions: A Compar-

ison of Variability Modeling Approaches”. In: Proceedings of the
Sixth InternationalWorkshop on VariabilityModeling of Software-
Intensive Systems. VaMoS ’12. Association for Computing Ma-

chinery, 2012, pp. 173–182.

[DB11] L. De Moura and N. Bjørner. “Satis�ability modulo Theories:

Introduction and Applications”. In: Commun. ACM 54.9 (2011),

pp. 69–77.

[DE10] M. B. Dwyer and S. Elbaum. “Unifying veri�cation and valida-

tion techniques”. In: FSE/SDP workshop on Future of software
engineering research. ACM, 2010.

[Dej+17] I. Dejanović, R. Vaderna, G. Milosavljević, and Ž. Vuković.

“Textx: a python tool for domain-speci�c languages implemen-

tation”. In: Knowledge-based systems 115 (2017), pp. 1–4.

[Dev+18] J. Devlin, M. Chang, K. Lee, and K. Toutanova. “BERT: Pre-

training of Deep Bidirectional Transformers for Language

Understanding”. In: Computing Research Repository (CoRR)
abs/1810.04805 (2018).

[DLK94] R. B. Deal, A. M. Law, and W. D. Kelton. “Simulation Modeling

and Analysis”. In: Technometrics 36.4 (1994), pp. 2–8.

[DM03] K.-G. Doh and P. D. Mosses. “Composing programming lan-

guages by combining action-semantics modules”. In: Science of
Computer Programming 47.1 (2003), pp. 3–36.

338

http://dx.doi.org/10.1007/978-3-642-39614-4_2
http://dx.doi.org/10.1007/978-3-642-39614-4_2
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/2110147.2110167
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1995376.1995394
http://dx.doi.org/10.1145/1882362.1882382
http://dx.doi.org/10.1145/1882362.1882382
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://dx.doi.org/10.2307/1269971
http://dx.doi.org/10.2307/1269971
http://dx.doi.org/10.1016/S0167-6423(02)00107-7
http://dx.doi.org/10.1016/S0167-6423(02)00107-7

Bibliography

[DMV20] S. Dustdar, O. Mutlu, and N. Vijaykumar. “Rethinking Divide

and Conquer—Towards Holistic Interfaces of the Computing

Stack”. In: IEEE Internet Computing 24.6 (2020), pp. 45–57.

[Dur21] J. M. Durán. “A Formal Framework for Computer Simulations:

Surveying the Historical Record and Finding Their Philosoph-

ical Roots”. In: Philosophy & Technology 34.1 (2021), pp. 105–

127.

[EA09] K. O. Elish and M. Alshayeb. “Investigating the E�ect of Refac-

toring on Software Testing E�ort”. In: 2009 16th Asia-Paci�c
Software Engineering Conference. 2009, pp. 29–34.

[EA11] K. O. Elish and M. Alshayeb. “A classi�cation of refactoring

methods based on software quality attributes”. In: Arabian Jour-
nal for Science and Engineering 36.7 (2011), pp. 1253–1267.

[EA12] K. O. Elish and M. Alshayeb. “Using Software Quality Attributes

to Classify Refactoring to Patterns.” In: Journal of Software 7.2

(2012), pp. 408–419.

[EG07] R. Eshuis and P. Grefen. “Structural matching of bpel processes”.

In: Fifth European Conference onWeb Services (ECOWS’07). IEEE.

2007, pp. 171–180.

[ES21] S. E�tinge and M. Spoenemann. The grammar language. 2021.

[FG19] A. Falcone and A. Garro. “Distributed Co-Simulation of Com-

plex Engineered Systems by Combining the High Level Ar-

chitecture and Functional Mock-up Interface”. In: Simulation
Modelling Practice and Theory 97 (2019), p. 101967.

[Flo67] R. W. Floyd. “Nondeterministic Algorithms”. In: J. ACM 14.4

(1967), pp. 636–644.

[FMS14] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to
SysML: the systems modeling language. Morgan Kaufmann, 2014.

[Fok+09] M. Fokaefs, N. Tsantalis, A. Chatzigeorgiou, and J. Sander. “De-

composing object-oriented class modules using an agglomera-

tive clustering technique”. In: IEEE International Conference on
Software Maintenance, ICSM. 2009, pp. 93–101.

[Fok+11] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou.

“JDeodorant: Identi�cation and application of extract class refac-

torings”. In: Proceedings - International Conference on Software
Engineering. 2011, pp. 1037–1039.

339

http://dx.doi.org/10.1109/MIC.2020.3026245
http://dx.doi.org/10.1109/MIC.2020.3026245
http://dx.doi.org/10.1109/MIC.2020.3026245
http://dx.doi.org/10.1007/s13347-019-00388-1
http://dx.doi.org/10.1007/s13347-019-00388-1
http://dx.doi.org/10.1007/s13347-019-00388-1
http://dx.doi.org/10.1109/APSEC.2009.14
http://dx.doi.org/10.1109/APSEC.2009.14
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/https://doi.org/10.1016/j.simpat.2019.101967
http://dx.doi.org/10.1145/321420.321422
http://dx.doi.org/10.1109/ICSM.2009.5306332
http://dx.doi.org/10.1109/ICSM.2009.5306332
http://dx.doi.org/10.1109/ICSM.2009.5306332
http://dx.doi.org/10.1145/1985793.1985989
http://dx.doi.org/10.1145/1985793.1985989

Bibliography

[Fok+12] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou.

“Identi�cation and application of Extract Class refactorings in

object-oriented systems”. In: Journal of Systems and Software
85.10 (2012), pp. 2241–2260.

[Fou23] E. Foundation. EMF Refactor. https://www.eclipse.org/emf-
refactor. accessed 2023.

[Fow01] M. Fowler. “Reducing coupling”. In: IEEE Software 18.4 (2001),

pp. 102–104.

[Fow18] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[Fow96] M. Fowler. Analysis Patterns: Reusable Object Models. Object

Technology Series. Addison-Wesley, 1996.

[Fow99] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[FS15] S. Fu and B. Shen. “Code bad smell detection through evolution-

ary data mining”. In: 2015 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM).
IEEE. 2015, pp. 1–9.

[FTC07] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou. “JDeodorant:

Identi�cation and removal of feature envy bad smells”. In: IEEE
International Conference on Software Maintenance, ICSM. 2007,

pp. 519–520.

[FZZ15] F. A. Fontana, M. Zanoni, and F. Zanoni. “A duplicated code

refactoring advisor”. In: vol. 212. Springer Verlag, 2015, pp. 3–

14.

[Gam+95] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-

Wesley Professional, 1995.

[Gar+14] A. Garmendia, E. Guerra, D. Kolovos, and J. Lara. “EMF splitter:

A structured approach to EMF modularity”. In: 3rd Workshop
on Extreme Modeling (2014), pp. 22–31.

[Gei+18] M. Geiger, S. Harrer, J. Lenhard, and G. Wirtz. “BPMN 2.0: The

state of support and implementation”. In: Future Generation
Computer Systems 80 (2018), pp. 250–262.

340

http://dx.doi.org/10.1016/j.jss.2012.04.013
http://dx.doi.org/10.1016/j.jss.2012.04.013
https://www.eclipse.org/emf-refactor
https://www.eclipse.org/emf-refactor
https://www.safaribooksonline.com/library/view/analysis-patterns-reusable/9780134271453/
http://dx.doi.org/10.1109/ICSM.2007.4362679
http://dx.doi.org/10.1109/ICSM.2007.4362679
http://dx.doi.org/10.1007/978-3-319-18612-2_1
http://dx.doi.org/10.1007/978-3-319-18612-2_1
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.01.006
http://dx.doi.org/https://doi.org/10.1016/j.future.2017.01.006

Bibliography

[Gom+18] C. Gomes et al. “Co-Simulation: A Survey”. In: ACM Computing
Surveys 51.3 (2018), pp. 1–33.

[GSS13] S. Ganesh, T. Sharma, and G. Suryanarayana. “Towards a

Principle-based Classi�cation of Structural Design Smells.” In:

J. Object Technol. 12.2 (2013), pp. 1–1.

[GT99] D. Gitchell and N. Tran. “Sim: A utility for detecting similar-

ity in computer programs”. In: SIGCSE Bulletin (Association
for Computing Machinery, Special Interest Group on Computer
Science Education) 31.1 (1999), pp. 266–270.

[GTS23] GTS-Morpher. Timed PLS (Gemoc). https://github.com/gts-
morpher/timed_pls_gemoc. accessed 2023.

[Hah17] R. Hahn. “Bad Smells and Anti-Patterns in Metamodeling”.

Master’s Thesis. Karlsruhe Institute of Technology, 2017.

[HBK18] R. Heinrich, K. Busch, and S. Koch. “A Methodology for Domain-

spanning Change Impact Analysis”. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 326–330.

[Hei+18] R. Heinrich, S. Koch, S. Cha, K. Busch, R. Reussner, and B. Vogel-

Heuser. “Architecture-based change impact analysis in cross-

disciplinary automated production systems”. In: Journal of Sys-
tems and Software 146 (2018), pp. 167–185.

[Hei+21a] R. Heinrich, E. Bousse, S. Koch, A. Rensink, E. Riccobene, D.

Ratiu, and M. Sirjani. “Integration and Orchestration of Analy-

sis Tools”. In: Composing Model-Based Analysis Tools. Springer

International Publishing, 2021, pp. 71–95.

[Hei+21b] R. Heinrich, J. Henss, S. Koch, and R. Reussner. “Challenges

in the Evolution of Palladio—Refactoring Design Smells in a

Historically-Grown Approach to Software Architecture Analy-

sis”. In: Composing Model-Based Analysis Tools. Springer Inter-

national Publishing, 2021, pp. 235–257.

[Hey+20] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy. “NoRBERT: Trans-

fer Learning for Requirements Classi�cation”. In: 2020 IEEE 28th
International Requirements Engineering Conference (RE). 2020,

pp. 169–179.

341

http://dx.doi.org/10.1145/384266.299783
http://dx.doi.org/10.1145/384266.299783
https://github.com/gts-morpher/timed_pls_gemoc
https://github.com/gts-morpher/timed_pls_gemoc
http://dx.doi.org/10.1109/SEAA.2018.00060
http://dx.doi.org/10.1109/SEAA.2018.00060
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/https://doi.org/10.1016/j.jss.2018.08.058
http://dx.doi.org/10.1007/978-3-030-81915-6_5
http://dx.doi.org/10.1007/978-3-030-81915-6_5
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1007/978-3-030-81915-6_11
http://dx.doi.org/10.1109/RE48521.2020.00028
http://dx.doi.org/10.1109/RE48521.2020.00028

Bibliography

[Hig+04] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. “Refactoring

support based on code clone analysis”. In: International Confer-
ence on Product Focused Software Process Improvement. Springer.

2004, pp. 220–233.

[HKR21] K. Hölldobler, O. Kautz, and B. Rumpe. MontiCore Language
Workbench and Library Handbook: Edition 2021. Aachener

Informatik-Berichte, Software Engineering, Band 48. Shaker

Verlag, 2021.

[HR04] D. Harel and B. Rumpe. “Meaningful Modeling: What’s the

Semantics of ”Semantics”?” In: IEEE Computer 37.10 (2004),

pp. 64–72.

[HRW18] K. Hölldobler, B. Rumpe, and A. Wortmann. “Software language

engineering in the large: towards composing and deriving lan-

guages”. In: Computer Languages, Systems & Structures 54 (2018),

pp. 386–405.

[HSR19] R. Heinrich, M. Strittmatter, and R. H. Reussner. “A Layered Ref-

erence Architecture for Metamodels to Tailor Quality Modeling

and Analysis”. In: IEEE Transactions on Software Engineering
(2019).

[IEE10] IEEE. 1516-2010 - IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA). Tech. rep. 2010, pp. 1–38.

[IEE95] IEEE 1278.2-1995. Standard for Distributed Interactive Simulation
- Communication Services and Pro�les. Tech. rep. IEEE, 1995.

[ISO10] ISO/IEC. ISO/IEC 25010 - Systems and software engineering
- Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Tech. rep.

ISO/IEC, 2010.

[Jou+06] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez.

“ATL: a QVT-like transformation language”. In: Companion to
the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications. ACM. 2006, pp. 719–

720.

[Jun16] R. Jung. “Generator-Composition for Aspect-Oriented Domain-

Speci�c Languages”. Doctoral thesis. Kiel University, 2016.

342

http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1016/j.cl.2018.08.002
http://dx.doi.org/10.1016/j.cl.2018.08.002
http://dx.doi.org/10.1016/j.cl.2018.08.002
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/TSE.2019.2903797
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
http://dx.doi.org/10.1109/IEEESTD.2010.5553440
https://standards.ieee.org/standard/1278%7B%5C_%7D2-2015.html
https://standards.ieee.org/standard/1278%7B%5C_%7D2-2015.html

Bibliography

[KCO15] T. Kühn, W. Cazzola, and D. M. Olivares. “Choosy and picky:

con�guration of language product lines”. In: 19th International
Conference on Software Product Line. ACM. 2015, pp. 71–80.

[Kei+20] J. Keim, A. Kaplan, A. Koziolek, and M. Mirakhorli. “Does

BERT Understand Code? – An Exploratory Study on the Detec-

tion of Architectural Tactics in Code”. In: Software Architecture.
Springer International Publishing, 2020, pp. 220–228.

[KFS09] M. Klusch, B. Fries, and K. Sycara. “OWLS-MX: A hybrid Seman-

tic Web service matchmaker for OWL-S services”. In: Journal
of Web Semantics 7.2 (2009), pp. 121–133.

[KHR22a] S. Koch, R. Heinrich, and R. Reussner. Supplementary Material
for the Evaluation of the Publication – A Layered Reference Archi-
tecture for Model-based Quality Analysis. Tech. rep. Karlsruher

Institut für Technologie (KIT), 2022. 74 pp.

[KHR22b] S. Koch, R. Heinrich, and R. Reussner. Supplementary Material
to "A Layered Reference Architecture for Model-based Quality
Analysis". 2022.

[Koc+22] S. Koch, E. Hamann, R. Heinrich, and R. Reussner. “Feature-

based Investigation of Simulation Structure and Behaviour”. In:

European Conference on Software Architecture. Springer. 2022,

p. 8.

[Kov+22] A. Kovačević, J. Slivka, D. Vidaković, K.-G. Grujić, N. Luburić, S.

Prokić, and G. Sladić. “Automatic detection of Long Method and

God Class code smells through neural source code embeddings”.

In: Expert Systems with Applications 204 (2022), p. 117607.

[Koz08] H. Koziolek. “Goal, Question, Metric”. In: Dependability Metrics:
Advanced Lectures. Springer Berlin Heidelberg, 2008, pp. 39–42.

[KPP08] D. S. Kolovos, R. F. Paige, and F. A. Polack. “The epsilon trans-

formation language”. In: International Conference on Theory and
Practice of Model Transformations. Springer. 2008, pp. 46–60.

[KR19] S. Koch and F. Reiche. “Towards a Correspondence Model for

the Reuse of Software in Multiple Domains”. In: 10. Workshop
„Design For Future – Langlebige Softwaresysteme“. 2019 (May 6–8,

2019). Softwaretechnik-Trends. Softwaretechnik-Trends, 2019,

pp. 41–42.

343

http://dx.doi.org/10.1145/2791060.2791092
http://dx.doi.org/10.1145/2791060.2791092
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.5445/IR/1000146803
http://dx.doi.org/10.6084/m9.figshare.19228377.v1
http://dx.doi.org/10.6084/m9.figshare.19228377.v1
http://dx.doi.org/10.6084/m9.figshare.19228377.v1
http://dx.doi.org/10.1007/978-3-540-68947-8_6

Bibliography

[KR22] S. Koch and F. Reiche. “A Toolchain for Simulation Component

Speci�cation and Identi�cation”. In: European Conference on
Software Architecture. accepted, to appear. Springer. 2022, p. 16.

[KT06] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education

India, 2006.

[KWa] S. Koch and M. Wittlinger. Maven Central – Refactorlizar . url:
https : / / search . maven . org / search ? q = g : org . mosim .

refactorlizar (visited on 07/12/2022).

[KWb] S. Koch and M. Wittlinger. MoSimEngine/RefactorLizar . url:

https://github.com/MoSimEngine/RefactorLizar (visited on

07/12/2022).

[KWc] S. Koch and M. Wittlinger. MoSimEngine/RefactorLizarCLI . url:

https://github.com/MoSimEngine/RefactorLizarCLI (visited

on 07/12/2022).

[Lac+20] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc. “Code

smells and refactoring: A tertiary systematic review of chal-

lenges and observations”. In: Journal of Systems and Software
167 (2020), p. 110610.

[Lai+22] R. Laigner, D. Mendonça, A. Garcia, and M. Kalinowski. “Cata-

loging dependency injection anti-patterns in software systems”.

In: Journal of Systems and Software 184 (2022), p. 111125.

[Lam78] L. Lamport. “Time, Clocks, and the Ordering of Events in a

Distributed System”. In: Communications of the ACM 21.7 (1978),

pp. 558–565.

[Lan+09] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P.

Tessier, R. Schnekenburger, H. Dubois, and F. Terrier. “Papyrus

UML: an open source toolset for MDA”. In: Proc. of the Fifth
European Conference on Model-Driven Architecture Foundations
and Applications (ECMDA-FA 2009). Citeseer. 2009, pp. 1–4.

[Lar12] C. Larman. Applying UML and patterns: an introduction to object
oriented analysis and design and interative development. Pearson

Education India, 2012.

[Law15] A. M. Law. Simulation Modeling & Analysis. 5th ed. McGraw-

Hill, 2015.

344

https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://search.maven.org/search?q=g:org.mosim.refactorlizar
https://github.com/MoSimEngine/RefactorLizar
https://github.com/MoSimEngine/RefactorLizar
https://github.com/MoSimEngine/RefactorLizarCLI
https://github.com/MoSimEngine/RefactorLizarCLI
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563

Bibliography

[Lee+00] B. S. Lee, W. Cai, S. J. Turner, and L. Chen. “Adaptive dead

reckoning algorithms for Distributed Interactive Simulation”.

In: International Journal of Simulation: Systems, Science and
Technology 1.1-2 (2000), pp. 21–34.

[Leh80] M. Lehman. “Programs, life cycles, and laws of software evolu-

tion”. In: Proceedings of the IEEE 68.9 (1980), pp. 1060–1076.

[Lil19] C. Lilienthal. Sustainable Software Architecture: Analyze and
Reduce Technical Debt. dpunkt. verlag, 2019.

[Liu+16] H. Liu, Y. Wu, W. Liu, Q. Liu, and C. Li. “Domino e�ect: Move

more methods once a method is moved”. In: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and
Reengineering (SANER). Vol. 1. IEEE. 2016, pp. 1–12.

[LL16] W. Liu and H. Liu. “Major motivations for extract method

refactorings: analysis based on interviews and change histories”.

In: Frontiers of Computer Science 10.4 (2016), pp. 644–656.

[LP09] M. T. Llano and R. Pooley. “UML speci�cation and correction of

object-oriented anti-patterns”. In: 2009 Fourth International Con-
ference on Software Engineering Advances. IEEE. 2009, pp. 39–

44.

[Mao+17] S. Maoz, F. Mehlan, J. O. Ringert, B. Rumpe, and M. von Wenck-

stern. “OCL Framework to Verify Extra-Functional Proper-

ties in Component and Connector Models”. In: Workshop on
Model-Driven Engineering for Component-Based Software Sys-
tems. Vol. 2019. CEUR workshop proceedings. 3rd Interna-

tional Workshop on Executable Modeling, Austin (USA). RWTH

Aachen, 18, 2017.

[Mar+03] R. Martin, J. Rabaey, A. Chandrakasan, J. Newkirk, B. Nikolić,

and R. Koss. Agile Software Development: Principles, Patterns,
and Practices. Alan Apt series. Pearson Education, 2003.

[Mar03] R. C. Martin. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall, 2003.

[MB09] L. de Moura and N. Bjørner. “Satis�ability Modulo Theories: An

Appetizer”. In: Formal Methods: Foundations and Applications.
Springer Berlin Heidelberg, 2009, p. 24.

345

http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/PROC.1980.11805
http://dx.doi.org/10.1109/SANER.2016.14
http://dx.doi.org/10.1109/SANER.2016.14
https://books.google.de/books?id=0HYhAQAAIAAJ
https://books.google.de/books?id=0HYhAQAAIAAJ

Bibliography

[MC16] R. Malhotra and A. Chug. “An empirical study to assess the

e�ects of refactoring on software maintainability”. In: 2016 Inter-
national Conference on Advances in Computing, Communications
and Informatics (ICACCI). IEEE. 2016, pp. 110–117.

[McK+81] B. D. McKay et al. Practical graph isomorphism. 1981.

[Mén+16a] D. Méndez-Acuña, J. A. Galindo, B. Combemale, A. Blouin,

and B. Baudry. “Puzzle: A Tool for Analyzing and Extracting

Speci�cation Clones in DSLs”. In: Software Reuse: Bridging with
Social-Awareness. Springer, 2016, pp. 393–396.

[Mén+16b] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale,

and B. Baudry. “Leveraging software product lines engineering

in the development of external dsls: A systematic literature

review”. In: Computer Languages, Systems & Structures 46 (2016),

pp. 206–235.

[Mer13] M. Mernik. “An Object-oriented Approach to Language Com-

positions for Software Language Engineering”. In: Journal of
Systems and Software 86 (2013), pp. 2451–2464.

[Mil89] R. Milner. Communication and concurrency. PHI Series in com-

puter science. Prentice Hall, 1989.

[MJ19] R. Malhotra and J. Jain. “Analysis of refactoring e�ect on soft-

ware quality of object-oriented systems”. In: International Con-
ference on Innovative Computing and Communications. Springer.

2019, pp. 197–212.

[ML07] B. Möller and B. Löfstrand. “Use cases for the HLA Evolved

modular FOMs”. In: 2007.

[MM79] K. Mani Chandy and J. Misra. “Distributed Simulation: A Case

Study in Design and Veri�cation of Distributed Programs”. In:

IEEE Transactions on Software Engineering SE-5.5 (1979), pp. 440–

452.

[MP14] B. D. McKay and A. Piperno. “Practical graph isomorphism, II”.

In: Journal of Symbolic Computation 60 (2014), pp. 94–112.

[Muz+10] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel, M. K. Traoré,

and D. R. Hill. “Activity regions for the speci�cation of dis-

crete event systems”. In: Spring Simulation Multiconference 2010,
SpringSim’10. ACM Press, 2010, p. 1.

346

http://dx.doi.org/10.1016/j.jss.2013.04.087
http://dx.doi.org/10.1016/j.jss.2013.04.087
https://www.researchgate.net/publication/266262825_Use_cases_for_the_HLA_Evolved_modular_FOMs
https://www.researchgate.net/publication/266262825_Use_cases_for_the_HLA_Evolved_modular_FOMs
http://dx.doi.org/10.1109/TSE.1979.230182
http://dx.doi.org/10.1109/TSE.1979.230182
http://dx.doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
http://dx.doi.org/10.1145/1878537.1878679
http://dx.doi.org/10.1145/1878537.1878679

Bibliography

[NKB00] R. V. van Nieuwpoort, T. Kielmann, and H. E. Bal. “Satin: E�-

cient Parallel Divide-and-Conquer in Java”. In: Euro-Par 2000
Parallel Processing. Springer Berlin Heidelberg, 2000, pp. 690–

699.

[NLD11] C. J. Neill, P. A. Laplante, and J. F. DeFranco. Antipatterns:
managing software organizations and people. CRC Press, 2011.

[ON85] C. Overstreet and R. Nance. “A Speci�cation Language to Assist

in Analysis of Discrete Event Simulation Models.” In: Commun.
ACM 28 (1985), pp. 190–201.

[Paa16] T. Paananen. “Analyzing Java EE application security with

SonarQube”. Master’s Thesis. JAMK University of Applied Sci-

ences, 2016.

[Par79] D. L. Parnas. “Designing software for ease of extension and

contraction”. In: IEEE transactions on software engineering 2

(1979), pp. 128–138.

[Paw+15] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Sein-

turier. “Spoon: A Library for Implementing Analyses and Trans-

formations of Java Source Code”. In: Software: Practice and
Experience 46 (2015), pp. 1155–1179.

[PMP02] L. Prechelt, G. Malpohl, and M. Philippsen. “Finding plagiarisms

among a set of programs with JPlag”. In: Journal of Universal
Computer Science 8.11 (2002), pp. 1016–1038.

[Pow20] D. M. W. Powers. “Evaluation: from precision, recall and F-

measure to ROC, informedness, markedness and correlation”.

In: Computing Research Repository (CoRR) abs/2010.16061 (2020).

arXiv: 2010.16061.

[Pto14] C. Ptolemaeus. System Design, Modeling, and Simulation. Using
Ptolemy II. Ptolemy.org, 2014, p. 690.

[Rah+18] M. M. Rahman, R. R. Riyadh, S. M. Khaled, A. Satter, and M. R.

Rahman. “MMRUC3: A recommendation approach of move

method refactoring using coupling, cohesion, and contextual

similarity to enhance software design”. In: Software: Practice
and Experience 48.9 (2018), pp. 1560–1587.

347

http://dx.doi.org/10.1145/2786.2792
http://dx.doi.org/10.1145/2786.2792
http://dx.doi.org/10.1002/spe.2346
http://dx.doi.org/10.1002/spe.2346
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
https://arxiv.org/abs/2010.16061
http://dx.doi.org/10.1002/spe.2591
http://dx.doi.org/10.1002/spe.2591
http://dx.doi.org/10.1002/spe.2591

Bibliography

[Ras+15] W. Raskob, V. Bertsch, M. Ruppert, M. Strittmatter, L. Happe,

B. Broadnax, S. Wandler, and E. Deines. “Security of electric-

ity supply in 2030”. In: Critical infrastructure protection and
resilience Europe (CIPRE) conference & expo, The Hague, The
Netherlands. 2015.

[RBF04] R. H. Reussner, S. Becker, and V. Firus. “Component composi-

tion with parametric contracts”. In: Tagungsband der Net. Ob-
jectDays 2004 (2004), pp. 155–169.

[Reu+16] R. H. Reussner, S. Becker, J. Happe, R. Heinrich, A. Koziolek, H.

Koziolek, M. Kramer, and K. Krogmann. Modeling and Simulat-
ing Software Architectures – The Palladio Approach. MIT Press,

2016. 408 pp.

[RF20] M. Richards and N. Ford. Fundamentals of Software Architecture:
An Engineering Approach. O’Reilly Media, 2020.

[RG00] M. Richters and M. Gogolla. “Validating UML Models and

OCL Constraints”. In: «UML» 2000 - The Uni�ed Modeling Lan-
guage, Advancing the Standard, Third International Conference.
Vol. 1939. LNCS. Springer, 2000, pp. 265–277.

[Ric15] M. Richards. Software architecture patterns. Vol. 4. O’Reilly Me-

dia, Incorporated 1005 Gravenstein Highway North, Sebastopol,

CA, 2015.

[Ros+15] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner.

“Architecture-based Assessment and Planning of Change Re-

quests”. In: 11th International Conference on Quality of Software
Architectures. ACM, 2015, pp. 21–30.

[Ros+17] K. Rostami, R. Heinrich, A. Busch, and R. Reussner.

“Architecture-based Change Impact Analysis in Information

Systems and Business Processes”. In: 2017 IEEE International
Conference on Software Architecture (ICSA2017). IEEE, 2017,

pp. 179–188.

[RR11] J. O. Ringert and B. Rumpe. “A Little Synopsis on Streams,

Stream Processing Functions, and State-Based Stream Process-

ing”. In: International Journal of Software and Informatics 5

(2011), pp. 29–53.

[Rum17] B. Rumpe. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer, 2017.

348

http://dx.doi.org/10.1007/3-540-40011-7_19
http://dx.doi.org/10.1007/3-540-40011-7_19

Bibliography

[Run+12] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering: Guidelines and Examples. 2012.

[Sch77] D. Schütt. “On a Hypergraph Oriented Measure For Applied

Computer Science”. In: COMPCON Fall ’77. 1977, pp. 295–296.

[Sei+22] S. Seifermann, R. Heinrich, D. Werle, and R. Reussner. “Detect-

ing Violations of Access Control and Information Flow Policies

in Data Flow Diagrams”. In: The journal of systems and software
184 (2022). 46.23.03; LK 01, Art.–Nr. 111138.

[SHR18] M. Strittmatter, R. Heinrich, and R. Reussner. Supplementary
Material for the Evaluation of the Layered Reference Architecture
for Metamodels to Tailor Quality Modeling and Analysis. Tech.

rep. 11. Karlsruhe Institute of Technology, 2018. 42 pp.

[SMB17] R. Sehgal, D. Mehrotra, and M. Bala. “Analysis of code smell

to quantify the refactoring”. In: International Journal of System
Assurance Engineering and Management 8.2 (2017), pp. 1750–

1761.

[Som18] I. Sommerville. Software Engineering. 10th. Addison-Wesley,

2018.

[Son23] SonarSource. SonarQube. https://www.sonarqube.org/. ac-

cessed 2023.

[SSS14] G. Suryanarayana, G. Samarthyam, and T. Sharma. Refactoring
for software design smells: managing technical debt. Morgan

Kaufmann, 2014.

[Sta73] H. Stachowiak. Allgemeine Modelltheorie. 1973.

[Ste+09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework. 2nd ed. Eclipse Series. Addison-

Wesley, 2009.

[Str+16] M. Strittmatter, G. Hinkel, M. Langhammer, R. Jung, and R.

Heinrich. “Challenges in the Evolution of Metamodels: Smells

and Anti-Patterns of a Historically-Grown Metamodel”. In: 10th
International Workshop on Models and Evolution (ME). CEUR

Vol-1706, 2016.

[Str20] M. Strittmatter. “A Reference Structure for Modular Metamodels

of Quality-Describing Domain-Speci�c Modeling Languages”.

PhD thesis. Karlsruhe Institute of Technology (KIT), 2020.

349

http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1002/9781118181034
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.1016/j.jss.2021.111138
http://dx.doi.org/10.5445/IR/1000089243
http://dx.doi.org/10.5445/IR/1000089243
http://dx.doi.org/10.5445/IR/1000089243
https://www.sonarqube.org/
http://dx.doi.org/10.1007/978-3-7091-8327-4
http://ceur-ws.org/Vol-1706/
http://ceur-ws.org/Vol-1706/
http://dx.doi.org/10.5445/KSP/1000098906
http://dx.doi.org/10.5445/KSP/1000098906

Bibliography

[SVC06] T. Stahl, M. Völter, and K. Czarnecki. Model-driven software
development: technology, engineering, management. John Wiley

& Sons, Inc., 2006.

[SWA03] S. Schleimer, D. S. Wilkerson, and A. Aiken. “Winnowing: Local

Algorithms for Document Fingerprinting”. In: Proceedings of
the ACM SIGMOD International Conference on Management of
Data. 2003, pp. 76–85.

[Syr+13] E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van

Mierlo, and H. Ergin. “AToMPM: A web-based modeling en-

vironment”. In: Joint proceedings of MODELS’13 Invited Talks,
Demonstration Session, Poster Session, and ACM Student Research
Competition co-located with the 16th International Conference
on Model Driven Engineering Languages and Systems (MODELS
2013): September 29-October 4, 2013, Miami, USA. 2013, pp. 21–

25.

[Tae+05] G. Taentzer, K. Ehrig, E. Guerra, J. d. Lara, L. Lengyel, T. Lev-

endovszky, U. Prange, D. Varro, and S. Varro-Gyapay. “Model

transformation by graph transformation: A comparative study”.

In: Model Transformation in Practice (2005).

[Tal+21a] C. Talcott, S. Ananieva, K. Bae, B. Combemale, R. Heinrich,

M. Hills, N. Khakpour, R. Reussner, B. Rumpe, P. Scandurra,

and H. Vangheluwe. “Composition of Languages, Models, and

Analyses”. In: Composing Model-Based Analysis Tools. Springer

International Publishing, 2021, pp. 45–70.

[Tal+21b] C. Talcott, S. Ananieva, K. Bae, B. Combemale, R. Heinrich,

M. Hills, N. Khakpour, R. Reussner, B. Rumpe, P. Scandurra,

H. Vangheluwe, F. Durán, and S. Zschaler. “Foundations”. In:

Composing Model-Based Analysis Tools. Springer International

Publishing, 2021, pp. 9–37.

[Tav+16] J. P. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis, M.

Schumann, A. Cuccuru, and S. Revol. “Toward an accurate and

fast hybrid multi-simulation with the FMI-CS standard”. In: IEEE
International Conference on Emerging Technologies and Factory
Automation, ETFA. Vol. 2016-Novem. Institute of Electrical and

Electronics Engineers Inc., 2016.

350

http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-030-81915-6_4
http://dx.doi.org/10.1007/978-3-030-81915-6_2
http://dx.doi.org/10.1109/ETFA.2016.7733616
http://dx.doi.org/10.1109/ETFA.2016.7733616

Bibliography

[TC10] N. Tsantalis and A. Chatzigeorgiou. “Identi�cation of refactor-

ing opportunities introducing polymorphism”. In: Journal of
Systems and Software 83.3 (2010), pp. 391–404.

[TC11] N. Tsantalis and A. Chatzigeorgiou. “Identi�cation of extract

method refactoring opportunities for the decomposition of

methods”. In: Journal of Systems and Software 84.10 (2011),

pp. 1757–1782.

[TCC08] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. “JDeodorant:

Identi�cation and removal of type-checking bad smells”. In:

Proceedings of the European Conference on Software Maintenance
and Reengineering, CSMR. 2008, pp. 329–331.

[TMK15] N. Tsantalis, D. Mazinanian, and G. P. Krishnan. “Assessing the

Refactorability of Software Clones”. In: IEEE Transactions on
Software Engineering 41.11 (2015), pp. 1055–1090.

[TMR17] N. Tsantalis, D. Mazinanian, and S. Rostami. “Clone Refactoring

with Lambda Expressions”. In: IEEE/ACM 39th International
Conference on Software Engineering. 2017, pp. 60–70.

[Tom13] P. Tomassi. “An Introduction to First Order Predicate Logic”.

In: Logic. Routledge, 2013, pp. 189–264.

[Top+16] O. Topçu, L. Yilmaz, H. Oguztüzün, and U. Durak. “Distributed

simulation”. In: A Model Driven Engineering Approach. Springer
(2016), p. 9.

[TR03] J.-P. Tolvanen and M. Rossi. “Metaedit+ de�ning and using

domain-speci�c modeling languages and code generators”. In:

Companion of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applica-
tions. 2003, pp. 92–93.

[TS08] Y. M. Teo and C. Szabo. “CoDES: An integrated approach to com-

posable modeling and simulation”. In: 41st Annual Simulation
Symposium. IEEE, 2008, pp. 103–110.

[Tsa+13] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle. “A Multidi-

mensional Empirical Study on Refactoring Activity”. In: Proceed-
ings of the 2013 Conference of the Center for Advanced Studies on
Collaborative Research. CASCON ’13. IBM Corp., 2013, pp. 132–

146.

351

http://dx.doi.org/10.1016/j.jss.2009.09.017
http://dx.doi.org/10.1016/j.jss.2009.09.017
http://dx.doi.org/10.1016/j.jss.2011.05.016
http://dx.doi.org/10.1016/j.jss.2011.05.016
http://dx.doi.org/10.1016/j.jss.2011.05.016
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/CSMR.2008.4493342
http://dx.doi.org/10.1109/TSE.2015.2448531
http://dx.doi.org/10.1109/TSE.2015.2448531
http://dx.doi.org/10.1109/ICSE.2017.14
http://dx.doi.org/10.1109/ICSE.2017.14
http://dx.doi.org/10.1109/ANSS-41.2008.24
http://dx.doi.org/10.1109/ANSS-41.2008.24

Bibliography

[Ull76] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. Tech.

rep. 1. 1976, pp. 31–42.

[Völ11] M. Völter. “Language and IDE Modularization, Extension and

Composition with MPS”. In: Pre-proceedings of Summer School
on Generative and Transformational Techniques in Software En-
gineering (GTTSE) LNCS Vol. 7680 (2011), pp. 383–430.

[VV14] Y. Van Tendeloo and H. Vangheluwe. “Activity in Python-

PDEVS”. In: ITM Web of Conferences 3 (2014), p. 01002.

[VV15] Y. Van Tendeloo and H. Vangheluwe. “PythonPDEVS: A dis-

tributed parallel DEVS simulator”. In: Simulation Series. Vol. 47.

8. 2015, pp. 91–98.

[Wen12] C. Wende. “Language Family Engineering - with Features and

Role-Based Composition”. PhD thesis. Technische Universität

Dresden, 2012.

[WHR22] M. Walter, R. Heinrich, and R. Reussner. “Architectural Attack

Propagation Analysis for Identifying Con�dentiality Issues”. In:

2022 IEEE 19th International Conference on Software Architecture
(ICSA). 2022, pp. 1–12.

[Woh21] C. Wohlin. “Case Study Research in Software Engineering—It is

a Case, and it is a Study, but is it a Case Study?” In: Information
and Software Technology 133 (2021), p. 106514.

[Z3P19] Z3Prover. z3: The Z3 Theorem Prover . 2019.

[Zei76] B. P. Zeigler. Theory of modelling and simulation. 1976.

[ZMK18] B. P. Zeigler, A. Muzy, and E. Kofman. Theory of Modeling and
Simulation: Discrete Event and Iterative System Computational
Foundations. 3rd. Academic Press, Inc., 2018.

[ZPK00] B. P. Zeigler, H. Prähofer, and T. G. Kim. Theory of modeling and
simulation : integrating discrete event and continuous complex
dynamic systems. 2. ed. Academic Press, 2000.

352

http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1007/978-3-642-35992-7_11
http://dx.doi.org/10.1051/itmconf/20140301002
http://dx.doi.org/10.1051/itmconf/20140301002
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/10.1109/ICSA53651.2022.00009
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106514
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2021.106514
https://github.com/Z3Prover/z3
http://dx.doi.org/10.2307/3008999
http://www.gbv.de/dms/goettingen/302567488.pdf
http://www.gbv.de/dms/goettingen/302567488.pdf
http://www.gbv.de/dms/goettingen/302567488.pdf

Band 1	 Steffen Becker
	� Coupled Model Transformations for QoS Enabled

Component-Based Software Design.
	 ISBN 978-3-86644-271-9

Band 2	 Heiko Koziolek
	� Parameter Dependencies for Reusable Performance

Specifications of Software Components.
	 ISBN 978-3-86644-272-6

Band 3	 Jens Happe
	� Predicting Software Performance in Symmetric

Multi-core and Multiprocessor Environments.
	 ISBN 978-3-86644-381-5

Band 4	 Klaus Krogmann
	� Reconstruction of Software Component Architectures and

Behaviour Models using Static and Dynamic Analysis.
	 ISBN 978-3-86644-804-9

Band 5	 Michael Kuperberg
	� Quantifying and Predicting the Influence of Execution Platform

on Software Component Performance.
	 ISBN 978-3-86644-741-7

Band 6	 Thomas Goldschmidt
	 View-Based Textual Modelling.
	 ISBN 978-3-86644-642-7

Band 7	 Anne Koziolek
	� Automated Improvement of Software Architecture Models

for Performance and Other Quality Attributes.
	 ISBN 978-3-86644-973-2

The Karlsruhe Series on
Software Design and Quality

ISSN 1867-0067

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 8	 Lucia Happe
	 �Configurable Software Performance Completions through

Higher-Order Model Transformations.
	 ISBN 978-3-86644-990-9

Band 9	 Franz Brosch
	� Integrated Software Architecture-Based Reliability

Prediction for IT Systems.
	 ISBN 978-3-86644-859-9

Band 10	 Christoph Rathfelder
	� Modelling Event-Based Interactions in Component-Based

Architectures for Quantitative System Evaluation.
	 ISBN 978-3-86644-969-5

Band 11	 Henning Groenda
	� Certifying Software Component

Performance Specifications.
	 ISBN 978-3-7315-0080-3

Band 12	 Dennis Westermann
	� Deriving Goal-oriented Performance Models

by Systematic Experimentation.
	 ISBN 978-3-7315-0165-7

Band 13	 Michael Hauck
	� Automated Experiments for Deriving Performance-relevant

Properties of Software Execution Environments.
	 ISBN 978-3-7315-0138-1

Band 14	 Zoya Durdik
	� Architectural Design Decision Documentation through

Reuse of Design Patterns.
	 ISBN 978-3-7315-0292-0

Band 15	 Erik Burger
	� Flexible Views for View-based Model-driven Development.
	 ISBN 978-3-7315-0276-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 16	 Benjamin Klatt
	 Consolidation of Customized Product Copies
	 into Software Product Lines.
	 ISBN 978-3-7315-0368-2

Band 17	 Andreas Rentschler
	� Model Transformation Languages with

Modular Information Hiding.
	 ISBN 978-3-7315-0346-0

Band 18	 Omar-Qais Noorshams
	� Modeling and Prediction of I/O Performance

in Virtualized Environments.
	 ISBN 978-3-7315-0359-0

Band 19	 Johannes Josef Stammel
	� Architekturbasierte Bewertung und Planung

von Änderungsanfragen.
 	 ISBN 978-3-7315-0524-2

Band 20	 Alexander Wert
	 Performance Problem Diagnostics by Systematic Experimentation.
 	 ISBN 978-3-7315-0677-5

Band 21	 Christoph Heger
	� An Approach for Guiding Developers to

Performance and Scalability Solutions.
 	 ISBN 978-3-7315-0698-0

Band 22	 Fouad ben Nasr Omri
	� Weighted Statistical Testing based on Active Learning and Formal

Verification Techniques for Software Reliability Assessment.
 	 ISBN 978-3-7315-0472-6

Band 23	 Michael Langhammer
	� Automated Coevolution of Source Code and

Software Architecture Models.
 	 ISBN 978-3-7315-0783-3

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 24	 Max Emanuel Kramer
	� Specification Languages for Preserving Consistency between

Models of Different Languages.
 	 ISBN 978-3-7315-0784-0

Band 25	 Sebastian Michael Lehrig
	� Efficiently Conducting Quality-of-Service Analyses by Templating

Architectural Knowledge.
 	 ISBN 978-3-7315-0756-7

Band 26	 Georg Hinkel
	� Implicit Incremental Model Analyses and Transformations.
 	 ISBN 978-3-7315-0763-5

Band 27	 Christian Stier
	� Adaptation-Aware Architecture Modeling and

Analysis of Energy Efficiency for Software Systems.
 	 ISBN 978-3-7315-0851-9

Band 28	 Lukas Märtin
	� Entwurfsoptimierung von selbst-adaptiven Wartungs-

mechanismen für software-intensive technische Systeme.
 	 ISBN 978-3-7315-0852-6

Band 29	 Axel Busch
	� Quality-driven Reuse of Model-based

Software Architecture Elements.
 	 ISBN 978-3-7315-0951-6

Band 30	 Kiana Busch
	� An Architecture-based Approach for Change

Impact Analysis of Software-intensive Systems.
 	 ISBN 978-3-7315-0974-5

Band 31	 Misha Strittmatter
	� A Reference Structure for Modular Metamodels of

Quality-Describing Domain-Specific Modeling Languages.
 	 ISBN 978-3-7315-0982-0

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 32	 Markus Frank
	 Model-Based Performance Prediction for Concurrent Software
	 on Multicore Architectures. A Simulation-Based Approach.
	 ISBN 978-3-7315-1146-5

Band 33	 Manuel Gotin
	 QoS-Based Optimization of Runtime Management of Sensing 	
	 Cloud Applications.
	 ISBN 978-3-7315-1147-2

Band 34	 Heiko Klare
	� Building Transformation Networks for Consistent Evolution of

Interrelated Models.
 	 ISBN 978-3-7315-1132-8

Band 35	 Roman Pilipchuk
	� Architectural Alignment of Access Control Requirements

Extracted from Business Processes.
 	 ISBN 978-3-7315-1212-7

Band 36	 Stephan Seifermann
	� Architectural Data Flow Analysis for Detecting Violations of

Confidentiality Requirements.
 	 ISBN 978-3-7315-1246-2

Band 37	 Sofia Ananieva
	� Consistent View-Based Management of Variability in

Space and Time.
 	 ISBN 978-3-7315-1241-7

Band 38	 Robert Heinrich
	 Architecture-based Evolution of Dependable
	 Software-intensive Systems.
 	 ISBN 978-3-7315-1294-3

Band 39	 Max Scheerer
	 Evaluating Architectural Safeguards
	 for Uncertain AI Black-Box Components.
 	 ISBN 978-3-7315-1320-9

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 40	 Sandro Giovanni Koch
	 A Reference Structure for Modular Model-based Analyses.
 	 ISBN 978-3-7315-1341-4

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

40

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Sa
n

d
ro

 G
io

va
n

n
i K

o
ch

In this work, the authors researched the maintainability of model-based anal-
yses. For this purpose, they analysed the co-dependency between models and
analyses, particularly the structure and interdependence of artefacts and the
feature-based decomposition and composition of model-based analyses. Their
goal is to improve the maintainability of model-based analyses. They take a
reference architecture for domain-specific modelling languages and transfer its
architectural structure to model-based analyses. In addition to the development of
a reference architecture for model-based analyses, they have identified recurring
structures that lead to maintainability problems; in the literature, these recurring
structures are also called bad smells. They have investigated the co-dependency
of Domain-specific Modelling Languages (DSMLs) and model-based analyses
that lead to these bad smells. In addition to specifying bad smells, they provide a
process for automatically identifying such bad smells and strategies for refactoring
them so that developers can avoid or fix them. They also developed a modelling
language for specifying the structure and behaviour of analysis components.
Developers can use the specification to compare simulation components and
thus, identify identical components. Finding similar simulation components
allows developers to reuse existing components and reduce the effort required
to develop new components.

A
 R

ef
er

en
ce

 S
tr

u
ct

u
re

 f
o

r
M

o
d

u
la

r
M

o
d

el
-b

as
ed

 A
n

al
ys

es

ISSN 1867-0067
ISBN 978-3-7315-1341-4
Gedruckt auf FSC-zertifiziertem Papier

	Danksagung
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Prologue
	Introduction
	Motivation
	Problem Statements
	Contributions
	Thesis Outline

	Foundation
	Terms and Definitions
	Domain-specific Modelling Language
	Model-based Analyses
	Roles
	Developer Role
	User Role

	Foundational Concepts
	A Reference Architecture for Metamodels
	Language Features
	Feature Models in the Context of DSMLs
	Modules and Dependencies
	Extends Relation
	Layers
	Layers in Metamodels for Quality Modelling and Analysis

	Hypergraph Metrics

	Foundational Concepts for the Decomposition and Composition of Model-based Analyses
	Quality Property
	Modelling Language
	Feature Model
	Analysis Composition
	Feature Composition
	Analysis Decomposition

	Bad Smells in Different Domains
	Bad Smells in Object-oriented Software
	Bad Smells in Domain-specific Modelling Languages

	Foundational Concepts for the Reuse of Model-based Analysis Components
	Satisfiable Modulo Theories
	P versus NP
	Nondeterministic Polynomial Time
	Graph Isomorphism
	Domain-specific Language

	Foundation of the Evaluation
	Validity Types
	Goal Question Metric Approach

	Technical Foundation
	Eclipse Modelling Framework
	Xtext
	Xtend
	Neo4J
	Spoon

	Improving Evolvability and Reusability of Model-based Analyses
	Decomposition and Composition of Model-based Analyses
	Hypothesis and Research Questions
	Requirements for the Reference Architecture
	Decomposition of Model-based Analyses
	Modularisation Concepts for Model-based Analyses
	Use of Feature Models
	Language Feature and Analysis Feature
	Language Component and Analysis Component
	Layering
	Relation Between Modularisation Concepts

	Layers in Model-based Quality Analyses
	Paradigm Layer
	Domain Layer
	Quality Layer
	Analysis Layer
	Experiment Layer

	Refactoring Operations for Modularising Model-based Analyses
	Analysis Class Refactorings
	Analysis Component Refactorings

	Composition of Model-based Analyses
	Application Process
	Modularisation of an Existing Model-based Analysis
	Prerequisite: Modular DSML
	Decomposition into Layers
	Creating the Feature Model
	Dependency Alignment
	Decomposition Refinement
	Extracting Commonalities
	Feature Refinement
	Feature Model Forming

	Developing a Model-based Analysis from Scratch
	Language Feature Transfer
	Identification of Analysis Features
	Reuse of Analysis Components
	Creating the Feature Model
	Introducing Layers
	Extracting the Paradigm Layer
	Grouping of Features
	Parent Feature Identification
	Adding the Remaining Dependencies
	Implementing the Features
	Revision and Refinement

	Extending a Model-based Analysis
	Identification of Analysis Features
	Reusing Analysis Components
	Extending the Feature Model
	Implementing Remaining Features
	Revision and Refinement

	Technical Contribution
	Analysis Library – Refactor Lizar
	Accumulation of Dependencies Detection
	Detection of Scattered of Dependencies
	Layer Violation Detection
	Dependency Cycle Detection
	Metric Analysis

	Refactoring Library

	Bad Smells in Model-based Analyses
	Hypothesis and Research Questions
	Bad Smells in Model-based Analyses
	Abstraction
	Duplicated Abstraction
	Missing Abstraction
	Unused Abstraction

	Encapsulation
	Deficient Encapsulation

	Hierarchy
	Folded Hierarchy
	Missing Hierarchy
	Unexploited Hierarchy

	Modularity
	Broken Modularity
	Degraded Modularity
	Missing Modularity
	Rebellious Modularity
	Weakened Modularity

	Identifying Bad Smells in Model-based Analyses
	Identification of Abstraction Smells
	Duplicated Abstraction
	Missing Abstraction
	Unused Abstraction

	Identification of the Encapsulation Smell
	Deficient Encapsulation

	Identification of Hierarchy Smells
	Folded Hierarchy
	Missing Hierarchy
	Unexploited Hierarchy

	Identification of Modularity Smells
	Broken Modularity
	Degraded Modularity
	Missing Modularity
	Rebellious Modularity
	Weakened Modularity

	Reuse of Model-based Analysis Components
	Hypothesis and Research Questions
	Model-based Analysis Specification
	Model-based Analysis Component Identification

	Specification of Model-based Analyses
	Discrete-event Simulation Definition
	Structure Specification
	Behaviour Specification
	Specification Grammar
	Behaviour with Satisfiable Modulo Theories

	Structure Comparison
	Behaviour Comparison
	Comparing Schedules Relationships
	Comparing Writes Relationships

	Technical Contribution
	Tooling
	Specification of Simulation Components
	Identification of Simulation Components
	Configuration
	Analysis Commands
	Analysis Results

	Limitations
	Limitations of the Structure Comparison
	Limitations of the Behaviour Comparison

	Validation
	Case Studies
	Selection Criteria
	The Palladio Simulator
	Camunda
	KAMP and KAMP4aPS
	SmartGrid

	Reference Architecture Evaluation
	Discussion of the Requirements
	Research Goals and Metrics
	Evaluation Design
	Evolution Scenarios
	Conduction of the Evaluation
	SimuLizar Refactoring
	Modular SimuLizar– mSimuLizar
	Paradigm Layer
	Domain Layer

	SimuLizar Historical Evolution Scenarios
	Camunda Refactoring
	Modular Camunda – mCamunda
	Paradigm Layer
	Domain Layer

	Camunda Historical Evolution Scenarios
	KAMP4aPS Refactoring
	Modular KAMP4aPS – mKAMP4aPS
	Paradigm Layer
	Domain Layer
	Quality Layer

	KAMP4APS Historical Evolution Scenarios
	SmartGrid Refactoring
	Modular SmartGrid – mSmartGrid
	Paradigm Layer
	Domain Layer
	Quality Layer

	SmartGrid Historical Evolution Scenarios

	Evaluation Results
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Complexity
	Coupling
	Cohesion

	Evaluation of Bad Smells in Model-based Analyses
	Research Goals and Metrics
	Evaluation Design
	Evolution Scenarios
	Conduction of the Evaluation
	Refactoring Scenarios
	Duplicated Abstraction
	Missing Abstraction
	Degraded Modularity
	Rebellious Modularity

	Evaluation Results
	Frequency of Occurrence Results
	Evolvability, Understandability, and Reusability Results
	Duplicated Abstraction
	Missing Abstraction
	Degraded Modularity
	Rebellious Modularity

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Existence
	Relevance

	Specification and Reuse Evaluation
	Research Goals and Metrics
	Applicability Metric
	Accuracy Metric
	Scenarios
	Simulation Components of the Palladio Simulator
	Simulation Components of Camunda

	Evaluation Results
	Results for the Applicability Evaluation
	Results for the Accuracy Evaluation

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Discussion
	Applicability
	Accuracy

	Epilogue
	Related Work
	Decomposition and Composition of Model-based Analyses
	Analysis Integration
	Analysis Orchestration

	Integration of DSMLs and Model-based Analyses
	Language Workbenches
	Language Engineering Tools

	Bad Smells and Anti-Pattern in Model-based Analyses
	Bad Smell Detection
	Bad Smell Refactoring

	Reuse of Simulation Components
	Source Code Comparison
	Simulation Specification and Reuse

	Discussion

	Conclusion and Future Work
	Decomposition and Composition of Model-based Analyses
	Summary
	Limitations
	Future Work

	Bad Smells in Model-based Analyses
	Summary
	Limitations
	Future Work

	Specification and Reuse of Model-based Analysis
	Summary
	Limitations
	Future Work

	Bibliography

