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Preface

The wavelet transform has become a prominent and influential tool in signal  processing 
for the analysis and representation of signals. It provides a distinctive and valuable 
method for analyzing and representing signals. This mathematical technique, which 
has the potential to bring about enormous advances, has been applied in a range of 
sectors, including the processing of pictures and sounds, communication systems, 
and other areas. An extensive examination is underway to explore the intricate realm 
of wavelet transform applications. This book provides a comprehensive overview of 
wavelet transformation and describes its contemporary applications. This book is 
comprised of five captivating chapters.

Chapter 1 introduces the basic principles of wavelet transformations, providing a solid 
foundation for further exploration. As an introductory guide, the chapter’s objective 
is to familiarize readers with the essential concepts that form the basis of this math-
ematical framework. This chapter establishes the essential foundation for the subse-
quent discussions by analyzing both continuous and discrete wavelet transforms. This 
chapter provides a vast list of applications of wavelet transform.

Chapter 2 investigates the interaction between tiny inertial sensors and wavelet filtering 
techniques, showing the potential for increased denoising performance by collecting 
localized and non-stationary oscillations. This chapter additionally examines the 
utilization of wavelet filters in MEMS-based inertial sensors, showcasing substantial 
enhancements in altitude parameters and location precision.

Chapter 3 explores the application of intricate wavelet and ridgelet transforms in geo-
physical prospecting. It discusses how these transforms are employed to analyze prob-
able field data and detect hidden structures that are accountable for anomalies. This 
chapter employs these transformations to detect the origins of anomalies in potential 
fields in both two-dimensional and three-dimensional scenarios. Additionally, it 
explores the utilization of artificial intelligence for grouping Euler solutions. The chap-
ter offers useful insights into the interpretation of potential fields in geophysical data.

Chapter 4 delves into wavelet analysis as a mathematical instrument for identifying 
volatility patterns in asset returns. It dissects financial time series data into several scales 
and frequencies, offering a comprehensive view of both short-term and long-term  
patterns. This chapter presents applications of wavelet in the field of finance as it 
is utilized through many R packages. This chapter examines the stock price returns 
of NASDAQ Composite, DOW Incorporated, S&P500, and Omnicell Inc. It reveals 
that there is significant volatility at lower frequencies, but lower volatility at higher 
frequencies.

Chapter 5 presents a fault detection technique that utilizes the DWT to evaluate 
and identify short-circuit faults in a three-phase power system transmission line. It 
presents an algorithm that utilizes phase-to-phase and phase-to-ground fault analysis 
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to accurately identify different types of faults. The objective of the chapter is to 
enhance the precision of power system monitoring and explore the benefits of DWT 
in identifying, localizing, and categorizing anomalous failures in a three-phase power 
system short circuit. The authors employ MATLAB/Simulink to simulate various fault 
scenarios on transmission lines, extracting intricate coefficients and comparing them 
against a predefined threshold.

This book is specifically designed to meet the needs of a wide range of readers, includ-
ing students, researchers, and professionals who have a keen interest in gaining a 
comprehensive knowledge of wavelet transforms and their practical implementations. 
Every chapter has been meticulously crafted to offer a blend of theoretical principles 
and practical examples, ensuring a thorough and easily understandable exploration of 
the subject matter.

I would like to express my sincere thanks to all the authors for their contributions and 
efforts to bring about this wonderful book. My earnest gratitude and appreciation go 
to the staff at IntechOpen, particularly Publishing Process Manager Ms. Laura Divic, 
who brought together the authors to publish this book. I would like to express my 
heartfelt thanks to the management, secretary, and principal of my institute. Finally, 
dearest thanks to my family members, especially my sweet daughter Abirami.

Dr. Srinivasan Ramakrishnan
Dean of Research and Innovation,

Dr. Mahalingam College of Engineering and Technology,
Pollachi, India
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Chapter 1

Introductory Chapter: Wavelet 
Theory and Modern Applications
Srinivasan Ramakrishnan

1. Introduction of wavelet transform

The wavelet transform is a mathematical technique used to analyze images and 
signals. It decomposes them into discrete frequency components with different reso-
lutions. This allows for localization in both time and frequency domains. Unlike the 
Fourier transform, which primarily focuses on frequency information, the wavelet 
transform captures data at both high and low frequencies within a signal [1–3].

The continuous wavelet transform (CWT) is a mathematical methodology used 
for continuous analysis of signals and data. It involves integrating a signal with shifted 
and rescaled iterations of a continuous mother wavelet function. The discrete wavelet 
transform (DWT) is another method that partitions a signal into distinct frequency 
components. However, it may not be computationally efficient compared to the CWT. 
The multiresolution analysis (MRA) is a mathematical methodology used to examine 
data at various degrees of resolution or intricacy [4].

The wavelet transform is used in various fields, including signal and image pro-
cessing, compression algorithms, denoising, feature extraction, and biological signal 
analysis. Different wavelet families, such as Haar, Daubechies, Symlet, and Morlet, 
have unique attributes that make them suitable for specific applications [5, 6].

Wavelet transform is an adaptable and potent method that provides a thorough 
examination of signals and images at various scales, facilitating improved under-
standing and control of complex data in various disciplines [7].

2. Brief history of wavelet transform

Morlet’s continuous wavelet transform was developed in the 1960s. Wavelets 
developed from the early work of Haar and Wiener. In the 1980s, Meyer, 
Daubechies, and Mallat made advancements in wavelet theory. Discrete transforms 
were introduced, and the theory was improved. In the 1990s, wavelets were used 
in applications like JPEG2000 and biomedical signal processing. Wavelets became 
essential in image compression, data analysis, and scientific research. They are now 
expanding their applications to include machine learning and big data analysis. 
Significant developments in wavelet transform have occurred every few years from 
1966 to 2023 [8–15].

XIV
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• Jean Morlet is the one who first presented the idea of continuous wavelet trans-
form (CWT) in the field of geophysics in the year 1966.

• As seismic signal analysis and other geophysical applications continue to develop 
in the 1970s, wavelet principles continue to expand.

• Yves Meyer’s work in the 1980s is credited with laying the foundation for the 
mathematical theory of wavelets.

• In 1984, Ingrid Daubechies made a significant contribution to the field of wavelet 
theory by introducing compactly supported orthogonal wavelets.

• Over the course of the late 1980s and early 1990s, Stephane Mallat’s contribu-
tions to wavelet research, which include multiresolution analysis (MRA) and 
discrete wavelet transform (DWT), had been enhanced.

• Using wavelets for image compression, JPEG2000, which was released in 1992, 
highlights the usefulness of wavelets.

• In the late 1990s, wavelet-based algorithms such as the lifting scheme expanded 
the practical applications of wavelet theory’s theoretical framework.

• At the beginning of the twenty-first century, wavelet transforms became widely 
utilized in a variety of fields, including biological, financial, and data analysis.

• Beginning in the middle of the 2000s, wavelets began to find applications in the 
field of machine learning and signal processing.

• In the 2010s, wavelet theory was being increasingly applied in fields such as 
computational neuroscience and cybersecurity as a result of ongoing research.

• In the years 2015–2020, wavelet-based algorithms continued to play an important 
role in the analysis of large data and pattern identification.

• Present day (2023): Wavelet transforms are still developing and finding applica-
tions in a wide variety of scientific and technological fields. They are helping to 
simplify difficult data analysis and signal processing and are becoming increas-
ingly popular.

Over the course of this time period, the wavelet transform has developed 
from its beginnings as a mathematical notion to a tool that is extensively used 
across a variety of fields, thereby revolutionizing signal processing, data analysis, 
and picture compression. Its relevance in contemporary scientific and technical 
achievements can be attributed, in part, to its ongoing evolution and variety among 
its applications.

Table 1 given below provides a detailed comparison of Fourier Transform, 
Wigner–Ville Transform, Short-Term Fourier Transform (STFT), and Wavelet 
Transform characteristics concerning time-frequency analysis, localization, resolu-
tion, advantages, and limitations, allowing for comparison across these widely used 
signal processing techniques.
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3. Types of wavelet transforms

Different types of wavelet transforms offer diverse characteristics and func-
tionalities, tailored for specific applications in signal processing, image analysis, 
data compression, and more [12, 15]. Here is a list different important wavelet 
transforms:

Continuous Wavelet Transform: The continuous wavelet transform (CWT) is a 
signal analysis technique. It compares a signal to modified versions of a “mother 
wavelet” function. The modified versions are both scaled and translated. The CWT 
operates constantly across different levels and durations. This allows for the examina-
tion of signals that are not consistent and have different frequency components. The 
characteristics of the analysis are determined by the selection of the mother wavelet. 
The CWT offers accurate temporal and spectral localization. This makes it suitable 
for signals with sudden variations or fluctuating frequencies. However, it requires 
significant computational resources.

Discrete Wavelet Transform: The discrete wavelet transform (DWT) breaks down 
signals into different frequency components at multiple resolutions. It uses low-pass 
and high-pass filters to separate signals into approximate and detailed information. 
The DWT is useful for tasks like compression, noise reduction, feature extraction, 
and analyzing transitory occurrences in various domains. It provides a comprehensive 
analysis of different resolutions, collecting both high- and low-frequency data. The 
hierarchical representation of signals with varying levels of detail makes it applicable 
in many fields [10, 11].

Transform Time-frequency 
analysis

Localization Resolution Advantages Limitations

Fourier 
Transform

No Global Fixed Represents signals 
by frequency 
components; 
Useful for 
stationary signals

Lacks time 
information; 
Not suitable for 
nonstationary 
signals

Wigner–Ville 
Transform

Yes Good Moderate Precise time-
frequency 
analysis; Reveals 
instantaneous 
frequency 
information

Cross-term 
interference; 
Sensitivity to 
noise

Short-Term 
Fourier 
Transform

Yes Moderate Variable Localized 
time-frequency 
information; 
Suitable for 
nonstationary 
signals

Fixed time-
frequency 
resolution; 
Trade-off 
between 
resolution and 
localization

Wavelet 
Transform

Yes Excellent Variable Localized in 
both time and 
frequency; 
Multiresolution 
analysis of signals

Offers variable 
resolution but 
computationally 
intensive

Table 1. 
Characteristics of various transformations.
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Wavelet Packet Transform: The wavelet packet transform (WPT) is an expansion of 
the discrete wavelet transform (DWT). It offers a more thorough signal decomposition. 
The DWT partitions signals into approximation and detail coefficients at various scales. 
However, the WPT enables both high- and low-frequency sub-bands at each level of 
decomposition to be further decomposed. This leads to a more comprehensive examina-
tion with enhanced adaptability. It allows for a more intricate investigation of signal attri-
butes across different frequency ranges. The WPT is utilized in several fields such as signal 
processing, feature extraction, and data compression. It provides improved flexibility.

Multiwavelet Transform: Multiwavelet transformations build upon wavelet trans-
formations by using multiple functions for signal decomposition. Unlike typical 
wavelet transforms that use only one scaling function and its wavelet, multiwavelet 
transforms utilize many scaling functions and their accompanying wavelets. This 
approach offers advantages such as improved estimation of signals with imperfec-
tions, better symmetry, and increased flexibility in signal representation compared to 
single-wavelet transforms. Multiwavelet transformations find applications in various 
signal processing tasks, including image and signal compression, denoising, and 
feature extraction. Their ability to adapt and capture complex signal properties.

Curvelet Transform: The Curvelet Transform accurately represents images with 
complex geometric characteristics and smooth curves. It operates at multiple scales 
and directions, capturing delicate details in photos. It outperforms wavelet-based 
transforms in capturing edges, curves, and nonlinear structures. Curvelets excel at 
capturing curved and angular characteristics, making them suitable for portraying 
objects with varying orientations and scales. The curvelet transform is valuable in 
medical imaging, geophysical data analysis, and image processing tasks that require 
accurate depiction of edges and curves.

Ridgelet Transform: The ridgelet transform is a specialized transform that effi-
ciently represents images with linear features or edges. It is better than typical 
wavelet-based approaches in capturing linear structures in photographs, regardless 
of their orientations and scales. It is particularly effective in scenarios where images 
consist mostly of linear features, such as in medical imaging or seismic data process-
ing. The ridgelet transform offers a sparse depiction of linear characteristics, making 
it valuable in various image processing applications that require accurate identifica-
tion and examination of edges or line-like formations.

Contourlet Transform: The contourlet transform is a method for representing 
images that captures edges and contours efficiently. It uses a multiscale and multi-
directional approach. It combines wavelets with directional filter banks to create a 
flexible representation, particularly suitable for images with curves and edges. The 
contourlet transform has improved directionality and localization, making it use-
ful in applications that require accurate depiction of edges, curves, and textures in 
images. It is efficient in handling complex geometric structures, making it valuable in 
applications like image compression, denoising, medical imaging, and other tasks that 
require accurate depiction of edges and textures.

Integer Wavelet Transform: The integer wavelet transform (IWT) is a variant of the 
discrete wavelet transform (DWT) that only works with integer data. It is useful for 
processing signals or images that have only integer values, like certain compression 
methods and embedded devices. The IWT does not require floating-point arithmetic, 
which makes calculations faster and more accurate since it only uses integers. This 
is beneficial in situations where efficiency, memory usage, or adherence to integer-
based systems are important, such as in embedded devices, hardware implementa-
tions, or specific compression methods.
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Table 2 given below highlights the distinct characteristics, applications, advan-
tages, and limitations of each type of wavelet transform, showcasing their specific 
utilities across various domains.

4. Applications of wavelet transform

The relevance of the wavelet transform resides in its capacity to evaluate signals 
and images at many resolutions while maintaining time-frequency localization, ren-
dering it a potent tool in several domains [14, 15]. The wavelet transform is significant 
and applicable in several major areas:

1. Image Compression: Reducing the data size of images while retaining quality by 
analyzing and discarding less critical image information in different frequency 
bands.

2. Signal Denoising: Removing unwanted noise from signals while preserving essen-
tial features by separating noise from the signal components at various scales.

3. Audio Compression: Reducing the size of audio files without significant loss of 
quality, vital in efficient storage and transmission of audio data.

Wavelet transform Use cases Advantages Limitations

Continuous Wavelet 
Transform

Nonstationary 
signals

Precise time-frequency 
localization; Analysis of signals 
with varying frequencies over 
time

Computationally 
intensive

Discrete Wavelet 
Transform

Signal compression, 
denoising, imaging

Efficient, hierarchical 
representation; Transient 
analysis

Loss of phase 
information; 
Boundary effects

Wavelet Packet 
Transform

Detailed frequency 
analysis

Enhanced flexibility; More 
detailed signal exploration

Increased 
computation due to 
higher decomposition

Multiwavelet 
Transform

Signal approximation 
and features 
extraction

Better symmetry; Enhanced 
adaptability

Increased complexity

Curvelet Transform Medical imaging, 
geophysical data 
analysis

Superior edge and curve 
representation; Multiscale 
analysis

High computational 
demands

Ridgelet Transform Seismic data analysis, 
edge detection

Efficient representation of 
linear features

Limited application in 
nonlinear structures

Contourlet 
Transform

Image compression, 
denoising

Excellent edge and texture 
representation; Flexible analysis

Computationally 
intensive; Increased 
complexity

Integer Wavelet 
Transform

Embedded systems, 
integer-based data

Faster computation, reduced 
memory; Integer-based 
processing

Limited to integer-
based data; Reduced 
flexibility

Table 2. 
Comparison of different types of wavelet transformations.
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4. Feature Extraction in Image Processing: Identifying and extracting meaningful fea-
tures from images, such as edges or textures, for subsequent analysis or pattern 
recognition.

5. Seismic Signal Analysis: Studying seismic waves to understand subsurface 
 structures and earthquake characteristics, aiding in geophysical exploration.

6. Edge Detection in Image Processing: Identifying boundaries or edges between 
 objects in images, crucial for object recognition and image segmentation.

7. Financial Time-Series Analysis: Studying financial data trends, identifying 
 patterns, and predicting market behavior for investment decisions.

8. Speech Processing: Analyzing speech signals for tasks like speech recognition, 
language translation, and voice-based interfaces.

9. Biometric Systems: Extracting distinctive features from biometric data (like 
 fingerprints or irises) for identity verification.

10. Communication Systems: Analyzing modulated signals in communication systems 
for signal processing, error correction, and so forth.

11. Pattern Recognition: Identifying and categorizing patterns or objects in data, 
crucial in machine learning and computer vision.

12. Geophysical Data Analysis: Processing geophysical data to understand geological 
formations and subsurface structures.

13. Texture Analysis in Image Processing: Characterizing textures in images for various 
applications, including remote sensing and materials analysis.

14. Nondestructive Testing: Analyzing signals to detect flaws or defects in materials 
without causing damage, used in industry and materials science.

15. Vibration Analysis: Studying vibrations in mechanical systems for fault detection 
and condition monitoring in machinery.

16. Time-Frequency Analysis in EEG Signals: Extracting frequency information over 
time from EEG signals to understand brain activity patterns.

17. Molecular Biology: Analyzing biological signals to study genetic patterns, molecu-
lar interactions, and so on, in biological research.

18. Fault Detection in Power Systems: Monitoring power systems to detect and diag-
nose faults for maintaining grid stability.

19. Environmental Data Analysis: Analyzing environmental signals for studying 
climate patterns, ecological changes, and so forth.

20. Video Compression: Compressing video data efficiently for storage, streaming, 
and transmission.
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21. Sonar Signal Processing: Analyzing underwater signals for navigation, target 
detection, and marine communication.

22. Radar Signal Processing: Analyzing radar signals for object detection, tracking, 
and navigation in aerospace and defense.

23. Spectral Analysis: Decomposing signals into frequency components for analyzing 
spectral characteristics.

24. Image Enhancement: Improving the quality or appearance of images for better 
visualization or analysis.

25. Data Fusion: Combining multiple sources of information to enhance data accu-
racy or completeness.

26. Character Recognition: Identifying and converting characters from images into 
text for OCR applications.

27. Object Tracking: Following the movement of objects in video sequences for sur-
veillance or monitoring.

28. Fractal Analysis: Analyzing complex patterns or shapes using fractal geometry 
for various applications.

29. Remote Sensing: Using sensors to collect data from a distance for environmental 
or geographical analysis.

30. System Identification: Modeling and understanding the behavior of dynamical 
systems from measured data.

31. Image Watermarking: Embedding information into images for copyright protec-
tion or authentication.

32. Wireless Communication Systems: Analyzing signals in wireless networks for 
 efficient data transmission.

33. Image Registration: Aligning multiple images for comparison or creating pan-
oramic views.

34. Anomaly Detection: Identifying unusual patterns or events in data that deviate 
from expected behavior.

35. Quality Assessment in Images: Evaluating image quality for various applications 
like printing or medical imaging.

36. Time Series Forecasting: Predicting future values based on past data patterns in 
time series analysis.

37. Motion Detection in Video: Detecting movement in video sequences for security or 
activity monitoring.
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38. Hyperspectral Imaging Analysis: Analyzing images with numerous spectral bands 
for detailed material identification.

39. Structural Health Monitoring: Monitoring structural conditions of buildings or 
infrastructure for maintenance.

40. Channel Equalization: Compensating for distortion in communication channels 
to recover transmitted signals.

41. Quantum Signal Processing: Analyzing quantum signals or information process-
ing in quantum systems.

42. Robotics and Vision Systems: Processing visual data for robot guidance and control 
in robotics applications.

43. ECG Signal Analysis: Analyzing electrocardiogram signals for diagnosing heart 
conditions or abnormalities.

44. Sonography Image Processing: Enhancing and analyzing ultrasound images for 
medical diagnosis.

45. DNA Sequence Analysis: Analyzing DNA sequences for understanding genetic 
information and mutations.

46. Audio Signal Separation: Separating mixed audio sources into individual compo-
nents for analysis or modification.

47. Speaker Recognition: Identifying individuals by analyzing characteristics of their 
voice patterns.

48. Waveform Analysis: Analyzing waveforms to understand characteristics or pat-
terns in signals.

49. Information Retrieval: Extracting relevant information from large datasets or 
databases.

50. Computational Neuroscience: Applying computational methods to study brain 
function and neural systems.

51. Gait Analysis: Analyzing human walking patterns for medical, biomechanical, or 
forensic purposes.

52. Gesture Recognition: Recognizing and interpreting human gestures for human–
computer interaction.

53. Traffic Analysis and Prediction: Analyzing traffic patterns for congestion predic-
tion and management.

54. Functional Magnetic Resonance Imaging (fMRI) Analysis: Analyzing brain activity 
based on fMRI scans to understand brain function.
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55. Texture Synthesis: Creating new textures based on existing ones for graphics or 
modeling.

56. Sleep Pattern Analysis: Studying sleep patterns and stages for sleep disorder diag-
nosis.

57. Electroencephalography (EEG) Analysis: Analyzing brain electrical activity for 
neuroscience or medical diagnostics.

58. Antenna Array Processing: Processing signals from antenna arrays for improved 
wireless communications.

59. Intrusion Detection: Detecting and preventing unauthorized access or attacks in 
computer systems.

60. Text Mining: Extracting useful information or patterns from large volumes of 
text data.

61. Time-Frequency Analysis in Music: Analyzing music signals to understand their 
frequency and time characteristics.

62. Eye Tracking: Tracking eye movements to understand visual attention or diagnose 
eye conditions.

63. Glottal Analysis: Studying characteristics of vocal fold vibrations for speech and 
voice analysis.

64. Solar Activity Prediction: Predicting solar activities like sunspots or flares for 
space weather forecasting.

65. Image Matting: Extracting foreground objects from an image for editing or com-
position.

66. Electrocardiography (ECG) Signal Analysis: Analyzing heart electrical activity for 
diagnosing cardiac conditions.

67. Spatiotemporal Data Analysis: Analyzing data considering both space and time 
dimensions for various applications.

68. Synthetic Aperture Radar (SAR) Processing: Analyzing radar data for high-resolu-
tion imaging in remote sensing applications.

69. Gene Expression Analysis: Studying patterns of gene activity to understand bio-
logical processes and diseases.

70. Surface Defect Detection: Identifying defects or anomalies on surfaces for quality 
control in manufacturing.

71. Oceanographic Data Analysis: Analyzing ocean data for understanding marine 
ecosystems, currents, and climate.
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72. Financial Volatility Analysis: Studying fluctuations in financial markets to assess 
risk and volatility.

73. ECG-based Biometric Systems: Using ECG signals for biometric identification or 
authentication purposes.

74. Structural Damage Identification: Identifying structural damage or deterioration 
in buildings or infrastructure.

75. Traffic Signal Timing Optimization: Optimizing traffic signal timings for better 
traffic flow and congestion management.

76. Human Activity Recognition: Identifying and categorizing human activities from 
sensor data for various applications.

77. Biomedical Image Fusion: Combining multiple biomedical images for better visu-
alization or analysis.

78. Radio Astronomy Data Analysis: Analyzing signals from radio telescopes for 
studying celestial objects or phenomena.

79. Brain-Computer Interfaces: Using brain signals for controlling external devices or 
computers.

80. Solar Power Forecasting: Predicting solar energy production for efficient grid 
management.

81. Gesture-based Human–Computer Interaction: Using gestures for controlling or 
interacting with computers or devices.

82. Melody Extraction in Music Signals: Extracting melodies or dominant pitches 
from music signals.

83. Ionosphere Signal Processing: Analyzing ionospheric signals for communication or 
navigation purposes.

84. Neuroimaging Data Analysis: Processing brain imaging data for studying brain 
structure or function.

85. Cyber-Physical Systems Analysis: Analyzing systems that integrate physical and 
computational components.

86. Photonics Signal Processing: Processing signals in photonics for various optical or 
light-based applications.

87. Object Detection in Images: Detecting and locating objects within images or videos 
for various applications.

88. Forensic Image Analysis: Analyzing images for forensic investigations or evidence 
examination.
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Chapter 2

Improvement of the Global
Positioning Accuracy with
Miniaturized Strap-Down INS
Systems through Wavelet Filtering
of Data from MEMS Inertial
Sensors
Bianca-Gabriela Antofie, Marius-Ciprian Larco
and Teodor Lucian Grigorie

Abstract

In this chapter, the correlation between the issue of perturbed data acquired
from miniaturized inertial sensors and the wavelet filtering technique is
investigated. The market growth of micro-electro-mechanical systems (MEMS) has
impacted various fields, and its potential application in strap-down inertial
navigation systems (INS) could not be overlooked. Despite the apparent benefits of
dimension and price reduction, the utilization of miniaturized inertial sensors for
manufacturing the inertial measurement unit (IMU) entails certain drawbacks: the
output signals are usually corrupted with different types of errors, which distort the
real navigation information. The proposed case focuses on the suitability of wavelets
for denoising the perturbed IMU signals before being erroneously processed by the
navigation algorithm. The applicative part consisted in implementing sensor
software models in Simulink and testing various wavelet filters. Furthermore, to fully
assess the efficacy of the wavelet denoising technique, the model of a SDINS
employing a MEMS-based IMU was established in Simulink. The evaluation involved
comparing the attitude, position and speed components obtained before and after the
denoising procedure with those of an ideal model linked to constant inputs. The
results demonstrated the effectiveness of the proposed association in terms of
positioning accuracy, signal characteristics improvement and computation
complexity.

Keywords: strap-down INS, MEMS-based inertial measurement unit,
wavelet filtering of MEMS data, global positioning, positioning accuracy
improvement

13



1. Introduction

Micro-electro-mechanical systems gained immensely in popularity within sensor
manufacturing technologies, primarily owing to their distinctive properties arising
from the integration of both mechanical and electrical devices on a single chip. In the
same vein, the strap-down architecture of inertial navigation systems has diminished
the mechanical complexity of previous platform versions, consequently driving the
demand for smaller inertial sensors [1]. The adoption of MEMS technology for the
IMU fabrication of strap-down inertial navigation systems is primarily generated by
the significant advantages it offers, including reduced size, cost-effectiveness, scal-
ability in serial production, and low power consumption. However, the miniaturiza-
tion process of electronic devices leads to enhanced sensitivity to external
environmental factors such as temperature, humidity, and vibrations. Consequently,
this increased sensitivity leads to the propagation of errors and noises in the output
acceleration and angular rate signals [2]. Instead of a continuous and clear evolution
representation of the measured dataset, the useful signal is often submerged in the
noise. Conventional filtering methods usually prove to be inefficient and may even
cause signal distortion due to the tendency of noise frequency bands to overlap with
the frequency band in which the dynamics of the monitored vehicle are located [3].

In the past decade, the field of signal processing has directed its attention towards
the relatively modern discovery of wavelet theory. The wavelet transform, based on
multiresolution analysis, decomposes a signal into wavelet components at various
scales, enabling the representation of different levels of details within the signal.
Numerous applications have been found for wavelets in fields such as image
processing, denoising, feature extraction, and compression, enabling efficient analysis
of oscillatory phenomena in various data types [4]. Because of their ability to effec-
tively denoise signals while preserving critical information, wavelets present a prom-
ising option to address the rigorous requirements of inertial navigation. Hence, the
investigation of wavelet filters’ behavior regarding perturbed inertial data is a worth-
while subject for research.

The main objective of the experimental part was to evaluate the effectiveness of
pre-filtrating the outputs of inertial sensors before incorporating them as inputs into
the strap-down navigation algorithm, with a focus on the essential improvement in
positioning accuracy. To set the context for the practical part, this study first provides
a comprehensive overview of the types of errors associated with MEMS inertial
sensors. Subsequently, a mathematical foundation is established to support the appli-
cation of the wavelet denoising technique.

The experimental part presents how two MEMS sensor models—an accelerometer
and a gyroscope—were software implemented and simulated with constant inputs
using MATLAB/Simulink. The resulting perturbed output signals underwent decompo-
sition using various wavelet functions, and their performances were assessed through
the calculation of specific estimator measures. In the second part, the strap-down
navigation algorithm was fully developed in the Simulink software environment and
tested in association with the wavelet filter. The outcomes of the simulations furnished a
comprehensive insight into the implications of MEMS architecture on the output data
precision of the strap-down algorithm. Moreover, the extent to which wavelet tech-
niques succeed in enhancing the overall accuracy was also rigorously assessed.

As important limitations of the proposed work can be mentioned the partial
removal of the noise perturbing the inertial sensors and the offline tuning of the
wavelet transform, which means that the noise coming from various sources operating
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near the sensors during flight cannot be limited through a real-time tuning of the
involved wavelet mechanisms.

2. Preliminary analysis of the miniaturization issues

As MEMS-based sensors are scaled down to smaller dimensions, they become inher-
ently more sensitive to external environmental factors, which can lead to adverse effects
on their performance. One of the primary concerns arising from miniaturization is the
increased susceptibility to external noise sources. Due to their reduced size, MEMS
inertial sensors exhibit higher sensitivity to temperature fluctuations, humidity varia-
tions, and mechanical vibrations. These environmental influences can introduce
unwanted perturbations and inaccuracies in the sensor’s output signals, compromising the
overall measurement accuracy. Moreover, as the size of MEMS inertial sensors decreases,
there is a consequent reduction in their mass and inertial properties. This reduction may
lead to diminished signal-to-noise ratios, making it challenging to distinguish the desired
signal from noise effectively. Consequently, the signal of interest may become masked by
the noise, hindering the accurate extraction of relevant information [5].

In general, errors in MEMS inertial sensors can be categorized into two main
groups: deterministic errors and stochastic errors. Deterministic errors are systematic
and predictable errors that result from inherent characteristics of the sensor or exter-
nal influences. They include bias error, scale factor error, misalignment error, and
cross-coupling error. Stochastic errors, on the other hand, are random and
unpredictable variations in the sensor’s output caused by environmental factors and
noise sources. Some examples of stochastic errors are random noise, drift, vibration
noise, and quantization noise [6].

Understanding and characterizing these errors is crucial for accurate sensor cali-
bration and data interpretation. Their integration with the original signal introduces
inaccuracies and uncertainties in the measured data, directly impacting the overall
performance of the strap-down navigation system and potentially compromising the
success of its mission. Figure 1 visually illustrates the errors that overlap a MEMS
gyro’s original signal, resulting in a corrupted output. This graphical representation
emphasizes the importance of utilizing denoising techniques, such as wavelet filter-
ing, which will be widely discussed during the next section.

Figure 1.
Corrupted output signal of a MEMS gyro.

15

Improvement of the Global Positioning Accuracy with Miniaturized Strap-Down INS Systems…
DOI: http://dx.doi.org/10.5772/intechopen.1003199



3. Wavelet denoising method

3.1 Mathematical background of wavelets

A wavelet is a mathematical function characterized by its oscillating pattern,
where the amplitude initiates from zero, undergoes multiple cycles of increase and
decrease, and eventually returns to zero. It allows signals to be analyzed and
transformed into different frequency components, providing a way to capture both
high and low-frequency oscillations in a signal.

Wavelets are particularly advantageous when dealing with signals that exhibit
non-stationary or localized oscillatory behavior [4]. Figure 2 presents a visual repre-
sentation of the most common types of wavelet functions.

The wavelet transform is a powerful mathematical tool used in signal processing to
decompose a signal into its frequency components. There are two types of wavelet
transforms: continuous wavelet transform (CWT) and discrete wavelet transform
(DWT). The CWT allows for continuous variation in the scale of the wavelet func-
tion, providing a detailed representation of the signal’s frequency content at different
time points. On the other hand, the DWT breaks down the signal into discrete scales,
which is computationally more efficient and suitable for practical applications [7].

For denoising the output signals of our miniaturized inertial sensors, the DWT is
particularly well-suited. The DWT can effectively capture localized and non-
stationary oscillations, making it advantageous for processing signals affected by
external environmental factors and noise. By decomposing the signal into various
scales, the DWT allows for a more precise analysis and separation of noise from the
useful signal, resulting in improved denoising performance [8].

In the field of signal processing, various transforms, such as the Fourier Transform
(FT) and the Fast Fourier Transform (FFT), have been widely employed for frequency
domain analysis. While these transforms are effective in revealing the frequency content
of a signal, they possess certain limitations when dealing with signals containing local-
ized or non-stationary features [9]. Unlike the DWT, which decomposes signals into
different frequency components with varying time resolutions, the FT and FFT provide
a fixed frequency resolution across the entire signal, as can be observed in Figure 3.

This characteristic restricts their ability to effectively capture localized features and
may lead to signal distortion when dealing with non-stationary signals. The DWT’s
adaptability to a wide range of signal characteristics, along with its ability to efficiently
handle real-world data, makes it a superior choice for various signal processing tasks,
including denoising, feature extraction, and pattern recognition in practical applications.

3.2 Systematic implementation of wavelet filtering

The process of filtering a perturbed signal with a wavelet function begins with
selecting a suitable type of function. The choice should be made considering the

Figure 2.
Examples of wavelet functions.
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specific characteristics of the noise and signal, as well as the desired denoising out-
come; however, it is advisable to test multiple wavelets as they may exhibit distinct
behaviors depending on the specific case.

When the chosen discrete wavelet transform (DWT) is applied to the signal, it
operates as a sequence of high-pass and low-pass filters, leading to the decomposition
of the signal into several sub-bands, each representing distinct frequency ranges. This
procedure yields wavelet coefficients, categorized as either approximation (cA)
responsible for capturing low-frequency information or details (cD) responsible for
capturing high-frequency information (Figure 4) [9].

The process of decomposition can be iteratively performed by applying the discrete
wavelet transform (DWT) to the obtained approximation coefficients (cA) from the
initial decomposition stage. This recursive application results in a multi-level wavelet
decomposition, as illustrated in Figure 5. Each level of the decomposition provides a
new set of approximation coefficients, capturing lower frequency components succes-
sively. This hierarchical approach facilitates the analysis of the signal at various scales
and resolutions, offering a comprehensive insight into its frequency content.

During this stage, the concept of thresholding becomes crucial. Once the decom-
position process is complete, a specific threshold is established, and each absolute

Figure 3.
Varieties of time-frequency analysis techniques.

Figure 4.
DWT signal decomposition.
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value of the wavelet coefficient is subjected to comparison with this threshold. The
threshold value can be computed using the following formula [10]:

λ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2logn

p
σ (1)

where: n – number of samples, σ – standard deviation of the signal.
In wavelet denoising, two common thresholding techniques are used: soft

thresholding and hard thresholding. Soft thresholding shrinks wavelet coefficients below
the threshold to zero, while hard thresholding sets coefficients below the threshold to
zero. The choice between the two depends on the signal characteristics and denoising
goals. In the current case, soft thresholding is preferred as it offers a more gradual
suppression of noise compared to hard thresholding. The perturbed navigation signals
often contain various levels of noise, and the abrupt removal of coefficients through hard
thresholding may cause a significant loss of useful signal information. This choice was
influenced by previous successful implementations, notably in Refs. [11, 12], which also
employed soft thresholding. Eq. (2) shows the soft thresholding function [10]:

Tsoft
λ ¼ u� sign uð Þð Þλif uj j≥ λ

0othrewise

�
(2)

After the thresholding phase in the wavelet filtering procedure, the signal is
restored from the adjusted wavelet coefficients. By performing the inverse wavelet
transform to these coefficients, the original signal is reconstructed with reduced noise
and preserved essential characteristics. This updated signal offers an improved repre-
sentation of the underlying useful information, making it suitable for further analysis
and applications, such as navigation and control systems.

The wavelet denoising process outlined above applied to our research case can be
summarized into five key stages, as illustrated by Figure 6.

Figure 5.
Iterative process of wavelet decomposition.

18

Modern Applications of Wavelet Transform



3.3 Filter performance evaluation criteria

In the denoising process, a crucial concern arises regarding the suitability of the
chosen wavelet function and the optimal level of decomposition to repeat the proce-
dure. To address this, several evaluation metrics can be employed, offering relevant
insights into the filter’s performance in signal reconstruction. Throughout this
research paper, the selected evaluation criteria include the mean square error (MSE)
and signal-to-noise ratio (SNR), calculated with formulas (3) and (4) [13]:

MSE ¼ 1
n

Xn
i¼1

x ið Þ � ~x ið Þ½ �2, (3)

SNR ¼ 10� log 10

Pn
i¼1 x ið Þð ÞPn

i¼1 x ið Þ � ~x ið Þ½ �2
( )

, (4)

where: n – number of samples, x ið Þ – ideal, unfiltered signal, ~x ið Þ– filtered signal.
Reference [11] involved comparing SNR values obtained from different wavelet

functions applied to noisy acceleration signals, facilitating the ranking of their perfor-
mance. Also, the addition of the last point deviation from the reference distance
confirmed the previous results. In our scenario, the MSE and SNR parameters assist us
in identifying the optimal decomposition level by selecting values that adhere to
specified limits, while also enabling a performance comparison between the two
wavelet functions (Figure 7).

The wavelet filter’s performance, in terms of positioning accuracy improvement,
can be assessed by directly analyzing the navigation information before and after the
denoising procedure. This evaluation included a comparison with an ideal model of
the strap-down navigation algorithm that utilizes unperturbed inputs. The ideal model
gave conceptual values representing the expected outputs if the sensor data were not
affected by perturbations. By contrasting the denoised navigation information with
these conceptual values, the effectiveness of the wavelet filter in enhancing position-
ing accuracy can be determined.

4. Software configuration of the MEMS-based IMU and wavelet filter
association

4.1 Inertial sensors software implementation

An IMU is the main sensing component of any INS and it is generally composed of
two triads of inertial sensors—accelerometers for sensing the specific force and gyros

Figure 6.
Wavelet denoising method.
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for the angular rate, both being rigidly attached to the body of the vehicle. In order
to achieve precise and realistic results in a comprehensive study that mirrors the
actual conditions of the navigation system, including the inherent errors of the
sensors employed, it becomes imperative to establish an equivalent model. To
create the software representation of an IMU, the process was initiated by
implementing an accelerometer and a gyro in MATLAB/Simulink using IEEE stan-
dardized models [3, 14].

The accelerometer model follows the equation:

a ¼ ai þN � ai þ Bþ kcac þ νð Þ 1þ ΔK
K

� �
, (5)

where: a – output acceleration (perturbed signal), N – misalignment of the sensi-
tive axis, ai – acceleration applied along the sensitive axis, B – bias, kc – cross-axis
sensitivity, ac – cross-axis acceleration, B – bias, ν – noise, K – scale factor, ΔK –

calibration error of the scale factor.
The gyro model follows the following formula:

ω ¼ ωi þ S � ar þ Bþ νð Þ 1þ ΔK
K

� �
(6)

where: ω – output angular speed, ωi – input angular speed, S – sensitivity to the
acceleration ar applied upon an arbitrary direction, ar – resultant of the accelerations
applied on the three directions of the accelerometric triad of the strap-down inertial
system, B – bias, ν – noise, K – scale factor, ΔK – calibration error of the scale factor
(Figure 8).

Figure 7.
MATLAB/Simulink accelerometer model.
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In the upcoming part, two sensor models popular on the MEMS market were
implemented: the S1221x-025 accelerometer and the ADXRS150 gyro. These selections
were made to ensure the simulation’s accuracy and relevance, as these sensors repre-
sent the prevailing MEMS technology and are commonly employed in various aero-
space applications. Tables 1 and 2 display the technical specifications of the chosen
MEMS models, as well as the corresponding variable names used throughout the
software configuration [15, 16].

To assemble the inertial measurement unit, three sensor components from
each category were incorporated and interconnected into two triads, as depicted in

Figure 8.
MATLAB/Simulink gyro model.

S1221x-025 SPECIFICATIONS

Measurement range (span) [g] �25

Scale factor (K) [mV/g] 160

Bandwidth (bw) [Hz] 1500

Noise density (ND) μg=
ffiffiffiffiffiffiffi
Hg

p� �
25

Bias (B) [% from span] 2

Scale factor error (DK) [% from scale factor] 2

Cross-axis sensitivity (S) [%] 3

Misalignment of the sensitive axis [rad] 0

Power (P) [mW] 50

Table 1.
Accelerometer data sheet parameters.
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Figure 9. This arrangement was streamlined into a subsystem labeled as ‘IMU’ for
ease of representation and analysis.

4.2 Initial evaluation of the wavelet filter

In the preliminary investigation of the correlation between the wavelet denoising
technique and the output signals generated by the MEMS sensors, the following
constant inputs were applied to the accelerometer and gyro models for a simulation
time of 10 seconds: 5 m/s2, respectively 0.2°/s. The ac and ar parameters were set to
zero in order to ease the calculus. Figure 10 depicts the resulting perturbed signals. As
anticipated, the mean values of both signals do not match the intended values, attrib-
uted to the specific errors of MEMS sensors.

The aim of this section is to test the individual performance and the corresponding
optimal level of decomposition of two wavelet functions: Daubechies and Symmlet.
These wavelets, known for their established orthogonality, extensive research, and
versatility, emerge as the primary candidates for initial experimentation. This will be
accomplished using MATLAB/wavelet analyzer, a specialized software that offers
comprehensive tools for conducting in-depth wavelet analysis. Initially, the

Figure 9.
MATLAB/Simulink IMU model.

ADXRS150 SPECIFICATIONS

Measurement range (span) [°/s] �150

Scale factor (K) [mV/(°/s)] 12.5

Bandwidth (bw) [Hz] 80

Noise density (ND) °=sð Þ= ffiffiffiffiffiffiffi
Hg

p� �
0.05

Bias (B) [% from span] 1.4

Scale factor error (DK) [% from scale factor] 0.7

Cross-axis sensitivity (S) [(°/s)/g] 0.2

Power (P) [mW] 80

Table 2.
Gyro data sheet parameters.
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acceleration signal was imported into the wavelet analyzer, and the Daubechies func-
tion, along with the soft thresholding option and a seven-level decomposition, were
chosen. The process was replicated for the Symmlet function. Similarly, identical steps
were undertaken for the angular speed signal. Table 3 presents the values for MSE and
SNR parameters calculated along each of the decomposition processes.

In general, a higher SNR value (over 20 dB) indicates a stronger signal relative to
the noise, making the signal more distinguishable from the noise and resulting in
improved performance for navigation data processing applications [17]. On the con-
trary, reducing the MSE implies achieving better results. Usually, the optimal level of
decomposition is found depending on the lowest MSE and highest SNR values. Based
on the data presented in the table, it is evident that the optimal level of decomposition
for the Daubechies wavelet was determined to be 5, while for the Symmlet wavelet, it
was found to be 6. The comparison of the results obtained by the two functions for
each sensor case indicates the superior performance of the Daubechies function. As a
result, the Daubechies function will be used in the denoising procedure of the entire
navigation algorithm.

Significantly, it is worth noting that in [11, 12], Daubechies wavelets demonstrated
remarkable success in denoising comparable signals. In [11], the SNR values were
around 13 dB, suggesting a signal that was more susceptible to noise contamination
and weaker in comparison to our signals.

Figure 10.
Simulated perturbed outputs of the MEMS sensors.

Wavelet
decomposition level

Daubechies Symmlet Daubechies Symmlet

MSE
(�10�3)

SNR
(dB)

MSE
(�10�3)

SNR
(dB)

MSE
(�10�4)

SNR
(dB)

MSE
(�10�4)

SNR
(dB)

1 14.23 23.95 19.45 23.24 25.80 20.56 26.17 20.05

2 14.16 24.43 23.31 24.12 17.51 21.03 17.20 20.76

3 14.10 24.88 22.58 24.87 13.61 21.45 13.31 21.35

4 14.02 25.01 19.17 25.02 11.56 21.77 10.99 21.86

5 13.87 25.40 14.23 25.56 10.90 21.90 10.95 21.87

6 13.55 25.45 18.77 25.57 10.18 22.18 11.24 21.40

7 13.69 25.44 22.05 25.44 10.77 22.10 12.11 21.54

Table 3.
Wavelet filtering performance indicators.
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5. Software implementation of the strap-down navigation algorithm

5.1 Definition of the strap-down problem statement

The strap-down architecture presents a navigation challenge centered on precisely
estimating the position, velocity, and orientation of the monitored vehicle. This esti-
mation is based on the measurements acquired by its IMU in the vehicle body frame
(SV) and then transforming them relative to an initial reference frame, known as the
local vertical geodetic frame (SG). The main challenge in this paper is to eliminate the
errors introduced by these sensors in the navigation algorithm.

The algorithm can be divided into two main parts, each with its corresponding
inputs. The first part involves attitude determination, which utilizes the angular speed
components provided by the triad of gyros. The second part is dedicated to global
position and velocity estimation, relying on the acceleration components returned by
the triad of accelerometers.

5.2 Attitude determination algorithm

The algorithm is intended to use the angular rate measurements obtained from the
gyros. By solving a differential equation, the algorithm calculates and provides the
attitude angles of the monitored vehicle as outputs. For the current case, the Wilcox
method using a matrix representation was chosen to solve the Poisson equation for
attitude determination [18].

_R
l
v ¼ Rl

v �
0 �ωz ωy

ωz 0 �ωx

�ωy ωx 0

2
64

3
75, (7)

where:
Rl
v – direction cosine matrix which assures the shift between the vehicle and the

local horizontal frame.
ωx,ωy,ωz – the components of the angular speed provided by the strap-down

gyrometers triad.
Eq. (7) states the recursive calculation of the Rl

v matrix tn iteration step
considering the tn-1 elements of the matrix. Hence, the Wilcox method can be
described as an iterative integration technique, resulting in the following form of the
previous relation:

Rl
v tnð Þ ¼ Rl

v tn�1ð Þ � T tnð Þ (8)

where T tnð Þ is a transition matrix defined in [19]:

T tnð Þ ¼
1 �Δϕz tnð Þ Δϕy tnð Þ

Δϕz tnð Þ 1 �Δϕx tnð Þ
�Δϕy tnð Þ Δϕx tnð Þ 1

2
64

3
75 (9)

Notations: Δφx, Δφy, Δφz – the angular increments from the roll, pitch and yaw
axis calculated as follows [18]:
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Δϕx tnð Þ ¼
ðtn
tn�1

ωxdt ¼ ωx tnð Þ � tn � tn�1ð Þ ¼ ωx tnð Þ � Δt

Δϕy tnð Þ ¼
ðtn
tn�1

ωydt ¼ ωy tnð Þ � tn � tn�1ð Þ ¼ ωy tnð Þ � Δt

Δϕz tnð Þ ¼
ðtn
tn�1

ωzdt ¼ ωz tnð Þ � tn � tn�1ð Þ ¼ ωz tnð Þ � Δt

8>>>>>>>><
>>>>>>>>:

(10)

where Δt ¼ tn � tn�1 is the calculation step used in numerical integration.
Besides the numerical integration of the Poisson equation, the attitude algorithm

requires an orthonormalization procedure for the Rl
v matrix, which needs to be

updated at each iteration step by imposing the following conditions:

Rl
v � Rl

v

� �T ¼ Rl
v

� �T � Rl
v ¼ I3 (11)

Conceptually, this condition is valid if the truncation order of the integration
method goes to the infinite (m!∞). Nonetheless, the current case uses a finite value
for m (m = 1) a truncation error arises, resulting in an approximate version of the
rotation matrix, R̂

v
l : For this reason, at each iteration of the algorithm, an approximate

matrix X of R̂
v
l has to be found to avoid the transition of the rectangular trihedral into

a quasi-rectangular one.
According to Ref. [18, 20], the expression of X is given by:

X ¼ R̂
l
v � R̂

l
v

� �T
� R̂l

v

� ��1
2

(12)

By defining the error matrix [16]:

E ¼ R̂
l
v

� �T
� R̂l

v � I3 (13)

The final expression of X becomes [19]:

X ¼ R̂
l
v � I3 � 1

2
Eþ 3

8
E2 � 5

16
E3 þ 25

128
E4 � 63

256
E5 …

� �
(14)

The rotation matrix of the local horizontal frame!vehicle referential transformation
Rv
l can be obtained by transposing the X matrix. Moreover, the vehicle attitude angles can

be calculated using the elements of Rv
l rij
� �

1≤ i,j≤ 3 and the following relations [17]:

φ ¼ arctg
r23
r33

� �
, θ ¼ arcsin �r13ð Þ,ψ ¼ arctg

r12
r11

� �
(15)

The subsequent stage involved the software implementation of the Wilcox
method in MATLAB/Simulink using the S-function block “WilcoxM.m” [18].
The entire scheme was simplified within the “Attitude” subsystem, which
handles the attitude determination aspect of the navigation problem. The block
processes the angular speed components into the Euler angles and the corresponding
rotation matrix (Figure 11).
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5.3 Position and velocity estimation algorithm

The second part of the algorithm involves utilizing the linear accelerations along
the three axes to compute the speed and position components of the monitored
vehicle through integration. Because of the strap-down architecture, the
acceleration components are sensed within the vehicle body frame and must be
converted into the local North-East-Down frame (NED). This transformation is
achieved by multiplying the acceleration vector with the previously determined rota-
tional matrix (Figure 12).

However, an inconvenience arises with accelerometers as they cannot distinguish
between the kinematic acceleration a*c and the gravitational acceleration g*, instead,
they measure the resultant of both, given by a* ¼ a*c þ g*. To address this issue, a
model for the Earth’s gravitational field is established to correct the accelerations and
separate the kinematic and gravitational components. According to [18, 21], the com-
ponents of gravitational acceleration in the NED frame are given by:

gx ≈0

gy ≈0

gz ≈ 9:7803þ 0:0519 � sin 2ϕ� 3:086 � 10�6 � h,
(16)

where: ϕ – geodetic latitude, h – vehicle altitude.

Figure 11.
Wilcox method software implementation.

Figure 12.
‘Integrator’ block.

26

Modern Applications of Wavelet Transform



Following the correction procedure, the accelerations can now be integrated to
compute the speed and position in the local horizontal frame (Figure 13). To deter-
mine the global position of the vehicle, including its latitude, longitude, and altitude,
the position coordinates in the NED frame must be converted to the SG frame. This
conversion involves a two-step process: first, from NED to the Earth-Centered-Earth-
Fixed (ECEF) frame, and then from ECEF to SG. For these transformations, iterative
algorithms defined in [22] were employed.

The software implementation of the position and velocity estimation algorithm
follows a systematic approach. Each step mentioned above will be represented by a
specific block, which reveals the underlying mathematical relationships and includes a
user interface for inputting initial data (Figure 14).

The integration block utilizes the initial values of speeds in the NED frame, the
initial altitude, and the integration step [23].

The correction block requires latitude and altitude information obtained during the
preceding iteration and applies the corrective model at each step (Figure 15) [22].

Figure 13.
‘Gravity_correction’ block.

Figure 14.
‘NED_ECEF’ and ‘ECEF_SG’ conversion blocks.

Figure 15.
MATLAB/Simulink scheme of the strap-down navigation algorithm.
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Additionally, the NED ! ECEF and ECEF!SG conversion blocks utilize for the
current step the geodetic coordinates obtained before for accurate processing. They
were also implemented according to [23].

The final scheme of the whole navigation algorithm, combining both attitude and
global positioning parts can be observed in Figure 15. The subsystem ‘NAV’ that uses
the IMU measurements and returns the attitude, position and velocity of the moni-
tored vehicle was created from it in Figure 16.

6. Validation of the wavelet filter and strap-down navigation algorithm
integration

6.1 Flight scenario definition

The focus of this chapter is on the strap-down navigation system designed for
deployment on aerial vehicles engaged in short-duration missions. Consequently, in
the software-based experimental phase, the emphasis is placed on simulating real-life
scenarios. Reference [12] serves as compelling evidence that the investigation of
digital methods to optimize inertial sensor data is most effectively conducted by
applying them in practical scenarios and analyzing their impact on the ultimate atti-
tude and position results. To ensure this, specific constant acceleration and angular
rate inputs have been selected for our study to mimic the conditions experienced
during take-off and level-flight ascent: fx = 5 m/s2, fy = 0 m/s2, fz = �9.82 m/s2, omx =
omz = 0°/s, omy = 0.2°/s. The algorithm was also initalized with the following vari-
ables: vN = 4 m/s, vE = 0 m/s, vD = �2 m/s, φ0 = θ0 = ψ0 = 0. The starting point of the
vehicle was set to 25.457319° longitude, 44.926899° latitude, and 20 m altitude. The
duration of the mission (or the simulation time) was established to 60 seconds.

Figure 16.
‘NAV’ simplified block of the navigation algorithm.
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Observations:

• the z-axis specific force value was determined using the initial geodetic
parameters, employing the relationship (16);

• initial attitude angles equal to 0 imply that the body-fixed frame is aligned with
the NED frame;

• according to the initial NED speed components, the output latitude should
encounter a slight rise, the longitude should remain close to zero and the altitude
should significantly increase.

6.2 Generation of IMU perturbed data

To generate the perturbed MEMS outputs, referred to as “real” data, the afore-
mentioned constant inputs were fed into the Simulink “IMU” block through the two
MEMS models earlier mentioned and configured. The resulting signals from the sim-
ulation have been depicted in Figure 17.

The wavelet function chosen for denoising was Daubechies due to the previous
results, and a 6-level decomposition was applied, resulting in the filtered signals
shown in Figure 18.

6.3 Simulation detection cases

The proper evaluation of the filter’s effectiveness involved conducting a numerical
simulation in three distinct cases based on the type of inputs used for the algorithm in
Simulink:

• Ideal Case: The ‘NAV’ block uses constant sensor inputs, representing the
numerical values defined in the first section.

• Real/Perturbed Case: The ‘NAV’ block employs the perturbed inputs defined in
Figure 17, applying numerical values at the entrance of the sensor models.

Figure 17.
Perturbed IMU outputs: Accelerations – Left, angular speeds – Right.
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• Filtered Case: The ‘NAV’ block utilizes the filtered inputs defined in Figure 18,
obtained by denoising the outputs shown in Figure 17.

Figure 19 presents the MATLAB/Simulink implementation of the three simulation
cases.

Figure 18.
Filtered IMU outputs: Accelerations – Left, angular speeds – Right.

Figure 19.
MATLAB/Simulink configuration of the three algorithm scenarios.
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6.4 Results of the numerical simulation

The evaluation entailed comparing the absolute errors between the nine parame-
ters (latitude, longitude, altitude, speed components in NED, and attitude angles)
obtained from both the perturbed and filtered cases and the ideal navigation solution,
which was illustrated in Figure 20. The evolution of the parameters follows the
expected pattern from the picked numerical values:

• λ remains constant, Φ slightly increases, while h rises to almost 700 m from the
initial value of 20 m;

• vN increases, vE remains null and vD decreases;

• φ and ψ remain null, while θ increases to almost 12°.

Figure 21 shows the graphical representation of the errors obtained in both cases:
red color for the perturbed case and blue color for the filtered case.

Right from the outset, it becomes evident that the error curve of the filtered case
exhibits a less pronounced trend compared to the perturbed case. This visual obser-
vation suggests that the filtering procedure enhances the error evolution in relation to
the ideal navigation solution. In terms of numerical analysis, Table 4 presents the
maximum absolute error values obtained for each parameter and input case.

In every parameter case, the errors consistently decrease after filtration. Notably,
the most significant improvement was observed in the altitude parameter, which saw
a reduction of nearly 60 meters following wavelet denoising. Additionally, the

Figure 20.
Ideal navigation solution.
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attitude angles exhibit a clear enhancement in signal characteristics, effectively alle-
viating the oscillatory noise introduced to the output signal of the MEMS sensors. The
overall performance of the wavelet filter proves to be notably high, demonstrating a
clear improvement in the positioning accuracy of the monitored vehicle.

7. Conclusions

The chapter presented a modern approach on improving the measurements of low-
cost miniaturized inertial sensors, which currently stand as a viable technical avenue
for the architecture of inertial measurement units. These sensors can be seamlessly
incorporated into the framework of strap-down inertial navigation systems, catering
to diverse applications like aerial vehicle surveillance. Consequently, the precision and

Figure 21.
Absolute errors obtained during the simulation.

Model Maximum absolute error

λ [deg]
�10�4

Φ [deg]
�10�4

h
[m]

vN
[m/s]

vE
[m/s]

vD
[m/s]

φ [deg]
�10�3

θ
[deg]

ψ [deg]
�10�3

Perturbed 9.56 9.09 74.65 3.42 0.68 0.87 17.64 0.04 18.02

Filtered 2.18 8.47 16.78 3.18 0.58 0.83 2.76 0.02 5.01

Table 4.
Maximum absolute errors obtained during the simulation.
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positioning accuracy of these sensors emerge as crucial focal points for researchers to
enhance.

The primary aim of this study was to evaluate the applicability of wavelets, a
potent analytical tool, in addressing the challenge posed by perturbed navigation data
in strap-down MEMS IMUs.

Our research was divided into two distinct phases. The initial phase encompassed a
comprehensive exposition of miniaturized inertial sensors and their typical errors.
Subsequently, the issue of signal corruption associated with these sensors was
outlined, along with the prerequisites for its resolution. The theoretical foundation of
wavelet theory was introduced, accompanied by an enumeration of key reasons that
render it a suitable choice for the present case.

The first experimental part involved an examination of the wavelet filter’s impact
on an accelerometer and gyro model, both realized within MATLAB/Simulink. Dis-
tinct functions were employed for each sensor, and their efficacy was gauged through
the computation of evaluation metrics. Following the application of the denoising
technique using the MATLAB/Wavelet Analyzer tool, there was a notable reduction in
noise levels, leading to enhanced signal attributes.

The second phase aimed at globally validating the efficacy of the wavelet filter by
applying it to the complete strap-down navigation algorithm. The mathematical for-
mulations of both attitude determination and position and velocity estimation com-
ponents of the navigation algorithm were outlined, followed by their software
implementation within MATLAB/Simulink. A practical scenario depicting the take-off
of an aerial monitored vehicle was selected for numerical simulation of the strap-
down algorithm. In this instance, to assess the performance of the denoising tech-
nique, three distinct input cases for the algorithm were examined. The ultimate
objective was to compare the influence of unfiltered and filtered measurements on the
navigation computation. Through a comparison of the absolute errors acquired in
these two scenarios with the hypothetical ideal navigation solution, wherein numeri-
cal values serve as inputs, the outcomes underscored a substantial enhancement in
positioning accuracy achieved through wavelet filtering. The evidence is presented
through both graphical depictions and numerical values of the maximum absolute
errors.

The overall conclusion drawn from the work presented in this chapter uncovers
the potency of wavelets as a signal processing tool, offering remarkable attributes that
hold promise for further advancements in the realm of MEMS-based strap-down INS.
Given the numerous advantages bestowed by MEMS technology on the sensor mar-
ket, the incorporation of wavelet filtering stands as a potentially advantageous step
that could yield even greater benefits. The synergy between these two domains pre-
sents a compelling proposition that merits careful consideration and exploration.
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Chapter 3

The Use of the 2D and 3D Complex
Wavelet and Ridgelet Transforms
in Geophysical Prospecting: Case of
Potential Fields Data
Hassina Boukerbout

Abstract

The complex wavelet and ridgelet transforms are used in the potential field data
interpretation for identifying the buried structures responsible for potential field
anomalies. Its basis is the use of particular analyzing wavelets belonging to the Poisson
semigroup that possess amazing properties regarding potential fields. In fact, the
analyzed anomaly displays a conical signature in the wavelet domain and whose apex
is pointing out at the causative homogeneous structure. Fundamentally, the interpre-
tation is performed in the upward-continued domain where, the dilation of the wave-
let transform is the upward-continuation altitude. This confers on the wavelet
transform a considerable advantage: its robustness with respect to noise. The method
is also developed to identify the depth, horizontal positions, size, strike direction, dips
and shape of elongated 3D structures such as finite-dimensional dykes and faults. For
this type of anomaly, the 2D wavelet transform corresponds to the ridgelet transform
performed in the Radon domain, where elongated anomalies are recognized by high
amplitude signatures. A reminder of the developed theory and applications in the 2D
and 3D cases on real case studies are shown.

Keywords: continuous wavelet transform, ridgelet transform, radon domain,
potential fields anomalies, 2D and 3D imaging

1. Introduction

One of the most important applications in geophysical prospecting is the identifi-
cation, localization and characterization of bodies of geological interest, especially the
causative sources of potential field anomalies (gravitational, magnetic, electrical,
thermal and so on) measured at the surface or since high-resolution marine and
airborne surveys are carried out. Thus, it continues to stimulate many important
methodological developments in analysis and inversion techniques [1]. The purpose of
inversion methods is to recover the source distribution using an integral equation that
relates the measured potential field and the causative source distribution [2–5]. These
analysis techniques contribute to reducing the non-uniqueness of the inverse problem
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by adding some a priori geological assumptions [6, 7]. Another category of processing
methods that are not part of the inverse methods and which does not seek after the
distribution of the source but can give information on the depth of the top of the
causative sources [8, 9] or data transformation techniques such as downward and
upward continuations, horizontal and vertical derivatives or reduction to the pole and
oblique derivatives which produce the transformed fields, where the features of the
original field are enhanced, using the relationship between the measured field and the
distribution of its sources, based on a sum of convolution products using several
transformation operators and an appropriate Green function [10–15]. However, these
methods do not allow localizing sources along the z dimension, so another analyzing
method based on the shape of the anomalies is the Euler deconvolution [16], which
needs to be improved to eliminate noise effects since it is based on the calculation of
gradients [17].

The continuous wavelet transform is an approach that can make easier the analysis
of large amounts of data [18–21]. This method utilizes the homogeneity properties of
the potential field, to identify and localize the causative sources [22–25]. Further
works show the robustness of this method with respect to noise [26, 27], as revealed
by many applications in geophysical prospecting, such as in aeromagnetics data [28–
31], spontaneous electrical potential [32–34]; gravity data [35–37] and electromagnetic
data [38]. The 2D wavelet method is then developed [30, 39] in order to localize and
identify the potential fields anomalies causative structures in the case of elongated
structures such as dykes, faults, etc. Thus, in the present work, after a brief recall of
the theory in the cases 2D and 3D, an application to a part of aeromagnetic survey in
the NW of Algeria will be presented and discussed.

2. The wavelet theory

The application of wavelets is recent in signal and image processing, but its math-
ematical history is much older since it basically works linking the Littlewood-Paley
decomposition (1930), the version given by J.O. Strömberg from the basis of Franklin
(1927) and the identity of Calderön (1960) [40].

Wavelet theory has experienced great development since the 1980s, to name a few
references such as the work of Grossmann and Morlet (1984), [41, 42]. An interesting
compilation of work on the developments and applications of wavelet theory for non-
stationary signals in geophysics can be found in [19, 43, 44].

Wavelet analysis methods are essentially based on a representation of signals at
different scales [45]. This is very interesting in geophysics since the information
carried in the signals is carried by scaling laws or by non-stationaries. This is the case
of seismological signals or potential fields whose variations represent the effects of
multiscale or even fractal bodies of geological interest.

Other important developments have been made in wavelet theory since the work
of Grossmann and Morlet [46], such as orthogonal wavelets, multiresolution analysis
as well as the development of fast numerical algorithms [47–50]. The orthogonal
wavelets are used to develop discrete wavelet transforms, unlike the continuous
wavelet transform. An overview of how the discrete wavelet transforms can be used
in the analysis of geophysical time series can be found in [51]. For instance, the
continuous wavelet transform is used in the interpretation of potential field theory,
and a review can be found in [28].
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3. The continuous wavelet and ridgelet transforms

Here is a brief recall of the mathematical framework used in this work. The
continuous wavelet transform [46] makes it possible to process large amounts of data.
The wavelet transform allows for the detecting and characterizing homogeneous
singularities in signals using the property of the homogeneity degree of the analyzed
function [52–54].

3.1 The 1D continuous wavelet analysis of potential fields data

The wavelet transform w which is a convolution product of an analyzing wavelet
g and a function φ0, is defined as follows:

w g,φ0½ � b, að Þ �
ð

ℜ

1
a
g

b� x
a

� �
φ0 xð Þdx ¼ Dag ∗φ0ð Þ bð Þ (1)

Dag xð Þ � 1
a
g

x
a

� �
(2)

where Da is the dilation operator, the dilation parameter a>0, and b is the trans-
lation parameter.

To be admissible, the analyzing wavelet g xð Þ should have a zero-mean oscillating
behavior localized in a finite interval including the origin [19], which enables the
wavelet transform to perform a local analysis of the signal [38]. In the case of
complex continuous wavelet transform, this analyzing wavelet must be an oscillating
complex function, localized on the real line [39]. The dilated wavelets Dag xð Þ are a
then band-pass filters with bandwidth proportional to dilation a. This oscillating
property means that the wavelet has a vanishing integral and allows the reconstruc-
tion of the analyzed signal from its wavelet transform [28, 38, 39]. Also, the covari-
ance of the wavelet transform is an interesting property with respect to homogeneous
functions [39], where the geometrical meaning is that the wavelet of homogeneous
singularity displays a cone-like appearance whose apex points onto the singularity for
a↓0þ, so according to potential field theory, the analyzed field is produced by a
homogeneous source located at xs, zsð Þ and, the dilation may correspond to an
upward-continuation offset of the analyzed potential fields [24–27, 39]. So, the cone-
like structure apex is then located at xs, a ¼ �zsð Þ below the positive half-plane of the
wavelet.

3.2 The 2D continuous ridgelet transform of potential fields data

The 1D continuous wavelet transform method is applied to analyze 2D potential
field anomalies data, measured in the horizontal plane by generalizing the Eq. (2) and
then obtain the ridgelet transform [55, 56],

R r,φ0½ � b, a, s⊥ð Þ ¼
ð

ℜ2

1
a
r

b� x
a

, y, s⊥

� �
φ0 x, yð Þdxdy ¼

ð

ℜ

dx
a
g

b� x
a

� � ð

ℜ

φ0 x, yð Þdxdy

¼ W g,RT φ0, s==
� �� �

b, að Þ (3)
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where s⊥ a unit vector is perpendicular to the anomaly strike, s== is a unit vector in
the direction of the elongated anomaly. The analyzing ridgelet is obtained by steering
a 1D Poisson wavelet g xð Þ in the perpendicular direction y, RT is the Radon transform
of the potential field anomaly. The ridgelet transform of 2D anomalies, as defined in
Eq. (3) is obtained by computing the wavelet transform for each value of the angular
parameter in the Radon domain [28, 38, 39]. We use the complex ridgelet transform
since we use complex analyzing wavelets [39]. The complex wavelet transform allows
to analyze a signal using modulus and phase. The phase of the complex wavelet
transform provides information about the inclination of the source. The imaginary
part is obtained from the Hilbert transform of the real part. In this case, the complex
wavelets correspond to analytical signal and their modulus and phase can be deter-
mined [27, 38].

Both the modulus and the phase of the ridgelet transform are used to localize the
sources and, display conspicuous cone-like patterns associated with each analyzed
anomaly. This cone is pointing to the source depth zs [39]. These locations are
obtained by testing the geometry of the cone pointing towards the depth of the source
for each grid point, in the half-space x, zð Þ [38, 39]. Subsequently, a statistical method
is introduced, and the likelihood for the occurrence of an apex at source location
xs, zsð Þ is evaluated by the maximum entropy criteria ρ [38, 39, 57]:

ρ xs, zsð Þ ¼ lnN þPN
i¼1hi ln hi

lnN
(4)

N corresponds to the number of grid points; hi correspond to the histogram values
of the slopes along the modulus or phase lines forming the cone; ρ takes its values in
the range [0, 1]. The result is a tomography map of the sources.

4. Application to aeromagnetic data

In this section, we show some results obtained by applying the complex wavelet
and ridgelet analysis, to identify and localize structures responsible for aeromagnetic
field anomalies, in the seismogenic Cheliff basin (NW of Algeria). The geological and
seismotectonics framework can be found in [58, 59]. This region is one of the most
seismically active zones of the western Mediterranean Sea [58, 60], related to the
collision between African and European plates since the Upper Cretaceous [61].
The kinematic models derived from the Atlantic Ocean magnetic anomalies study
have shown that this convergence is linked to a counter-clockwise rotation of
Africa relative to Eurasia [61, 62]. The seismic activity in this area is directly associ-
ated with the plate boundary between Europe and Africa. This region is known for
having been the site of two destructive earthquakes: 9 September 1954, earthquake of
Orleansville with a magnitude of 6.5 and 10 October 1980, El Asnam one, with a 7.3
magnitude.

The aeromagnetic data used in this work resulted from the digitization of aero-
magnetic maps issued from the aeromagnetic survey of Algeria. This survey was
carried out by Aero Service Corporation between 1970 and 1974. The maps, digitized
by the shape recognition method, were interpolated at the nodes of a 325� 325 regular
grid and reduced to a pole (Figure 1). This map displays important magnetic anoma-
lies in North, along the coast, in the Mediterranean Sea and in the South. The ridgelet
analysis results are shown in Figure 2. The 3D image obtained attests to the geological
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and seismotectonic complexity of the area. The elongated structures identified
are a juxtaposition of prismatic bodies at different depths. The structures bordering the
Chelliff basin are elongated in the E-W direction. In the North, in the Mediterranean
Sea, their depth reaches 31 km. At the coast, within the volcanic structures, these
structures reach a depth of 20 km. To the south of the basin, at the Ouarsenis Moun-
tains, the depth of these structures reaches 29 km. In the Cheliff basin, the structures
are oriented in NE-SW, NW-SE and E-W directions and located between near-surface
and 25 km, while those oriented in N-S direction are at depth ranging between 9 and
16 km. Elongated structures oriented N-S appear to the North, limiting offshore and
coastal anomalies. These structures reach depths of 20 km.

In order to skecth out the topography of the magnetized substratum and identify
the structures in depth, the complex wavelet transform is applied to a N-S magnetic
anomalies profile, located at 1°400 and crossing magnetic anomalies from Mediterra-
nean Sea to the North, as far as the Ouarsenis Mountains in South. Figure 3 shows the
intensity of magnetic anomaly (top of figure) varying from �40nT to +40nT. The
middle of the figure corresponds to the modulus of the wavelet transform and the 2D
image (bottom), where the magnetized substratum top depth, identified by the max-
imum entropy criteria, ranges between 6 and 30 km. The deepest is located in North
(Med. Sea) and South (Ouarsenis Mounts); less deep in the sedimentary basin (thick-
ness of basin). Many faults and contacts are identified along this profile. We can cite
the Oued Fodda region (site of 1980 earthquake), where the O. Fodda fault is identi-
fied at the latitude of 4010 km at a depth of 6 km, with an inclination of 30° identified
from the phase of the wavelet (Figure 4), these results are confirmed by the results of
dislocation model of vertical movements for this area [59]. A good correlation is
shown with N-S geological profile (Figure 5).

Figure 1.
Aeromagnetic map of Chlef region: total field anomaly reduced to the pole (Modified from [31]).
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5. Conclusion

The use of the wavelet and ridgelet transform in geophysical exploration allows for
the identification of sources of potential field anomalies in 2D and 3D cases. The
wavelet transform possesses many interesting mathematical properties with respect to
potential fields theory; studies show that when applied to potential fields, it can have a
deep physical sense, since the idea in the use of a homogeneous source is that an
elongated geological structure may be replaced by a small number of equivalent point

Figure 2.
3D imaging of magnetized structures identified from the complex ridgelet transform. The North direction is given
by the latitude axis. The color scale corresponds to the maximum entropy criteria to select the source location
(modified from [31]).

Figure 3.
The shape of the magnetized substratum and the identified structures in-depth, along a N-S profile (1°400E)
(modified from [31]).
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sources. The homogeneity of these point sources depends on the shape of the geolog-
ical structure. Also, in the range of dilations, the signal-to-noise ratio is much better
and makes the method more robust.

The ridgelet transform helps in the automatic detection of elongated structures in
3D, and the information provided by the wavelet transform concerning the identified
sources, such as dip, depth, and dimensions, can be used to reduce the non-
uniqueness of the inverse problem considerably. The application of real aeromagnetic
data, without any a priori assumptions, shows a good correlation with known geolog-
ical structures and identifies many more unknown structures.

Figure 4.
Phase map of the complex continuous wavelet transform (modified from [31]).

Figure 5.
Correlation with geological N-S profile (modified from [31]).
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Chapter 4

Perspective Chapter: Detecting
Volatility Pattern of Assets Returns
Using Wavelet Analysis
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Abstract

This chapter advocates for the use of wavelet analysis as a potent tool in under-
standing the dynamic nature of asset price volatility in financial markets. While
traditional methods like GARCH models have been valuable, wavelet analysis offers a
distinctive approach by decomposing time series data into various scales and fre-
quencies. This enables a comprehensive perspective, capturing both short-term fluc-
tuations and long-term trends. In an era of interconnected and information-rich
financial markets, the ability to discern subtle volatility patterns is crucial. The chap-
ter provides a guide to wavelet analysis, explaining its foundations, principles, and
methodology for application to financial time series. Real data from NASDAQ Com-
posite, DOW Incorporated, S&P500, and Omnicell Inc. is used for illustration. The
efficacy of wavelet analysis is emphasized, offering finance professionals, academia,
and researchers a simple yet robust approach to navigate the complexities of modern
financial markets, make informed decisions, and adapt to evolving conditions. The
chapter aims to enhance understanding of financial market behavior, inspiring further
research and innovation in financial analysis and risk management.

Keywords: volatility, wavelet analysis, wavelet coherence, continuous wavelet
transform, asset returns, stock market

1. Introduction

The dynamic landscape of the financial markets is very volatile, and the concept of
volatility plays a pivotal role in the financial market [1, 2]. Volatility, often referred to
as the degree of variation in asset prices over time, serves as a fundamental indicator
for investors, traders, and risk managers [3, 4]. Accurate assessment of volatility
patterns is important in making informed decisions, managing risk exposure, and
optimizing investment strategies [5]. While traditional methods of volatility mea-
surement, such as the generalized autoregressive heteroskedasticity (GARCH)
models, have provided valuable insights, the complexity and nuances of market
behaviors demand more alternative and more comprehensive approaches to volatility
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analysis [6–9]. In [10], the authors analyzed the multifractal properties of the US and
European stock markets to identify patterns in investor sentiment.

This chapter seeks to look at an alternative approach to volatility analysis through the
use of wavelet analysis. Wavelet analysis is a powerful mathematical tool that allows us
to explore the temporal dynamics of volatility patterns with a level of detail that tradi-
tional methods cannot easily achieve. By decomposing financial time series data into
different scales and frequencies, wavelet analysis offers a richer perspective on market
behavior that captures both short-term fluctuations and long-term trends [11–13].

As the financial landscape becomes increasingly interconnected and information-
rich, the ability to detect and interpret subtle volatility patterns becomes important.
The chapter aims to provide a comprehensive understanding of wavelet analysis as a
tool for uncovering these patterns and extracting meaningful insights from complex
financial data. We will explore the foundations of volatility measurement, discuss the
principles of wavelet analysis, delve into the methodology of applying wavelets to
financial time series, and exemplify the approach using real data from the stock
market.

Through this exploration, readers will gain a deeper appreciation of the
power of wavelet analysis in understanding the intricate dynamics of asset returns
volatility. By embracing this simple yet robust approach, finance, academia, and
research professionals will be better equipped to navigate the complexities of
modern financial markets, make informed decisions, and adapt to evolving market
conditions.

2. Volatility in the financial market

The pattern of volatility in asset returns can provide insights into the risk and
expected returns of the asset. The knowledge of volatility pattern is a great tool
for investors as it helps them to know when to buy, sell, or hold their securities
[1, 2, 6, 14]. There are certain stylized facts about assets return volatility. They are:

i. Higher return volatility increases the probability of a bear market.

ii. Stocks with high volatility risk tend to have higher expected returns.

iii. When volatility increases, the equity and variance risk premiums fall or stay
flat at short horizons despite the higher future risk.

iv. Volatility clustering is a well-known stylized feature of financial asset returns,
and there may be an asymmetric pattern in volatility clustering.

v. Increases in volatility positively forecast the variance risk premium at longer
horizons.

3. Time domain and frequency domain analysis

Time domain analysis focuses on analyzing signals or mathematical functions in
reference to time. It displays the changes in a signal over a span of time. It is
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commonly visualized using graphs or plots that show the signal’s behavior over time.
It provides insights into the temporal characteristics and dynamics of the signal. It is
useful for studying the behavior of asset returns over different time periods. It can
capture trends, patterns, and fluctuations in the returns over time [4, 5].

Frequency domain analysis, on the other hand, analyzes signals or mathematical
functions in reference to frequency. It provides information about the distribution of
signal energy across different frequencies. It is commonly visualized using tools, such
as spectrum analyzers or frequency response plots. It helps to identify the presence of
specific frequencies or frequency components in the signal. It is useful for studying
the periodicity, cycles, and spectral characteristics of asset returns. It can reveal
information about the dominant frequencies or frequency bands that contribute to
the returns [14, 15].

3.1 Key differences between time and frequency domain

Representation: Time domain analysis represents signals in the time
dimension, while frequency domain analysis represents signals in the frequency
dimension.

Visualization: Time domain analysis is commonly visualized using graphs or plots
of signal amplitude versus time, while frequency domain analysis is visualized using
tools, such as spectrum analyzers or frequency response plots.

Focus: Time domain analysis focuses on the temporal behavior and changes in the
signal, while frequency domain analysis focuses on the distribution of signal energy
across different frequencies.

Insights: Time domain analysis provides insights into the temporal characteristics
and dynamics of the signal, while frequency domain analysis provides insights into the
spectral characteristics and frequency components of the signal.

Applications: Time domain analysis is useful for studying trends, patterns, and
fluctuations over time, while frequency domain analysis is useful for studying peri-
odicity, cycles, and spectral properties.

In the context of asset returns, time domain analysis helps understand the tempo-
ral behavior and patterns of returns, while frequency domain analysis helps identify
dominant frequencies or cycles that contribute to the returns. Both approaches have
their own advantages and can provide valuable insights into the characteristics of asset
returns.

4. Wavelet analysis

Wavelet analysis is a tool that utilizes wavelets, which are mathematical functions
to represent a signal in a localized and adaptable manner. It has the ability to capture
the signal dynamics and identify the patterns and features in both time and frequency
domains.

The capacity to evaluate time series data with nonstationary (changing over time)
characteristics is a key benefit of wavelet analysis. This makes it practical for a variety
of applications, including denoising, signal compression, and image and audio
compression.

Numerous applications, including banking, biomedicine, engineering, and
geophysics, have used wavelet analysis. It has been used in finance to evaluate financial
time series data, including stock prices, to spot market patterns and trends. It can be
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used in biomedicine to examine physiological signals, such as brain activity and elec-
trocardiograms. It can be used to analyze data in geophysics, such as seismic waves.

The wavelet transform takes a signal and changes it into a form that brings up
certain features of the series for analysis. It is a real-valued and square-integrable
function ψ ∈L2 ð Þ that satisfies the condition

ψτ,s tð Þ ¼
1ffiffi
s

p ψ
t� τð Þ
s

, s∈þ, τ∈: (1)

Where s in Eq. (1) is the scaling or dilation parameter and τ is a translation or
position parameter. For a time series x tð Þ, its wavelet is oscillatory (goes up and down)
that is

Ð∞
�∞ψ x tð Þð Þdx ¼ 0. It is integrable, that is,

Ð∞
�∞∣ψ x tð Þð Þ∣dx<∞. It also satisfies the

admissibility condition.
A wavelet ψ ∈L2 ð Þ is said to be admissible if its Fourier transform,

F x tð Þð Þ ¼ Ð∞
�∞ψ uð Þe�i2πux tð Þdu, satisfy Cψ ¼ Ð∞

�∞
F x tð Þð Þj j2
x tð Þ dx where 0<Cψ <∞:

4.1 Continuous wavelet transform (CWT)

The CWT is given as

Wx u, sð Þ ¼
ð∞
�∞

x tð Þ 1ffiffi
s

p ψ
t� u
s

� �
dt (2)

In Eq. (2), Wx u, sð Þ is simply a projection of a chosen wavelet on a time series. It is
also the wavelet coefficient of the time series x. It is possible to reconstruct the
decomposed CWT to recover the time series using

x tð Þ ¼ 1
Cψ

ð∞
0

ð∞
�∞

Wx u, sð Þψu,s tð Þdu
� �

ds
s2
, s 6¼ 0 (3)

Provided Cψ satisfies the admissibility condition. Continuous wavelet transforms
have a very high computational cost.

4.2 Wavelet coherence

Coherence is analog to classical correlation. To identify both frequency bands and
time intervals when two signals are related, wavelet coherence is used. Given signal X
(t); Y(t), their wavelet coherence is defined as

R2
x,y s, τð Þ ¼ ∣S s�1Wx,y s, τð Þ� �

∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S s�1 Wxj j2
� �

� S s�1 Wy
�� ��2� �r , 0≤Rx,y s, τð Þ≤ 1 (4)

where S in (4) is a smoothing operator defined as S Wð Þ ¼ Sscale Stime W sð Þð Þð Þ,
where Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in
time [16]. and is dependent on the choice of mother wavelet. Values of the wavelet
coherence close to zero indicate weak correlation, while values close to one show
evidence of strong correlation.
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5. Implementation of wavelet analysis in R

Several R packages are available for the implementation of wavelet analysis in R.
Some of the packages and their descriptions:

1.WaveletGARCH: This package is used to fit the Wavelet-GARCH Model to
Volatile Time Series Data.

2.Wavelets—This package provides functions for computing wavelet filters,
wavelet transforms, and multiresolution analyses. It also includes functions for
plotting wavelet transform filters.

3.WaveletComp—This package provides functions for wavelet analysis and
reconstruction of time series, cross-wavelets, and phase difference. It also
includes functions for significance with bootstrap algorithms.

4.Waveslim—This package provides functions for wavelet-based signal
processing, including denoising, compression, and signal reconstruction. It also
includes functions for wavelet-based time series analysis and visualization.

5.Wavethresh—This package provides functions for wavelet thresholding,
including hard, soft, and adaptive thresholding. It also includes functions for
wavelet-based denoising and signal reconstruction.

6.WaveletML: This package decomposes time series into different components
which helps to capture volatility at multi resolution level by various models.
Then it uses Machine Learning models (Artificial Neural Network and Support
Vector Regression have been used) is used for data predictions.

7.WaveletANN: This package wavelet and ANN technique to de-noise data and
make forecast.

8.Biwavelets—This package provides functions for wavelet analysis for univariate
and bivariate wavelet analysis.

These R packages provide a range of functions for wavelet analysis, including
continuous wavelet transform, wavelet coherence, wavelet cross-spectrum, wavelet
packet transforms, and wavelet variance stabilization. They also provide functions for
plotting wavelet transform filters and significance with bootstrap algorithms. These
packages can be useful for detecting volatility patterns in financial returns and ana-
lyzing signals or functions in both the time and frequency domains.

6. Algorithm for implementation of wavelet analysis

i. Collect data

ii. Clean the data

iii. Compute the descriptive statistics
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iv. Get the returns of the data

v. Ensure the length of the data is of the power 2n

vi. Compute and plot the continuous wavelet transform of the returns of the
stock

vii. vii Compute and plot the wavelet coherence

viii. Interpret the result

7. DATA and data analysis

The data utilized for the example are from NASDAQ Composite (NASDAQ),
DOW Incorporated (DOW), S&P500 (SP500), and Omnicell Inc. (OMCL). Sourced
from Yahoofinance.com from August 8, 2019 to September 1, 2023. We first compute
the stock price returns and then follow all the steps in the algorithm as outlined above.

8. Result and interpretation of result

From the summary statistics in Table 1, it can be seen that the standard deviation
measures the dispersion of the data around the mean. The higher the standard devia-
tion, the more volatile the instrument is. Looking at the standard deviation of the four
stocks, we can see that DOW has the highest standard deviation of 5881.868, followed
by NASDAQ with 3312.895, SP500 with 828.6003, and OMCL with 38.96592. There-
fore, we can say that DOW is the most volatile stock, followed by NASDAQ, SP500,
and OMCL. In Table 2, we observe that the standard deviation of the returns shows
that the OMCL returns are the most volatile followed by NASDAQ, SP500, and DOW.
These results show that a stock could be highly volatile while its returns are not.

The time series plot in Figures 1–4 indicates that market forces were dominant, as
evidenced by the movement of the stocks. They all reached their lowest point simul-
taneously, as shown by the light blue oval highlighter. In the same vein, they also

SP500 DOW NASDAQ OMCL

Mean 3160.181 26664.38 9182.505 74.36086

Median 2919.35 26213.1 8070.12 67.21

Mode 4354.17 17924.24 7208.17 43.05

Std Deviation 828.6003 5881.868 3312.895 38.96592

Kurtosis �1.22743 �1.15351 �1.17895 0.121511

Skewness 0.29609 �0.07548 0.354491 0.990368

Minimum 1833.4 15691.62 4218.81 25.45

Maximum 4804.51 36722.6 16120.92 185

Count 2011 2011 2011 2011

Table 1.
Summary statistics of the stock price.
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SP500r DOWr NASDAQr OMCLr

Mean 0.000437 0.000284 0.000565 �0.0002

Median 0.001191 0.000756 0.001913 0.000177

Mode 0.011773 0.00956 0.009498 0

Std_Dev 0.011856 0.011647 0.016103 0.027882

Kurtosis 6.800708 14.20334 5.781579 27.42

Skewness �0.50498 �0.58657 �0.55666 �2.01229

Minimum �0.07141 �0.10353 �0.09504 �0.34406

Maximum 0.060343 0.081574 0.068863 0.140509

Table 2.
Summary statistics of the stock price return.

Figure 1.
Time series plot of SP500.

Figure 2.
Time series plot of DOW.

Figure 3.
Time series plot of NASDAQ.
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experience their peak at the same period as highlighted by the light-yellow rectangles.
In between these two periods, the stock price rose consistently until it reaches its peak,
they all took a downward move. While the others were struggling to stay afloat,
OMCL took a nose dive to a very low point (Figures 5–8).

The stock returns indicate that the point of highest volatility (with the highest width
shown by the green oval) occurred in the same period for all stock returns except
OMCLr whose highest volatility occurs at the point shown by the pink highlight.

The continuous wavelet transform (cwt) attempts to capture the volatility of the
stock return in time and frequency domain. The color indicates the intensity of the
volatility in any given region. The colder colors (blue through green) indicate regions
of low volatility, while the hot colors (yellow through red) indicate regions of high
volatility. The x-axis captures the time domain while the y-axis(period) captures the
frequency domain. The frequency domain goes from top (0) to bottom (256). The
area covered by the cone-like shape is called the cone of influence. This is the region in
which the values are statistically significant.

Figure 4.
Time series plot of OMCL.

Figure 5.
Time series plot of SP500. Returns.

Figure 6.
Time series plot of DOW returns.
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Figure 7.
Time series plot of NASDAQ returns.

Figure 8.
Time series plot of OMCL returns.

Figure 9.
Continuous wavelet transform of SP500 returns.

Figure 10.
Continuous wavelet transform of DOW returns.
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The cwt plots Figure 9 Continuous wavelet transform of SP500 returns.
Figures 9–12 shows that the returns generally have a very high volatility in the low-
frequency domain and low volatility in the high-frequency domain. The NASDAQ
return seems to have a higher volatility spread at higher frequencies. This is followed
by OMCL.

The wavelet coherence (wtc) captures the comovement of two securities in time
and frequency domain. It shows well their returns move together. The cooler color

Figure 11.
Continuous wavelet transform of NASDAQ returns.

Figure 12.
Continuous wavelet transform of OMCL returns.

Figure 13.
Wavelet coherence of SP500r and DOWr.
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(blue) shows that the two returns have low comovement, while the hotter color(red)
shows a very high comovement.

The wavelet coherence plots show that there is a very strong comovement between
SP500r and DOWr Figure 13, as well as between SP500r and NASDAQr Figure 14 at
almost all time and frequency (Figure 15). The comovement of DOWr and NASDAQr
Figure 16 is very high except some island between the 250 and 600 in the time
domain where there are interspersed with low volatility. The comovements of
SP500r and OMCLr, DOWr and OMCLr, as well as NASDAQr and OMCLr are
generally low with flashes of spots with high volatility. The implication of this for

Figure 14.
Wavelet coherence of SP500r and NASDAQr.

Figure 15.
Wavelet coherence of SP500r and OMCLr.

Figure 16.
Wavelet coherence of DOWr and NASDAQr.
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investors is that in creating portfolio, one should avoid securities with very high
comovement. This is to hedge the portfolios from ruin should there be a downturn in
the market (Figures 17 and 18).

9. Conclusion

In this chapter, we looked at the application of wavelet analysis as a tool to study
the volatility pattern of stock price and its return. The advantages of using wavelet,
which has the capability of uncovering the time, as well as the frequency properties of
the security are highlighted. We demonstrated the application using four stocks
SP500, DOW, NASDAQ, and OMCL. We computed the stock returns and named
them SP500r, DOWr, NASDAQr, and OMCLr. The continuous wavelet transforms
and the wavelet coherence were computed and their heatmap plotted.

The result of the continuous wavelet transforms shows that all the stock returns
have a very high volatility at low frequencies but low volatility at high frequencies.
This implies that investing in the short horizon will experience low volatility, while
investing in the long horizon will experience very high volatility.

The wavelet coherence, which is a measure of the comovement of the two securi-
ties in time and frequency domain captures an interesting pattern. The wavelet
coherence plots show that there is a very strong comovement between SP500r and
DOWr Figure 13, as well as between SP500r and NASDAQr Figure 14 at almost all

Figure 17.
Wavelet coherence of DOWr and OMCLr.

Figure 18.
Wavelet coherence of NASDAQr and OMCLr.
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time and frequency. The comovement of DOWr and NASDAQr Figure 16 is very high
except some region between the 250 and 600 in the time domain where there are
interspersed with low volatility. The comovements of SP500r and OMCLr, DOWr and
OMCLr, as well as NASDAQr and OMCLr are generally low with flashes of spots with
high volatility.

Our findings underscore the power of wavelet analysis in capturing both short-
term fluctuations and long-term trends in asset prices. We have shown that, while
stock price returns exhibit high volatility at low frequencies, their volatility dimin-
ishes at higher frequencies. This discovery has significant implications for investors,
highlighting the potential advantages of considering investment horizons when mak-
ing financial decisions.

Moreover, our investigation into wavelet coherence has revealed the intricate
relationships between different securities, uncovering instances of strong
comovement and periods of divergence. These insights are invaluable for portfolio
diversification strategies, emphasizing the importance of selecting securities with low
comovement to mitigate risk.

As financial markets continue to evolve and become increasingly complex, the
need for advanced analytical tools, such as wavelet analysis, becomes ever more
apparent. Wavelet analysis equips professionals in finance, academia, and research
with a powerful means to navigate these complexities, make informed decisions, and
adapt to ever-changing market conditions.

In conclusion, the application of wavelet analysis has illuminated the nuances of
financial market behavior, offering a deeper understanding of volatility patterns,
comovements, and the interplay between time and frequency. By embracing this
analytical approach, we arm ourselves with the knowledge and tools needed to thrive
in the intricate landscape of modern financial markets.
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Chapter 5

Discrete Wavelet Transform 
Application to Three-Phase 
Power System Short Circuit Fault 
Detection
Maysoun Alshrouf, Cajetan M. Akujuobi and Emad Awada

Abstract

In power system distribution, the transmission line is the bottleneck between 
power generation and consumers. Therefore, any fault or failure in the transmission 
line is critical and must be detected in a very short time. Meanwhile, as Discrete 
Wavelet Transform has special characteristics, it can be implemented to analyze and 
detect short circuit faults for the three-phase power system transmission line and 
identify the types based on phase-to-phase and phase-to-ground faults analysis. In 
this work, MATLAB Simulink was used to generate faults using a power distribution 
system simulator. The three-phase currents were analyzed using the Discrete Wavelet 
transform algorithm by decomposing the three-phase and ground currents and 
obtaining the detailed coefficients. As a result, the maximum value of the detailed 
coefficients is used to distinguish between different types of faults. Simulation results 
of the proposed method have shown promising results in detecting short circuit faults 
and identifying types of faults effectively.

Keywords: detailed coefficients, fault detection, fault types, short circuit fault, and 
wavelet transforms

1. Introduction

In the early days of ac power transmission in the United States, the operating volt-
age increased rapidly. Until 1917, electric systems were usually operated as individual 
units because they started as isolated systems and spread out only gradually to cover 
the whole country. The demand for large blocks of power and increased reliability 
suggested the interconnection of neighboring systems. Interconnection is advanta-
geous economically because fewer machines are required as a reserve for operation at 
peak loads and fewer machines running without load are required to take care of sud-
den, unexpected jumps in load. Reducing machines is possible because one company 
usually calls on neighboring companies for additional power. Interconnection also 
allows a company to take advantage of the most economical sources of power, and a 
company may find it cheaper to buy some power than to use only its own generation 
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during some periods. Interconnection has increased to the point where power is 
exchanged between the systems of different companies as a matter of routine.

Systems interconnection brought many new problems, most of which have been 
solved satisfactorily. Interconnection increases the amount of current that flows when 
a short circuit occurs on a system and required the installation of breakers to interrupt 
a larger current. The disturbance caused by a short circuit on one system may spread 
to interconnected systems unless proper relays and circuit breakers are provided at 
the interconnection point. Not only must the interconnected systems have the same 
nominal frequency, but also the synchronous generators of one system must remain in 
step with the synchronous generators of all the interconnected systems. Planning the 
operation, improvement, and expansion of the power system requires load studies, 
fault calculations, the design of means of protecting the system against lightning 
and switching surges and against short circuits, and studies of the system’s stability. 
Faults can be destructive to power systems. A great deal of study, development of 
devices, and design of protection schemes have resulted in continual improvement in 
the prevention of damages to transmission lines and equipment and interruption in 
generation following the occurrence of a fault.

With today’s advanced technology and widespread population across the globe, 
electrical power system networks become more complex to meet the growth in 
demand for electrical power energy. As a result, transmission lines can be seen as the 
arteries of the power system network that expand over several miles and act as an 
interconnection between power stations and consumers. Meanwhile, environmental 
effects on the open space transmission lines could cause fault occurrences in the 
power system [1]. In normal businesses operation and daily tasks, people’s lives are 
seriously affected by the fault of the power system. Whenever a fault occurs in the 
power system it causes damage to the devices connected and affects power quality 
transfer, power safety, and power stability that could lead to power blackouts [2].

Power transmission line fault identification and classification require fast and 
accurate analysis to detect the fault [3, 4]. The ability to detect and diagnose faults 
can help greatly in the protection of transmission lines and prevent damage to the 
power system. To solve this problem, a fault detection algorithm based on discrete 
Wavelet transform (DWT) is proposed in this paper. As power systems disturbances 
occurrence are nonstationary, nonperiodic, and short duration in most cases impulse 
super-imposed in nature, Wavelet transform can be one of the most suitable tools 
for the analysis of such faults and disturbances as in [3, 5–7]. The name wavelet first 
appeared in 1909 in thesis by Alfred Haar. Jean Morlet proposed the present theoreti-
cal form. The growth of interest in wavelets became huge. Wavelet analysis have 
developed mainly by Y. Meyer, and the main algorithm developed by Stephane Mallat 
in 1988. Since then many mathematicians and scientists have contributed towards the 
wavelets and their applications.

The main goal of this project is to find an accurate and quick way to detect short 
circuit fault to minimize system damage or even prevent it by taking action right away 
when fault detected. The process starts by generating known faults at known time 
using Simulink and MATLAB. The continuous wavelet transform is used to extract 
the detailed coefficients then compared it with a set threshold to detect if there is a 
fault then identify the fault type.

Per the IEEE 1159 standards, and as shown in [8, 9], constant observation for 
power system fault detection is required at all times to guarantee system reliability. 
Therefore, many researchers have studied power systems generation and distribution 
in terms of detecting faults and improving efficiency [10–14]. In [8, 15], about 70% 
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of blackouts can be associated with power relay malfunction, which allows faulty 
tripping. Several loads are extremely sensitive to voltage sags, and several studies 
have investigated power relay setting by synchronizing delay and islanding [1]. Yet, a 
slower delay setting may cause serious load damage and fast tripping will cause exces-
sive load isolation and shedding [2]. Meanwhile, other works had proposed monitor-
ing the power system through Wide Area Monitoring (WAM) technique as in [16, 17]. 
Yet, it was observed by [18], that this technique requires a high-speed primary relay 
and sophisticated communication infrastructure [15]. In addition, other work focused 
on current/voltage waveform distortion caused by harmonics and surrounding noises. 
That is due to noise attenuation in the transmission line, the power relay was prepared 
with a harmonic controller surpassing 15% of the fundamental waveform. Thus, for 
larger fundamental waveforms, harmonics components may be added to the wave-
form without detecting faults. Meanwhile, some work has been done in the Wavelet 
transform decomposition process to vanquish conventional algorithms of current/
voltage waveform analysis [2]. Therefore, to improve the exactness of monitoring the 
power system, this work will investigate the advantage of Wavelet transform in defin-
ing, locating, and classifying abnormality malfunction within a three-phase power 
system short circuit.

2. Wavelet and wavelet transform

Wavelets are mathematical functions derived from a mother wavelet. They are 
constructed by dilations and translations of the mother wavelet. The scaling param-
eter ‘a’ controls the dilation (expansion or contraction) of the wavelet, and the shift 
parameter ‘τ’ controls its translation along the time axis. This equation is showing 
the relationship between these parameters: ψa, τ (t) = |a|−1/2ψ {(t - τ)/a}. The mother 
wavelet ψ is a function with a mean value of zero, i.e., its integral over all values of ‘t’ 
is equal to zero (∫ψ(t)dt = 0). The wavelet transform of a signal f(t) includes decom-
posing the signal into a group of basic functions (wavelets) with different scales and 
translations. This decomposition permits for representing the signal in terms of its 
different frequency components at various resolutions. The wavelet transform is 
suitable to use for both continuous-time and discrete-time signals. When the wavelet 
transform is applied on a signal, the scale components that represent the signal’s 
different frequency components at different scales. Low frequency wavelets have ‘a’ 

Figure 1. 
Wavelet decomposition tree.
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value greater than 1, which represent the larger time scales, while high-frequency 
wavelets have ‘a’ values less than 1, representing smaller time scales. 

 Wavelets have found numerous applications across various domains due to their 
ability to analyze and represent signals efficiently such as signal analysis, power system 
analysis, medical imaging, and other significant fields of functionalities [ 2 ,  4 ,  5 ]. The 
tree of wavelet decomposition is in   Figure 1  . The cA1, cA2 and cA3 are the approxima-
tion levels. The cD1, cD2 and cD3 are the detail levels while S is the signal of interest.  

   3. System design and modeling 

 In this work of the new proposed algorithm to detect power transmission line 
fault, current signals under normal conditions (no fault) and the short circuit fault 
current signals are obtained to analyze and find a suitable detection and identifica-
tion algorithm using wavelets transform. A power system simulation model was 
modeled using MATLAB/Simulink, as shown in   Figure 2  , to create and capture 
faults. The system is consisting of a three-phase source (generator), three-phase 
voltage-current measuring elements, transmission lines, current measuring 
(ammeter), scopes, load, and three-phase fault generators. The power system 
simulation model has a voltage level of 250 kV and a power frequency of 60 Hz. 
The three-phase power system is analyzed to examine its sustainability during fault 
experience. Short circuit faults such as single-phase-to-ground, multi-phase-to-
ground, phase-to-phase, and three-phase faults are discussed. Both symmetrical 
and unsymmetrical faults are analyzed. The system can simulate all kinds of short-
circuit faults that may occur in the power system.  

  Figure 2.
  Power system simulation using MATLAB Simulink.          



67

Discrete Wavelet Transform Application to Three-Phase Power System Short Circuit Fault…
DOI: http://dx.doi.org/10.5772/intechopen.1002958

The three-phase source generates a sinusoidal signal with a frequency of 60 
HZ. It is a balanced source with 120 degrees out of phase with each other. The 
internal connection is ‘Yn’ connection, which means the three voltage sources are 
connected in Y configuration and the neutral line is connected to the ground. The 
three-phase series RL branch block parameters represent the three-phase  
transmission lines.

One three-phase V-I measurement block parameter is used at the sending end. The 
block allows voltage and current measurements of all three phases to be taken simul-
taneously. The three inputs for the block at the sending end are the three phases of the 
generator, while the three inputs for the block at the receiving end are the three phases 
of the transmission lines.

For fault identification, all three phase current measurements as well as neutral 
current measurements are required [19]. Therefore, the de-multiplexer (Demux) 
block is used to separate all the three-phase currents. PowerGui (continuous simula-
tion) block is used to simulate the Simulink model that contains electrical specialized 
power systems blocks. PowerGui is a required block to implement the functions 
within the toolbox.

Current signals of each phase are recorded in MATLAB workspace to apply DWT 
on these current signals for fault detection and diagnosis and they are labeled as 
CurrentPhaseA, CurrentPhaseB, and CurrentPhaseC to represent the three-phase 
currents A, B, and C. To distinguish between line (phase) to line (phase) fault and 
double line to ground fault, neutral current is measured. Ammeter is used to measure 
and transfer the neutral current to the workspace using the ‘To workspace” block and 
labeled as (Current Ground). The scope is used to display the three-phase voltages 
and the three-phase currents.

The three-phase fault block parameters are used to implement a fault (short-
circuit) between any phase and the ground. The fault timing is defined directly 
from the dialog box in this project simulation. Replace the entirety of this text with 
the main body of your chapter. The body is where the author explains experiments, 
presents and interprets data of one’s research. Authors are free to decide how the 
main body will be structured. However, you are required to have at least one head-
ing. Please ensure that either British or American English is used consistently in 
your chapter.

4. Proposed algorithm

We combine the characteristics of the fault signal and the detection algorithm 
based on Wavelet transform as follows:

• Simulink is used to build the power system model.

• The three-phase current signals are obtained.

• The Mother Wavelet (Daubechies-4) is used to extract the approximation and 
detailed coefficients for level one.

• The threshold value is set.

• The maximum values of the detailed coefficients are obtained.
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• The detailed coefficients’ maximum values are compared with the threshold (Td).

• Faults detect if the maximum values of the detailed coefficients are larger than 
the threshold.

• Then, the fault type is identified.

To start, the fault was created using the block parameters-three phase faults at 
0.05 seconds and remove the fault at 0.1 seconds. Discrete Wavelet transform is 
used since it is an effective tool for analyzing the current signals. The current signals 
are decomposed using Daubechies Wavelet-4 (db4) to obtain the approximate and 
detailed coefficients at level one. Then the decomposed signals are used for the detec-
tion of faults by using the detailed coefficients.

To distinguish between different types of faults, the maximum value of the cur-
rent signal must be defined by measuring the maximum value of all coefficients for 
phase A, phase B, phase C, and the ground current as shown in Table 1. By setting the 
parameters of the three-phase fault block parameters, the three-phase current of the 
detailed coefficients of phase A, phase B, phase C, and ground current.

The detailed coefficients in the phase that has a fault will have a high value while 
the coefficients in the other phases that have no fault will have zero magnitudes or 
very small values. This means when there is no fault in the power system, the value of 
the coefficients in all phases is zero or very small. The threshold value needs to set in 

Case No. Maximum 
Detailed 

Coefficient Of 
Phase A Current

Maximum 
Detailed 

Coefficient Of 
Phase B Current

Maximum 
Detailed 

Coefficient Of 
Phase C Current

Maximum 
Detailed 

Coefficient Of 
Ground Current

Fault Type

1 103.9844 103.9844 103.9844 7.8793e-10 No Fault

2 1.3523e+06 103.9844 119.5264 1.6087e+06 Line to Ground 
(A-G)

3 103.9857 3.7024e+06 134.4171 1.1253e+06 Line to Ground 
(B-G)

4 103.9857 103.9844 1.4099e+06 1.4099e+06 Line to Ground 
(C-G)

5 3.6468e+07 1.2349e+07 104.6234 .0454 Line to Line (A-B)

6 2.1185e+07 111.4911 4.9922e+07 0.0146 Line to Line 
(A-C)

7 104.6286 3.1411e+07 8.6390e+07 0.0101 Line to Line 
(B-C)

8 1.0667e+07 2.1332e+07 119.5264 7.7120e+05 Double Line to 
Ground (AB-G)

9 1.9807e+07 103.9844 8.6994e+06 1.9393e+06 Double Line to 
Ground (AC-G)

10 103.9857 4.0725e+07 8.4664e+06 9.7973e+05 Double Line to 
Ground (BC-G)

11 1.2506e+07 2.9173e+07 9.0875e+07 0.0065 Three Phase Fault

Table 1. 
Maximum value of detailed coefficients of all phases and ground current for different faults.
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order to distinguish between the fault types. If the highest value for the detailed coef-
ficient for any current signal is above that threshold, then that line (phase) has a fault. 
The no-fault value is the threshold value, and all other values are with different faulty 
conditions. This way, we can distinguish between different types of faults.

As an example, when we apply two phases (phase A and phase B) to ground fault 
(AB-G) in the power system and measure the maximum value of all the coefficients, 
phase A, phase B, and ground currents have a very high value of the coefficient, while 
phase C has a very small value of confidence. The results of the applying system and 
the ground current can be extracted through Scope1 and Scope2.

5. Fault detection using wavelet transform

The three-phase power system’s currents and voltages are sinusoidal signals when 
there is no fault. A fault in the power system causes changes in the current and volt-
age signals [19]. A short circuit fault occurs in the transmission lines, current signals 
will have transient components [19]. Meanwhile, as Wavelet transform analyzes a 
localized area of signal and provides information like breakpoints and discontinui-
ties, Wavelet transform can be very useful in detecting the start of the fault and 
realizing non-stationary signals including both low and high-frequency components 
[6]. The first level of decomposition contains high frequencies that are associated 

Figure 3. 
The flowchart for short circuit fault detection.
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with the faults. Fault detection can be obtained by examining the detailed coefficients 
of the first-level decomposition of the current signal.

When the transient components are presence then the fault is detected by comparing 
the current detailed coefficients with the threshold. If the value is larger than the Td, 
then there is a fault as presented in the flowchart block diagram algorithm of Figure 3. 
The wavelet transform is applied to the three-phase current A, B, C, and the ground cur-
rent G for decomposition which provide the detailed coefficients and the approximation 
coefficients using Daubechies Wavelet-4 (db4) stage one decomposition. By comparing 
the absolute maximum value of each phase detailed coefficients to the Td, the presence 
of the fault can be determined. There is fault in a phase when the value for that phase’s 
detailed coefficients is larger than the Td. Then the type of the fault is identified by 
exposing the faulty phase to further analysis. In this paper, the value of Td is choosing 
to equal 175. If the value of the coefficient for phase current is less than the Td, there 
is no fault, and the system is operating in normal healthy condition. If the value of the 
detailed coefficient for any phase current exceeds the Td value, then the fault type can 
be identified.

6. Fault type and discussion

The Wavelet used in this project is db4 with first-level decomposition. By 
comparing the three-phase current and the ground current detailed coefficients 
with a threshold, we can capture the fault and determine the type of all faults. Since 
the faulty phase detailed coefficients (absolute maximum value) is larger than the 
threshold, using the proposed algorithm we detect all faulty lines and determine 
the fault types.

This method allows distinguishing and determining all type of faults:

1. Symmetrical Fault (Balanced Fault):

• Three phase fault (LLL).

• Three phase to ground fault (LLLG).

2. Unsymmetrical Faults (Unbalanced Faults):

• Single phase to ground fault (LG).

• Two phase fault (LL).

• Two phase to ground fault (LLG)

From Table 1, it was noticed that all types of faults’ coefficient values were 
extremely high, while for no fault applied in any of the phases, the value was very 
small as shown in Figure 4 for the three-phase current with no fault embedded. 
Meanwhile, to illustrate the finding in faulty three-phase current, five different faults 
were captured and displayed including the approximation and the detailed coeffi-
cients as shown in Figures 5–27.

As an example, the case of the single phase to ground fault (B-G) illustrated in 
Figure 8, clearly shows abnormal phase B signal behavior when the fault is applied. 
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When a fault occurs in a phase that phase’s current increases. Which is the same result 
occurred for all types of faults applied.

The table shows that the detailed coefficient values are extremely high for all types 
of faults while the detailed coefficient values are very small when there was no fault 
applied.

Figure 4. 
Simulink no fault three-phase current.

Figure 5. 
Algorithm no fault three-phase current.
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  Figure 6.
  Three phase current approximation coefficients.          

  Figure 7.
  Algorithm no fault three-phase current detailed coefficients.          
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We can assign a value for the threshold by finding the largest value for all the 
maximum detailed coefficients for all phases with no fault (from Table 1. = 134.4171), 
then choose a reasonable larger value for the threshold such as Td = 175.

The three-phase current ABC and the ground under normal conditions (no fault) 
are illustrated in Figures 4–7 where the detailed coefficient values for all the currents 
are very small.

The single phase to ground fault (B-G) illustrated in 8–11 is clearly showing 
abnormal phase B signal behavior. The phase and ground current increased when 
the fault occur, and the maximum value of the detailed coefficients for phase B and 
ground currents have a very high value while phases A and C have a very small value 
of coefficients.

Figure 8. 
Simulink current phase B to ground fault (B-G).
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 The two-phase fault (A-B) is illustrated in   Figures 9  –  15   which shows abnormal 
phase A and phase B signal behavior. The two-phase currents increased when the fault 
occurs and the maximum value of the detailed coefficients for phase A, and phase B 

  Figure 9.
  Algorithm single phase B to ground fault.          

  Figure 10.
  Single phase B to ground fault approximation coefficients.          
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currents have a very high value while phase C and the ground have a very small value 
of coefficients. 

 The two phases to ground fault (AB-G) are illustrated in   Figures 15  –  19  , which 
shows abnormal phase A, and phase B signal behavior. The two-phase and ground 
current increased when the fault occurs and the maximum value of the detailed 

  Figure 11.
  Single phase B to ground detailed coefficients.          

  Figure 12.
  Simulink double phase fault – Phase a to phase B fault.          
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  Figure 13.
  Algorithm double phase fault (phase a to phase B fault).          

  Figure 14.
  Double phase fault (phase a to phase B fault) approximation coefficients.          
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coefficients for phase A, phase B, and ground currents have a very high value while 
phase C has a very small value of coefficients.

The three-phase fault (ABC) is illustrated in Figures 20–23 which shows abnormal 
phase A, phase B, and phase C signal behavior. The three-phase current increases 
when the fault occurs and the maximum value of the detailed coefficients has a very 
high value while the ground current has a very small value of coefficients.

Figure 15. 
Double phase fault (phase a to phase B fault) detailed coefficients.

Figure 16. 
Simulink double phase to ground fault (AB-G).
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  Figure 17.
  Algorithm double phase to ground fault (AB-G).          

  Figure 18.
  Double phase to ground fault (AB-G) approximation coefficients.          
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 The three-phase to ground fault (ABC-G) is illustrated in   Figures 24  –  27   which 
shows abnormal signal behavior in all phases and the ground. The three phases and 
the ground current increased when the fault occurs and the maximum value of the 
detailed coefficients for all have a very high value.  

  Figure 19.
  Double phase to ground fault (AB-G) detailed coefficients.          

  Figure 20.
  Simulink three-phase fault (ABC).          
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Figure 21. 
Algorithm three-phase fault (ABC).

Figure 22. 
Algorithm three-phase fault (ABC) approximation coefficients.
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  Figure 23.
  Algorithm three-phase fault (ABC) detailed coefficients.          

  Figure 24.
  Simulink three-phase to ground fault (ABC-G).          
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  Figure 25.
  Algorithm three-phase to ground fault current (ABC-G).          

  Figure 26.
  Three-phase to ground fault (ABC-G) approximation coefficients.          
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  7. Conclusion 

 We have used wavelet transform successfully to detect and identify the short 
circuit fault in the power system. Different types of faults on the transmission lines 
are simulated by using MATLAB/Simulink. The current in each phase is recorded and 
the detailed coefficients of the first level decomposition are extracted using wavelet 
(db4). The no-fault detailed coefficients are obtained and compared with the thresh-
old value of the system to detect and identify the fault. We observed that if the system 
has no fault, these values are less than the threshold value, while these values exceed 
the threshold values when there is a fault. The proposed algorithm is fast and accurate 
because it depends upon the detailed coefficients extracted from one stage and it 
achieves an accurate result under all short circuit fault types.    

  Figure 27.
  Three-phase to ground fault (ABC-G) detailed coefficients.          
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