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The Solow Model of Economic
Growth

In 1956, Solow proposed a neoclassical growth model in opposition or as
an alternative to Keynesian growth models. The Solow model of economic
growth provided foundations for models embedded in the new theory of
economic growth, known as the theory of endogenous growth, such as the
renowned growth models developed by Paul M. Romer and Robert E. Lucas
in the 1980s and 1990s. The augmentations of the Solow model described in
this book, excepting the Phelps golden rules of capital accumulation and the
Mankiw-Romer-Weil and Nonneman-Vanhoudt models, were developed by
the authors over the last two decades.

The book identifies six spheres of interest in modern macroeconomic
theory: the impact of fiscal and monetary policy on growth; the effect of
different returns to scale on production; the influence of mobility of factors
of production among different countries on their development; the effect
of population dynamics on growth; the periodicity of investment rates and
their influence on growth; and the effect of exogenous shocks in the form
of an epidemic. For each of these issues, the authors construct and analyse
an appropriate growth model that focuses on the description of the specific
macroeconomic problem.

This book not only continues the neoclassical tradition of thought in
economics focused on quantitative economic change but also, and to a
significant extent, discusses alternative approaches to certain questions of
economic growth, utilizing conclusions that can be drawn from the Solow
model. It is a useful tool in analysing contemporary issues related to growth.

Pawel Dykas is an Associate Professor at the Department of Mathematical
Economics of the Jagiellonian University, Krakow, Poland.

Tomasz Tokarski is Full Professor of Economics at the Department of
Mathematical Economics of the Jagiellonian University, Krakow, Poland.
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Introduction

Without the fundamental discoveries by Isaac Newton (the three universal
laws of motion, the law of universal gravitation) and Albert Einstein (the
theory of relativity), today’s theoretical physics would be severely deficient.
Its development was also greatly stimulated by the quantum theory (quan-
tum mechanics) with its foundations laid by Albert Einstein, Max Planck,
Werner Heisenberg and Erwin Schrodinger. The solution to numerous
engineering and technical problems, the development and application of
countless inventions that serve (with better or worse outcomes) both indi-
viduals and entire human societies would be impossible without advanced
physics.

In macroeconomics, John M. Keynes and Robert M. Solow occupy sim-
ilar positions as Newton, Einstein and Planck in physics. John M. Keynes
was first to propose (in the 1930s) a coherent macroeconomic theory, and R.
M. Solow (in the 1950s) laid foundations for the today’s theory of economic
growth. The macroeconomic theory proposed by Keynes can be described
as a short-run and demand-side model while Solow developed a long-run
and supply-side model.! The analyzes made by Keynes and Solow provided
foundations for macroeconomic models that describe both short-run and
long-run economic processes with increasing accuracy. The models result in
improved quantification, better understanding and more correct forecasting
of macroeconomic processes.

Economic growth was first addressed by the classical school of economy
in the 18th century. However, that topic aroused the deepest interest in
the 20th and 21st centuries when the phenomenon of increase in the value
of output produced in an economy and the determinants of that increase
became mathematically formalized.

Evsey D. Domar, an American economist who analyzed economic growth
processes in the mid-20th century concluded that:

In economic theory, growth has occupied an odd place: always seen
around but seldom invited in. It has been either taken for granted or
treated as an afterthought. In the meantime, we have cheerfully gone
ahead discussing employment and investment, interest and profits, accu-
mulation of capital, business cycles, and many other exciting problems

DOI: 10.4324/9781003323792-1
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2 Introduction

which clearly demand the explicit use of the rate of growth, and which
we have most ingeniously tried to solve in a theoretical wonderland...
(Domar 1957, p. 16)

The Keynesian school pioneered in proposing formalized economic growth
models, including principally the model developed by Roy F. Harrod (1939),
Evsey D. Domar (1946) and (after the publication of the Solow growth
model) the models created by Michat Kalecki (1963, 1996) and Nicholas
Kaldor (1963). The Keynesian economic growth models were heavily in-
fluenced by the Great Depression in the 1930s. This explains why strong
emphasis is placed in those models on discrepancies between demand-side
and supply-side factors that determine economic growth. Considering
that Keynesian economic growth models assume almost zero substitution
of production factors (capital and labour) used in the production process,
those models suggest that a free-market economy is exposed to an almost
permanent risk of imbalance. The risk is posed by incomplete utilization of
economy’s output capacity, a deficiency that was relatively readily accepted
by Keynesian macroeconomics that paid particular attention to this prob-
lem (Barro and Sala-i-Martin 1995, p. 10).

Solow proposed in 1956 a neoclassical growth model (referred to in this
monograph as the Solow model) as an opposition (or alternative) to Keynes-
ian growth models. The pioneering analyzes made by Solow were triggered
by the following observation: “Harrod’s writings, especially, were full of
incompletely worked out claims that steady growth was in any case a very
unstable sort of equilibrium”, and:

An expedition from Mars arriving on Earth, having read this litera-
ture [on Keynesian growth models] would have expected to find only the
wreck-age of a capitalism that had shaken itself to pieces long ago. Eco-
nomic history was indeed a record of fluctuations as well as of growth,
but most business cycles seemed to be self-limiting.

(Solow, 1988, pp. 307-308)

Thus, either the real economies somehow manage to function on the edge
of no-control as suggested in the Keynesian growth models proposed by
Harrod and Domar or those models are inadequate. Solow, writing about
his early (i.e. dating back to the 1950s) work on neoclassical growth model,
explains:

That was the spirit in which I began tinkering with the theory of eco-
nomic growth, trying to improve on the Harrod-Domar model (...). I
know that even as a student I was drawn to the theory of production
rather than to the formally almost identical theory of consumer choice.
It seemed more down to earth. I know that it occurred to me very early,
as a natural-born macroeconomist, that even if technology itself is not
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so very flexible (...) [and the economy can choose in the production pro-
cess from] capital-intensive or labor-intensive or land-intensive goods.
(Solow, 1988, p. 308)

Those observations inspired Solow to develop a neoclassical economic growth
model. The model was eventually augmented to include e.g. an economy with
two stocks of capital (the Mankiw-Romer-Weil model of 1992) and with any
finite number N of capital stocks (the Nonneman-Vanhoudt model of 1996).

The Solow model of economic growth also provided foundations for mod-
els embedded in the new theory of economic growth (known as the theory
of endogenous growth), such as the renowned growth models developed by
Paul M. Romer (1986, 1990) and Robert E. Lucas (1988).

The importance of economic growth theory in today’s macroeconom-
ics is demonstrated by the number of Sveriges Riksbank Prizes in Eco-
nomic Sciences in Memory of Alfred Nobel awarded in that field of study
(R. Frisch, J. Tinbergen, S. Kuznets, J.R. Hicks, K.J. Arrow, G. Debreu,
R.M. Solow, R.E. Lucas., W.D. Nordhaus or P.M. Romer).

Our book entitled The Solow Model of Economic Growth: Application to
Contemporary Macroeconomic Issues also represents that area of research.
The title not only indicates the topic of economic growth as the principal
axis of our analyzes but also refers to the work of Robert M. Solow. The
authors of this book base on broadly understood achievements of R.M.
Solow and enter into debate with his thought. This book not only continues
the neoclassical tradition of thought in economics focused on quantitative
economic changes but also, and to a significant extent, discusses alternative
approaches to certain questions of economic growth, utilizing conclusions
that can be drawn from the Solow model.

The augmentations of the Solow model described in this monograph (ex-
cept the Phelps capital accumulation model and the Mankiw-Romer-Weil
and Nonneman-Vanhoudt models) were developed at the Department of
Mathematical Economics, Jagiellonian University in Krakow, over the last
two decades. The authors were supported in their work on those models
by (in alphabetical order) Mgr. Mateusz Biernacki, Mgr. Monika Bolinska,
Mgr. Olesia Chornenka, Dr. Katarzyna Filipowicz, Dr. Maciej Grodzicki,
MEng. Oleksii Kelebaj, Mgr. Agata Lustyk, Dr. Robert Syrek and Dr. Mar-
iusz Trojak from the Jagiellonian University. Work on the gravity model of
economic growth was also supported by Dr. Svitlana Chugaievska (Depart-
ment of Math Analysis, Business Analytics and Statistics of Zhytomyr Ivan
Franko State University, Ukraine) and by Dr. Tomasz Misiak (Faculty of
Management, Rzeszow University of Technology, Poland).

The authors address in their discussion the following research topics: fis-
cal and monetary policy vs economic growth; economic growth at returns
to scale conditions; bipolar growth models with investment flows; a gravity
growth model, and the 2020+ pandemic vs economic growth, also in the
context of Polish economy.



4 Introduction

The book consists of ten chapters.

Chapter 1 is aimed to concisely describe selected scientific inspirations
that led to the development of the Solow growth model in its versions pro-
posed in 1956-1957. Particular attention is paid to the studies by Roy F.
Harrod (1936, 1939), Evsey D. Domar (1946) and Nicholas Kaldor (1963).

Chapter 2 outlines the basic version of the Solow economic growth model
that provides foundations for further discussions and proposed modifica-
tions. The chapter also describes selected special cases of the Solow model,
such as the model with a power Cobb-Douglas production function (1928)
and a CES (Constant Elasticity of Substitution) production function.

Chapter 3 describes generalizations of the Solow model i.e. the Mankiw-
Romer-Weil model developed in 1992 and the Nonneman-Vanhoudt model
proposed in 1996. The Mankiw-Romer-Weil growth model considers hu-
man capital accumulation in addition to physical capital accumulation. The
Nonneman-Vanhoudt model describes an economy characterized by a finite
number N of capital stocks.

Chapter 4 describes selected generalizations of the Mankiw-Romer-Weil
model and a compilation of the Solow model with a Keynesian growth
model proposed by Domar that consider the effect of both fiscal and mone-
tary policy on long-run economic growth.

The neoclassical economic growth models base on a strong assumption of
constant returns to scale. Chapter 5 questions that assumption to examine
the long-run equilibrium in those models in the case of economy character-
ized by decreasing or increasing returns to scale.

The analysis in Chapter 6 covers bipolar models of economic growth de-
scribing two economies (conventionally termed a rich economy and a poor
economy), and the effect of capital accumulation and investment flows on
the dynamics of economic growth. Two models are proposed: a model with
exogenous investment rates and a model wherein the assumption about the
exogenous nature of investment rates and flows is cancelled.

The gravity model of economic growth described in Chapter 7 bases on the
Solow model of economic growth. The Solow growth model assumes a closed
and isolated economy while the gravity growth model also considers spatial in-
teractions occurring in a set of (national or regional) economies. Since spatial
interactions take place in the analyzed group of economies, the development of
each of them also affects capital accumulation and growth rates in other econ-
omies. The concept of total and individual gravitational effects is introduced
to describe spatial interactions in the gravity model of economic growth. The
method used to quantify the force of individual gravitational effects bases on
the field equations (employed in economic theory to analyze migration and
foreign trade) that generalize Newton’s law of universal gravitation.

Chapter 8 analyzes Solow equilibrium at alternative trajectories of the
number of workers. It is assumed in the original Solow growth model that
the number of workers rises at a constant growth rate, so that the value of
that macroeconomic variable increases exponentially to infinity. We mod-
ify that assumption in our analyzes contained in Chapter 8, proposing two
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alternative versions. We assume in version 1 that an increase in the num-
ber of workers forms a logistic curve that approaches an asymptote. On the
other hand, it is assumed in version 2 that if labour productivity rises, the
growth rate of the number of workers drops from infinity to zero.

In Chapter 9, the Solow equilibrium is analyzed at sine-wave investment
rates. The principal assumption underlying the discussion in Chapter 9 reads
that the investment rate at each moment ¢ is determined by a pre-defined sine
wave. We also compare obtained solutions of the Solow model characterized
by sine-wave investment rates with solutions of the original Solow model.

Chapter 10 is aimed to assess the effect of an epidemic on medium-term
economic growth (i.e. over five years). The analysis is conducted using an
epidemiological-economic model that combines the SIR (Susceptible —
Infectious — Recovered) epidemiological model proposed by Kernack and
McKendrick (1927) with a neoclassical model of economic growth proposed
by Solow.

The authors wish to thank all who read previous versions of the proposed
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Note

1 Interestingly, concepts similar to Keynesian aggregated demand and Solow’s
determinants of long-run economic growth were almost simultaneously intro-
duced by Michat Kalecki in Poland and Theodor W. Swan in Australia (hence
the Solow model is also known in the literature on macroeconomics as the
Solow-Swan model).
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1.1 Introduction

Economic growth was first addressed by the classical school of economy
in the 18th century. In the years 1870-1945, studies were focused on effec-
tive allocation of limited resources, adopting a marginalist approach. Al-
most three decades after the Great Depression (1929-1933), discussions held
among macroeconomists centred on the causes, effects and assessments of
Keynesian responses to that series of events (Snowdon and Vane, 2000). The
question why is economic growth spatially differentiated (analyzed both
theoretically and empirically) became the leading research topic in econom-
ics of the second half of the 20th century. A majority of studies aimed to de-
velop the theory of endogenous growth. However, they were preceded by an
important event in the history of economic growth theories that occurred at
the dawn of the second half of that century: the publication of two break-
through papers by R.M. Solow (1956, 1957).
D. Romer (2012, p. 8) emphasized after almost 60 years that:

The Solow model is the starting point for almost all analyses of growth.
Even models that depart fundamentally from Solow’s are often best un-
derstood through comparison with the Solow model. Thus understand-
ing the model is essential to understanding theories of growth.

This is confirmed by the number of citations of both studies. It is almost
impossible to review all responses to the concepts proposed by R.M. Solow
(1956, 1957) that were published until today.

Hence, this chapter is aimed to concisely describe selected scientific inspira-
tions that led to the development of the growth model in its versions proposed
in 1956 and 1957. In his Nobel-prize lecture (Lecture to the memory of Alfred
Nobel, December 8, 1987%), R.M. Solow emphasized: “(...) in the 1950s I was
following a trail that had been marked out by Roy Harrod and by Evsey Do-
mar (...)” (see also: Solow, 1988), and in Addendum (August, 2001), he added>:

Another, much less prominent, line of thought may be worth mention-
ing. It goes back to the 1950s when Nicholas Kaldor tried to produce a

DOI: 10.4324/9781003323792-2
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coherent growth model based entirely on relationships among rates of
growth, conspicuously without any explicit function relating inputs and
outputs.

1.2 Harrod’s equilibrium

Harrod’s equilibrium analysis was based on three assumptions (1936, p. 33;
1939, p. 14):

1 Saving is proportional to national income, S, = sY;; the level of a com-
munity’s income is the most important determinant of its supply of
saving,

2 Investment, the demand for saving, is proportional to the growth of na-
tional income, I; = g(Y,+; — Y)); the rate of increase of its income is an
important determinant of its demand for saving, and

3 Saving equals investment, the demand for saving equals the supply of
saving, S, = I,.

From this, one derives the “fundamental equation” of equilibrium:

Yiu-Y = _5
Y, g
in which p, is the “warranted” rate of growth. Put differently, national

income follows the first-order difference equation Y; = S+gY,_1, with 1 >

g>5>0.

Harrod supplemented his formal analysis with speculations about the
consequences of deviations of actual aggregate income from warranted
aggregate income. Harrod said that such deviations were bound to occur
because the warranted rate of growth usually differs from a “natural” rate
of growth that is determined by changes in productivity and the labour force
(Blume and Sargent, 2015, p. 350).

Harrod (1939) addressed the following issues:

1 the implications of the qualification that fixed-coefficients like the
saving rate are not fixed exogenously but, instead, are determined by
economic forces,

2 alternative senses and sources of instability,

3 some possible interactions between a multiplier (reflecting consumption
decisions) and an accelerator (reflecting real investment decisions).

Harrod discussed these things in ways that readers today will find difficult
to comprehend and appreciate, partly because of progress that the study
of economic dynamics has made since 1939, partly because Harrod chose
not to use or extend some lines of work preceding 1939 that would be more
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familiar to today’s reader and partly because his analysis, done without ben-
efit of a formal model, is hard to follow and the analytic categories differ
from those we use today (Blume and Sargent, 2015, p. 351).

In the theory, for Harrod (and for Keynes), no distinction was drawn be-
tween capital goods and consumption goods. In measuring the increment of
capital, the two were taken together; the increment consisted of total pro-
duction less total consumption (Harrod, 1936, p. 18). Today we think of cap-
ital as a factor of production; consequently, the marginal product of capital
is crucial to determining interest and wage rates, the distribution of output
between capital owners and workers and so forth.

The parameter g describes for Harrod the demand for saving, not as we
read it today, the inverse marginal or average product of capital. “It may be
expected”, Harrod (1936, p. 17) writes, “to vary as income grows and in dif-
ferent phases of the trade cycle; it may be somewhat dependent on the rate of
interest”. Similarly, “s is regarded as likely to vary with a change in the size
of income” (Harrod, 1936, pp. 24-25).

Harrod is clear (Blume and Sargent, 2015, p. 351) that the “warranted”
rate of growth is in fact the equilibrium growth rate of a model. If the key
parameters s and g in fact vary with endogenous variables, then equilibrium
is not yet determined until these additional relations are appended to the
model. The easiest way to fill in the gaps, of course, is to read the Essay as a
fixed-coefficients model, and this has become the tradition.

Harrod argues that sustainable growth is possible only if the “warranted
growth rate” (Gy) equals the “natural growth rate” (Gy). The warranted
growth rate results from the balance of savings and from the effect of real-
ized investment outlays on economy’s production capacity and is calculated
as the quotient of savings rate s € (0;1) (proportion of savings in output) and

. . K . o
the capital-output ratio vg = Y (where K is the stock of capital in the econ-

omy, and Y denotes output) which can be written as Gy, = (Gandolfo,
v

1971, pp. 41-43). The natural growth rate Gy results from an igcrease in the
number of workers and technological progress and is calculated as the total
of growth rate of the number of workers n > 0 and growth rate of labour
productivity g > 0 which can be written as Gy =n+g.

Harrod’s economy achieves the state of long-run equilibrium when the
warranted growth rate equals the natural growth rate which can be written

as’ = g+n.
v .
The growth rate of the number of workers and the rate of technological
progress are understood as exogenous variables in the Harrod model, while
the capital-output ratio in Keynesian models is constant in time; hence, for
Harrod’s economy to achieve the state of long-run equilibrium, the sav-

ings rate must be s = vg(g + n). At an excessively high savings rate [i.e. s >
vk(g + n)], the warranted growth rate describing the supply capacity of the
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economy is greater than the natural growth rate. As a result, a fraction of
the production potential available in the economy is unused because of too
low effective demand. However, if s < vg(g + n), then Gy < G and the situ-
ation is opposite. Harrod (1936, 1939) argues that the savings rate in a mar-
ket economy changes spontaneously and the long-run equilibrium (without
government intervention) is only possible by special coincidence, and devia-
tions from that equilibrium can lead to secular stagnation.

1.3 Domar’s equilibrium

Domar’s analysis was based on five assumptions (1946, p. 137):

1 There is a constant general price level,
No lags are present,

3 Savings and investment refer to the income of the same period, both are
net, i.e., over and above depreciation,

4 Depreciation is measured not with respect to historical costs, but to the
cost of replacement of the depreciated asset by another one of the same
productive capacity,

5 Productive capacity of an asset or of the whole economy is a measurable
concept.

The central theme of the paper Capital Expansion, Rate of Growth, and
Employment (Domar, 1946) is the rate of growth, a concept that has been
little used in economic theory, and in which Domar had put much faith as
an extremely useful instrument of economic analysis.

One does not have to be a Keynesian to believe that employment is
somehow dependent on national income, and that national income has
something to do with investment. But as soon as investment comes in,
growth cannot be left out, because for an individual firm investment
may mean more capital and less labor, but for the economy as a whole
(as a general case) investment means more capital and not less labor.
If both are to be profitably employed, a growth of income must take
place.

(Domar, 1946, p. 147)

Domar (1957) argues that:

1 Demand on the product market Y(r) in continuous time 7 € [0;+e0) de-
pends on exogenous net investment /(7), in accordance with Keynes’s

multiplier formula Y¢ = lI , where s € (0;1) is the marginal (= average)

. .S . . .
propensity to save which means that 1/s is the Keynesian investment
multiplier.
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2 Investments also produce effects on the side of aggregate supply in the
economy, and the relationship between current net investment outlets
and an increase in supply capacities of the economy” ¥; is described
by the equation ¥ = I, where k > 0 denotes “potential social average

investment productivity”.’

It follows from assumption 1 that an increase in demand Y, is described by

the formula Y9 = £ The state of equilibrium in Domar’s economy, defined

as a situation wherse aggregate demand and aggregate supply are equal, leads

to the conclusion that the following holds I k1. This implies a growth rate
. s

of investment in the form § =Ks§ Oor § =5 (it can also be demonstrated that
VK
yd ys
i, then —=-——=kKs= i, so that also aggregate demand and

o
if —=ks= ==
1 VK Y Ys VK

o s
supply will rise at the rate Ks=—).
VK
Domar’s economy reaches the state of long-run equilibrium when the
growth rate of investment equals (ks = i). However, a question arises what

v
will happen in that economy, if the actuleil growth rate of investment equals
1= ks? It can be demonstrated that if 1 < ks, the analyzed economy will be
characterized by a state of permanent surplus supply.

At constant 1, k and s, that state of imbalance will become worse in time,
and it will be almost impossible to rescue the economy from that condition.
The reason is that if 1 < ks and Y*(7) > Y¥(?) at each time ¢ € [0;+o0), then in-
vestors realize that there are unused production capacities in the economy
and will tend to reduce the actual growth rate of investment 1, thus increas-
ing the difference between the rates ks and 1, and contributing to a growing
imbalance on the output market (this phenomenon is known in economics
as the Domar paradox). This leads to the conclusion that the Domar-model
economy, like the previously analyzed the Harrod-model economy, is char-
acterized by a knife-edge balance on the single possible growth path that
can warrant macroeconomic equilibrium. Each departure from that path
leads to the state of long-term, deepening disequilibrium.

Harrod and Domar seemed to be answering a straightforward question:
when is an economy capable of steady growth at a constant rate? They
arrived by noticeably different routes, at a classically simple answer:
the national saving rate (the fraction of income saved) has to be equal
to the product of the capital-output ratio and the rate of growth of the
(effective) labor force. Then and only then could the economy keep its
stock of plant and equipment in balance with its supply of labor, so that
steady growth could go on without the appearance of labor shortage on
one side or labor surplus and growing unemployment on the other side.
They were right about that general conclusion.

(Solow, 1988, p. 307)
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1.4 Kaldor’s economic growth model

The production function in Kaldor’s model® has the same characteristics
as the production function in the Domar model. Also an increase in capital
stock is defined similarly. The number of workers grows at the rate n > 0.
The single (but principal) difference between Kaldor’s model and earlier
Keynesian economic growth models lies in that the savings rate is disag-
gregated, on an entire-economy scale, into savings rates from the total of
wages and total of profits. Kaldor writes that domestic product (income)
may be divided into the categories of wages W (including salaries) and prof-
its IT (hence, Y = W+ I1) and argues that “the important difference between
[those categories lies] in the marginal propensities to consume (or save),
wage-earners’ marginal savings being small in relation to those of capital-
ists” (Kaldor, 1963, p. 83).

Thus, Kaldor assumes in his growth model that sy < s, where sy and
sIT € (0;1) denote the propensities to save out of wages and profits. That
assumption also implies the equation of savings rate in the entire economy
(Kaldor, 1963, p. 83; Blaug, 1990, p. 189):

IT
S=Sy +(sn—sW)?.

It can be demonstrated that equilibrium in Kaldor’s economy is conditional
on satisfying the inequality:

W<, <5 (L.D
VK VK
or
1
0<m<—, (1.2)
VK

where 7w = n is the profit rate in the entire economy (Allen, 1975, pp. 215-216).

Due to the relaxation of rigid assumptions about the savings rate in
Kaldor’s model (i.e. the disaggregation of that rate into savings from wages
and from profits), the conditions for long-run equilibrium in Kaldor’s
economy (equations 1.1 and 1.2) reduce the edge-knife problem posed by
prior Keynesian growth models. The conditions indicate that for Kaldor’s
economy to achieve the state of long-run equilibrium it is necessary and
sufficient that the growth rate of the number of workers 7 is contained in
a closed interval bounded from below by the quotient of savings rate from
wages to the capital-output ratio and bounded from above by the propor-
tion of savings rate from profit to capital-output ratio. Thus, if savings rates
reach e.g. s;p = 66%, sy, = 0% (the case of zero savings from wages), and n +
g = 4%, the capital-output ratio will not exceed about 50/3 (Kaldor, 1963,
p- 301; Allen, 1975, p. 217).

Assuming that the capital-output ratio in viable economies equals about
3-5, the probability of an economy encountering the knife-edge problem is
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relatively low. An analysis of the condition for equilibrium (equation 1.2)
demonstrates that at a capital-output ratio of 3-5 the rate of profit that war-
rants equilibrium in Kaldor’s economy may not exceed about 20%-33%, and
if that value is exceeded, the model gets into a state of permanent imbalance,
like the previously analyzed Keynesian growth models.

1.5 Principle of the original Solow economic growth model

The core version of the economic growth model proposed by R.M. Solow
bases on the assumption that the manufacturing process of aggregate stream
of goods (products and services) is described by the neoclassical production
function written as:

Y(1)=F (K(1), L(1)), (1.3)

where: K >0 is the (physical) capital stock and L > 0 denotes the number of work-
ers. It is assumed about that function that it is homogeneous of degree 1 and
characterized by decreasing marginal productivities with respect to the stocks
of capital and labour. It also meets the Inada conditions both with respect to K
and L (the formal and mathematical properties of the production function (1.3)
are discussed in detail in Chapter 2). In the Solow model, it is also assumed that
the number of workers (L) is described by the exponential function:

L(t)= Lye™, (1.4)

where L( > 0is the number of workers ¢ 20 and n > 0 denotes the growth rate
of the number of workers.

The assumption that the production function is homogeneous of degree 1
leads to a transformation of function (1.3) to its intensive form:

y(t)= f(k(1)), (1.5)

where: y = Y/L denotes labour productivity, and k = K/L is the value of
(physical) capital per worker. Function (1.5), in terms of macroeconomics, is
an aggregate labour productivity function, that makes labour productivity y
dependent on capital per worker k; one of its characteristics is that f{0) = 0,
lim f(k)=+e. f(k)>0 and f7(k)<0.

R.M. Solow assumes that an increase in the capital stock (K) is calculated
as the difference between investment and capital depreciation which can
formally be written as:

K(1)=sY(1)-8K(1), (1.6)

where: s e (0;1) denotes the savings/investment rate, and 6 € (0;1) is the cap-
ital depreciation rate.
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Additionally, investment is financed out of savings (being a fixed, equal s
fraction of produced output Y).

The above assumption leads to the following differential equation (known
as the Solow’s equation):

(1) = sf (k(1)) = (8+n)k(1), (1.7)

Equation (1.7) describes an increase in capital per worker as the difference
between savings/investments per worker sf(k) and capital decline per worker
(n + J)k that is caused both by capital depreciation (dk) and by an increase in
the number of workers (nk).

The phase diagram of equation (1.7) is shown in Figure 1.1. The point k~
represents the stock of capital per worker in the Solow’s long-run equilib-
rium, being the single non-trivial stable steady-state of Solow’s equation.

Assuming also that the production function (1.3) is a Cobb-Douglas pro-
duction function, we obtain a labour productivity function in the form:

(6)=(k(1))", (1.8)

then, capital per worker in the Solow’s long-run equilibrium (calculated
from equation (1.7)) is given by the formula:

i ¢ Yo
k =(5+nj (1.9)

savings-labour ratio
capital decline labour ratio

A
(6+ n)k(t)
yr 4 , Sik(t)
Lk
0 ' i : >
ko k* capital-labour

ratio

Figure 1.1 Phase diagram of differential equation (1.7).
Source: Aghion and Howitt (2009).
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and labour productivity (substituting equation (1.9) to equation (1.8)) is
given by:

. s /(1-o)
¥ =()ﬂ (1.10)
0+n

It follows from equations (1.9) and (1.10) that the higher the savings/in-
vestment rate s or the lower the capital depreciation rate & or the lower the
growth rate of the number of workers n, the higher are the values of capital
per worker k" and labour productivity y* in the long-run equilibrium of the
core-version Solow model (see, e.g., Solow, 1956; Aghion and Howitt, 2009;
Tokarski, 2009, 2011; Romer, 2012).

1.6 Conclusions

The discussion contained in this chapter, being an introductory section, can
be summarized as follows:

First, the Harrod, Domar and Harrod—Domar models were influenced by
the Great Depression in the 1930s. Those models propose their common gen-
eral conclusion that the economy is exposed to the state of permanent imbal-
ance, resulting among others from the assumption of almost zero substitution
of capital and labour inputs in the production process. The models emphasize
the role of government’s activity in maintaining the economy on a growth
path that guarantees the long-run macroeconomic equilibrium. The principal
difference between Kaldor’s model and earlier Keynesian economic growth
models lies in that the savings rate is disaggregated, on an entire-economy
scale, into savings rates from the total of wages and total of profits.

Second, the Solow model was developed in response to the Harrod and
Domar models that describe economic reality with insufficient accuracy. Ad-
mittedly, economies undergo certain short-term fluctuations, but they tend to
remain on a growth path that guarantees the long-run macroeconomic equi-
librium. In that model, the long-run values of capital per worker and labour
productivity are influenced among others by the savings/investment rate and
the rate of capital decline per unit of effective labour. It can be concluded that
the higher the savings/investment rate or the lower the decline rate, the higher
are the long-run values of the analyzed macroeconomic variables.

Third, the principal conclusion of the Solow model is that the accumula-
tion of physical capital cannot account for either the vast growth over time
in output per person or the vast geographic differences in output per person
(Romer, 2012, p. 8).

Notes

1 R.M. Solow, Prize Lecture (1987), https://www.nobelprize.org/prizes/economic-
sciences/1987/solow/lecture/.
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2 R.M. Solow, Prize Lecture (1987), https://www.nobelprize.org/prizes/economic-
sciences/1987/solow/lecture/.

. d . d. o . .
3 The form x(z) = ax orx= ax denotes a derivative of the variable x with respect

to time 7, i.e. (in terms of economics) an increase in the value of this variable at
time 7.

4 kinthe Domar model can also be treated as an inverse of the capital-output ratio
vg. The reason is that if the economy is characterized by a single-factor produc-

tion function in the form Y* = —, and an increase in the capital stock K equals
VK

net investments 7, then Y* = £ = L, ie.k=1/vg.
VK VK
5 A simplified version of the Kaldor’s model is based on the study by Allen (1975,
pp. 215-217). The complete Kaldor’s model is described in his study (1963,
pp. 93-144), see also: Blaug (1990, pp. 186-209).
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2 The Solow model

2.1 Introduction

This chapter describes a basic version of the Solow economic growth model
that provides foundations for the growth models characterized in the subse-
quent chapters of this monograph. The version is based on the publication
by Romer (2012), Chapter 1 (see also Tokarski, 2009, 2011). Compared to
the original version of the Solow model (as proposed in his article published
in 1956), we will also consider the effect of capital depreciation and exog-
enous technological change/progress on the processes of equilibrium and
economic growth.

This chapter also describes two special cases of the Solow model. These
are the cases wherein the production function is a Cobb-Douglas power
function (1928) or CES production function (Constant Elasticity of Substitu-
tion proposed in an article published by Arrow, Chenery, Minhas and Solow
(1961)). A special version of the model will also be analyzed, known as the
golden rules of capital accumulation proposed by Phelps (1961) that directly
refer to the Solow model with the Cobb-Douglas production function.

2.2 The Solow model with a neoclassical production function

The Solow growth model in its basic version adopts the following assump-
tions about economy behaviour in a long run:

1 The production process is described by a neoclassical production func-
tion expressed by the formula:

Y(1)=F(K(1),E(1)), (2.1)

where Y denotes the output (at the moment ¢ € [0;+eo), where the moment
¢t = 0 is identical with the initial moment at which economy is analyzed),
K refers to physical capital input,' E — to units of effective labour. The
production function (2.1) makes the output Y depend on capital input

DOI: 10.4324/9781003323792-3
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K and units of effective labour E. It is assumed that this function has
the following properties (details can be found e.g. in Z6ttowska (1997)):

i
il
iii

iv

vi.

Vil

viii

Its domain is defined as the set [();+<><>)2 and F: [0;+<><>)2 — [03400).
Function F is differentiable at least twice in the set (0;+oo)2.
V(K,E)e [();+<><>)2 F(0,E)=F(K,0)=0, hence both capital inputs
and units of effective labour are indispensable in the production
process. 5

'V(K,E)e [05+) KII_)H:OOF(K’E.)zKII_?LOF(K’E)=""°<",i.e.'verylarge
inputs of one of the production factors (at positive inputs of
another production factor) correspond to a very large volume of

output.

F F
The followinginequalitiesare true: MPC = ng >0and MPE = ng >0

for all (K,E) e (0;+oo)2, where marginal product of capital (MPC)
and marginal product of units of effective labour (MPE) are posi-
tive. Thus, an increase in capital inputs or in units of effective la-
bour leads to an increase in output.”
2 2

V(K.E)e (O;+°°)2 BMPCZB 1;< . BMPEZB I;"
0K  dK JoE oE
an increase in capital inputs or in units of effective labour, their
marginal products fall. It follows from assumptions (v—vii) that the
production function F is characterized by diminishing marginal
productivities with respect to both K and E.
The Inada conditions are satisfied: VE >0 lim+ MPC =+c0 and

lim MPC=0and VK>0 lim MPE=+eand lim MPE=0. The

Koo . E—0" . o Eortee .
Inada conditions together with assumption (vi) imply that when in-

puts of one of the production factors rise from 0 to +eo (at positive
inputs of another production factor), the marginal product of that
factor falls from +eo to 0.

The production function is homogeneous of degree 1, i.e.:

<0, ie. with

V(K,E) € [0;+)* A V¢ >0 F(cK,GE)=¢F(K,E),

hence an increase in inputs of production factors by ¢ times leads to
an increase in output by ¢ times. This property is known in macro-
economics as constant returns to scale.

A production function that satisfies assumptions (i—viii) is termed
a neoclassical production function.

2 Capital accumulation is described by the following differential equation:

K(t)=1(t)-8K (1), 2.2)
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where I denotes investments, and 6 € (0;1) represents the rate of capital
depreciation (i.e. a percentage of capital that is consumed in the pro-
duction process).

3 In a closed economy (like that analyzed by Solow), investments / are
financed using savings S, hence:

1()=S(1), (2.3a)

where savings represent a fraction of output that is not consumed. Con-
sequently, consumption C can be described using the formula:

Ct)=Y(t)-S(1). (2.3b)
4 Savings represent a constant fraction of output equal s € (0;1), i.e.:
S(t)=sY(1). (2.4)
The rate s represents a percentage proportion of savings S (determining
the amount of investment /) in the output Y. Therefore, that rate will be
hereinafter referred to as the savings/investment rate (a proportion of

savings/investment in output).

5 The units of effective labour E are calculated as a product of technology
A and the number of workers L, hence:

E(t)=A(t)L(¢). (2.5)
6 The growth path® of technology is described by the function®:
A(t)=e*, (2.6)

where g > 0 represents the rate of technological change’ as defined by
Harrod (or Harrodian rate of technological progress).®

7 The trajectory of the number of workers is expressed by the equation:
L(t)=e", 2.7)

where n > 0 denotes a rate of increase in the number of workers.

_Y(
y(t)—m, 2.82)
k(r)=K1), (2.8b)
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and

p(t)=1%)), (2.8¢)

denote, respectively, labour productivity (the output per worker), the capi-
tal-labour ratio (capital per worker) and capital productivity (the output per
capital unit). Let:

ye(t)= % (2.9a)
and
kg (1)= % (2.9b)

denote the output per unit of effective unit of labour (or effective labour)

and capital per unit of effective labour. Then, we obtain from equations
(2.5), (2.8a) and (2.9a):

y()=A@) ye (1),
and, considering equation (2.6), we get:
y(0)=eye (1),

or, after taking logarithms of both sides (using a natural logarithm) and
differentiating with respect to time ¢, we obtain:

2O _ e (2.10a)

y(t) VE (1)

By applying similar operations to equations (2.8b) and (2.9b), the following
relation is obtained:

(2.10b)

It follows from equations (2.10a,b) that if the output per unit of effective
labour (capital per unit of effective labour) rises/falls, the productivity of
labour (capital-labour ratio) rises at a growth rate greater/less than the rate
of technological progress as defined by Harrod, that is g. If the output per
unit of effective labour (capital per unit of effective labour) is constant in
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time, the growth rate of labour productivity (capital-labour ratio) equals the
Harrodian rate of technological progress.

Considering property (viii), the production function (2.1) is homogeneous
of degree 1; hence, for ¢ =1/ E, we obtain:

v (t):gig:F{gég,lJ:F(kE (1).1),
ve(t)=f (ke (1)), @.11)

where f(kg)=F(kg,1). Function (2.11) is termed the production function
in its intensive form. The function makes the output per unit of effective
labour depend on capital inputs per unit of effective labour. Additionally, it
follows directly from properties (i—viii) of the production function (2.1) that
the production function in its intensive form (2.11) is characterized by the
following properties:

a Its domain is defined as the set [0; +o0) and f: [0;+e0) — [0;+00).
b Function fis differentiable at least twice in (0;+e0).
c fl0)=0.
d lim f(kg)=-ee.
KE —teo

e f'(kg)>0Af"(kg)<0. Hence, function (2.11) is characterized by di-
minishing marginal productivities of capital per unit of effective labour.

f lim f’(kg)=+eand lim f’(kg)=0.Consequently, function fsatis-
kg—0t kE —>too

fies the Inada conditions with respect to k.
Substituting equations (2.6 and 2.7) into (2.5), we obtain:
E(t)=e™, (2.12a)

where A =g+n>0. Taking logarithms on both sides of the above equation
and differentiating after time ¢ the resultant relation, we obtain:

EEg= i (2.12b)

It follows from equation (2.12b) that 1 represents the rate of increase in units
of effective labour (equal to the total of the Harrodian rate of technological
progress g and the rate of increase in the number of workers n).
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From relations (2.3a-2.4), we obtain:
I(t)=sY (1),

and it follows from the above relation and from equation (2.2) that:

K(t)=sY (1)-06K(1). (2.13)
Differentiating equation (2.9b) with respect to time ¢, we get:

K()E()-K(1)E(1) _K(1)

ki (1)= E2(1) E(1)

(2.14)

Substituting relations (2.12b and 2.13) into the above equation, we obtain:
ke (t)=sye (t)=(8+A) kg (2). (2.15)

Equation (2.15) is known as the Solow equation (see equation (1.7)). Its eco-
nomic interpretation can be reduced to the statement that an increase in
capital per unit of effective labour (kE) equals the difference between sav-
ings/investment per unit of effective labour (i.e. syg) and the capital decline
per unit of effective labour ((6+A4)kg), and that decline results both from
depreciation of capital (6kg) and from an increase in units of effective la-
bour (Akg). Moreover, it follows from the Solow equation that if savings/
investment per unit of effective labour are greater (less) than the capital de-
cline per unit of effective labour, the stock of capital will rise (fall) in time. If
syg =((6+A)kg), then kg =0 and the analyzed stock will not change.

Substituting function (2.11) into the Solow equation, we obtain the follow-
ing ordinary differential equation:

kg (1)=sf (kg (1))—ukg (1), (2.16)

where p=6+A1.
Let us demonstrate now that differential equation (2.16) has two steady

states, a trivial steady state (at k= 0) and a non-trivial steady state (k; > 0).

We will also demonstrate that the non-trivial steady state kj represents the
point of long-run equilibrium in the Solow model.

A trivial steady state exists because if kx = 0, both the right and the left
side of differential equation (2.16) equals 0. The trivial steady state will be
ignored in further discussion, because it is irrelevant for both economic and
mathematical conclusions.

Note that if kg > 0, then kg >0 (kE < O) if and only if capital productivity
(2.8¢) that can also be expressed as p(kg)= @ is greater (less) than the

E
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quotient p/s > 0. Let us determine the properties of function p(kg) at kg ris-
ing from 0 to +eo. The properties of function flead to the conclusion that’:

9
lim pkp)= tim L FE) O ) e
kg—0t kg—0t kE kg—0T

this results from the first Inada condition,

oo

lim p(kg)= lim MH(;L lim f*(kg)=0

k| —+oo S kf —+oo

(in line with the second Inada condition) and®:

pr(kE)z f (kE)kkE%_f(kE) =_1\/II€I%)E<O'

Thus, if capital per unit of effective labour kg rises from 0 to +eo, capital
productivity p(kg) falls from +e to 0. It follows from the above relation,
from the Darboux property of a continuous function and from differential
equation (2.16) that there exists exactly one positive kz such that:

a Vg € (0.kg) plkp) >~ = Vie [0m) kg >0,
u
* S y
b p(kp)=—= Vie [0s4e) kg =0,
u
¢ Vkg € (ki) p(kg) <2 = Vi e [0:40) kp <0,
u

Therefore, if the economy was characterized by capital per units of effec-
tive labour kg(0) less/greater than ky, at the moment ¢ = 0, then fluctuations
in that stock at each subsequent moment ¢ will be positive/negative and the
economy will approximate the stock ky on the left/right side. If kj (0)= k.
then kg (1) = ky; at any moment > 0. Hence, the stock kx, represents the stock
of capital per unit of effective labour in the Solow’s long-run equilibrium (or
simply long-run stock of capital per unit of effective labour) such that”:

Vk(0)>0 lim kg (f)=kg. (2.17a)
t—>+too

It follows from the above relation and from the production function in its
intensive form equation (2.11) that in a long run (i.e. at  —+oo), the output
per unit of effective labour approaches yx defined by the formula:

v =f (k). (2.17b)
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Under the conditions of Solow’s long-run equilibrium, capital and output
(both relative to a unit of effective labour) are constant. Hence, the capi-
tal-labour ratio k and labour productivity y rise as per equations (2.10a,b)
at growth rates that equal the Harrodian rate of technological progress g. If
the economy reaches point kx on the left/right side, the growth rates y and
k are greater/less than g.

It also follows from equation (2.16) and former substitutions (4 =0+ g+n)
that the long-run stock k; is an implicit function (e.g. of the rates s, 0 and n)
that solves the following equation:

d)(kZ,s,&n):p(kE)—W:O. 2.18)

It follows from equation (2.18) and from the formulas for derivatives of an
implicit function that:

oD
ﬁ_ s __ 5+g+n 20
Os oo 2p(kg) "
kg
oD
ok 38 1
= — = 0
06 00~ p(ky)
ok
and
oD
okr _ on 1
=—9n 0.
on 00 T 2p(kp)
ok

It can be concluded from the above relations that the higher the savings
(investment) rate s or the less the capital depreciation rate J or the growth
rate of the number of workers n, the greater the long-run capital per unit
of effective labour ky in the Solow’s equilibrium. This in turn implies that
the long-term growth path of the capital-labour ratio &~ (¢) reaches a higher
level (see e.g. Romer (2012), Chapter 1| or Tokarski (2011), Chapter 5)

Moreover, since for each kg >0 f"(kg)>0: aa >0and == WV ayE <0.1In

terms of economics, the signs of the above partial derivatives lead to similar
conclusions as the signs of partial derivatives kJ.

2.3 Special cases

Section 2.2 contains a description of the Solow growth model with a gen-
eral, neoclassical production function. However, an analytical form of that
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function is not known, and hence neither a point of long-run equilibrium
in the Solow model can be analytically determined nor equations can be
found for growth paths followed by the analyzed macroeconomic variables
to reach that equilibrium.

Therefore, special cases of the Solow model will be analyzed in Section 2.3,
namely models with the Cobb-Douglas production function and with the CES
production function. In the first of those cases, both the point of Solow’s long-
run equilibrium and the paths leading to that equilibrium can be determined.
In the second case, a non-trivial steady state of the long-run equilibrium in the
Solow model can be determined and its economic properties analyzed.

2.3.1 The Cobb-Douglas production function

The Cobb-Douglas production function is described by the following
formula:

Y =F(K,L)=aK*L1™?, (2.19)

where @ > 0, and a € (0;1).

Parameter « in the production function is known as the total factor
productivity. The parameter obviously indicates how much output can
be produced from certain amounts of capital input K and labour input L.
Transforming equation (2.19), total factor productivity can also be described
by the formula:

Y .
a:KOCLl—Ot:pay a’
hence, total factor productivity can be defined as a geometric weighted
mean of capital productivity p and labour productivity y with weights equal
(respectively) a and 1—a.
Y K JdY L . ..

Ifex = KT and €, = LY denote (respectively) the elasticity of output

with respect to capital and the elasticity of output with respect to labour, it

can be demonstrated that those elasticities equal o and 1—o.

The elasticities are also frequently identified with proportions of inputs
of production factor in the output in studies into economics, e.g. in Clark’s
marginal theory of distribution. However, that approach is wrong, which
can easily be demonstrated.

The main hypothesis of Clark’s marginal theory of distribution can be
reduced to the statement that under conditions of a competitive economy,
each production factor receives a reward equal to its marginal product. An
explanation: if the profit function (in real terms) of a typical manufacturer
is described by the formula:

n(k, )= f (k.D)— (wick +wil), (2.20)
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where k, [ > 0 represents capital and labour inputs in an enterprise, / denotes
a homogeneous production function of degree 1 (and the Cobb-Douglas
production function represents its special case), wy, w; > 0 represent pro-
duction factor prices, then the first-order conditions that must be met to
maximize profit can be expressed by the following equations:

af df

=W A=W,

ok al

where d f /ok and d /0l represent marginal products of production factors.
Thus far, the reasoning is correct. However, a problem appears: if the pro-
duction function fis homogeneous of degree 1, then the Hessian of the profit
function is not negative-definite (and this is the second-order condition for
the profit function n to be maximized).

Moreover, there is no combination of production factorsv = (k,/) € (0,+o<>)2
that could maximize function (2.20). To demonstrate this, an indirect proof
will be produced (see Tokarski and Zachorowska-Mazurkiewicz, 2016).

Assume, despite the above hypothesis, that a combination exists
V= (l;,f) € (0,+<><>)2 such that the function nt(k,/) has a local extreme point.

An open neighbourhood z ¢ (0,+<><>)2 of point v exists such that:
a VvezaVvzy n(v)<n(v)foralocal maximum
or
b VvezAaVvzy n(v)>n(v) for alocal minimum.
Let us assume any circle ¥  z and a ray y that starts at the origin of coor-

dinate system and goes through point v. Then, exactly two different points
exist v;,v; € KNy such that:

n(v).m(vy)<m (2.21a)
for a maximum, or
(v),m(vp)>n (2.21b)

for a minimum. Let the point v be located closer to the origin of coordinate
system than v,.

As both the production function f{k, /) and the cost function c(k, /) = wik
+ w;l are homogenecous of degree 1 and f(0, 0) = 0 and ¢(0, 0) = 0, also the
profit function (2.20) is characterized by homogeneity of degree 1 and by
1(0, 0) = 0. Consequently, on each ray x; = {x, (that starts in the origin of
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coordinate system and has a positive slope (), the values of function = rise
(fall) from 0 to +eo (—e0). Thus, also the following is true in particular:

(Vz),

a ifn(v)>0, then zm(v)< 7 (v)
= = w(n),

b ifn(v)=0, then z(v;)=7(v)
c ifict)EV)<0,thenn(v1)>n(V)>1t(V2),

A
)

which is inconsistent with inequalities (2.21ab).

This reasoning can be extended into any n-dimensional (for n = 3, 4, ...),
homogeneous production function and cost function of degree 1 (which
is demonstrated in the study published by Tokarski and Zachorowska-
Mazurkiewicz (2016)).

Hence, Clark’s marginal theory of distribution is false (in the case of both
bivariate and multivariate production functions with constant returns on
scale), and parameters o and 1—a in the Cobb-Douglas production function
cannot be interpreted as participations of capital and labour in the output
(the same is true for the parameters of bivariate and multivariate power pro-
duction functions analyzed in this chapter).

It can be demonstrated that the Cobb-Douglas production function sat-
isfies conditions (i-viii) applicable to the production function (2.1) with re-
spect to K and L. This is because:

* Assumptions (i—ii) are satisfied directly as per equation (2.19).
« VY(K,L)e [0,4)?F(0,L)=a0%L"% =0 and F(K,0)=aK*0'"*=0.
« Y(K,L)e [0,+) lim F(K,L)=al™® lim K% =+ and

K—+oo

K—+oo

lim F(K,L)=aKa lim Ll_az-i-oo.
L—+oeo

L—+oo

© VY(K,L)e [0,+0)>MPK = aK*['™* >0 and MPL = (1- &) aK*L™* > 0.

OMPK D .
«  For all (K, L)e (0, +eo) Sk =ele-DaKe 2% <0 and similar
IMPL =—a(a-1)aK*L*" <0,
oL
« ForK,L>0 lim MPK=0aL™* lim K%'=+c, lim MPK =oal'™®
K—0t K—0t K —>+oo
lim K*'=0, lim MPL=(1-@)aK® lim ["*=+cc and lim MPL=
K—+oo L—0T L—0t L—+eo
lim MPL=(1-a&)aK® lim L"*=0.
L—>+oo L—+oo

. VK,L>20A¢>0F(¢K,cL)=a(¢K)* (L) =¢caK“L"* =¢F(K,L)

Considering the Solow model with the Cobb-Douglas production function,
we will replace relation (2.1) with the Cobb-Douglas function described by
the formula:
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Y (6)=(K (1) (E(5) ™, 2.22)

assuming also that equations (2.2-2.7) are satisfied. According to relation
(2.6), the total productivity of production factors in equation (2.22) equals
et Consequently, we assume that the total productivity of production
factors rises in time due to the effect of technical progress as defined by
Harrod.

Dividing the sides of Cobb-Douglas function (2.22) by £ > 0, we obtain
the production function in its intensive form, described by the formula

(symbols as in Section 2.2):

ve()=(kp (1)) (2.23)

Substituting relation (2.23) into the Solow equation (2.15), we obtain:
kg (t)=s(kg ()" —ukg (1), (2.24)

where =0+ g+n. Equation (2.24) is a Bernoulli differential equation. Its
integral meeting the condition kg(0) = kgy > 0 (Where kg denotes the stock
of capital per unit of effective labour at the moment 7 = 0) determines the
growth path of capital per unit of effective labour. Given that integral and
using equation (2.23), we can determine the trajectory of output per unit of
effective labour.

Ignoring the trivial solution (kg = 0), the Bernoulli equations can be ex-
pressed as follows:

(kg () e (1) = s (ke (1) (2.25)

Bernoulli’s substitution:

q(0)= (ke (1)) ™. (2.263)
results in:
(ke (1)) ke (1)= % (2.26b)

It follows from equation (2.25) and relation (2.26a,b) that:

g(t)=(1-a)s—(1-a)uq(t). (2.27)
The integral of equation (2.27) can be expressed by the formula:

q(1)=gqq (1)e =0, (2.28a)
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where ¢, represents a complementary integral of integral ¢, hence:

G(t)=qq (1)e VM —(1—a)ugy (1)e -0, (2.28b)
It follows from relations (2.27) and (2.28ab) that:

Ga (1) M = (1—@) s = g4 (1) = (1- o) sell "M,
hence:

qq(t)=(1-a)s f IO gy — ie“*“)“’ +9, (2.29)

where ¢ € R represents the constant of integration. Substituting the comple-
mentary integral (2.29) into equation (2.28a):

a(0) :L;e“% +¢Jé(la)m = Srgerlem (2.30

Bernoulli substitution (2.26a) gives:
1/(l-a
ke (1)=(q ()",

and this together with equation (2.30) implies:
/(1-cx)
kg (1) :(Hq)e-(l—“wfj . 2.31)
u

Equation (2.31) produces an infinite family of integrals of Bernoulli differ-
ential equation (2.24). To determine the trajectory of capital per unit of ef-
fective labour, the constant of integration ¢ must be selected so as to satisfy
a Cauchy boundary condition kg(0)=kg,. Hence:

s /(1-cx) s /(1-cx)
kE(O):("‘(b]' Z[ +¢] =kgo,
u o+g+n

and consequently that constant is represented by ¢ described using the
formula:

_6+g+n' 2.32)

Thus, the growth path of capital per unit of effective labour is expressed in
this version of the Solow model by the formula:
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s (101 /(1-cr) s (toc)3 \ /(1-0x)
= B e~ (1-o)ut — = —(1-a)(6+g+n)t
ke (1) (5+g+n+¢e j (5+g+n+¢e j (2.33a)

while according to the equation of production function in its intensive form
(2.23), the trajectory of output per unit of effective labour:

/(1-0r)
v (1) =((H;M+¢e—<l—“><5+g+">’y , (2.33b)

where ¢ describes relation (2.32). Given the growth paths of output and cap-
ital per unit of effective labour (i.e. yg and k), and knowing that the labour
productivity y(7) equals e%’ yg (r) and the capital-labour ratio k (1) = %'k (¢),
the trajectories of those macroeconomic variables can be determined.
However, let us return to the constant ¢ described by equation (2.32).

/(1-cx)
Note that it follows from equation (2.32) that if kgg >( s j
o+g+n

/(1-cx)
[kEO <( 5 j J, then ¢ is negative (positive), while
o+g+n

/(1-cx)
ko =[ s ] = ¢ =0. Initial capital per unit of effective labour
o+g+n

/(1-cx) /(1-cr)
kgo>| -2 kgo<| -2 will be termed high (Iow) k .
o+g+n S+g+n

Let us now differentiate time paths (2.33ab) with respect to time 7. We see
that:

1

;eE(z)=_¢(5+g+n)(W+¢e<1a><5+g+n>f}l‘“> e (1))

and

+ge(-a)Brgtn)t ](l—a) o (1-0)(E+gn)t

¢
VE (1) =—q3oc(5+g+n)(5t:+n

which implies that:

sgnkg (t)=sgn jg (1) =—sgno. (2.34)

A conclusion can be drawn from equation (2.34) and previous findings that
if the economy was characterized by a high/low initial capital per unit of
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effective labour (i.e. ¢ was positive/negative), then increases in capital an
in output per unit of effective labour were negative/positive, and thus the
values of those variables fell/rose. However, if:

/(1-a)
kgo=| -2
E0 (5+g+nj ’

then ¢ =0 and the values of those variables did not change in time. It fol-
lows from the above statements and from relation (2.10ab) that at high/low
initial values of capital per unit of effective labour, the growth rates of la-
bour productivity (y/ y) and of capital-labour ratio k | k) were less/greater
than the Harrodian rate of technological progress g. On the other hand, at

/(1-cx) . ;
kgo= d , the values of kg and yg did not change while = L3 =g.
o+g+n y k

Let k = lim kg (t)and yE = lim yg (¢) denote the long-run stock of cap-
11—+

t o )
ital and out;Jt per unit of effect_fve labour (that represent a special case of
kx and yg from Section 2.2); then, using the relation (2.33a,b), we obtain:

I(1-ar) /(1-c)
kg = lim kg (¢)= lim [ s +¢e—(l—a)(5+g+n)f] =( s ]1 (2.35a)

t—>too t—too| S+ g+1 S+g+n

and (similar):

/(1-c) /(1-cx)
yz = lim VE (t) = lim [ ol +¢g_(l_a)(5+g+n)tT :[ S T . (2.35b)
{—>too t—too| O+ g+0 o+g+n

Because at 1 —+eo kg (1) = krand yg (t)— yE, hence kg (1), g (1) = 0; then
the growth rates of labour productivity and capital-labour ratio approach
the rate of technological progress as defined by Harrod.

Moreover, it follows from equations (2.35a,b) that'’:

dnkg _ 1 N dnyr o

> - >09
s (I-a)s s (I-a)s
and
dlnkp _dlnkp _ 1 <0
20 on (1-a)(5+g+n)
oln v _ oln yx __ o

<0
a0 on (I-a)(6+g+n)
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It follows from the above relations that a high savings/investment rate or a
low capital depreciation rate or a low growth rate of the number of workers
are accompanied by high values of kx and y, and (thus) by high levels of
long-run growth paths of capital-labour ratio and labour productivity.
Differentiating equations (2.35a,b) with respect to a, we obtain:

alnkzzalny: 1 I ®
dot da  (1-a) S+g+n

arriving at the conclusion that if s > 6 + g + n (s < J + g + n), then
dnkg _dlnyg L kg _dlnyg

do oo Jo oo
panied by high (low) levels of long-run growth paths of labour productivity
and capital-labour ratio.

<0] and a high elasticity « is accom-

2.3.2 The CES production function

The CES production function!! is described by the formula (Arrow, Chen-
ery, Minhas, and Solow (1961), see also e.g. Chiang (1994, pp. 426-430) or
Tokarski (2009), Chapter 1, Section 1.4)!%:

-l/o

Y=F(K,L)=a(aK° +(1-a)L°) ", (2.36)

where a >0, 0 € (0;1),0 € (0;4<0). ¥, Ki L (like formerly) represent the output
and capital and labour inputs. Parameter « represents the total productivity
of production factors, because F(1, 1) = a. Parameter o has no direct economic
interpretation'® while parameter o represents the elasticity of substitution
between production factors, because that elasticity equals 1/ (1+0) (Chiang,
1994, p. 428). We will now demonstrate that the CES function satisfies most of
the assumptions underlying the neoclassical production function (2.1).

i The set (0;+o<>)2 represents the domain of CES function and

F: (O;+<><>)2 — (0;+e0) which results directly from equation (2.36).
ii  The CES function is freely differentiable in its domain.
iii  The following is true:

lim F(K,L)= lim % =0
K—0* k-0t a 1-aY°
Ko T o
and
lim F(K,L)= lim a =0.

L—0" >0t a 1-a)°
KO' + LU
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Consequently, property (iii) of the neoclassical production function
is only asymptotically satisfied, because the domain of CES function
(0;+t><>)2 is contained in the domain of function (2.1), i.e. [0;+oo)2, and
the point (0,0), where property (iii) of function (2.1) is satisfied, does not
belong to the domain of CES function.

iv If L >0, then

lim F(K,L)= lim a
K —+oo

1o
=a I-a >0
Ka+oc( o +1_aj/6 I°

F LO'

and for K> 0
a o /o

lim F(K,L)= lim s = s >0
Lo Lo o 1-0)'° K°

Koo
Moreover:

lim  F(K,L)= lim % =te
K —4conL—too K—toonL—t+eo o -«
(Kf’ o j

Hence, property (iv) of function (2.1) in the case of CES production
function is only partly satisfied.

v The marginal product of capital (0F/0K) is described by the equation:

+0

a—F=i£ >0 VK,L>0.
0K a°\K
The positive value of the marginal product of labour (dF/dL) is simi-
larly demonstrated:

+0
g_zz 1;“(%} >0 VK.L>0.
a

vi Second-order partial derivatives of the CES function are described by
the equations:

oF
) %Y K-F(K.L)
0 Izza(l+0)(YT,8K 5 <0 VK,L>0
0K a® K K
and

*F (1—a)(1+0')(Y)“ . %L_F(K’L)

2 L o (0 VK,L)0.
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2 1+
The partial derivative J I; is negative, because a(l+o)( Y >0, and
oK a® \K

1+ . .
Lﬂ 2)0 <0, because the CES production function (see property
a
(viii)) is homogeneous of degree 1, hence the following is true (as per
Euler’s homogeneous function theorem):

OF g 9F | =F(K,L),
0K oL

thus:

oF oF

—K-F(K,L)=——"-L<0.
ok KK L)==grL<

The negative value of the partial derivative 9*F / oI is similarly
demonstrated.

(vii) The CES production function partly satisfies the Inada condi-
tions. This is because:

+0
+0o
vL>0 lim %F 2% jim (Yj —aa lim ! .
K—0t 0K  a° k—ot\ K K—0t oa'®
o+(1-a) K
L
\E¥e
vL>0 lim %L —ga tim ! - =0
K—+dK K—+oo —
K
a+(l-o)| —
[ ( )(Lﬂ“
Similarly:
\-+0
+o
vEk>0 fim 2 =12% jin (ZJ‘ = (1-a)a lim 1
L—0" oL a® L—0t\ L L—0" —
of L +(1-a)
K

_a
(1 _a)llo ’
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and
+0
VK>0 lim a—F:(l—ot)a lim ! 1 =0.
L—+eo 0L L+ —
L
o — | +(l-«
vii F(¢K.gL)= e st F(K,L),

io — /o =6
o -« o l-o
((gK)" Ty } (KU r j

hence the CES production function is homogeneous of degree 1 (charac-
terized by constant returns to scale).

Note that at o0 — 0%, the CES production function is convergent with the
Cobb-Douglas function. This is because:

lim (a (OtK“’ +(1-a)L° )_UG J: a lim exp(ln(aK“’ +(1-a)L° )_1/6 J

o—0" oc—0"

0
_ In(aK ™7 +(1-a)L°) (0)
=a exp|— lim
o—0" o

. —oK°IhK-(1-a)L°InL
=a exp|— lim
0'%0+ O!K_G +(1—(X)L_G

iln[(_,.l_ia]nL
. (e} LO'

=a exp| lim
o—0"

o  l-a
—+
K° I°
=aexp(alnK+(1-a)lnL)=aK* L[

Let us consider now a special case of the Solow model wherein the produc-
tion process is described by the CES production function expressed using
the formula'®:

-l/o

Y (1) =(a(1<(z))*" +(1—a)(L(z))*") : (2.37)

where the symbols have the meanings given above. We also assume that the
remaining assumptions of the Solow model are satisfied. Dividing function
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(2.37) by units of effective labour E > 0, we obtain the CES function in its
intensive form described by the equation:

ve ()= f (ke (1) = ! o (2.38)

Substituting the production function in its intensive form equation (2.38)
into the Solow equation (2.15), we obtain the following ordinary differential
equation:

kE (t):

16 —Hkg (1), (2.39)

where u=0+g+n. This equation will be considered in the phase space
P =(0;+00). It follows from equation (2.39) that:

sT_, lil Y

- -

i.e. (with an additional assumption that ; > 051/6) we arrive in this version of

the Solow model at a non-trivial stable steady state that is represented by the
stock of capital per unit of effective labour, expressed by the formula:

/o

kg = : (2.40a)

The steady state k; represents a point of stable equilibrium, because if
lo

—-o
kg(0)e|0;

»—a‘(‘:‘rﬂ

po , then at any moment ¢ >0 kg (#)>0, and at
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lo

kg(0)e H i+0o |, we obtain kg (¢)<0. This leads to the conclu-

sion that for any kg(0) at t >+, capital per unit of effective labour kg(7)
approaches kx, hence ky; described by formula (2.40a) determines the long-
run output per unit of effective labour in this version of the Solow model.

It follows from equations (2.40a) and (2.38) that the long-run output per
unit of effective labour is described by the equation':

lo

(2.40b)

Differentiating equation (2.40a) over s, 0 and n (keeping in mind that
U =0+g+n), we obtain:

Lo

s
* o-1 (_]G - * *
okg _ s # >0= sgn—ayE =sgn K _ 1
o (l-a)u°| l-o os os

and

Lo

% % i -
kg _okg __sou°! (#T
¥ o (-a)| l-a

aé%f=sgnay—‘€=sgnaﬁ=sgnaﬂ=—l.

>0=sgn
on 20 on

The signs of the above partial derivatives lead to the conclusion that the
higher the rate s or the lower the rates ¢ and n, the greater the stock kz
and stream yz, and (thus) the growth paths of labour productivity and capi-
tal-labour ratio reach higher levels (the conclusions are thus similar to those
drawn from the versions of the Solow model discussed above).
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2.4 Phelps’ golden rules of capital accumulation

It follows from equations (2.3b) and (2.4) that consumption C in the Solow
model at any moment ¢ € [0;+e) can be described by the formula:

C(t)=Y()-S(2).

Dividing the above equation by units of effective labour E > 0, we arrive at
the equation:

ce(1)=(1-5)ye (1),

where ¢ represents consumption per unit of effective labour. Since in a long
* * * . .

run (at t —+oeo) yg () = yg, hence cg (t) = cg, where cg is described by the

equation:

g =(1-5)yE. (2.41)

An analysis of equation (2.41) demonstrates that if the savings/investment rate
s rises, then (on the one hand) the proportion of consumption in output falls,
i.e. 1-s, and (on the other hand) the output per unit of effective labour in
Solow equilibrium rises, hence y. Thus, consumption per unit of effective
labour in a non-trivial steady state of the Solow model (i.e. at consumption per
unit of effective labour equal ¢ ) can rise, fall or remain constant as a function
of increase in the savings/investment rate s. As a result, the long-run consump-
tion per worker ¢ = C/L will follow a growth path on a higher or lower level, or
(in the case of constant cx;) the position of that path will not change.

Phelps’ golden rule of accumulation is defined as a savings/investment
rate s that leads to the maximum long-run consumption per unit of effective
labour ¢y, thus placing the economy on the highest long-run time path of
consumption per worker.

It follows from equations (2.35b) and (2.41) that, assuming the Cobb-Doug-
las production function, consumption ¢z can be described by the formula:

s /(1-0x)
py :(1_S)(5+g+nT . (2.42)

Hence, the determination of the golden rule of accumulation can be reduced
to the maximization of the expression (2.42) with respect to s € (0;1).
First, note that:

. *

lim cg =0,
s—07
lim ¢ =0

s—I1
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and
Vs e (0;1) cg >0,

*

hence, for each s in the interval (0, 1) sgnaS—E =sgny’(s), where:
s

v(s):lnc*Ezln(l—s)+lilns+9, (2.43)

o . .
where 6 = —17111(5+ g+n) € R Since it follows from equation (2.43) that:

’ 1 o o—3Ss
Vi) =—+ = S
I-s (I-a)s (-a)1-s)s

if s € (0;0), then v'(s)>0 while at s € (a;1) v(s) <0. This means that at a
savings/investment rate s = «, the function v(s) and the long-run consump-
tion per unit of effective labour cr reach their maxima in the interval (0, 1).

This leads to the conclusion that the golden rule of capital accumulation
is represented by a savings/investment rate s that equals the elasticity o of
output Y with respect to capital inputs K.

2.5 Conclusions

The discussion contained in in this chapter can be summarized as follows:

I The assumptions listed below underlie the Solow growth model. The
production process is described be a neoclassical production function
that makes the volume of output depend on (physical) capital inputs and
on units of effective labour (representing a product of available tech-
nology and the number of workers). The function is characterized e.g.
by unconditional availability of each factor in the production process,
diminishing marginal productivities and constant returns to scale. An
increase in the stock of capital results from the difference between in-
vestment (financed from savings) and capital depreciation. Technology
grows at the Harrodian rate of technological progress, and the number
of workers increases at a constant growth rate. Consequently, units of
effective labour rise at a growth rate obtained as the total of Harro-
dian rate of technological progress and growth rate of the number of
workers.

II The assumptions adopted in the model lead to the Solow equation that
describes an increase in capital per unit of effective labour. It follows
from the Solow equation that the increase represents the difference
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between savings/investment per unit of effective labour and capital de-
cline per unit of effective labour. The decline results from both capital
depreciation and an increase in units of effective labour.

The Solow equation has two steady states: a trivial and non-trivial one.
In the non-trivial steady state (identical with the point of long-run equi-
librium in the Solow model), capital per unit of effective labour rises
with an increase in the savings/investment rate or with a reduction
in capital depreciation rate and in the growth rate of the number of
workers.

In a long-run Solow equilibrium, the labour productivity (output per
worker) and capital-labour ratio (capital per worker) rise at a growth
rate that equals the Harrodian rate of technological progress. The lo-
cation of trajectories followed by those macroeconomic variables de-
pends on the value of capital per unit of effective labour in the Solow
long-run equilibrium. The greater/lower that capital value, the higher/
lower the positions of long-run growth paths of labour productivity and
capital-labour ratio.

Those conclusions are also confirmed in special cases of the Solow model
i.e. the model with the Cobb-Douglas production function and with the
CES production function (proposed by Arrow, Chenery, Minhas and
Solow).

Phelps’ golden rule of accumulation is defined as a savings/investment
rate that locates a Solow economy on the highest long-run growth path
of consumption per worker. In the Solow model with the Cobb-Douglas
production function, that rate equals the elasticity of output with re-
spect to capital.

Notes

1
2

Physical capital inputs will also be referred to (simply) as capital inputs.
According to assumption 5, E = AL (where A represents available technology
and L denotes the number of workers), hence the marginal product of labour
(MPL) can be expressed as:
MPLza—F:a—Fa—EzA-MPE,

JL OE dL
i.e. according to assumption (v), we also obtain a positive MPL.
The growth path (time path or trajectory) of variable x is understood hereinafter
as a specific function x (7) that describes the values of that variable at subsequent
moments t € [0;+o0).
We implicitly assume that the initial stock of technology, i.e. 4 (0), equals 1.
However, this assumption has no effect on the generality of further analyzes. A
similar assumption is adopted for L (0) in equation (2.7).
Technical change can be defined (after Solow) as follows: “When we think about
technical progress in the economist’s abstract way it is only too natural to im-
agine a standard production diagram with inputs measured along the axes and
a family of equal-output curves of the conventional shape, and to say that when
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10

12

13

14

15

technical progress occurs, the family of equal-output curves shifts in such a way
that more output can be produced from given inputs or the same output can be
produced with fewer inputs” (Solow 1963, p. 48). See also Solow (1957).

ILe. the rate of such technological change that directly boosts the productivity of
labour. More on that topic, see e.g. Allen (1975, p. 237) or Tokarski (2009, Chap-
ter 1, Section 1.5).

Such expressions as H % and H|Z | will denote indeterminate forms like 0/0

and oo/eo, and will indicate that the authors use L’'Hospital’s rule.
S/ (kg)kg - f (kg)=-MPE <0 results from the fact that output Y can be ex-
pressed as:

Yzf(kE)E,

hence:
)4 , okg

MPE =—"—= f"(kg) —=E k
ag ~ (ke) G B S (k)

:_f»(kE)§E+f(kE):—(f’(kE)kE—f(kE))>0.

An alternative proof of stability of the non-trivial steady state of the Solow equa-
tion can be found in the study published by Milo and Malaczewski (2005).
We use here the following property of a multivariate function. If the function

y=f), x=(x1,x,...,x,) € R", is (firstly) differentiable and (secondly) assumes

positive values in the set Z ¢ R”, then for eachi= 1,2, ..., n: sgn oln = .
ax,- ax,-
Section 2.3.2 is based on studies conducted by Tokarski (2008a, 2009) (Chapter
2, Section 2.5). The possible use of the CES production function in the Solow
model is discussed e.g. by Klump and Preissler (2000), Klump, McAdam, and
Willman (2011) and Sasaki (2017). See also Sulima (2011), who analyzes a Non-
neman-Vanhoudt model (representing a generalization of the Solow model) with
the CES production function.
Note that at o =1, the expression ! = ! in the CES produc-
le a l-o
a l-a R
ke Tm) K L
tion function represents a weighted harmonic mean of capital and labour inputs
with weights equal a and 1 — a.
However, parameter « is identified with the proportion of capital inputs in the
output in Clark’s marginal theory of distribution.
Since we assume that technology is described by the equation A(r) = e$’, we can
also assume that the total productivity of production factors at the moment ¢ =
0 equals 1, hence parameter « in the production function (2.37) also equals 1.
Since it follows from equation (2.38) that Vkg>0 f’(kp)=aak;°™

1 ok} yr k> Vs
1 E _ VE E VE
- ,sgn—= =sgn—<— and hatie? S =LA
(“kEG +1_0‘) o >0-%8 os & os sen ou sen ou



3 Generalizations of the Solow model
(the Mankiw-Romer-Weil and
Nonneman-Vanhoudt models)

3.1 Introduction

This chapter describes generalizations of the Solow model, known in the
literature, i.e. the Mankiw-Romer-Weil model developed in 1992 and the
Nonneman-Vanhoudt model proposed in 1996. The Mankiw-Romer-Weil
model considers human capital accumulation in addition to physical capital
accumulation.! Therefore, that model is also known as a model of human
capital accumulation. The Nonneman-Vanhoudt model is designed to ana-
lyze processes in an economy with a finite number of N stocks of capital
(including various types of physical, human, social, etc. capital).

Our analysis of the Mankiw-Romer-Weil and Nonneman-Vanhoudt models
(like the previous analysis of the Solow model) will begin with their purely gen-
eral versions and then will proceed to special cases with the Cobb-Douglas and
Constant Elasticity of Substitution (CES) production functions. We will also
analyze the stability of non-trivial steady states of systems of differential equa-
tions that result from the assumptions adopted in the discussed growth models
(see also Dykas, Sulima and Tokarski, 2008; Dykas, Edigarian and Tokarski,
2011; Sulima, 2011). We will find the golden rules of capital accumulation that
(what will be demonstrated) represent simple generalizations of Phelps’ golden
rules of accumulation from the Solow model of economic growth.

3.2 The two-capital Mankiw-Romer-Weil model (a model of
human capital accumulation)

3.2.1 The model with a neoclassical production function

The assumptions listed below underlie the economic growth model analyzed
in this chapter.”

1 The production process is described by a neoclassical production
function expressed by the formula:

Y(t)=F(K(1),H (), E(1)), (3.1)

DOI: 10.4324/9781003323792-4
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where Y, K and E represent (like in the Solow model) the output, stock
of physical capital and units of effective labour, respectively, and H de-
notes the total stock of human capital consisting of all workers in the
economy. It is assumed that the production function (3.1), being a gener-
alization of function (2.1), is characterized by the following properties™:

i Its domain is defined as the set [0;+<><>)3 and F': [0;+<><>)3 — [0;40).
ii Function F'is differentiable at least twice in the set (0;+oo)3.
iii Forany(K,H,E)e [0;+<><>)3 , the following is true:
iv F(0,H,E)=F(K,0,E)=F(K,H,0)=0.
v Y(K,H,E)e (0;+)® lim F(K,H,E)= lim F(K,H,E)=
K—+oo H—+4c0

V(K,H,E)e (0;+e)’ -
vi V(K,H,E)e (O;+<><>)3 a—F,a—F,a—F >0, where subsequent partial de-
J0K 0H OFE
rivatives represent the marginal product of physical capital (MPK),
marginal product of human capital and marginal product of units
of effective labour (MPE).
. 3 PF *F &°F
vii V(K,H,E)€ (0;+0) —,——~,—5 <0.
( ) & (0it) 0K 0H? 9E?

viii For any (K,H,E)e (O;+°°)3 lim oF _ lim oF _ lim oF =400
k-0 0K g0t dH g0t OE
. . dF .. OF
and lim ——= lim ——= lim =0 (we assume thus that the

K40 0K Ho40dH E—>+odFE
Inada conditions are satisfied).
ix V(K,H,E)e [0;4)’AVc>0 F(cK.cH.cE)=cF(K,H,E).

2 An increase in the stock of physical/human capital equals the differ-
ence between investment sx Y/sy Y in that capital and its depreciation
OoxKloyH (wWhere sg/sp denotes the rate of investment in physical/human
capital, and dg/dy represents the depreciation rate of that capital). It
is assumed that the rates sg, sy, dx 1 oy belong to the interval (0,1) and
that sg +sp € (0;1). Assumption 2 can be expressed using the following
differential equations:

K(1)=sgY ()= K (1) (3.2a)
and
H(t)=syY (1)-8y H(2). (3.2b)

3 Units of effective labour change as per equation (2.12a), hence their
growth rate A equals the total of the Harrodian rate of technological
progress (g) and the growth rate of the number of workers ().

Like in the Solow model, let:

_Y(@®
)= L) (3.3a)
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_ K@)
k(t)= L) (3.3b)
and
H(t)
h(t)= L) (3.3¢)

denote, respectively, the output and the stocks of physical and human capi-
tal per worker, and let:

ye(t)= 28 (3.4a)

kg ()= 128 (3.4b)
and

he (t)= Z((tt)) (3.4¢)

denote the values given above per unit of effective labour. It follows from
assumption 3 about units of effective labour and equations (3.3a—c) and
(3.4a—c) that:

y@) _ . Ye() a

(1) g+ Ve (D) , (3.5a)

k() _ ke(r)

k() & kg (1) G20
and

h(e)_,, he(r) (3.50)

h(1) hi (t) .

It follows from equations (3.5a—c) that if the variables yg, kg, hg rise/fall,
then the growth rates y, k, h are greater/less than the Harrodian rate of
technological progress g. When the analyzed macroeconomic variables ex-
pressed per unit of effective labour remain constant, the growth rates of
labour productivity and of physical and human capital per worker equal the
Harrodian rate of technological progress.

Dividing the production function (3.1) by units of effective labour £ > 0
and using assumption (1) viii.), we obtain:

Y (1) _ F[ (1) (>1J
E() \E(W) E@)
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and this together with equations (3.4a—c) leads to the production function in
its intensive form described by the formula:

e (1) =1 (ke (1).he (1)), (3.6)

Wheref(kE, hE) = F(kE, /’lE, 1)

Function (3.6) represents a simple generalization of function (2.11) known
from the Solow model. Consequently, it is characterized by the following
properties:

Its domain is defined as the set [0;+00)? and f : [0;+00)% — [0;+0c0).

The function is differentiable at least twice in the set (0;+e0)2.

V(kg,hg) € [0:400)% f(0shg)= f (kg;0)=0.

V(kg,hg)e (0;400)? lim f(kE,hE): limmf(kE,hE):+oo
-

o0 o e

2, 2
e Foreach (kg,hg)e (0;+o0 )2 8] 9f >0 and 87](, 87];<
> g KL okE

f  For any (kg,hg)e (0;+<>o)2, the Inada conditions are satisfied, i

im % = tim % —yeand fim 9 = 1m 9 o
kg—0t Okg  hp—ot Ohg kg—+w0dkp  hp—+eo Ol

Differentiating equations (3.4bc) after time ¢, we obtain:
KO E@ o H@O , E@)
kg(t)= 0 kg (1 )E( ) A hgp(t)= E0) he (1 )E(Z)

From the above relation and equation (2.12b), we get:

k(0 = ’;’) xkE(z)AhE(r)—’;((t‘))—zhE(z),

and considering equations (3.2ab), we arrive at the following system of dif-
ferential equations:

kp(t)=sgye(t)—uxkg (1) 3.7)
he ()= s yE(t)— e (1)

where ug =0x +g+n>0, uy =y +g+n>0 denotes the rate of physical/hu-
man capital decline per unit of effective labour. System of equations (3.7),
also known as equations of motion of the Mankiw-Romer-Weil model, rep-
resents a simple generalization of the Solow equation (2.15). Thus, its eco-
nomic interpretation can be reduced to the statement that an increase in the
stock of physical/human capital per unit of effective labour equals the dif-
ference between investment in physical/human capital per unit of effective
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labour and capital decline that results from depreciation of physical/human
capital and from an increase in units of effective labour.

Substituting the production function in its intensive form into system of
differential equations (3.7), we get:

ke(O)=sk [ (kg(t),hg (1))~ gk (1)

. (3.8)
hep()=sy f (ke (t),hg (0))—phe(?)
We will demonstrate now that system of differential equations (3.8) has two
steady states: a trivial steady state (0, 0) and a non-trivial steady state in the
phase space P = (0;+oo)2.

The existence of the trivial steady state results directly from property (c)
of function (3.6). That point will be ignored in further analyzes (like in the
case of the Solow model).

The non-trivial steady state solves the system of equations:

q)k (kE,hE,SK’/JK)=O

(3.9)
O, (kg,he,sgpp)=0
where:
Ox+g+
O (kg hg sk g ) = i (kg hp ) =25 = pg (ki ) - 2K 8T
SK SK
and
oy +g+
O, (kg,hg S )= PH (kEahE)_ui:pH (kEahE)_M
SH SH
where the functions PK(kE,hE)ZM, PH (kE,hE)zf(k%’hE) make

(respectively) the productivity of physicgl capital pg and producgvity of hu-
man capital py depend on inputs of both physical capital kr and human
capital i per unit of effective labour.

The Jacobian determinant J| of system of equations (3.9) is defined by the
formula:

0, o,

J|= okg ohg _ dpyg |dkg  dpg /ohg =apK apH_aPK 0Py
& & BpH/BkE apy/a/’lE akE ahE ahE akE
dkp g

(3.10)
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Since:
af
apK:@kE Skihg) _0f 10hg
ok k7 " ohg kg
and (similarly):
af
oo _ahg B G ar ok,
ohg hi " okg hg

the Jacobian (3.10) satisfies the relation:

9f . of , Af of
akE kE f(kEﬂhE)JLahE hE f(kEahE)J_akEahE

ki kehg

V(kE,hE)G P J=(

>

hence:

af af
kg =20 g =20y,
S (k>he) ok £ ohg

V(kEahE)GP ‘J‘:f(kfbhE) k2h2
EE

G.11)

Considering that the production function (3.1) is homogeneous of degree 1
and given Euler’s homogeneous function theorem, we conclude that for any

(K,H,E) e (0;+)>, the following is true:

F(K,H,E):§—£K+§—I§H+g—gE,

and this, divided by E > 0, gives:

oF oF oF
V(kE,hE)E P f(kEahE):ﬁkE-'-ﬁkE"—ﬁ

Since* oF _of and oF _ a—f, equation (3.12) can be expressed as follows:

0K 0dkp  OH 0hg

(3.12)

of af oF
Y (kg,h P kp,hg)=—"—kp+—"hg+—.
( E> E)E f( E» E) ok E+8hE E+aE

We also know that g—; >0, hence’:

af af af af
Y (kg,h P kg.,h ——kp+-—"-h kp.hg)——2-kp——"-hg >0
(kg.hg) e f( E E)>8kE E+8hE E=>f( E E) ke E g E >
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and consequently the Jacobian determinant (3.11) is positive. As a re-
sult, there is a point K" =(k;,h;;)ef that solves system of equations
(3.9). The point also represents the steady state of system of differential
equations (3.8).

As the non-trivial steady state x of the analyzed system of differen-
tial equations represents a special case of the non-trivial steady state
of system of differential equations (3.40) known from the Nonneman-
Vanhoudt model, and that steady state is Lyapunov asymptotically sta-
ble (Section 3.3.1), thus also the analyzed point x is Lyapunov asymptot-
ically stable.

Obviously, the growth rates of physical capital £/ k and human capital
i/ h per worker (like in the Solow model) equal the Harrodian rate of tech-
nological progress g in steady state x, as per equations (3.5bc). It follows
from equation (3.6) that the long-run output per unit of effective labour
equals yg = f (k;},h;}), and the labour productivity rises at the growth rate
v/ yequal g as per equation (3.5a).

Moreover, since Ug =0k +g+n and uy =0y +g+n, it follows, from this
relation and from system of equations (3.9), that the stocks kz and Ay can be
understood as certain implicit functions of investment rates sg, sy, of depre-
ciation rates Jdg, oy and the growth rate of the number of workers n. Hence,
the subsequent partial derivatives kx and /j; with respect to those rates solve
the following systems of equations:

0wy oky b tohy | | okpiosg | | -o@y sasg i)
| 0D /okp 0D, /ohg | | aphiasg | | —0®w/dsk |
| 0wy oky b tohy | | okplasy | | —o@y sosy | 1)
| 0D, /oky 0D, /ohg | oy lasy | | —0®w/osy |
| 0w oky b tohp | | okprosk | | —owysoasy | .
| 0D, /oky 0D, /ohg | 138 | | —0®w/odk |
| 0w oky b tohy | | okpiosy | | -owrasy 1)
| 0D, /oky 0D, /ohg | My 138y | | —0Pulddy
and
oD, /0ky oDy /hg okplon | | —0® /on 6139
oDy, /oky 0D, /dhg e lon || —o®u/on | ‘
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It follows from equations (3.13abcde) that:

—a(l)k /aSK ad>k /8hE

—(0k +g+n)/s%< dpk | dhg
ak; B —0®, / dsg ody, / dhg B

o 7 - 7
9
(Sx+gam P (Sx+gn)| f(kphe)— 2L hy
o ohy _ ohe ),
sk || sxhg || ’

apKlakE —(5K+g+n)/s§<

by /dky  —ody /dsk

ahz 3 aq)h/akE —8(I>h/8sK apH/akE 0
E)sK ‘J‘ ‘J‘
0 0
(Ox +g+n) =" PH (O +g+n)—"— f
_ okg _ _ okg >0
sx ] siheJ|
akE >0 by analogy with —= Ohg 0,
aSH aSK
oh E >0 s1m1lartoai>0
SH oSk

_9® /38, oDy |y

I/SK apK /BhE
akz B -0, / 06k oDy, / ohg

Bk | R |
kg,h —h
_apH/BhE __f( £.hg)— E<0
sk || SK\J\

A0, 19ky  —9d, 135k

apK/akE 1/SK

ahz _ oD, / ok, —0®, / IOk _ dpy | dkg 0
9k i 7]
pn af
okp kg

- =— <0,
SK‘J‘ S](hE’J|

ok .. Ohy
—* by analogy with —= <0,
S y gy 6



Generalizations of the Solow model 49

ohg similar to aﬁ <0,

H o

—8d>k/8n a(I)k/ahE
ﬁ B —a(I)h /on 8(I>h /8hE

1/SK apKlahE
1/SH apH/ahE

an ] J]
of of
kphg)-2L e 2L
dpu 19hg _dpx 19hg S (kg ohp " | Ol
- Sk SH SkhE suke _
J| ]

*

and (by analogy) ah—E

This leads to thenconclusion that the higher the rates of investment in
physical capital sg or human capital sy or the lower the depreciation rates of
those stocks dg and dy or the lower the growth rate of the number of work-
ers n, the greater the stocks ky and /iy in the long-run Mankiw-Romer-Weil
equilibrium, and (thus) the higher the levels reached by long-run growth
paths of analyzed stocks of capital per worker.

Moreover, as the production function in its intensive form (3.6) has
positive partial derivatives with respect to kx and hx due to property (e), the
signs of partial derivatives yj with respect to investment rates sx, sy, depre-
ciation rates dg, o and growth rate of the number of workers n are identical
with the signs of partial derivatives k and hy. Economic conclusions drawn
from the signs of partial derivatives y;; with respect to sg, sy, ok, oy and n

are similar to the conclusions drawn from the signs of partial derivatives k
and hy.

3.2.2 A model with the Cobb-Douglas production function

It is assumed in the original Mankiw-Romer-Weil model (i.e. a model with
the Cobb-Douglas production function) that the production process is de-
scribed by an extended Cobb-Douglas function expressed by the formula:

Y(0)= (K@) (H(0))™™ (E(1)) K H | (3.14)

where ok, oy, (1-og —oy) e (0;1), and assumptions 2-3 underlying
the model from Section 3.2.1 are satisfied. Parameters ag and ay in the
production function (3.14), like parameter o in the original Cobb-Douglas
production function, represent the elasticities of output Y with respect to
the stock of physical capital K and human capital H.
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As function (3.14) represents a simple generalization of the Cobb-Douglas
function (2.19), it satisfies all the conditions applicable to the production
function (3.1).

Dividing the production function (3.14) by E > 0, we get the production
function in its intensive version expressed by the formula:

ye(t)=(kp(0)™ (hg(0)™ . (3.15)

Substituting relation (3.15) into (3.8), we obtain the following system of ordi-
nary differential equations:

ke () =sk (kg(0)™  (hg ()™ —pugkg (1)
hi(6)= sy (kg ()™ (hg ()™ g hg (1)

(3.16)

The non-trivial steady state (the trivial steady state is ignored) of system of
differential equations (3.16), i.e. K € P, represents a solution of the system of
equations described by the formula:

kgK_lth — Hg

SK

ag og-1 _ Hy
kE hE -

SH

that can also be expressed as a matrix:

—(l—aK) oy [ Inkg j|= hl(,LLK/SK) (3.17)

o —(1-apy) Inhg In(ug /sy)

Using Cramer’s rule, we find that the following equations are solved in point
K= (k;; Iy ):

a5 +(1ay)in
Inky = (il 18N (3.18a)
l—aK—aH
and
(l—aK)1n6S7K+(ZK IHSL
Inhy = KEEEN HYEYR (3.18b)
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because Ug =0k +g+n and uy =0y +g+n. Since it follows from equation
(3.15) that:

Inyp(t)=og Inkg(t)+oay Inhg(r),
then (in particular):
Inyr =og Inkg +oyy Inhg.
and this together with relations (3.18a,b) leads to:

s s
agln—X  4opin—"H
O +g+n Oy+g+n

Inyp = (3.18¢)

l_aK—aH

Equations (3.18a—c) lead to the following conclusions. First, partial loga-
rithmic derivatives kz, hz and y*E with respect to investment rates sg and sy
are positive, and hence the higher those rates, the higher levels are reached
by long-run growth paths of the stocks of physical and human capital per
worker and of labour productivity. Second, partial derivatives of the ana-
lyzed logarithms with respect to the deprecation rates of various stocks of
capital and the growth rate of the number of workers are negative, and that
leads to the conclusion that high values of rates dg, d or n are accompanied
by trajectories of k, 41y situated at low levels in a long term. Third, the signs
of partial derivatives Inky, In/y and In y with respect to the elasticity ax
and ay are ambiguous, because e.g.:

SK SH

« oglnh—"—+(1-ay)ln—"—
81nkE= " Ox+g+n (1=ewn) Oy+g+n
aOC]( (1—0!K—OCH)Z ’

and

. (—ag)n—K  ioplnH
alnkEz( «) Ox+g+n K Oy+g+n
aaH (1—OCK—O(H)2

3.2.3 A model with the CES production function

Let us consider now the Mankiw-Romer-Weil model of human capital accu-
mulation with the CES production function.® We assume that the produc-
tion process is described by a function that can be described as an extended
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CES production function (2.37), expressed by the equation (with previous
symbols preserved):

Y(1)= (aK (K1) +ay (H@)) ° +(1-ay —ag)(E@®)° )_1,(, , (319

where ok, oy, (1-oy —ag) € (0;1), and ¢ € (0;1). Parameters o, oy and
o are interpreted in terms of economics like parameters a and ¢ in function
(2.36). Additionally, the production function (3.19) has similar properties as
functions (2.36 and 2.37), because it represents its extension.

Dividing equation (3.19) by units of effective labour £ > 0, we get the
relation:

-l/o

y(0)= (o (ki (0) 7 e (hp(0)* +1-ax —an) . (3.20)

Substituting function (3.20) into the system of equations of motion in the
Mankiw-Romer-Weil growth model, we obtain the system of differential
equations:

. - - -1/o
k()= s (o (ke (D) +ay (hp()) * +1=ox—our ) ~pke()
(3.21)

. -G 5 -l/o
hp(t)=sy (051< (ke()) ™ +ay (he(t) " +1-ok —OCH) —lghp(t)

The system will be analyzed in the phase space P = (0;+oo)2.
Consequently, there exists a steady state Kk € P of system of differential
equations (3.21). First, let us demonstrate that system of differential equa-

tions (3.21) has exactly one steady state. The steady state K'=(k2,h2) eP
represents a solution of the following system of equations:

-1/
Oy (kg hg)=sk (051(16115_(7 +ohg® +1-ag —‘XH) kg =0

-1/ ’
Oy, (kg hg)=su (aKkE_G+aHhE_G+1_aK —0511) ’ —uphp=0 (.22)
that can also be expressed as follows:

Wi (0 00x ) = o L v (1- o — 0y ) g —0x =0
h , (3.23)

V) (qk-9n,601) = 0k th+(1—0€1< —oy )q,—60p =0
k
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(e} o
where 0k =(SKJ —-axg € R, Oy :[SH) —ogeR, qr=ki>0 and
Hk Hu

gn =hg >0. The Jacobian determinant J ‘ of system of equations (3.23) is
described by the relation:

aiH'Fl—(XK—(XH —aquk
j‘: Vi 19qic I /ogy || ‘s
oy, /dgk Iy, 1 dgy, - oK K oy —ay
P qk
thus:
.7Z(I—QK—(XH)[O‘K+aH+1_OCK_aH)>O>
dk  49n

hence, system of equations (3.23) has a solution.

Using the Grobman-Hartman theorem (Ombach, 1999, theorem 6.2.1), it
can be demonstrated that the steady state is asymptotically stable.” For this
purpose, we will show that all eigenvalues have real parts that are negative
in the Jacobian matrix J of system of equations (3.23). The matrix is de-
scribed in any point (kg,hg) € P by the equation:

00y /dkg 9Oy [ohg | | sgmpk—uk sgmph
00, /oky 90, /ohy | sgympk sgmph— Uy
(3.24)

J(kE,hE)=[

where mpk = g% and mph = E;Z—E denote (respectively) the MPK and of hu-

man capital perEunit of effectivg labour (equal MPK and MPH). However,
note that in the steady state x (when O =©,, =0), sgpx = ug and sypy = Uy
(where pg= yglkand py = yplk = hg represent productivities of the physical
and human capitals). Matrix (3.24) can be described in this point using the
formula:

sg (mpk — sgmph
J(x) = & (mpk=pi) Kmp . (3.25)
sgmpk sy (mph—pp)

Eigenvalues of matrix (3.25) solve the equation: det(J(x)—vI), where [ de-
notes an identity matrix. Hence:

det (J(x)—vl)= & (mph =)= skmph
sgmpk sy (mph—py)—v
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Consequently, the sought eigenvalues v represent a solution of the equation:
(sk (mpk = pg)=v)(sg (mph—py )—v)—=sgsxmpk - mph=0,
which leads to the equation:

V2 + (s (P =mpk)+sy (pu —mph))v (3.26)
—SKSH (mpk -pg+mph- pg — PKPH) =0.

The discriminant A of equation (3.26) is expressed by the formula:

2
A= (SK (px —mpk)+sg (pu - mph)) +dsgsk (mpk - py +mph- px — pg pr )

thus:

2
A> (sx (px —mpk)+sy (pa —mph))” +4sgsg (mpk - py +mph- pg)>0.

Consequently, both eigenvalues of the Jacobian matrix (3.25) are real num-
bers. Moreover, the values satisfy the following relations as per Vieta’s
formulas®:

v+ vy =—(sg (pkx —mpk)+sy (pg —mph)) <0
and

vivy =sgSy (mpk - py +mph- px — px pr) >SSy (mpk - py +mph- pg)>0,

hence, the values are negative numbers. It follows from the above conclusion
and from the Grobman-Hartman theorem that the steady state x of the ana-
lyzed version of Mankiw-Romer-Weil model is asymptotically stable.

However, let us return to system of equations (3.23) that leads to the con-
clusion (substantiated by the former discussion) that certain implicit func-
tions exist gy =gy, (k.60 ) and qr =4 (6k .0y ) that solve that system of
equations. Moreover, derivatives of those functions (with respect to O, 0y)
solve the following systems of equations:

v v || dgk || _dwk
aqk aqh ) 39]( _ 89[( (3 273)
OV OV || dgy oy,

dqx gy 00k 00k
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and
oy Iyx g _ 0y
o 9qp || 9Ou | 9u (3.27b)
oy I 3q) _ Vi
aqk th aeH aeH
It follows from equation (3.27a) that:
4k
1 Oy —~
i
=0y /00 Iwy /gy, 0 %
* | =0y, /d0k  dy, /dg) qk
s _ K _ - %K (3.28a)
0k ] ] ||
and
oy _1
qh
v /gy —dwy /96 o B
| 9y /dqr  -w 90k ai
dan _| T - = %Kdh 50, (3.28b)
9k ] ] ‘Y
It is demonstrated by analogy that:
LI/ (3.28¢)
0y
and
W, (3.28d)
0y

o2 (e}
It follows from substitutions 0x = _ 5K —-og, 0y = _SH —og,
O +g+n Oy +g+n

gk =kg and g, = hf that:

aﬁ>0 /\ah—E>O,
g dqy,
a0l>0/\80—H>0.
aSK SH



56 Generalizations of the Solow model

and

200k <O/\80H <0/\80K ’aeH <0,
86]( 85H on on

and from the above results and equations (3.28a—d), we get:

aﬁ>0/\ah—E>0
aSK aSH
and
ak—E<0 N ah—E<0/\ aﬁ,ah—E<0.
85K 86[_1 al’l an

The above inequalities lead to similar conclusions in terms of economics as
corresponding inequalities from the Mankiw-Romer-Weil model with a gen-
eral production function or with the Cobb-Douglas production function.

3.2.4 Golden rules of accumulation in the Mankiw-Romer-Weil
model

A single stock of capital was analyzed in the Solow model (the stock of phys-
ical capital) and hence only one investment rate was analyzed, namely the
rate of investment in physical capital 5. Two stocks of capital are considered
in the Mankiw-Romer-Weil model (physical and human) and consequently
two investment rates exist — the rate of investment in physical capital sg and
the rate of investment in human capital sg. The golden rule of capital accu-
mulation was defined in the Solow model as a rate of investment s that leads
to a maximum consumption per unit of effective labour (the model from
Section 2.4), while in the model analyzed in the current section, the golden
rule of capital accumulation can be defined (by analogy) as a combination
of the rates sg and sy that leads to a maximum value of consumption per
unit of effective labour.

It follows from the assumptions underlying the Mankiw-Romer-Weil
model that an sg fraction of output in an economy is allocated to investment
in physical capital, and an sy fraction is allocated to investment in human
capital. The fraction of output available for consumption equals 1—sg —sg.
Hence, consumption at any time ¢ € [0,+<) can be expressed using the for-
mula (see also (2.3b) in Chapter 2):

C(t)y=(1-sx —sg)Y (1),
or, dividing the above equation by units of effective labour £ > 0:

cp(t)y=(1-sg —sug) ye (1),
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where c¢g denotes (like in the model from Section 2.4) the consumption per
unit of effective labour. Since in the Mankiw-Romer-Weil model yg (1) — VE
(at t —+oo), then cg () approaches cg described by the formula:

czz(l—sK—sH)y};. (3.29)

Taking the long-term consumption per unit of effective labour ¢g from
the Mankiw-Romer-Weil model with the Cobb-Douglas production func-
tion (Section 3.2.2, equation (3.18c)), the relation (3.29) can be expressed as
follows:
* oK OH
cg =(1-sx —sg)(sx)ax—on (Sg)l-ex-—on 2, (3.30)
where Q= ! >0
K __CH

(5]( +g+ n)lfzxK—ocH (6H +g+l’l)l—0(](70£[—1

Since both investment rates sx and sy as well as their total must belong to
the interval (0,1), determination of the golden rule of capital accumulation
in the Mankiw-Romer-Weil model can be reduced to finding a combination
of the rates sx and sy that maximizes function (3.30), i.e. leads to maximum
values of that function within a right-angled triangle with vertices (0,0),
(0,1), (1,0). On the legs of that triangle, we get:

. * __®H . oK
lim cp=(sy)l-ax-og Q lim [(I—SK—SH)(SK)laKaH J=0,

SK%0+ sK—>O+

. % 0K . OH oK

lim CEZ(S[()I—O(K—O(H Q lim (175K75H)(SH)1*0(K*0¢H (SK)lfaKfaH ZO,
sg—ot sg—0t

and on the hypotenuse:

. * . aK oK
lim ¢;=Q lim (I-sx —sy)(Sk)1-ag—ay (Su)1-ag-ay |FO.
(SK+sH)—1 (sK+sH )1

Function (3.30) assumes positive values inside the triangle. Its maximization
is thus identical with the maximization of the following function:

o o
LS lnsK+ H

+ Insgy +1n Q.
l—ocK—otH 1—OCK—(XH

v(sK,sH)zlnc;} =In(1-sx —sg)
(3.31)

First-order conditions for the maximization of function (3.31) are described
by the formulas:
871127 1 n (074 _ OCK*(I*OCH)S[(*OCKSH -0
aSK I—SK—SH (I—OlK—OCH)SK (l—ocK—aH)(l—sK—sH)sK

(3.32a)
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and

v
— =_ + =
8sH I*SK*SH (I*OCK*(XH)SH (I*OlK*OCH)(lsz*SH)SH
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1 Oy

(0924 7(1*(XK)SH —OgSK

:0’

(3.32b)

and second-order conditions are reduced to the requirement that the Hes-
sian matrix:

0%y /ds% ov/(dsg dsgr)
ov/(dsg dsyr) 9?v/osy

be negative-definite. The Hessian H can be described using the formula:

1
+ oK

(lszsz)z (1_05K_O‘H)S%(

1

2
(lszsz)

1

2
(lszsz)

1

O“H

2
(lsz 7SH)

* 2
(l*O(Kf(XH)SH

implying that its principal minors (m2; and m,) are expressed by the formulas:

and

my=— ! 2+ oK 5 <0.
(I*SK*SH) (1*(XK705H)SK

ni =detl§: ! { oK

2
(1—SK—SH)

[04:€%4
K H2 75 >0
(l—aK—ocH) SKSH

Consequently, the Hessian H is negative-definite.

Transforming the first-order conditions, it can be demonstrated that the
system of equations consisting of (3.32ab) has exactly one solution in point
(k.8 )=(ak,oy ). This means that the golden rule of capital accumulation
in the Mankiw-Romer-Weil model is given by investment rates (in the stocks
of capital distinguished in that model) that equal the elasticities of output
with respect to those stocks. It is a simple generalization of Phelps’ golden
rules of capital accumulation from Section 2.4.

+ OH
(I—OCK—OCH)S%( (I—OZK—O!H)S%I
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3.3 The multi-capital Nonneman-Vanhoudt model

3.3.1 The model with a neoclassical production function

The economic growth model analyzed in this section is based on the follow-
ing assumptions about long-time processes in the economy®:

1 The value of output Y depends on N various stocks of capital Ky, K>, ...,
Ky and on units of effective labour E. The relations between capital in-
puts and the value of output are described by a neoclassical production
function expressed by the formula:

Y (t)=F(x(1),E(t))= F (K (1), Kz (2).... Ky (1), E (1)), (3.33)

where k=(K},K>,....,Ky) € [0,+<>o)N denotes a combination of inputs
of various stocks of capital. It is assumed that function F, by analogy
with the production functions (2.1) and (3.1), satisfies the following

assumptions'’:

1

ii

il

v

Vi

Vil

N+ and F

The domain of this function is defined as the set [0,+c)
[0,400) V! 5 [0,400).

The production function (3.33) is differentiable at least twice in its
domain.

Vi € [0,400)" A VE € [0,400) it is true that:
F(0,Ks,....Ky,E)= F(Ky,0,...Ky,E)=...= F(K|,K>,...,0,E)
= F(K,K3,....Ky,0)=0 :

)N

In addition'":

Vinke (0,400)Y AE € (0,400) lim F(i,E)= lim F (K, E)=-+oo.

Kj—+oo E—too

N+

The first partial derivatives of function (3.33) in the set (0,+e0)" " are

positive, hence:
vi MPK, =25 A mpE=2% 5,

JdK; oE
where MPK; is the marginal product of the ith stock of capital, and
MPE (like previously) is the marginal product of units of effective
labour.

2 2
Vinke (0,+oo)N AVE € (0,400) J I; <0 A a—I;<0, i.e. function
0K; oE
F is characterized by diminishing marginal productivities of each
stock of capital and of units of effective labour.

The Inada conditions are satisfied, i.e.:

Vi Ak e (04)" AVEe (0,40) lim MPK; = lim MPE =+
K;—0T E—ot
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and

Vin ke (0,40)Y AVE e (0,4) lim MPK;= lim MPE=0

Kj—+eo E—too

viii Constant returns to scale take place in the production process,
hence:

VK e (0,+oo)N AVE € (0,400) A V6>0 F(sk,6E)=¢F(x,E).

2 Anincrease in the ith stock of capital (for /=1, 2, ..., N) is described by
the following differential equation:

Ki()=s5Y (1)~ & (1), (3.34)

where s; denotes the rate of investment in the ith stock of capital, and J;
is the depreciation rate of that stock. It is assumed about the rates s; and
o; that Vi s;,6; € (0,1) and Zsi € (0,1).

3 The trajectories of technology and of the number of workers are de-
scribed like in the Solow model from Chapter 2. Thus, the growth path
of units of effective labour is described by equation (2.12a).

It is clear that a model of economic growth with these parameters repre-
sents a multi-capital generalization of both the single-capital economic
growth model proposed by Solow and the two-capital model proposed by
Mankiw-Romer-Weil.
Let

y()=Y ()] L(1) (3.35a)
denote labour productivity and

Vi k;i(t)=K;(t)/ L(t) (3.35b)
the stock of ith capital per worker. Let:

VE()=Y () E(t) (3.36a)
denote the output per unit of effective labour, and

Vi kg (t)=K;(t) E(t) (3.36b)

ith capital per unit of effective labour. Let us also express by xg:

kg = (kg1 kg2, ... kgn)
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any combination of capital inputs per unit of effective labour in the set
[0,+<>o)N .

From equations (3.35ab), (3.36ab) and the assumption that units of effec-
tive labour rise at growth rate A (representing the total of the Harrodian rate
of technological progress g and the growth rate of the number of workers
n), we get:

)}E (t) . ki ([) _ kEi (t)
v " )~ k) (3.37)

Equation (3.37) is interpreted in terms of economics by analogy with equa-
tions (3.5a—c).

From the assumption that the function F is homogeneous of degree 1 at
¢=1/ E>0, we get the production function in its intensive form expressed
by the formula:

_pl @ L 3.38
Ye(?) F[E(t)’l] S (ke(@)). (3.38)

It follows from assumptions (i—viii) about the production function (3.33)
that function (3.38) is characterized by the following properties:

a Its domain is defined as the set [0,+<><>)N and f: [0,+oo)N — [0,400). Addi-
tionally, the analyzed function is differentiable at least twice in the set

(0,40) .

b VKE € [O’+°°)N f(O’kEZ’"'7kEN):f(kE1:OJ"-9kEN):~--
= f (ke kg2, ...,0)=0

¢ Viakge (0,+oo)N lim f(KE)=+<>o.
kEj—too 5
d Viakge (0,+oo)N mpkg; = of >0 A of { <0, where mpky; denotes
ok Ik

the marginal product of the ith stock of capital per unit of effective
labour (equal MPK)).

e Vinkge (040)"  lim mpkg =+ n lim mpky =0.
kEi—0T kEi—reo
f It follows from assumption (viii) and from Euler’s homogeneous
function theorem that:

Vi e (04e0)" A Ee (04) ¥ =F(k.E)= Y (MPK,K;)+MPE-E.
1
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Dividing the above equation by units of effective labour and consider-
ing that for each i (from 1 to N) mpk;= MPK;, we get:

Vg € (0400)"  yp= f(K'E):zi (mpkik;)+ MPE

hence (first)

Vig € (0,40)" f(KE)>Z (mpkik;)

i
and (second) for any i =1, 2, ..., N it is true that:
pi > mpk;.

Consequently, the productivity of the ith stock of capital (p;= Y/K;= yg/
Kp;) is greater than the marginal product of that capital (M PK; = mpk;).

Differentiating equation (3.36b) after time 7 € [0,+e0), we get:

o K;(1) E(®)

Vi kpi(t)=—"2 -2 k().
Ez( ) E(l) E([) El( )

Considering that (as per assumption 3) £/ E = A and given equation (3.34),

we obtain the relation:

Vi kgi(t)=syE(t) - pikg (), (3.39)

where u; = 8; + g+n denotes the rate of decline of the ith capital per unit of
effective labour. System of differential equations (3.39) represents a general-
ization of system of equations of motion (3.7) from the Mankiw-Romer-Weil
model. Therefore, each of these equations can be economically interpreted
so that an increase in the ith stock of capital per unit of effective labour (kE,)
equals the difference between investment (s;yg) in that stock and its decline
(UK ), resulting both from depreciation of that stock of capital (§;k; ) and
from an increase in units of effective labour ((g+ n) kEi).

Substituting the production function in its intensive form (equation 3.38)
into system of equations (3.39), we reduce it to the following system of dif-
ferential equations:

Vi kgi(t)=s:f (k@) —wike (). (3.40)

In phase space P=[O,+oo)N, system of equations (3.40) has both
a trivial steady state (0, 0, ..., 0) and a non-trivial steady state

K':j Z(kzj],kZ'Q, ,kZ'N) S (O,+°°)N.
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In phase space P, the non-trivial steady state of system of differential
equations (3.40) represents a solution of the following system of equations:

Vi i (Kg,sp,u;)=5p; (kg)—#; =0. (3.41)

The Jacobian J ‘ of system of equations (3.41) is defined by the relation:

8\|11 /akgl a\|11 /akEz a\.ll] /akEN
,‘ _ a\llz /BkEl a\[fz /akEz a\lfz /akEN
a\VN/akEl a\[IN/akEz a\IIN/akEN

The above Jacobian can also be expressed as follows, as per equation (3.41):

SlapllakEl SlapllakEz SlapllakEN
_ s70py 10k s70py 10k we  $0py 10k
7= 2 Pz' El 2 P2. E2 . 2 Pz. EN (3.42)
sNapN/akEl sNapN/SkEz sNapN/Z)‘kEN
The following is true for each i = 1, 2, ..., N in phase space P:
af :
A T
ap,- _ 0 f(KE) _ akE,' £ ( E) — mpkifpi <0 (3 438.)
okgi  Okgi\ kg k2, kg '
and
. I s .
vjei Op _9f1okg _mpk; o (3.43b)

okg; kg kg

It follows from equations (3.43ab) that Jacobian (3.42) can be expressed as
follows:

mpky — py mpk, mpky
_ 5 mpk; mpky, —pp ... mpk
7] =H[k5) : ; : ’

mpk; mpk, v mpky — pn
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hence:
-Di 0 PN
- 5 0 2R PN
J‘ :H(k;i ] : : .. :
; : : . :
mpky  mpky, ...  mpky— py
-1 0 1
0 | 1
:H SiPi
. kEl
i mpky  mpk;, mpky
y4 V2] DN
-1 0 0
0 -1 0
_ NH(Slpl J :
kei )| ppk k i
pky - mpky z mpK;
y4 D2
thus:

7 NH(“’I -, mﬁkf (3.44)
1

af
kEl

mpk; _ okg;
Pi A (KE)
erty (f) of the production function in its intensive form (2.38), it follows that

of

~ kg
Z mpki = Ok <1, and thus Jacobian (3.44) is positive/negative for
i f(ke)

an even/odd N in any point kg € P. This means that system of differential
equations (3.40) has a non-trivial steady state ki € P that solves system of
equations (3.41).

It also follows from assumption (viii) about production function F and
from property (d) of the production function in its intensive form f'that the
solution is unique.

Given that foreachi=1,2, ..., N , and considering prop-
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We will now demonstrate that the point kK € P is Lyapunov asymptot-
ically stable (proof given by Dykas, Edigarian and Tokarski (2011))."> The
following function will be used for this purpose:

V(ke) :2 ; (pf (ke - k;i)z} (3.45)

Of 1 kg

where p;= >0. Function (3.45) satisfies conditions (i—ii) applicable

to the definition of a strong Lyapunov function.!® To verify that function
is decreasing in its solution, it is enough to demonstrate that an open neigh-
bourhood IT c P of the steady state K € IT exists such that the following
inequality is true:

Vkg € H\{K*E} Zi (Pi (Sif(KE)*.uikEi)(kEi *kzl'))<0- (3.46)

A Taylor series expansion of function f in the neighbourhood of point
K*E € I leads to:

f(xg)= f KE +Z [ of kE, kE,)J+£(KE - K}‘) AEE O(K'E —K*E).
(3.47)
Thus, inequality (3.46) can be expressed as:

Zl.pisi(kEi_kZ"i) zaakjl;( kEz kEt z Pz,uz kEz kEz)

+2,-pisi (kE,- —kzi)s(‘KE - KZD <0

It follows from the definiteness of function £ and from the relation:

—a—f(K*E) that inequality (3.46) is satisfied if the following inequality
i

21. (pisi (kEi - kZz-)) < zi (Pi.ui (kEi - kE,- )2 ) (3.48)
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It follows from property (f) of the production function in its intensive form
(2.38) that: Z %k’ <1, hence in the steady state kj € I1 we get the ine-

af
quality: Z akE’

/ ()

<1, and we obtain from it:

piisiz<1
K

Using the above inequalities, we can determine the majorant for the left-
hand side of inequality (3.48):

2 1 . .
D pisi (ki — ki) =Z,-{%“z’(’%’%f}2,~ Pus {fl}z(kaka-)z

His; Ui i
:zi (Piﬂi (kEi - kZl-)z )

We demonstrated that the function V realizes a strong Lyapunov function
for problem (3.41), and this combined with the Lyapunov theorem implies
the asymptotic stability of point k' € P.

Let us proceed to the economic properties of point k € P. Since the point
is characterized by Lyapunov asymptotic stability, it represents the point of
stable long-run equilibrium in the Nonneman-Vanhoudt model. Moreover,
since at t —+e the combination of capital inputs per unit of effective labour
Kg (1) — K, then yg (t)— yE, where as per equation (3.38) we get:

e =f(kE)- (3.49)

Since in the steady state of the Nonneman-Vanhoudt model yg / yg =0 and
Vi=1,2,...,Nkg!kg=0,it follows as per equation (3.37) that the growth
rates of labour productivity y/ y and of various stocks of capital per worker
k; I k; equal the Harrodian rate of technological progress g.

Let us now return to system of equations (3.41). It follows from that sys-
tem of equations that long-term stocks of various capitals per unit of effec-
tive labour in point Kpe P represent implicit functions of the combination

of s=(s1,8,...,sy) and u = (1, 12,..., 1y ). Hence:

Vi kg =k (s,1). (3.50)
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Subsequent partial derivatives (for i, j = 1, 2, ..., N, where i # j) of function

(3.50) solve the following systems of equations:

81//1 /akEl
81//, /akEl

oy | 0kE

81//1 /BkEl

8y/, /8kEl

oy / 0k

81111 /akEl

oyy 1 9kp,

and

| dyn /dkp

81//, /8kE,-

oy / Okg;

8l,l/, /8kE,-

dyy / dk;

oy [ dkg;

oyy 1 dk;

8!//1 /akE,-

oyy 1 9kg;

81//1 /akEN
81//1 /akEN

dyy / dkpy

81//1 /BkEN
Bl/ll /akEN

dyy / dkpy

al//] /akEN
81//, /8kEN

oy / dkgn

oy 1 dkgy

oy; 1 9k

oy 1 dkpy

ov; | ok g

al//N /akZN

oy / ok g
oy; 1 Ok

oy /okpy

oy / Ok

oy; 1 9k

oy /Okpy

—81//1 las,-
*al//l /8s,~

78!//]\/ /aS[
(3.51a)

—oy;/0s;
faw,-:/asj
781//]\:; /9s;
(3.51b)
—oy /oy,
*a‘lfz‘:/aﬂi
*a‘/fz\:l /oy,
3.51c)
—oy; /oy,

—oy; /oy

—oyy /o, |

(3.51d)
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It follows from equations (3.51a) and (3.44) that:

81//1 /akEl 81111 /aSi 81/11 /akEN
ak; B al//N /BkEI al[/N /as,- al//N /BkEN
as,- ‘J‘
slapllakgl 0 slap1/8kEN
sl-ap,»/akEl -1 siap,-/akEN
sNépN/akEl 0 SNapN/akEN
Kk
T | ]S ek
I -2
S1 m 0 S1 mpkN
kg kg
5, 1Pk R 5 Pk
ki ki
mpk; 0 sy MPKN = PN
N
_ ken ken
k
ny SIPL Y PR
=D kg zl“ n
_ mpki 0 _ mpky
” kEN
[IEEL cmpky ok
o ke n kEn
Jmpk g Pk
_ D ken

s | (2 meky
17[11 lzl“pl/

kg
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_ mpky,

. pl “ee cee - m
8iPi mpk;
1=y P
i { z bi ]
I
1 0 -1
0 1 -1
o mpkl 0 1— mPkl
) T -
Si Pi mpkl
whx)
thus:
Uy mpk
ki _ ks 6520
. .52a
0s; S; i (l 72 mpk; )
kEi I pr
and by analogy:
mpk;
akE, _ 1#j kE[
3, >0, (3.52b)

SjDj mpk;
kE, [ Zl ]
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and
8wl/8k51 8wl/8u, B\yl/akEN
ak; _ a\VN/akEl BwN/au, a\VN/akEN
jmeke oy ek
D PN
_mpk o _mpky
P PN
_mpk L Pk
B P PN
3
ki D
I I
1 0 -1
0 -1 -1
_%kl 0 1_%"1\/
D PN
8iDi mpk;
Sili) gy TP
ki zl“ 12
1 0 0
0 -1 0
mpk; mpk;
_ PR 0 1-
3 41 Zl# b
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hence:

mpk;

Bkz, _ - I# Py <0 (3 52C)

o, SiDi 172 mpk;
ki I pi

and similarly:

B mpk;
BkZi _ 1#j  pi
an; <0 (3.52d)
I osipi (lz mpk,]
kEi L pi

It follows from relations (3.52ab) that the higher the rate of investment in the
ith or in the jth stock of capital (where i # j), the higher values are achieved
by ky; and the higher level is reached by the growth path of the ith stock of
capital. Moreover, calculating exact differential of the production function
in its intensive form (3.38), we get:

dyg = Zmpkz’dkEin (3.53)

1

and it can be concluded from this relation and from prior discussion that
an increase in one of the investment rates s; entails an increase in each of
the stocks of capital per unit of effective labour in the combination K*E. This
causes, as per equation (3.53), an increase in y} and labour productivity
shifts to a long-term growth path situated on a higher level.

Since (foreachi=1,2, ..., N)i; = 6; + g+n, it follows from relations (3.52cd)

that: Vi K <0,Vi,j A j#i Ikpi <0 and Vi Ok <0. This implies as per
96, d6; on

*

d J
equation (3.53) that Vi aay§ £ <0and aaﬂ < 0. Hence, the higher the depreci-
i n

ation rates of various stocks of capital or the higher the growth rate of the
number of workers, the lower the various stocks of capital and output (per
unit of effective labour) in a long-run equilibrium of Nonneman-Vanhoudt,
and also consequently the lower the levels of long-term trajectories of labour
productivity and of various stocks of capital per worker.
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These conclusions represent a generalization of similar conclusions drawn
from the Solow and Mankiw-Romer-Weil models.

3.3.2 A model with the Cobb-Douglas production function

Like in the original model proposed by Nonneman and Vanhoudt, let us
introduce an N + 1-factor, extended Cobb-Douglas production function ex-
pressed by the formula:

v ()= [T (& ) (@) 2. (3.54)

i

where Y, Kj, K>, ..., Ky, E denote (like previously) the value of output and
inputs of various stocks of capital and units of effective labour, and pa-
rameters o; represent the elasticities of output with respect to various in-
puts of capital. It is assumed about these parameters that Vi ¢; € (0,1) and

Zai € (0,1). The production function (3.54) represents an extension of the

plroduction functions (2.19) and (3.14) and as such satisfies assumptions
(i—viii) applicable to the production function (3.33).

Additionally, assumptions 2-3 underlying the model from Section 3.3.1
are regarded as satisfied.

Dividing the production function (3.54) by units of effective labour E >
0, we get:

ye (0= [ ] (ke () (3.55)

Substituting equation (3.55) into system of differential equations (3.40), we
arrive at differential equations:

Vi ki (0)= ;] (ki () ik (0): (3.56)

/

It is obvious that the system of differential equations has a trivial steady
state that will be ignored in further analyzes.

The non-trivial steady state kK € P represents a solution of the following
system of equations:

. I-of o S
Vi siky; I IkEj =L,
- M
J#
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or

(1=0y)Inkg — oy Inkgy —...— ay Inkpy =1n[s—1]
H

—0q lnkEl +(17(X2)1I1kE1 —..— Oy ll’lkEN ZIH(SZJ
2

SNJ
HN

Subtracting equation Nth from ith equation (fori=1, 2, ..., N — 1), we get:

(3.57)

-0 lnkEl —0h 11’1kE2 f...+(17061)1nkEN ZIH(

Vi#gN Inkg —Inkgy =1n[siJ_ m(SNJ,
i Hy

hence:

VigN Inkg =1n[s")— ln[SN}anEN. (3.58)
Hi HN

Substituting equation (3.58) into the last equation in system (3.57), we get:

%[a h{ )}» Yo 1n[SN]+ Zoz lnkEN—ln(‘u ]
(l #Nal (#N }z {al ln(Sl ]J (3.59)

12(1

After several transformations, we obtain from equations (3.58 and 3.59):

[121#05 ; ]111[2}2/#[ ln[;J ]J
2

hlkEN =

Vi In kzl =
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Taking the logarithm of the production function in its intensive form (3.55),
we get that for each ¢ € [0,400):

lnyE ([) =Z((Xi In kEi ([)),

and thus in particular at ¢ — +eo:

In y;; = Z(a,- In kzl-)

i
Substituting formula (3.60) into the above equation and performing some
elementary transformation, we arrive at the relation:

)y

o; Inf —+—

v = i[ [é}+g+n]}

nyg= . (3.61)
Y

Equations (3.60 and 3.61) give various stocks of capital per unit of effec-
tive labour and the output per unit of effective labour in the Nonneman-
Vanhoudt model with the Cobb-Douglas production function. An analysis
of those equations clearly indicates that the signs of derivatives kzi and y*Ei
with respect to investment rates s;, depreciation rates J; and growth rate of
the number of workers n are identical as in the model from Section 3.3.2.

3.3.3 A model with the CES production function

Another version of the Nonneman-Vanhoudt model to be analyzed in this
chapter includes the CES production function expressed by the formula'*:

—1/0

Y () =| Do (K 00) )+ {1- Dy (E@) | (3.62)
J

J

where the variables Y, K, K>, ..., Ky and E have the same meanings as in the
previously discussed versions of the Nonneman-Vanhoudt model, and the
parameters aq, a, ..., ay and ¢ are the same as in the CES function in the

Solow or Mankiw-Romer-Weil model. Thus, it is assumed that each of the
parameters ¢; belongs to the interval (0,1), 205_,- € (0,1)and 6 € (0,+).

J
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The remaining assumptions underlying the model analyzed here are iden-
tical with assumptions 2-3 underlying the model from Section 3.3.1.

Dividing both sides of the CES function (3.62) by E > 0, we obtain the
production function in its intensive version expressed by the formula:

/o

ye(t)=f(xg)= Z((Xj (kEj(l))70)+1—ZOLj , (3.63)

J J

where kg =(kg1,kga.....kgy) € P=(O,+oo)N denotes a combination of in-
puts per unit of effective labour in phase space P. Substituting relation (3.63)
into system of differential equations (3.39), we obtain the following form of
that system of equations:

—1/o

Vj kg=s, Z(al(kEl(t))76)+1*ZOC1 — kg (2). (3.64)
I

/

We will demonstrate that (first) system of differential equations (3.64) has a
steady state in phase space P = (O,+<><>)N and (second) that the steady state is
asymptotically stable.

System of equations (3.64) can be reduced to a system of equations in the
following form:

Vi Wj(KEaSja.uj):Sjpj (KE)—Hjs (3.65)

where Vj p;(xg)=f(kg)!/ kg denotes the productivity of jth stock of
capital. Since system of equations (3.65) represents a special case of sys-
tem (3.41), its Jacobian is expressed by equation (3.44). This means that the
Jacobian has a nonzero value for any kg € P, and thus system of equations
(3.65) has a solution. This leads to the conclusion that system of differential
equations (3.64) has a non-trivial steady state K € P.

Jacobian matrix J of system of differential equations (3.64) is expressed
by the formula:

i Vg dyEg dyE ]
! okgy H 2 okgy W okpy
JVE VE _ VE
7=l ok, Zakem Y Vokp
Iy dyg Ve
| ke Pk 7 Mok MY
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sympky — sompky
sympky sympky — 1o

sympk sompky

In the steady state Ky for each j = 1, 2, ..

matrix can be expressed by the formula:

—s1(p1 — mpk) sympky
I sympk; =52 (2 — mpks)
sympk Sompk

sympk;

sympks

sympky — Uy

., N, we get: u; =s;p;, hence the

sympky

sympky

—SN (PN - mPkN)

(3.66)

Eigenvalues v of matrix (3.66) solve the equation:

det(J —vI)=0,

where I denotes an identity matrix. Since:

—s1 (1 —mpky)—v soympky sympky

det(J —vI)=

sympky =S (py —mpky)—v ... sympky

sympky soympk o =Sy (py—mpky)—v



hence:

det(7 )= |2~

; mpkj
; :

=" [0

- mp
; 7
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t—

mpk

v
PNtT—
SN

mpk

Vv
Pt+—

mpk;

v
Pt+—

mpk;

v
PNtT—

SN

mpk

v
PNT—
SN 4
mpk
-1
-1
v
PNt—
SN
mpk
_ _mpky_
Vv
pnt—
1
__mpky_
%
Pt+—
52
__mpky
v
PNtT—
SN
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thus:

det(/ —v0)=(-)"| [ T2 1_2‘&’2,

j v . J v .
Sj Sj

so that eigenvalues v of Jacobian matrix (3.66) solve the solution:

N S; mpk ;
M IT . 1—27() 0. (3.67)
joPit j Pt
J J

We will demonstrate now that eigenvalues v represent real numbers. An
indirect proof will be provided for this purpose (see Dykas, Sulima and
Tokarski (2008), see also Sulima (2011) and a similar proof for a gravity
model of economic growth in the study by Mroczek, Tokarski and Trojak
(2014)).

Equation (3.67) is true if and only if:

1
- =1. 3.68
2 N (3.68)

J

mpk; s;mpk;

Let us assume then that the roots of equation (3.68) represent certain com-
plex numbers in the form:

v=a+bi,

where a,b € R and i =+/-1. Hence, equation (3.68) can be expressed by the
formula:

1
=1. 3.69
Z pj . a b ; (3.69)
/ mpk; s;mpk; s;mpk;
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As every complex number z satisfies the relation:

z
2 >

1
z ‘ z

where z =a — bi is a complex conjugate of z, so that we get as per quotation
(3.69):

pj y 4 b
z mpk; s;mpk; s;mpk;

=1,

j Dj a b . b
+ i|l+
mpk; s;mpk; s;mpk; s mpk ;
so:
pj  a
Z mpk; s ;mpk;

: + + i+
mpk; s;mpk; s;mpk; s mpk ;

biz 1/(sjmpkj) _1

+ + i+
mpk; s;mpk; s;mpk; s;mpk ;

which leads to the conclusion that » = 0. Hence, all eigenvalues v of Jacobian
matrix J are real numbers. Consequently, equation (3.69) can be expressed
as follows:

1
— =1 3.70

J

Another indirect proof will be provided to demonstrate that eigenvalues v=a
are negative. Let us now assume that ¢ > 0. Then, as per (3.70):

z P; +1 a 22 lzgzmifjd’
J

mp
J j Pit

S

mpk;  s;mpk; j
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which is inconsistent with equation (3.70). This means that eigenvalues v < 0.

As per the Grobman-Hartman theorem, the steady state Kz of system
of differential equations (3.70) in the Nonneman-Vanhoudt model with the
CES production function is asymptotically stable.

The partial derivatives of implicit functions kzj = kzj (s,u), for subsequent
j=1,2,...,N,and yg = yg(s, i) resulting from system of equations (3.65) be-
have identically as the corresponding partial derivatives of system of equa-
tions (3.41) — see relations (3.52a—d). Therefore, their interpretation in terms
of economics is identical.

3.3.4 Golden rules of accumulation in the Nonneman-Vanhoudt
model

The golden rules of capital accumulation are defined in the Nonneman-
Vanhoudt model as a combination of investment rates s = (s;sy,...,5y5 ) € (0, 1)N ,
where the sum of those investment rates also belongs to the interval (0,1)
that leads to a maximum long-term consumption per unit of effective labour
¢ (Dykas, Sulima and Tokarski 2008). That consumption value, like in the
Solow or Mankiw-Romer-Weil model, can be expressed as follows:

c;; = lesi y*E.

i

Taking the long-run output per unit of effective labour from equation (3.61),
i.e. from the original version of the Nonneman-Vanhoudt model with the
Cobb-Douglas production function, we get:

1
ch=0l1- ZSI za, 3.71)

=Y a;
where Q= Hyi 2]061 > 0. It follows from equation (3.71) that:

¥ . 1
Vi lim ¢h=Q lim ZS, Z 7

si—0% si—0"
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%

% . 1-) o
Iim ¢g=Q lim [[1- Es,- 5; 21 7 =0.
Ssi—l™ Nsi—olT -
i i

i
and

Vs; € (0,1) A ZS,- € (0,1) cp(s)>0,
i
hence, the maximization of function ¢z (s) with respect to s (at limitations
imposed on subsequent s;) is identical with the maximization of function v(s)

expressed by the formula:

oc, lns,

v(s)=Inck (s) —an+ln( Zs}k ! 20‘ (372

First-order conditions for the maximization of function (3.72) can be re-

SRTIREPR i 574 I
(B (BB

Vi

(3.73)

and the second-order condition is satisfied when the Hessian:

d*v/0s] 0*v/(9s51057) ... 0%v/(3s19sy)
- 0*v/ (952 0s1) d*v/0s; 0*v/(9s20sy)
O*v/ (dsy sq) *v/(Osysy) ... 0%v/0sk
—(a+h) —a —a
_ —a —(a+b2) —a
—a —a (a+by)
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a.
Vi b=—"—>0
where a :; >1and Lo is negative-definite
1

(%]

at least in the point in which condition (3.73) is satisfied. B
Subsequent principal minors m; (fori = 1, 2, ..., N) of the Hessian H can
be expressed as follows:

—(a+h) —a —a
. - —(a+b -
Vi m = a (a+b) a
—a —a —(a+b;)
b 0 h
-y 0 7
a a a+b;
1 0 -1
], © Lo -1
Tl alby alb+1
1 0

alby  alby . aZ[bi]ﬂ

therefore:
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Since the expression Hbf aZ(bL]Jrl is positive, the odd principal
j FAN
minors m; of the Hessian H are negative, and the even principal minors
are positive. Consequently, the Hessian is negative-definite, i.e. the second-
order condition for the maximization of function v(s) is satisfied.

First-order conditions (3.73) can be reduced to the following linear system
of equations:

Vi [1- D0 o s = (3.74)
J# J#

Using Cramer’s rule, we can demonstrate that system of equations (3.74)
is solved by a combination of investment rates s =(0y, 0, ..., 0y ) € (0,DHN.
Hence, Phelps’ golden rule of accumulation in the Nonneman-Vanhoudt
model is a combination of investment rates that equals the combination of
output elasticities with respect to various inputs of capital. This rule repre-
sents a generalization of Phelps’ golden rules from the Solow and Mankiw-
Romer-Weil models.

3.4 Conclusions

The analyzes contained in this chapter can be summarized as follows:

I The Mankiw-Romer-Weil and Nonneman-Vanhoudt models repre-
sent natural generalizations of the neoclassical Solow growth model.
The Mankiw-Romer-Weil model includes two types of capital, and the
Nonneman-Vanhoudt model considers multiple capitals.

IT Both models of economic growth discussed in this chapter (like the
Solow model) assume that an increase in each of the analyzed stocks
of capital equals the difference between investment in that stock and its
depreciation, and units of effective labour rise at the growth rate that
equals the sum of the Harrodian rate of technological progress and the
growth rate of the number of workers.

I11. Both the Mankiw-Romer-Weil and Nonneman-Vanhoudt models have
a non-trivial steady state of a system of equations of motion and that
state is Lyapunov asymptotically stable. In that state, labour productiv-
ity and various stocks of capital per worker rise at the Harrodian rate of
technological progress.

IV In the point of long-run equilibrium of the analyzed growth models, the
positions of growth paths of labour productivity and of various stocks
of capital per worker depend on rates of investment in those stocks,
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their depreciation rates and the growth rate of the number of workers.
The higher the investment rates or the lower the depreciation rates or
the lower the growth rate of the number of workers, the higher levels are
reached by those growth paths.

V The golden rules of capital accumulation in the Mankiw-Romer-Weil
and Nonneman-Vanhoudt models are defined as combinations of in-
vestment rates corresponding to combinations of elasticities of output
with respect to various inputs of capital.

Notes
1 The stock of human capital can be defined as “a general skill level, so that a

10

worker with human capital % (7) is the productive equivalent of two workers with
1/2h (f) each, or a half-time worker with 24 ()" (Lucas, 1988, p. 17). See also e.g.
Becker (1975), Lucas (1990, 2010), Welfe (2000, 2009), Zienkowski (2003), Malaga
(2004), Roszkowska (2005, 2013, 2014), Cichy and Malaga (2007), Cichy (2008)
and Mroczek and Tokarski (2013).

This model represents a generalization of the Mankiw-Romer-Weil model.
The original study published by Mankiw, Romer and Weil (1992) discusses
a model with the Cobb-Douglas production function. Alternative versions
of the Mankiw-Romer-Weil model can be found e.g. in the studies published
by Zawadzki (2012, 2015), and its possible application in analyzes of regional
growth is discussed by Malaga and Kliber (2007).

The economic interpretation of properties (i-viii) of the production function
(3.1) is analogous to the interpretation of the corresponding properties of
function (2.1).

This is because the output Y can be described using the formula:

oF _df dkg ., dof
Y=F(K,H,E)= f(kg,hg)E which implies that: — E=
( )=/ (kg ) P OK kg oK dkp

Then also V(kE,hE) e P f(kE’hE) > ;Tka A f(kEahE) > aan/’lE

This section is based on studies conducted by Tokarski (2008a, 2009) (Chapter 3,
Section 3.4). See also Sulima (2011).

The asymptotic stability of steady states in Mankiw-Romer-Weil and
Nonneman-Vanhoudt models with the CES production function needs to be
demonstrated considering the properties of that function that fails to satisfy all
conditions applicable to a neoclassical production function.

The inequalities are satisfied: Pk >mpk Apy >mph because: f(kg.hg)>

okg

is positive.

This section is based on a study published by Dykas, Edigarian and Tokarski
(2011), because the original article by Nonneman and Vanhoudt (1996) uses
only an extended version of the Cobb-Douglas production function (the model
known from Section 3.3.2) and fails to analyze the stability of the non-trivial
steady state. See also Dykas, Sulima and Tokarski (2008).

The economic interpretation of properties (i—viii) of the production function
(3.33) is obviously analogous to the interpretation of the corresponding proper-
ties of functions (2.1) and (3.1).

of kg A f(kE,hE)>aa—fhE,hencetheexpresswnsK (px —mpk)+sy (py —mph)
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The expression Vi will hereinafter mean Vi=1,2,...,N. The expressions ¥,; and
I1; will be read similarly.
Lyapunov stability is defined as follows (see Ombach, 1999, p. 214). Let us in-

troduce an open set ) « R” and a function f: Q — R", f e C! (). The system
x’= f(x) generates a local flow ¢ (¢,xy ) and point x; € ) represents a steady state
of @. Then point X is Lyapunov asymptotically stable if and only if:

i A neighbourhood W of point X exists such that Vx € W : [0,+e) < I, Where

I, ={te R:(x,r) e Q} represents motion of point x.

it A neighbourhood U of point x0 exists and IV cU such that
VxeV Vt=20:¢(t,x)e U.
iii A neighbourhood Q of point x0 exists such that Vx e Q: ¢(1,x) = x-
t—00

Let EcQ denote a neighbourhood of the steady state x0, V': E —[0,+e0),
VeC! (E)- Function V'is termed a strong Lyapunov function if and only if (see
Ombach 1999, p. 227):

I Vxe EN{xp}:V(x)>0.

iV (x)=0ex=xp
iii Vxe EN{xo}:V(x)<0.
See also Sulima 2011.



4 Fiscal and monetary policy vs
economic growth

4.1 Introduction

Chapters 2 and 3 described both the single-capital, neoclassical Solow
growth model and the two- and multi-capital Mankiw-Romer-Weil and
Nonneman-Vanhoudt models. Those models did not address the effect of
macroeconomic policy (i.e. fiscal and monetary policy) on the processes
of long-run equilibrium and economic growth. Therefore, this chapter de-
scribes proposed generalizations of the Mankiw-Romer-Weil model and a
compilation of the Solow model with a Keynesian growth model proposed
by Domar (1946, 1957) that consider the effect of both fiscal and monetary
policy on economic growth.

Section 4.2 describes models of economic growth that represent generaliza-
tions of the two-capital Mankiw-Romer-Weil growth model. Those models are
based on the assumption that investments in physical and human capital are
financed both from disposable income (income after taxes) of the private sec-
tor and from taxes collected by the government sector of the economy (Section
4.2.1); Section 4.2.2 describes a model with a separated capital of the government
sector. The growth models described in Section 4.2 were proposed in the studies
published by Tokarski (2000, 2005, Chapter 4) and Tokarski (2009, Chapter 7).

Section 4.3 contains a description of a Domar-Solow model. The eco-
nomic growth model analyzed in that part of this monograph is termed a
Domar-Solow model for two reasons. First, we will consider the effect of in-
vestment inputs in the economy on both the demand and the supply side of
the economy, like in the original Domar model (the neoclassical Solow growth
model does not include any analysis of the effect of investments on the value of
aggregate demand in the economy). Second, the economic growth model ana-
lyzed there can be termed a Solow model, because (like in the Solow model)
the production process is described using the neoclassical Cobb-Douglas
production function, characterized by output elasticity of capital (an elastic
capital-output ratio). The model was proposed by Tokarski (2009, Chapter 8).

An alternative approach to analyzing the effect of fiscal and monetary policy
on the processes of long-run equilibrium and economic growth can be found
in the following studies: Barro (1989, 1990, 1991), Grossman and Helpman
(1991), Engen and Skinder (1992), Barro, Mankiw, and Sala-i-Martin (1995),
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Kelly (1997), Aghion and Howitt (1998), Kneller, Bleaney, and Gemmell (1999),
Welfe (2000, 2009), Folster and Henrekson (2001), Konopczynski (2004, 2005,
2006, 2009b, 2014, 2015), Krawiec (2005), Pietraszewski (2009), Dykas and To-
karski (2013), Malaga (2013) and Nowzosad and Wista (2016).

4.2 Fiscal policy in a Mankiw-Romer-Weil model

4.2.1 The basic model

The following assumption underlies the discussion contained in this section:

1

Like in the original Mankiw-Romer-Weil model, the production pro-
cess is described by a three-factor Cobb-Douglas production function
expressed by the formula:

Y(0)= (K@) (H(0))™™ (E(1)) K ~H | @.1)

where Y,K,H,E>0 and og,op,(0g +0y )€ (0,1) are read as in the
model from Section 3.2.2.

At any moment ¢ € [0; +o0), increases in stocks of physical capital K and
human capital H equal the differences between investments in those
stocks (that is /g and Ig) and their depreciation (6xK and dyH). This
means that the following differential equations are true:

K()=1g(t)-6xK(2) 4.2a)
and
H(t)=1y(1)-85H (1), (4.2b)

where §g, 8y € (0,1) denote depreciation rates of the analyzed stocks.
The stock of effective labour E = AL rises at a growth rate that equals
the total of Harrodian rate of technological progress g >0 and the
growth rate of the number of workers n > 0. Hence, its trajectory is de-
scribed by equation (2.12a).

The state collects (in the forms of taxes and increase in in public debt,
etc.) a tth fraction of output, where 7€ (0; 1). The rate T will hereinafter
be termed the fiscalism index of the economy.!

A sggth fraction of output 7Y collected by the state is allocated to investment
in physical capital, a sygth fraction 7Y represents investment of the gov-
ernment sector in human capital sxg,Sgg.(Sk +5ug) € (0,1). This leads
to the conclusion that the value of investment of the government sector in
physical capital accumulation /g (understood as a sum of direct invest-
ment of the central budget, regional and local budget investment in social
and economic infrastructure and investment transfers to the private sector)
and human capital accumulation /5 (defined as outlays of the government
sector on public education, healthcare, etc.) is given by the formulas:

TG (1) =s5kcTY (1) @.3a)
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and
Tye(t)=sygtY (7). 4.3b)

The variables sg; and sy will hereinafter be termed investment rates
of the government sector in the stocks of physical and human capital,
because they represent a proportion in government budget revenues 7Y’
invested by the government sector in those stocks.

6 The private sector’ invests an sgpth fraction of income after taxes
(1-7)Y in the stock of physical capital, and sgpth fraction of that in-
come in human capital, and sgp,spp,(skp +sup) € (0,1). Hence, invest-
ment in physical capital Ixp and human capital /yp of that sector is
described by the formulas:

Ixp(t)=sgp(1-7)Y (1) (4.4a)
and
IHp(l)=SHP(1—T)Y(Z). (44b)

7 Total investment outlays on physical capital /g (human capital /) equal
the total of outlays of the private sector Ixp (Ip) and of the government
sector Ixg (Iy). Hence, the following equations are true:

IK([)=IKg(l)+IKP(I) (453)
and
IH(I)ZIHG(I)+IHP(Z). (45b)

From relations (4.3a,b), (4.4a,b) and (4.5a,b), we get:
Ik ()= (SKGT+SKP (1—1))Y(t)

and

Iy (t)= (SHGT"'SHP (l—r))Y(t).

It follows from the above equations and from equation (4.2ab) that the
accumulation of various stocks of capital is described by the differential
equations:

K(t)=(sKGr+sKP(1—r))Y(t)—5KK(t) (4.6a)
and
H(t)z(sHGr+sHP(1—T))Y(t)—6HH(t). (4.6b)

It follows from equations (4.6ab) that total investment rates (of the private
sector and the government sector) in the stocks of physical and human
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capital equal, respectively, sgoT+sgp(1-7) and syT+syp(1-7). Moreo-
ver, as assumptions 1-3 underlying the analyzed growth model are identi-
cal with the corresponding assumptions underlying the model from Section
3.2.2, the long-run output per unit of effective labour y can be expressed as
follows as per equation (3.18c):

1 skGT+sgp(1-17)

sgeT+sgp(l—-71
ok In In3HG Hp( )

+0yIn
Ox+g+n Oy+g+n @7)

I—O!K -0y

lny}}:

Equation (4.7) leads to the following conclusions:

* Since dln yp >0, oln yp >0, dnyp >0 and M>O’ the higher the
dskp IskG dspp SHG
investment rates of the private sector or the government sector in the
stocks of physical or human capital, the higher the long-run output per
unit of effective labour (and the higher level is reached by the long-run
growth path of labour productivity).

« It follows from dlnyg <0, olnyg <0 and LHJ}E <0 that (like in the
E)BK E)SH on
original Mankiw-Romer-Weil model) high rates of capital depreciation
or a high growth rate of the number of workers is accompanied by low
values of y (and a low level of the trajectory of long-run output per
worker).

Differentiating equation (4.7) with respect to the fiscalism index of the econ-
omy 17, we get:

. ox SKG —SKP - SHG —SHP
alnyE _ S[(GT+SKP(1—T) SHGT+SHP(1—T). (48)
ot l-ag —og

The following nine cases have to be considered in an analysis of
relation (4.8):

I sgg = sgpand syg = syp, 1.. a case in which both analyzed sectors of
the economy are characterized by equal investment rates in the stocks
of physical and human capital;

I sxg > sgpand syg = syp, 1.€. a situation in which the government sec-
tor is characterized by a higher investment rare in physical capital and
by the same rate of investment in human capital as the private sector;

I sgg < sgpand syg = syp, 1.. a case opposite to case II;

IV skgg = sgpand syg > syp, 1.€. a situation in which the government sec-
tor has a higher (than the private sector) rate of investment in human
capital and the same rate of investment in physical capital;

V sk > sgpand sy > syp, 1.€. a case in which the government sector has
both investment rates analyzed here greater than the private sector;
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VI sgg <sgpandsyg> syp, i.e. the government sector has a higher rate of
investment in human capital, and the private sector has a higher rate
of investment in physical capital;

VII sgg = sgpand syg < syp, 1.€. a situation opposite to case 1V;

VIII sgg> sgpand sy < sgp, 1.e. the government sector has a higher rate of
investment in physical capital, and the private sector has a higher rate
of investment in human capital;

IX sgg < sgp and syg < syp, 1.e. the private sector is characterized by
higher rates of investment in both stocks of capital considered in the
Mankiw-Romer-Weil model.

If the first of the above cases is true, i.e. sxg = sgp and syg = syp, partial
derivative (4.8) equals zero, and this implies that at each fiscalism index 7
the economy follows the same long-run growth path of labour productivity.
This is because at sgg = sgp and syg = syp total investment rates in the en-
tire economy (i.e. sg and sg) are independent of the fiscalism index 7.

In case II, i.e. when sgg > sgp and syg = syp, partial derivative (4.8) can
be expressed by:

*
dln y _ Ok . SKG—SKP >0
ot l—ag—oy skgT+sgp(1-7) ’

which implies that each increase in the fiscalism index of the economy t
leads to an increase in ng and to the growth path of labour productivity
situated at a higher level.

At sxg < sgpand syg = syp, 1.¢. in case 111, partial derivative (4.8) can be
reduced to the relation:

*
oy _ Ok . SKG—SKkp <0
b
ot l—aK—aH SKGT+SKP(1—T)

which means that an increase in the fiscalism index tleads to a reduction in the
. . * . . . .
output per unit of effective labour yg in a Mankiw-Romer-Weil long-run equi-
librium, and thus to a lower level of long-run growth path of labour productivity.
If case IV is true (i.e. when sgg = sgp and sy > sgp), the partial derivative
oln yy

——=*% is described by the relation:
T

*
dnyg _  om  Sw=smp .
ot 1—aK—OlH SHGT+SHP(1—T) ’

and the conclusion is that under such circumstances, an increase in the fis-
calism index of the economy leads to an increase in yx and in a higher level
of long-run path of economic growth.

In case V, i.e. when sgg > sxp and syg > syp, partial derivative (4.8) as-
sumes positive values and then each increase in 7 moves a Mankiw-Romer-
Weil economy onto a long-run growth path of labour productivity situated
on a higher level.
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If case VI is true, when sgg < sgp and syg > syp, partial derivative (4.8)

*
can be both positive and negative. Consequently, the derivative onyg can

0
be expressed by the formula: 4

oln _%H (sG —sup)skp — 0k (Skp —SkG)Sup —(0k +0u ) (skp —5kG ) (SHG —SHP) T

ot (l—a](—aH)(SHGT+SHP(1—T))(SKGT+SKP(1—T))
4.9
It follows from equation (4.9) that:
dln y*E S0 7 < oy (SHG —Sup) Skp — Ok (Skp —SKkG ) SHP (4.10a)
o7 (og +our ) (skp—5kG) (SHG —SEP) '
dln y*E —0e 7= oy (SHG —Sup) Skp — Ok (Skp —SKkG ) SHP (4.10b)
ot (ok +our ) (skp—5kG) (SHG —SEP)
and
dln y*E <0 o T> Oy (SHG —SHP)Skp — 0k (Skp —SKG ) SHP 4.100)
ot (ak +og ) (skp—5kG ) (SHG —Sup)

Formulas (4.9) and (4.10a—c) lead to the following conclusions:

° If oy (SHG _SHP)SKP <ok (SKP _SKG)SHPa it follows from equation (49)
that for each 7€ (0,1) the relation is true:

alnyfg <_ (ax +og)(Skp—5kc ) (SHG —SHP) T
ot (1—0(1(—(XH)(SHGT+SHP(1—T))(SKGT+SKP(1—T))

i.e. each increase in the fiscalism index of the economy 7 leads to a fall
in y and to a lower level of the long-run growth path of labour produc-
tivity in a Mankiw-Romer-Weil economy.

*  When:

(2974 (SHG —SHP)SKP >0k (SKP —SKG)SHP

and:
(2974 (SHG —SHP)SKP < ((XK +aH)(SKP —SKG)(SHG _SHP)+aK (SKP _SKG)SHPa
(first) at each fiscalism index of  the economy

Te|0; %11 (SHG = Sp) Skp = Ok (Skp =Sk ) Snp partial derivative (4.9)
(ax +on ) (skp =Sk ) (SuG —SupKG

(2974 (SHG —SHp ) Skp —Okg (SKP —SKG ) SHP

. (g +0€H)(SKP—§KG)(SHG—SHPKG)
the derivative is Zero and (third) for each

c [(ZH (SHG_SHP)SKP_(XK (SKP—SKG)SHP 1 lny*E
b

is positive, (second) at index T =

. .0
the derivative
(ak tom)(skp —5k6) (SuG —SHPKG) T
is negative. Then, an increase in the fiscalism index 7 in the interval

(2974 (SHG —SHP)SKP —OK (SKP —SKG)SHP
(ag +og)(skp—5kc) (SHG —SHPKG)

Jleads to a rise in yz and the
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economy climbs onto a long-run growth path of labour productivity on
a higher level. At T =7, the output per unit of effective labour yx reaches
it maximum with respect to the fiscalism index of the economy 7 and
the economy climbs onto the highest long-run growth path of labour
productivity. If the fiscalism index of the economy exceeds the value of
T, an increase in that index entails a reduction in the value of variable
y;; and the economy goes down to a lower growth path of the output per
worker.

*  This means that in the analyzed case, the optimum fiscalism index of
the economy is T expressed by the formula:

(2974 (SHG —SHP)SKP —O0K (SKP —SKG)SHP @.11)
(061( +aH)(SKP —SKG)(SHG —SHP)
e Andif:

T=

oy (SuG —Sup)skp 2 (ax +ap ) (Skp =Sk ) (SHG —SHP )+ 0K (SKP —SKG ) SHP
for each 7€ (0;1):

Oy (SuG —SHP)Skp — 0k (Skp —SkG )Sup —(0k +0r ) (Skp — kG ) (SHG —SHP) T
>0y (SHG —SHP)SKP —Og (SKP —SKG)SHP —(051( +aH)(SKP —SKG)(SHG —SHP) 20
*
and this implies, as per equation (4.9), MM)’ i.e. a high fiscalism
T

ad

index of the economy 7 corresO.ponds to a high output per unit of effec-
tive labour y in the Mankiw-Romer-Weil long-run equilibrium and a
to high level of the long-run growth path of labour productivity.

Equation (4.11) leads to the following conclusions:

e The optimum fiscalism index of the economy T depends on the elasticity
ok and oy of output Y with respect to inputs of physical capital K and
human capital H, investment rates sgs and sp¢ of the government sector
of the economy and investment rates sgp and syp of the private sector.

Because at sgg < sxp» SuG > Sup, @n (SuG —Sup ) Skp > Ok (Skp —SkG ) SHP
and

o (Suc —Sup)skp <(0k +0n ) (skp —5k6 ) (SuG —Sup)+ 0k (Skp —SkG ) Sup»
it is true that:
ot -« (skp —SkG)Sup+(SHG —SHP) SkP <0
- 2
dag (skp —SkG)(SuG —sup)(0k +0n)
then, the higher the elasticity ox of output with respect to inputs of phys-
ical capital, the lower the optimum fiscalism index of the economy 7.
« As:
T SHG =S Sgpt(Sgp—S s
ot —o (SHG —Sup)Skp +(Skp —SkG ) SHP >0

dauyy (skp—SkG ) (SHG —Sup)(Ok +og )2
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it can be concluded that a high elasticity ag of output with respect to
inputs of human capital corresponds to a high optimum fiscalism index
of the economy 7.

» Differentiating equation (4.11) with respect to investment rates sgg and
Sy In the government sector, we get:

o7 _ OSgp

= 5>0
aSKG (aK+aH)(SKP_SKG)
and

T OgSHp

> 0.

- 2
aSHG (aK+aH)(SHP_SHP)

It follows from the above inequalities that high investment rates in the
government sector of the economy analyzed here are accompanied by a
high optimum fiscalism index of the economy.

+ It follows from:

ot __ OHSKG <0
2
aSKP (06K+06H)(SKP—SKG)
and
o7 _ OxSHp <0

aSHP - (OCK +aH)(SHG _SHP)z

that at high investment rates sgp and syp in the private sector, the opti-
mum fiscalism index of the economy T is low.

. . .. olnyp .
In case VII, i.e. at sx; = sgp and syg < syp, the partial derivative INIE s

Jat
expressed by the formula:

dln yg _ X . SHG—SHP <0
ot l—-ag —oay TSyg-i-(l—T)SHp

which means that each increase in the fiscalism index of the economy trans-
lates into a reduction in yz and a lower level of the long-run growth path of
labour productivity.

In case VIII, i.e. at sgg > sgp and sy < syp, partial derivative (4.8) can be
expressed as:

81ny:; _ % (sxG —skp)Sup —0n (Sup —Suc) Skp — (0 +0p ) (Skp —SkG ) (SuG —Sup) T

ot (1—aK—(XH)(SHGT+SHP(1—T))(SKg’L"f'SKP(l—T))
@.12)

Economic conclusions of equation (4.12) are analogous to those drawn from
relation (4.9), because case VIII represents an opposite of case VI. Hence,
the optimum fiscalism index is given by formula (4.11).
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If case IX is true, i.e. sgg < sgp and sy < syp, the following inequality is
satisfied as per equation (4.8):

*
dln yg _ Ok . SKG —SKP n Oy . SHG —SHP
ot l-og—ag SKGT+SKP(1_T) l-og—ag SHGT+SHP(1—T)

which means that under those circumstances, each increase in the fiscalism

index of the economy 7 leads to a reduction in the output per unit of effec-

tive labour yx and brings long-run labour productivity to a lower path of
economic growth.

This analysis of the long-run effectiveness or ineffectiveness of expansion-
ary fiscal policy (consisting in an increase in fiscalism index of the economy 7)
under conditions of varying ratios of investment rates in the government
sector and private sector is summarized in Table 4.1.

The statement contained in Table 4.1 leads to the following conclusions:

*  An expansionary fiscal policy of the state is effective (considering long-
run economic growth) at each fiscalism index of the economy only if the
private sector is characterized by a lower rate of investment in physical
capital or human capital than the government sector, at the same or
lower rate of investment in the other of the discussed factors of pro-
duction. The reason is that if the government sector is characterized by
higher rates of investment than the private sector (or by one rate greater
than and the other equal to that characteristic of the private sector),
each increase in the fiscalism index of the economy entails a rise in the
rate (rates) of investment in the entire economy, and this in turn leads
the economy onto growingly high economic growth paths. The conclu-
sion is that under the analyzed conditions, the most advantageous fis-
calism index (considering long-run economic growth) is 7= 1.

*  When the private sector is characterized by greater investment rates than
the government sector (or by one of those rates being greater at the other
equal), each increase in the fiscalism index of the economy reduces joint
investment rates (or one of them) and brings the analyzed economy onto
a lower path of economic growth. Therefore, the most advantageous fis-
calism index of the economy in the described case is 7= 0.

Table 4.1 Long-run effects of expansionary fiscal policy at various ratios between
investment rates in the private sector and government sector

SHG > SH > SHP SHG =SH =SHP SHG <SH <SHP
SkG > sk >sgp Effective Effective An optimum ﬁascalism
index exists
SKG =Sk =Skp Effectlye . Neutralh Ineffec‘qve
SKG < Sk <Sgp An optimum fiscalism Ineffective Ineffective

index exists®

AT ¢ (0, 1), the optimum fiscalism index equals 0% or 100%.
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» Ifthe rates of investment in the stocks of physical and human capital in
the private sector and in the government sector are equal, fiscal policy
has no effect on the level of long-run economic growth path.

» If the private sector is characterized by a greater rate of investment in
one of the stocks of capital analyzed in the Mankiw-Romer-Weil model,
while the government sector shows a greater rate of investment in the
other stock of capital, a fiscalism index exists at which the economy
reaches the highest path of economic growth. The index depends both
on the rates of investment in the two stocks of capital in the private
sector and in the government sector and on the elasticity of production
function with respect to inputs of physical and human capital.

This discussion leads to the conclusion that an optimum fiscalism index of
the economy 7* is given in each of the cases considered above (except case
I that is rather uninteresting in macroeconomic analyzes) by the formula:

0 incasesIII, VI, IX or 7 <0
= @11 (s11G = Srp) Skp = Ok (Skp = 5KG ) St incases VI, VIII and 7 f(O,l)
(O!K +05H)(SKP —SKG)(SHG —SHP)
1 incases ILIV,V or7 >1

If we additionally assume that the state can only set the fiscalism index of
the economy at the level of © € [t,,;T)/] < (0;1), i.e. that the state can only
set that index within the interval [z,,; 7),] which is acceptable to the private
sector of the economy, it must be concluded that a macroeconomic analysis
of the effectiveness of fiscal policy makes sense only in the interval [7,,; Tv].
The following cases are possible under the above circumstances:

« If 7% € [0; 7,), the optimum fiscalism index of the economy contained
within the interval [t,,; Tp] equals the minimum, socially acceptable
fiscalism index 7,,,. Although the economy could reach a higher long-
run growth path of labour productivity (corresponding to the fiscalism
index of the economy 7*), the above fiscalism index is insufficient to
perform minimum functions of the state and the economy will remain
on a growth path corresponding to a non-optimum fiscalism index 7.

*  However, if 7% € [1,,; TMm], the state should choose the fiscalism index of
the economy 7*, because it is not only optimum for long-run economic
growth but also acceptable to the private sector.

» If 7% € (ty; 1], the state should choose a maximum socially acceptable
fiscalism index of the economy 7y, because then the output per unit of
effective labour reaches its maximum yy in the long-run equilibrium
of the economy (in the interval [t,,; T\]) and the Mankiw-Romer-Weil
economy reaches the highest path of labour productivity in a long term.
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4.2.2 A model with public capital

Section 4.2.1 discussed an economic growth model wherein the stocks of
physical and human capital (and flows of investments in those stocks) were
disaggregated into those financed by the private sector and those financed
by the government sector of the economy. Section 4.2.2 contains an analysis
of a growth model with two stocks of capital distinguished. Those stocks in-
clude (physical and human) capital that can be financed both by the private
sector and the government sector and a stock of capital that is financed only
by the government sector of the economy. That stock includes physical capi-
tal consisting of public social and economic infrastructure, public transport
or aimed at environmental protection and human capital generated by state
financing of basic research, elementary education, healthcare, etc.

The following assumptions underlie the analysis contained in this section:

1 The production process is described by a production function expressed
by the formula:

Y (6) = (K(0))"K (P(0))*F (E()) ™"k, @.13)

where Y, E > 0 have the same meanings as in the model from Section
4.2.1, K > 0 is the stock of capital that can be financed by both sectors
of the economy, P > 0 is the stock of capital financed by the govern-
ment sector. The parameters ox and op represent elasticities of output
with respect to the stocks of capital distinguished in this model. It is
assumed about these parameters that og,ap,(ox +op) € (0,1). It can
be concluded from equation (4.13) that both the government sector and
the private sector benefit from accumulated capital that is financed only
by the government sector (i.e. from capital accumulation P). The reason
is that an increase in capital P entails a rise in capital productivity K,
because that productivity is given by the formula:

Y() _

) ag-1 ap l-ag-ap
K() (K(1)) (P(1))™" (E()) .

2 Growths in capital financed by both sectors of the economy K and in
capital financed only by the government sector P are described by the
following differential equations:

K()=1g(1)—8xK(t) 4.142)
and
P(t)=1p(t)-8pP(1), (4.14b)

where /g denotes investments in capital K financed by both sectors of the
economy, /p represents investments financed by the government sector,
and 8, 8p e (0,1) —depreciation rates of the discussed stocks of capital.
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3 The state collects taxes using a fiscalism index 7 € (0,1). Thus, the state
receives an income equal 1Y, and the private sector — an income given
by (1-7)Y.

4 The public sector allocates an spth fraction of its income 7Y to invest-
ments in capital P, sggth fraction to investments in capital K. We also
assume that sk, sp (sx +sp) € (0,1).

5 The private sector allocates to investments in capital K a fraction of its
income (1-7)Y equal sgp € (0,1).

6 Units of effective labour are defined by a trajectory given by equation
(2.12a).

It follows from assumptions 4-5 that total investments in stocks K
and P are given by the formulas:

Iy (I)Z(SKGT+SKP (I—T))Y(I)
and
Ip(t)=sptY (1).

It follows from the above formulas and from equation (4.14ab) that the
accumulation of various stocks of capital is described by the equations:

K(I)Z(SKGT+SKP(1—T))Y(f)—6KK([) (4158.)
and
P(t)=sptY (t)-8pP(t) (4.15b)

The growth model described by equations (4.13), (4.15a,b) and (2.12a)
is mathematically characterized by the same properties as the original
Mankiw-Romer-Weil model. Therefore, the long-run output per unit of ef-
fective labour is described by equation (3.18c). Hence, we get:

SkT+sxp(l—7 spT
oy InSkGTHskp(=0) oy spT
Ox+g+n Op+g+n

I—OCK—(XP

Inyp= (4.16)

It follows from equation (4.16) that (like in the model from Section 4.2.1) the
higher the rates of investment (made by both the government sector and the
private sector) or the lower the depreciation rates of the analyzed stocks of
capital, or the lower the growth rate of the number of workers, the greater
the value of y and the higher the level of the long-run growth path of labour
productivity.

Differentiating relation (4.16) with respect to the fiscalism index
T, we get:

alnyz _ (aK +O(P)(SKG —SKP)T+OCPSKP
ot (l—ax—oap)T(skeT+sxp(1-7))

@.17)
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When analyzing equation (4.17) in the context of expansionary fis-
cal policy, two cases must be considered. First, a case wherein the rate
of investment by the government sector sxg is not less than the rate
of investment by the private sector sgp and, second, a case wherein
SKG < SKP-

In the first case, derivative (4.17) is positive, so that an increase in the
fiscalism index of the economy entails a rise in yz and brings the economy
onto a higher long-run trajectory of labour productivity.

If sgg < sgp, it is true that:

Lnyz>0<:>r< OPSkp

ot (ax +op)(skp—5kG)
and
alnyz <O OpSkp

ot (lXK +OCP)(SKP—SKG)’

so that an optimum fiscalism index of the economy 7 is given by the formula:

7= %pSKp . 4.18)
(ag +op)(Sgp—SkG)

Importantly, the rate T does not need to belong to the interval (0, 1). Hence,
an optimum fiscalism index can be expressed as:

0 if7<0
* OpSkgp P
T = ift e (0,1) . 4.19)
(ag +op)(sgp —SkG)
1 if7=0

An analysis of equation (4.19) additionally assuming that 7 € (0,1) leads to
the following conclusions:
* Since JT =— a}Z)SKP <0, the higher the elasticity of
dag  (ax+op) (skp—Ska)
output with respect to capital stock that can be financed by both sectors
of the economy, the lower the optimum fiscalism index.
*  Andthehigher theelasticity of output with respect to capital P, the higher

. . ot o
the optimum fiscalism index, because = gSKP
aOCP ((XK+(XP) (SKP_SKG)
*
. ot OpSKG .
*  Given that =— 5 <0, the greater the fraction

) aSKP (aK+OCp)(SKP—SKq) ‘
of private sector’s output allocated to investment, the lower the opti-
mum fiscalism index.
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* And the higher the rate of investment by the government sector in cap-
ital K, the higher the optimum fiscalism index of the economy, because
*

ot aps
_ PSKP >0

- 2
aSKG (aK+aP)(SKP_SKG)

Since the relations between 7" described by equation (4.19) and the interval
of socially acceptable fiscalism [7,,, 7] are analogous as between 7" in the
model from Section 4.2.1 and that interval, the state (when choosing a fis-
calism index of the economy) should adopt similar criteria as indicated in
Section 4.2.1. This means that (first) at 7 < 7,, the fiscalism index 7, should
be chosen, and (second) in the case of 7 t[t,,, Ty, the state should choose the
fiscalism index of the economy 7T given by equation (4.18), and (third) when
> Ty, the state should choose the maximum socially acceptable fiscalism
index ;.

4.3 Monetary rules in a Domar-Solow model

The following assumptions underlie the model of monetary rules in a
Domar-Solow economy:

1 The production process (like in the Solow model with the Cobb-Douglas
production function) is described by a macroeconomic production
function given by the formula:

¥ (1) = (K (1) ('L 1) . (4.20)

where Y° is the aggregate supply that could only be achieved using the
full production capacity of the economy, K represents inputs of physical
capital, L denotes inputs of labour, g >0 is the Harrodian rate of tech-
nological progress, and o € (0,1) is the elasticity of aggregate supply YS
with respect to capital inputs K.

2 The value of aggregate demand Y” in a Domar-Solow economy de-
pends on the real interest rate r, the value of aggregate supply Y° and the
Keynesian multiplier of autonomous spending m > 1. The effect of that
multiplier is analogous to its effect in the original Keynesian growth
model proposed by Domar (1946, 1957). The influence of real interest
rate on the value of aggregate demand Y? results from its effect on con-
sumer demand, investment demand and (through interest rate parity
and the exchange rate fixing process) on net exports. It is also assumed
that the elasticity of aggregate demand with respect to the real interest
rate equals —f3, where 8 € (0,1). The long-run effect of aggregate supply
on the value of aggregate demand in the economy results from the fact
that an increase in output entails a rise in demand in a long term due
to a higher income from production factors. Thus, we assume in the be-
low discussion that the aggregate demand rises with an increase in the
aggregate supply, and its elasticity with respect to that supply amounts
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toy e (0,1). The fact that y<1can be economically explained: if the ag-
gregate demand depends on autonomous spending a > 0 as per equation
YP = 4 + ¢Y (where the marginal propensity to consume ¢ belongs to the
interval (0;1)), then:

Y2 ey Y

—p= <.

Y a+cY Y

Consequently, the function of aggregate demand can be expressed as
follows in the economic growth model analyzed here:

Y2 (0)y=m- (Y5 (1)) -(r(0)) . @.21)

3 An increase in the stock of capital K (like in the Solow model) repre-
sents the difference between investment 7 and capital depreciation 0K,
where the capital depreciation rate 6 belongs to the interval (0,1). It is
assumed about the investment function /(r) that it is given by the for-
mula 7(r) =10r_ﬂ (where I, > 0) which implies that — also represents
the elasticity of investment with respect to the real interest rate. Thus,
we implicitly assume that the sensitivity of investment / to fluctuations
in the real interest rate r equals the sensitivity of other components of
the aggregate demand Y? to that macroeconomic quantity. The equa-
tion of increase in the stock of capital is expressed as:

K()=1-(r(1)) " -8K (1). 4.22)

4 The central bank follows three rules in its policy of real interest rates.
First, the bank prevents the value of aggregate demand Y? in the econ-
omy from exceeding the value of aggregate supply Y°, because a surplus
demand would exert inflationary pressure. Second, the central bank
adapts the value of demand to the aggregate supply, to avoid unused
production capacities in the stock of capital accumulated in the econ-
omy. Third, assuming that at time 7 = 0, the unemployment rate u equals
the unemployment rate of equilibrium u”, the central bank endeavours
to maintain at any time ¢ € [0; +o0) an unemployment rate equal to the
unemployment rate at time ¢ = 0.% It follows from the first two rules in-
dicated above that for any ¢ € [0; +oo):

Y2 (1)=Y5(1), 4.23)

the third rule leads to an equation of long-run growth rate of the num-
ber of workers:

L) =n, “4.24)
L(1)

where n > 0 represents the growth rate of the number of workers that
equals the growth rate of labour supply that in a long term results prin-
cipally from demographic factors. It follows from the above assump-
tions (about the rules of long-run monetary policy) that the central bank
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should maintain the real interest rates r at such a level that equations
(4.23 and 4.24) are satisfied and the influence of those interest rates on
the equilibrium in the Domar-Solow economy is exercised through the
channels described by formulas (4.20-4.22).

The approach to achieving those objectives by modifications or the real
rather than nominal interest rates can also be explained as follows. An ap-
proximate relation between the real (r) and nominal (R) interest rates is de-
scribed by the identity: r = R—m, where n represents the inflation rate.* Let
also the long-time inflation rate be given by the formula:

Y(0) Y (0)-Y%(1)

n(t)=u(t)— +h 4.25

where p denotes the growth rate of nominal money supply, and 4 > 0 is a
D_vyS

coefficient describing the effect of relative output gap on the infla-

YS
tion rate n. An assumption follows from relation (4.25) that the inflation rate

Y . .
can result from monetary factors | u— v and from the inflationary pressure

D_vyS
caused by the occurrence of output gap (YS] in the economy. How-
D_vyS
ever, if the central bank manages to eliminate the output gap Tys =0,

inflation will only be caused by monetary sources. Then, equation (4.25) can
be reduced to the relation:

(1) =) 1)

Y (1)
and the real interest rate r is given by the formula:

r(t)=R(t)—1t(t)=R(t)—,u(t)+})jgg. (4.26)

If we additionally assume that the central bank follows a policy of increase
in nominal money supply (and not in interest rates) to achieve a long-run
inflation target equal 77, it must set a growth rate of nominal money supply
uat:
Y (
ut)=n"+ 0}

Y (1)

This in turn reduces equation (4.26) to the relation:

r(t)=R(t)-m(z)
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and then changes in nominal interest rates R (at an inflation target z7) are
identical with changes in real interest rates r.

Let Y represent the output produced in the economy that satisfies the
equilibrium condition (4.23); then, the following relation is true:

Y(0)=YP(0)=Y3(1). (4.27)
It follows from equations (4.21) and (4.27) that:

Y (6)=m-(¥ () -(r (1)) ",

which leads to the formula:
71
r(t)=m"P(Y (1)) 5 . (4.28)

Equation (4.28) describes a time path of the real interest rate r and makes
it depending, e.g., on the Keynesian multiplier 7 and the value of output Y.
It follows from this equation that the real interest rate r (that brings a
Domar-Solow economy in the state of equilibrium) is directly proportional
to the Keynesian multiplier m and inversely proportional to the value of
output Y.

Substituting the production function (4.20) into equation (4.28), and re-
membering that under equilibrium conditions Y° = Y, we get:

o(r-1) (I=o)(r-1)
r(t)=m"P(K(1)) p (eg’L(l)) B,

which gives (taking the logarithm of both sides and differentiating with re-
spect to time):

2(0) =—1;37/((xGK (z)+(1-a)[g+£8]}

where g, =#/ r represents the growth rate of interest rate, and Gx = K / K is
the growth rate of capital stock. Substituting the growth rate of the number
of workers from equation (4.24) into the above equation, we arrive at the
relation:

g, (t):—IBY(aGK (1)+(1-a)(g+n)). (4.29)
Equation (4.29) makes the growth rate of real interest rate g, depend-
ing on the growth rate of the stock of physical capital Gg, the growth
rate of the number of workers n and the Harrodian rate of technological
progress g.

Equation (4.22) can be expressed as:

W
G (1)+8=1, (VI(;EZ) ,
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which leads to the formula:
Gk (1)
——~t =—Bg,. (t)-Gg (1). 4.30
G (005~ Per (0-Gx () @30)

Since it follows from equation (4.29) that:

-Bg, (t)= (1—}/)(aGK (t)+(l—a)(g+n)),
from the above relation and from equation (4.30), we arrive at the following

differential equation (Riccati differential equation):

Gk (1) =(Gk (1)+8) (11 —12G (1)) @.31)

where kj=(1-a)(1-y)(g+n)>0 and k; =1-(1-y)a>0. Since it follows

from equation (4.22) that Gx =§>—5, differential equation (4.31) is ana-

lyzed only at G >—0.

Relation (4.31) makes an increase in the growth rates of capital Gg de-
pending on growth rates of that variable, i.e. Gg. Since Gg >-0, then
sgn G =sgn (k] —k,Gg ). This means that if the growth rate of stock of capi-

tal belongs to the interval [—5, L ], then Gg >0, and if Gg > ﬁ, then G <0.
K> K>

It follows that the stable steady-state point of differential equation (4.31) is

given by a growth rate G = K1 That stable steady-state point can also be

K2
expressed as:

G;( =ﬂ= (1_’}/)(1—06)(g+n)
2 1—a(1-y)

4.32)

It follows from equation (4.32) that the long-run growth rate of capital Gx
in the Domar-Solow model equilibrium is directly proportional to the rate

Gk _(1=7)(1-a)
dg l-o(l-y)
Gk _(1=-7)(1-)
on  1-a(l-y)
and inversely proportional to the elasticity of output with respect to capital
Gk __,, (1=7)(g+n)
dor (1—05(1—)/))2

of technological progress g (because >0) and to the

growth rate of the number of workers n (because >0),

<0 |and to theelasticity of aggregate demand with

Gk __(1=7)(g+n)
dy (1-a+ay)

Taking the logarithm of both sides and differentiating with respect to
time 7 the production function (4.20), we get:

Gy (t)=aGg (t)+(1—a)[g+i8],

<0

respect to aggregate supply, i.e. the parameter y
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where Gy =Y/ Y denotes the growth rate of output. Because, as per equa-

tion (4.24), % =n, then the above equation can be expressed as:

Gy (1)=aGk (1)+(1-a)(g+n),

or at t — +oo:
Gy = lim Gy (1) = oGk +(1-a)(g+n). 4.33)
[—>+oo

Substituting the long-run growth rate of capital from (4.32) into equation
(4.33), we arrive at the relation:

G = (I-a)(g+n)
I-a(l-y)

Equation (4.34) leads to the following conclusions. First, the long-run
growth rate of output (like the long-run growth rate of stock of capital)
depends on the Harrodian rate of technological progress g, on the growth
rate of the number of workers 7, on the elasticity of output with respect to
capital (that is «) and on the elasticity of aggregate demand with respect
to aggregate supply (that is y). Second, high values of g and n correspond
dGy :aGy: l-a sol

dg on  l-a(l-y)
Third, the higher the elasticities o and 7 the lower the rate Gy

0G) At g 96 @(-e)(gen
d  (I-a+ay) dy (1-o+ay)
paring the long-run growth rate of output (4.34) to the long-run growth rate
of stock of capital (4.32) and with growth rates of output and capital (equal
g+n) in the Solow model equilibrium, we conclude that the following ine-

qualities are true:

(=N(-a)(g+n) (1-a)(g+n)
l-a+ay l-a+oy

4.34)

to a high long-run growth rate of output [

<0 |. Fourth, com-

<g+n,

and it follows from them that the long-run growth rate of capital Gk in a
Domar-Solow model is lower than the long-run growth rate of output Gy
in that economic growth model, which in turn is lower than the long-run
growth rates of capital and output in the original Solow model.

Moreover, it follows from equation (4.29) that sgn g () =—sgn Gx (¢). Thus,
(-N(-e)(g+n)

1-a(l-7)

growth rates of interest rate at subsequent moments ¢ are increasingly high.
In a long term, the growth rate of interest rate g, approaches g, described
by the formula:

if the growth rate of capital is greater/less than

g = lim gr(t):—l_Ta(aG;<+(l—a)(g+n)),

—>+oo
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and this together with (4.32) leads to:

g::_(l—)/)(l—a)(g+l’l)' (4.35)
(1-o(1-7))B
It follows from equation (4.35) that the long-run growth rate of interest rate
is directly proportional to the elasticities o, B and ¥, because:
95 _ v(1-a)(s+n) _
N a1 1 o2
dx B(l-a(l-7)

ag _ (1= (-a)(g+m) _

ap (l—oc(l—y))ﬁ2

and
E= (I-a)(g+n) >0
W (1-a(l-7) B

and inversely proportional to the rate of technological progress g and the
growth rate of the number of workers n, because:

E ﬁ:— (1—]/)(1—0() <0

dg  on (1-o(1-7))B

4.4 Conclusions

The discussion contained in this chapter can be summarized as follows:

I The analyzes of the effect of fiscal policy on the process of long-
run economic growth done in Section 4.2.1 (based on an extended
Mankiw-Romer-Weil growth model) were based on the disaggrega-
tion of the rates of investment in physical and human capital stocks.
That disaggregation meant that investments in those stocks of cap-
ital were divided into investment made by the private sector and in-
vestment made by the government sector. This type of extension of
the Mankiw-Romer-Weil economic growth model makes possible an
analysis of the effect of fiscalism index of the economy on the process
of long-run economic growth.

II  The discussion contained in that section leads to the conclusion that
the higher the rates of investment in physical and human capital in
both analyzed sectors of the economy, the higher (at a given fiscal-
ism index of the economy) the path of long-run economic growth.
However, the higher (lower) the fiscalism index of the economy, the
stronger (weaker) influence is exerted on the location of that economic
growth path by the rates of investment in the private sector (govern-
ment sector).

IIT  However, the favourable effect of a high fiscalism index of the econ-
omy on the location of that long-run economic growth path is possible
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v

VI

only if the government sector is characterized by a rate of investment
that is higher than that of the private sector in at least one of the stocks
of capital considered in an extended Mankiw-Romer-Weil model, with
an equal or greater rate of investment in the other stock of capital.
If the private sector is characterized by higher investment rates (or
by one investment rate higher than in the government sector and the
other equal to that in the government sector), a low fiscalism index of
the economy is more favourable to long-run economic growth.

Ifthe private sector is characterized by a higher rate of investment in the
stock of physical or human capital and the government sector is char-
acterized by the second of the investment rates analyzed in Chapter 4,
an optimum fiscalism index of the economy exists. That fiscalism index
is described as an optimum because it enables the Mankiw-Romer-Weil
economy to reach the highest long-run growth path of labour produc-
tivity. That index is directly proportional to the rates of investment in
the government sector and inversely proportional to the rates of in-
vestment in the private sector. Moreover, an optimum fiscalism index
of the economy also depends on the elasticity of output with respect to
physical and human capital. If the government sector is characterized
by a higher rate of investment in the stock of physical (human) capital
than the private sector, the optimum fiscalism index of the economy
is directly proportional to the elasticity of production with respect to
inputs of physical (human) capital and inversely proportional to the
elasticity of output with respect to inputs of human (physical) capital.
The disaggregation of physical capital and human capital done in Sec-
tion 4.2.2 into a stock of capital that can be financed either by the
private sector or the government sector and a stock of capital that can
only be financed by the government sector of the economy introduces
a modification to the previous conclusions. Given the above assump-
tion, if the government sector is characterized by a higher (than the
private sector) rate of investment in the stock of capital financed by
both sectors of the economy, an increase in the fiscalism index always
brings the economy onto a higher path of economic growth. If the
private sector is characterized by a higher rate of investment in that
stock of capital, an optimum fiscalism index exists. Moreover, that
index is directly proportional to the rate of investment made by the
government sector in the stock of capital financed by both sectors and
to the elasticity of output with respect to capital financed only by the
government sector of the economy. Additionally, an optimum fiscal-
ism index is inversely proportional to the rate of investment made by
the private sector and to the elasticity of output with respect to capital
financed by both analyzed economy sectors.

Since an optimum fiscalism index of the economy (in both models
analyzed in this chapter) can assume any value, and microeconomic
entities certainly accept fiscalism indexes contained within a definite,
socially acceptable interval, the optimum fiscalism index does not
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need to be a value that the state can impose on the economy. If an
optimum fiscalism index of the economy belongs to the interval of
socially acceptable fiscalism, the state can choose optimum fiscalism
by increasing or reducing the fiscalism index of the economy and bring
the economy to the highest path of long-run economic growth. How-
ever, if an optimum fiscalism index of the economy is located below
the lower (above the upper) socially acceptable limit, the state, aiming
to bring the economy to the highest growth path of labour productiv-
ity in a long term, can only set a fiscalism index of the economy at the
lower (upper) limit of the socially acceptable interval of fiscalism.

The larger the interval of socially acceptable fiscalism, i.e. the more
freedom the state enjoys in setting the fiscalism index, the more proba-
ble is that the optimum fiscalism index will be contained in the socially
acceptable interval. This in turn increases the probability that fiscal
policy can bring the economy to the highest growth path in a long term.
However, the state can place the optimum fiscalism index of the economy
within the socially acceptable interval by changing its investment rates.
A change in the combination of investment rates in the government sec-
tor together with setting an optimum fiscalism index of the economy
within an interval acceptable to microeconomic entities will result in
the economy being brought onto the highest available (given the rates of
investment by microeconomic entities) path of economic growth.

In an analysis of the effect of monetary policy (real interest rates set by
the central bank) on the equilibrium of long-run economic growth, a
compilation of the Domar and Solow models provides a useful growth
model. The reason is that a change in real interest rates should lead to
a change in investment outlays in the economy. This will affect both
the demand side of the economy (through Keynesian multiplier ef-
fects) and its supply side (by a change in the growth rate of the stock of
physical capital). A compilation of the Domar growth model (effects
of investments on demand and supply) with the Solow model (with
its elastic capital-output ratio resulting from the Cobb-Douglas pro-
duction function) enables us to determine a long-run equilibrium of
the economy that is free from the problem of a unique growth path of
investments that enables the economy to fully use its available produc-
tion capacities (as is in the original Domar model).

Moreover, that compilation is also useful when establishing long-run
rules of monetary policy followed by the central bank and consisting
in changes to the real interest rate. It follows from the Domar-Solow
economic growth model analyzed in this chapter that the central bank
can adapt the real interest rate to the growth rate of capital stock,
aiming to fully use production capacities available in the economy.
The growth rate of real interest rate under those conditions is a linear
decreasing function of the growth rate of physical capital stock. The
reason is that under the conditions of a high growth rate of capital, the
central bank should reduce real interest rates at a tempo preventing
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XI

a fall in the aggregate demand in the economy below the value of its
aggregate supply. From this point of view, a rise in the real interest
rate can only be reasonable if the growth rate of capital is very low,
because under such circumstances maintaining a low value of the real
interest rate entails the risk of expanding aggregate demand and con-
sequently of short- or long-run inflationary pressure.

It also follows from the Domar-Solow model discussed in this chap-
ter that if the central bank follows the described monetary rules, the
growth rates of capital and output will reach in a long run (like in the
neoclassical Solow, Mankiw-Romer-Weil and Nonneman-Vanhoudt
growth models) a certain constant level determined to a significant
extent by the exogenous Harrodian rate of technological progress and
by the growth rate of the number of workers. Importantly, the long-
run growth rates of those macroeconomic variables in Domar-Solow
models are lower than the growth rates of those variables in neoclassi-
cal economic growth models. The reason is that the neoclassical mod-
els ignore limitations to demand (related to the process of economic
growth) and analyze only a path of aggregate supply while “in the
described reality, the theoretical assumption that output will reach its
potential level is usually not satisfied” (Welfe, 2000, p. 64). A Domar-
Solow model considers also limitations to demand in the process of
economic growth and thus leads to a solution with long-run growth
rates lower than in the neoclassical models.

Notes

1

The fiscalism index of the economy 7analyzed here can be formally expressed as:

_T(0+D()

Y()
where T is the total of revenues from taxes, customs duties, etc., D denotes the
present net increase in public debt, and Y denotes the output.
The private sector is understood as all households and enterprises (regardless
of their ownership). The investment rate of that sector is defined as the ratio of
its total investment outlays financed from own resources (not from subsidies or
transfers from the government budget) to its disposable income (where taxes also
include a net increase in public debt financed by households and enterprises).
This means that investment financed by the private sector from subsidies or
transfers from the government budget are included in investment of the govern-
ment sector of the economy.
Certainly, if the initial unemployment rate u is greater of less than the unemploy-
ment rate of equilibrium u , certain adaptive mechanisms on the labour market
must take place in a short and medium term, to make u equal u”. However, those
mechanisms can be subject to short- and medium-term rather than to long-run
macroeconomic analyzes.

Precisely, the real interest rate should be expressed as: r = I+R -1= R-m
I+m 1+r

ever, a simplified form of the real interest rate equation (as r = R—m) has no
material effect on the below discussion.

. How-




5 Economic growth at returns
to scale conditions

5.1 Introduction

We analyzed neoclassical economic growth models in the preceding
chapters, assuming that the production process is characterized by constant
returns to scale (i.e. when the production function is homogeneous of de-
gree 1). In this chapter, we will depart from that assumption and analyze
the long-run equilibrium in those models when the economy is affected by
decreasing or increasing returns to scale (the degree of homogeneity of the
production function will be higher or less than 1).

The subsequent sections of this chapter will contain analyzes of a
single-capital (Solow) model, a two-capital (Mankiw-Romer-Weil) model
and a multiple-capital (Nonneman-Vanhoudt) model with a degree of ho-
mogeneity of the production function different from 1. We will also derive
golden rules of capital accumulation under conditions of returns to scale in
the production process.

The growth models described in this chapter were proposed in the studies
by Tokarski (2007, 2008b, 2009, Chapter 9), Tokarski (2011, Chapter 7) and
Dykas, Sulima, and Tokarski (2008).

5.2 Returns to scale in a single-capital (Solow) model

The following assumption about the economy underlies the discussion
contained in this section:

1 The production process is described by a power (Cobb-Douglas)
production function given by the formula:

Y (6)= (K (1) (E(1)°7, G.1)

where Y, K, E > 0 and a € (0,1) are understood as in the Solow model
from Section 2.3.1, and © € (o, 1+ ) is the degree of homogeneity of
function (5.1). Hence, if that degree belongs to the interval (e,1), de-
creasing returns to scale are observed, and at © € (1,1+ ), increasing

DOI: 10.4324/9781003323792-6
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returns to scale take place. Importantly, given the production function
analyzed here, (first) the elasticity of output with respect to labour inputs
equals ®—a and (second) the production process is characterized by
diminishing marginal productivities of both capital inputs and labour.

2 The process of capital accumulation is described by a differential equa-
tion like in the original Solow model:

K(t)=sY (1)-6K (1), (5.2

where 5,6 € (0,1) denote (respectively) the savings/investment rate and
the capital depreciation rate.

3 The trajectory of units of effective labour E'is described by the equation:
E(1)=el&™), (5.3)

where g,n > 0 are (respectively) the Harrodian rate of technological pro-
gress and the growth rate of the number of workers (thus, the trajectory
of the number of workers is described by the equation L(7)=e").

Let y = Y/L denote labour productivity, and k = K/L — capital-labour ratio.
Let also Gy =Y /Y and G = K/ K denote the growth rates of output and
capital, and g, =y/y and g =k/k — the growth rates of labour produc-
tivity and capital-labour ratio. Since, as per assumption 3, the number of
workers rises at the growth rate n, the growth rate of labour productivity
(capital-labour ratio) equals the difference between the growth rate of prod-
uct stream (capital stock) and the growth rate of the number of workers.
Substituting equation (5.3) into the production function (5.1), we get:

Y (1) = (K (1)) e©-Netn) (5.4)

which gives (taking the logarithm of both sides and differentiating with re-
spect to time 7):

Gy (t)=aGk (t)+(0—-a)u, (5.5)

where u=g+n>0 is the growth rate of units of effective labour. It follows
from equation (5.5) that the growth rate of output equals the sum of growth
rates of capital and units of effective labour weighted by the elasticities a
and ©-a.

Differential equation (5.2) can be expressed as:

Y (1) Y (1)
K (1) K(1)

GK(Z)=S —5:>GK(I)+5=S

>
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which gives (taking the logarithm of both sides and differentiating with re-
spect to time ?):

Gk (1) _
W—GY(I)—GK(’)’

or, multiplied by Gk + 8 and considering equation (5.5):
Gk (1)=(Gk (1)+0)((©- ) u—(1- )Gk (1)). (5.6)

The differential equation makes an increase in the growth rate of capital
depending on the growth rate of that variable. It is a Riccati differential
equation like equation (4.31) and will be considered at Gg >—6. Therefore,

sgnGx =sgn((©—a)—(1-a)G). Hence, for any G € [—5,(61__0;)#), we get

(O-a)u
1

G >0, and if Gg > , then G <0. This leads to the conclusion that

the stable steady-state point of differential equation (5.6) Gk is described by
the formula:
(O-a)u _ (0-a)(g+n)

Gy = ) 5.7
K - 1-a ©.7)

The rate Gk represents a long-run growth rate of the stock of capital in the
growth model analyzed here. Equation (5.7) leads to the following economic
conclusions. First, the long-run growth rate of capital depends on four fac-
tors: the Harrodian rate of technological progress g, the growth rate of the
number of workers 7, the elasticity a of output with respect to capital in-
puts and the degreg of hoinogeneity of the production function @. Second,
BGK _ aGK _ O-o

og on l-«
of technological progress g or the growth rate of the number of workers n,
the higher the long-run growth rate of capital Gx. Third, the direction
of the effect that elasticity o exerts on the analyzed growth rate depends on

the degree of homogeneity of the production function ©. The reason is that
oG _ (©-1)(g+n)

it follows from

>0 that the higher the Harrodian rate

, hence if increasing/decreasing returns to scale take

Jda (-« 2

place, then the higher the elasticity a, the higher/lower the long-run growth

rate of capital. Fourth, it follows from aaG—@K= f+n >0 that the higher the
-o

degree of homogeneity of the production function, the higher the long-term
growth rate of capital.
Using Gy = lim Gy () to designate the long-run growth rate of output
—
and given equations (5.5) and (5.7), we can demonstrate that the long-run
growth rate of output equals the long-run growth rate of capital, hence
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G = (O0-0)(g+n)
uct stream e((]xuals the long-term growth rate of the capital stock.

Since at any moment 720, the growth rates of labour productivity (g,)
and capital-labour ratio (gy) equal the differences between the growth rates
of output (Gy) and capital (Gg) and the growth rate of the number of work-
ers (n), in the long-run equilibrium, we get particularly:

= G;}. This means that the long-run growth rate of prod-

* * £ £ 3
gy =Gy —nngr=Gg-n,

where g; and g denote the long-run growth rates of (respectively) labour
productivity and capital-labour ratio. Substituting the long-run growth rates

(0-0)(g+n)

of output and capital equal into the above relations, we get:

g; _ g; _ (@—(X)ig_-i'og@—l)l’l . (5.8)

Equation (5.8) leads to the following conclusions. First, the long-run growth
rates of labour productivity and capital-labour ratio in the growth model
analyzed here depend on the same macroeconomic variables that deter-
mine the long-term growth rates of product stream and capital stock. Sec-
ond, the higher the Harrodian rate of technological progress, the higher

the long-run growth rates of output and capital per worker, because

dg, dg; ©O- o dg, dg; ©- :

%8y :@ﬁ: 60—« >0. Third, it follows from ﬁ:ﬂzg that if de-
dg dg -« on dn -«
creasing/increasing returns to scale take place in the economy (i.e. © is dif-
ferent than 1), then the higher the long-run growth rate of the number of
workers, the higher/lower the growth rates g; and gr. Fourth, under con-
ditions of increasing (decreasing) returns to scale, a considerable elasticity
of output with respect to capital a is accompanied by high (low) long-run

growth rates of capital-labour ratio and labour productivity, because then
*

do  da  (1-a) doo  da  (1-a)

. Fifth, since

partial derivatives % = 92k —8+n

0 090 l-«

of homogeneity of the production function (5.1), the higher the analyzed
growth rates.

A more general conclusion can be drawn: if increasing/decreasing returns

to scale take place in the production process, both the long-run growth

(©-0a)(

1 g+n)) and capital-labour ratio
-a

are positive, the higher the degree

rates of capital and output (equal

(

_ -1 .
0-a)g+(© )n) are greater/less than the corresponding

(amounting to
-«
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growth rates in the original Solow model (equal g+# in the case of Gx =Gy
and n for gj = g;). Moreover, at increasing/decreasing returns to scale, a
high growth rate of the number of workers raises/reduces the long-run rates
of capital-labour ratio and labour productivity.

5.3 Returns to scale in a two-capital (Mankiw-Romer-Weil)
model

In a two-capital (Mankiw-Romer-Weil) economic growth model with
returns to scale, the following assumptions about economy are adopted:

1 Output is described by an extended production function given by the
formula:

Y (6)= (K (6)™K (H (6)™ (E (1)K, (5.9)

where Y, K, H, E denote, like in the original Mankiw-Romer-Weil
model described in Chapter 3, ak,ap € (0,1) the elasticity of output
with respect to physical (ag) and human (ap) capital, and © is the de-
gree of homogeneity of the production function (5.9). Since it is required
that the production function (5.9) be characterized by diminishing
marginal productivities of units of effective labour E, we assume that
(®@—akg—oay)e (0,1). We thus assume that © € (ag +oy,1+ag +oy)
. This means that if ©@ € (o +0ty,1), decreasing returns to scale take
place, and increasing returns to scale occur at © € (L 1+ ok +oty ).

2 The processes of accumulation of physical and human capital are
described by the differential equations:

K(t)=skY (t)-6x K () (5.10a)
and
H(t)=syY ()-S8yH(t). (5.10b)

The rates of investment sg and sy and depreciation rates dx and dy
are economically interpreted like in the original Mankiw-Romer-Weil
model. It is then assumed about those rates that sg, sy, (sg +sg) € (0,1)
and CSK,(SH € (0,1)

3 The trajectory of units of effective labour is given by equation (5.3).

Let Gy =Y /Y, Gk =K/ K and Gy = H | H represent growth rates of
(respectively) the product stream and stocks of physical and human
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capital, and g,=y/y, g, = klk and g,=h/h — the growth rates of
those macroeconomic quantities per worker.
From the production function (5.9) and equation (5.3), we get:

Y(I)Z(K(Z))OCK (H(t))aH e(e_aK—aH)(ng)t’

which gives, taking the logarithm of both sides and differentiating with re-
spect to time >0 :

Gy(t)=9+aKGK(t)+aHGH(t), (5.11)

where 0 =(©—ag —oy )(g+n)>0. Equation (5.11) makes the growth rate of
product stream (Gy) depending in the analyzed economic growth model e.g.
on the growth rates of physical (Gg) and human (Gp) capital.

From equations (5.10a,b), ignoring trivial solutions K(¢) = H(f) = 0, we
directly get:

Gk (l)+5K ZSKII;((ZI)) (5.12a)
and
GH(I)+6H ZSHI)—]I((Z;‘)). (512b)

The system consisting of equations (5.12a,b) is analyzed at K, H >0 = Y > 0.
It follows that at any moment z >20: Gg > -0k and Gy >—0y.

From equations (5.12a,b), taking the logarithm of both sides and differen-
tiating with respect to time ¢ > 0, we get:

G () _

GK (l)+5K _GY (t)_GK (Z)
Gu(r) _

Gy (t)+0y =Gy (1)=Gn (1)

Substituting relation (5.11) into the above system of equations, we obtain:

GH (l)
Gy (1)+0n

5.13)
=9+CZKGK (Z)—(I—CZH)GH (Z)
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The system of differential equati.ons (5.13) makes an increase in the growth
rates of the stocks of physical (Gg) and human (G ) capital depending on
those growth rates (i.e. Gg and Gp).

It follows from the first equation in system (5.13) that at G >—8k: Gg >0
0+ aHGH 0+ O(HGH
TEEHIH G s ORI

l-ak l-ag
to an increase in the growth rates of human capital. Consequently, a phase
diagram of the system of differential equations assumes the form given in
Figure 5.1.

It follows from the phase diagram of the analyzed system of differential

(GK < 0) if and only if Gk < J The same applies

equations that it has a stable point of long-run equilibrium (G}Z,G;) that
solves the following system of equations:

029—(1—06]()(;]( +oyGy
0=9+OCKGK—(1—OCH)GH.

The system can also be expressed as a matrix:
el F R
—OK 1—OCK ‘GH ey

The point (G}},G}}) that solves the above system of equations determines the
long-run growth rates of physical and human capital in the Mankiw-Romer-
Weil equilibrium with returns to scale.

Figure 5.1 A phase diagram of system of differential equation (5.13).
Source: The author’s own study.
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Using the method of Cramer determinants, the long-term growth rates of
physical Gx and human GJ; capital can be described by the following formulas:

* * 0 Z(G)—aK—OcH)(g+n).

Gl =Gy = (5.14)
1—0!1{—061.1 1—OCK—OCH

It follows from the above formulas and from relation (5.11) that also the
long-run growth rate of product stream G; equals in the analyzed economic
(O—ag—oap)(g+n)
I-ox —ay

conclusions. First, the growth rates (5.14) represent a simple generalization of
the growth rates (5.7) from the previously analyzed single-capital model with
returns to scale. Second, the long-run growth rates of the stocks of capital
and product stream depend on the Harrodian rate of technological progress
(g), the growth rate of the number of workers (1), the elasticity (ag and ag) of
the production function with respect to inputs of physical and human capital
and the degree of homogeneity (®) of that function. Third, because:

growth model . This leads to the following economic

BGK aGK 8GH BGH aGy 8GY O-og—-ay
og on og on dg on l-og-oy

> 0.

A high rate of technological progress or high growth rate of the number of
workers is accompanied by high long-run growth rates of the analyzed mac-
roeconomic variables. Fourth, if increasing (decreasing) returns to scale
take place in the economy, then the higher the elasticities ag and ay, the
higher (lower) the long-run growth rates Gx, G and Gy, because:

dGx _0Gy _0Gy _ oGk _dGy _dGy _ (©-1)(g+n)
dox  dax dax day ooy oy (1-—ax - aH)2

BGK BGH aGy E)GK E)GH aGY (@-1) (g+}’l) <0
ooy aOCK aO(K aOCH aOCH aocH (1—aK—aH)2

>0,

aGK aGH aGy g+n

00 00 00 l-agx-oay
gree of homogeneity of the production function corresponds to high growth
rates of the analyzed macroeconomic variables.

The growth rates of output and various stocks of capital per worker are
given by the differences between the rates Gg, Gy or Gyand the growth rate
of the number of workers n. Hence, also the long-term rates of those varia-
bles are given by the differences between Gy, Gy and Gy and n. 1t follows,
considering also equation (5.14), that:

_(@ Og — OCH)g+(@ 1)
1- Og —0Og

Fifth, it follows from >0 that a high de-

G=gr=g = . (5.15)
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where gy, g and g; represent the long-run growth rates of (respectively)
capital-labour ratio, human capital per worker and labour productivity. It
follows from equation (5.15) that:

The growth rates (5.15) represent a generalization of the growth rates
(5.8) from the Solow model with returns to scale.

The growth rates g, g, and g; are determined by the same macroeco-
nomic variables as the growth rates Gy, Gy and Gy.

0gk _ E)gZ =E @—051( —OfH
dg dg  dg

output and various stocks ofK capltal per worker are directly propor-
tional to the Harrodian rate of technological progress.

dgi _ gy _98y, _  ©-1

on on on 1- Og —0y
ing returns to scale take place in the production process, a high growth
rate of the number of workers leads to high/low rates gy, g, and g;.
Thehigherthedegreeofhomogeneityoftheproductionfunction,thehigher
dgi _dgi 0% _ g+n
6@ 00 00 1- O —0Oy .
dgi _dgh _ 98, _dgi _0gh _ 98 _ (@-D)(g+n)
a(xK aOCK BaK aaH E)aH aOlH (l—a[(—(XH)2,
conditions of increasing/decreasing returns to scale, high elasticities
ag and ag of the production function raise/reduce the long-run growth
rates of output and various stocks of capital per worker.

Since >0, the long-run growth rates of

It follows from —=>* thatifincreasing/decreas-

the analyzed growth rates, because —2*

then under

5.4 Returns to scale in a multiple-capital

(Nonneman-Vanhoudt) model

The following assumptions underlie this analysis of the effect of returns
to scale on the long-run economic growth equilibrium in a multi-capital
growth model:

1 The production process is described by the N + 1-factor production

function given by the formula:

¥ () =| [T (& ) (E@0)° > (5.16)

i

where Y, K;and «; (fori =1, 2, ..., N) are interpreted like in the original
Nonneman-Vanhoudt model, and @ is the degree of homogeneity of the
production function (5.16). It is assumed about the parameters o; and ©

that each of the elasticities and their sum belong to the interval (0,1). The

assumption that © € Za,-,1+2a,- is adopted to obtain a production

i i
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function that is characterized by diminishing marginal productivities
both for various stocks of capital and units of effective labour.

2 An increase in each stock of capital is described by the differential
equations:

Vi Ki (t):S[Y(Z)—SiKi (t), (517)

where s; denotes the rates of investment in various stocks of capital, and
0, — their depreciation rates. It is assumed about those rates (like previ-
ously) that Vi s;, 6; € (0,1) and ) s; € (0,1).

i
3 The growth path of units of effective labour is described by equation
(5.3).

Like previously, we ignore the trivial solution Vi K;(¢)=0. Let y = Y/L
represent labour productivity, k; = K;/L — inputs of ith capital per worker,
Gy =Y /Y — the growth rate of output, G; = K; / K; — the growth rates of
various stocks of capital, g, =y/ y — the growth rate of labour productivity
and g; =k; / k; — the growth rates of various stocks of capital per worker
(for all 7).

From the production function (5.16), taking the logarithm of both sides
and differentiating with respect to time r € [0,+), we get:

Gy (1)= 3 @G () +| 0= D 1 58

and from the above relation and equation (5.3), that leads to %z g+n, we

arrive at the formula:

Gy (1)= D 04G; (1) +6, (5.18)

where 6 = @—Zai (g+n). Equation (5.18) makes the growth rate of output

l
Gydepending e.g. on the growth rates of various stocks of capital G; and the
growth rate of units of effective labour g+n.
From equations (5.17), we get:

Vi Gi (l)+5i =S
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which gives (taking the logarithm of both sides and differentiating with re-
spect to time ¢ € [0,400)):

G; (t)

szy(t)—Gi (t)- (5.19

Equations (5.19) make an increase in the growth rates of various stocks
of capital (G;) depending on those growth rates (G;) and the growth
rate of output Gy. These equations are analyzed in the phase space

P={(G1,G2,...GN)E RN :Vi G >—5}, because:

Vi Gi+6l‘=Sil>0.
K

i

Let us substitute relation (5.18) into equations (5.19). We arrive then at the
following system of differential equations:

G; (1)

Vi ————
Gi (Z)+5i

=0—(1-0,)G; (1)+ D G; (1). (5.20)

J#l

The system of differential equations (5.20) in the phase space P has exactly
one steady state I'= GI*,GZ,...,G;;) € P. The reason is that " represents the
solution of the following linear system of equations:

Vi (1-0;)G~ ) G, =6. (5.21)

J#i

It can easily be demonstrated that system of equations (5.21) is solved by
point T" in which for each i=1, 2, ..., NV:

o 0 _[@—zjajJ(g+n)
P = = .
1- a; 1- a;
So 1Yo
It follows from equations (5.18) and (5.22) that in the steady-state T the
[@—z o J(g+n)
J

l—zjaj

We will demonstrate in Section 5.5, analysing system of equations (5.30),
that the steady state (5.22) is Lyapunov stable.

(5.22)

growth rate of output Gy also equals
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Since the steady state I' is characterized by Lyapunov stability, the growth
rates of various stocks of capital G ,Gs,...,Gy corresponding to that point
and the growth rate of product stream Gy can be understood as growth rates
of those macroeconomic quantities under conditions of long-run equilibrium
in a multi-capital growth model with returns to scale. The following conclu-
sions can be drawn from equation (5.22). First, the growth rates expressed
by formulas (5.22) represent a generalization of the growth rates (5.7) from
the single-capital model and the growth rates (5.14) from the two-capital
model. Second, the long-run growth rates Gy,Gs,...,Gy and Gy depend
on the rate of technological progress g, the growth rate of the number of
workers n, the elasticity o, of the production function and the degree of ho-

o

GY aGY Zj ]>0 the

dg dn _ 2 o ’
j

higher the rate of technological progress or the growth rate of the number of
workers, the higher the long-run growth rates analyzed here. Fourth, a high
degree of homogeneity © corresponds to high values of Gl* ,G>,...,Gy and

Gy, because —— g+n > 0. Fifth, since for all i: aGY _(0=1)(g+n)

A "]

if increasing/decreasing returns to scale take place in the production pro-
cess, the growth rates analyzed here are directly/inversely proportional to
the elasticities analyzed here.

Since the growth rates of various stocks of capital per worker g; (labour
productivity g,) equal the differences between growth rates of those stocks
G; (product stream Gy) and the growth rate of the number of workers 7, the
following equations are satisfied under conditions of long-run equilibrium:

mogeneity © of that function. Third, since

=g =g=...=gy=Gy-n,

and it follows from the above relation and from equation (5.22) that:

(@—2 ‘Ochg+(®—l)n

1_Zjaf

* * *

=g =g=.=gn= (5.23)

It follows from equation (5.23) that:

*  The growth rates (5.23) represent a generalization of analogous growth
rates from the economic growth models previously analysed in Chapter 5.
e The long-run growth rates g; =g1* =g§ =...=ng depend on the same

factors as the growth rates GI*,G;,. ..,Gy and G;.
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®-
d
* It follows from ﬁ— >O that the growth rates analyzed

9% 1- 2 o
here are directly proportlonal to the Harrodian rate of technological
progress.

8gy _

on 12051

turns to scale, a hlgh growth rate of the number of workers raises/re-
duces the long-run growth rates of various stocks of capital and product
stream per worker.

* Additionally, under conditions of increasing/decreasing returns to scale,
high elasticities «; lead to high/low growth rates g; =g =g =...= g\

ag; (©-1)(g+n)
“[-Ze]

5.5 Golden rules of capital accumulation at returns
to scale conditions

» Since , under conditions of increasing/decreasing re-

The reasonis thati =1, 2, ..., N we have:

The golden rule of capital accumulation' was defined in Chapters 2 and 3
as a rate of investment (Chapter 2) or a combination of investment rates
(Chapter 3) that leads to a maximum long-run consumption per unit
of effective labour. This implicitly means that the investment rate or the
combination of investment rates brings the economy onto the highest path
of consumption per worker. The golden rule of capital accumulation will
be defined in Section 5.5 in the same manner. However, it will be derived
in a growth model with returns to scale and a finite number of N (V being
a natural number) capital stocks. Certainly, at N = 1 that rule refers to a
single-capital model from Section 5.2, at N = 2 — a two-capital model from
Section 5.3, and at N > 2 — a multi-capital model from Section 5.4.
Let us derive auxiliary artificial variables described by:

Y (1)

y(1)= ; (5.242)
(G_Z-ai J(g+n)
exp ! t
1- ‘(Xl'
ki (1) = Ki (1) (5.24b)
[9‘2 a; J(é”f n)
exp ' t
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and

&)= () : (5.240)
exp (9_2% )(g+n) t

where C is the volume of consumption in the entire economy, and the re-
maining symbols have the same meanings as in the multiple-capital model
from Section 5.4. It follows from equations (5.42a—c) that if output Y, various
stocks of capital K1, K2, ..., Ky and consumption C (in the entire economy)

e—zqij(gm)

1

rise at a growth rate equal ( (i.e. a growth rate that equals
1- '(X,'
the long-run equilibrium growth rate from the multiple-capital growth
model described in Section 5.4), the artificial variables p, 12], 122, e IQN and ¢
assume certain constant values.
Consumption Cis defined in a closed economy as a non-invested fraction
of production, and can be expressed as:

Cn)={1-D5 [ (). (5.25)

i

where sy, 57, ..., sy denote rates of investment in various stocks of capital,
and each of those rates and their sum belongs to the interval (0,1). It follows
from equation (5.25) that at investment rates that are constant in time, the
growth rates of production and consumption are equal. Hence (in particu-

[@—Zia,- J(g+n)

lar), if production rises in a long run at the growth rate

the growth rate of consumption also equals Z
— al

Note that it follows from equations (5.25), (5.24a) anci (5.24c¢) that:

é(n)=|1-Ds (o). (5.26)

i
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It follows from equation (5.26) that if lim j(z)= ", also lim ¢(¢)=¢" given
t—>too t—>too

by the equation:
&= Y (5.27)

An increase in ¢ raises the long-run growth path of consumption per
worker c¢(f). Since consumption C (like output Y) rises in a long run at the

growth rate equal , the golden rule of capital accumula-

0-) o J( g+n)
i

i

tion should maximize ¢ with respect to the combination of investment rates

(s1.520---a) € (0.1)Y at D sy € (0.1).

-2,

[@—zjajJ(g+n)

The production function (5.16), divided by exp ,can

be expressed as:

y(1) =H(13,- (t))ai- (5.28)

i

Differentiating both sides of equations (5.24b) with respect to time ¢ € [0,+o0),

we get:
(@—z o J(g+n)
K (1)- /
dis (1 [G_Z "~ }g”) -2

K; (1)

Vi ——~Z=exp t or
dt
1- .
2}% [@—zjaj ](g+n)
2exp t
1- o;
zj /
1- Z]OC/
Ki(1)-®K;(t) K;(t) -

=e® o =—o — Pk (1), (5.29)
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[@—Z .(ij(ngn)
where @ = /

1= o

>0 denotes the long-run growth rates of

product stream and various stocks of capital in the model from Section 5.4.
Substituting relations (5.17) into differential equations (5.29), we arrive at
the relation:

dle; (1) -

Vi S =55 (0~ (@+6) ki (1) =55 (1) -0k (1),

where for subsequent is 6; = ®+¢; > 0. Substituting function (5.28) into the
above differential equations, we get:

. ~ oj A
Vi %t(t)qin(kj ()" ~ 04k (). (5.30)
J

System of differential equations (5.30) has the same mathematical struc-
ture as system of equations (3.56) and that system (as we demonstrated in
Chapter 3) is characterized by Lyapunov stability. Hence, also system of
differential equations (5.30) has a non-trivial steady state that is Lyapunov
asymptotically stable. Consequently, the steady state of system of differen-
tial equations (5.20), derived from system (equation 5.30), is also Lyapunov
asymptotically stable.

Moreover, the steady state K = (121,122,. . .,IQN) is determined similarly to the

steady state of system of equations (3.56). Hence:

S; S
1- o; |In2t+ o;In--
( zj¢i ]J 6; Zj;ﬁi[ / OjJ

Vi Ink; =

and it follows from this relation and equation (5.28) that the artificial varia-
ble p in the steady-state « satisfies the relation:

l Si l
z' Oziln—
Inp'=—1"1 %) (5.31)
1- o;
2

It follows from equations (5.27) and (5.31) that the variable ¢* in point x sat-

isfies the relation:
2 (0 lns—’
i 7]

In¢"=Inf1- Y ’ i),
; 1- i(Xl'

(5.32)
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The golden rule of capital accumulation in the analyzed model can be de-
rived by maximizing ¢ given by formula (5.32) with respect to the combina-

tion of investment rates (s1,52,...,5y) € (O,I)N at ) s; € (0,1). The problem

is (mathematically) identical with maximizing function (3.71) with respect to
that combination. Hence (like in the case of golden rules in the Nonneman-
Vanhoudt equilibrium), the golden combination of investment rates is
(0q,0,...,0y ), corresponding to the combination of elasticities of produc-
tion function with respect to various capital inputs.

5.6 Conclusions

The discussion contained in this chapter can be summarized as follows:

I The original neoclassical economic growth models (proposed by Solow,
Mankiw, Romer, Weil and Nonneman, Vanhoudt) assume e.g. that the
production process is described by a production function characterized
by constant returns to scale. It follows from this assumption that basic
macroeconomic variables (output and various stocks of capital) rise in
the long-run equilibrium at a growth rate defined as the sum of Harro-
dian rate of technological progress and the growth rate of the number
of workers. Those variables per worker rise at a growth rate that equals
the Harrodian rate of technological progress.

I In the models with returns to scale, the long-run growth rates (of prod-
uct stream and capital stocks) equal (in the most general multiple-

9‘2 40‘1J(g+")

capital model) [ J

-2,

. In conclusion, if increasing/decreasing

returns to scale take plajlce in the economy, the rates are greater/less
than the growth rates of those variables at constant returns to scale
(equal g+n).

IIT Also golden rules of capital accumulation determined in the models
with returns to scale are consistent with the rules found in the Solow,
Mankiw-Romer-Weil and Nonneman-Vanhoudt models.

Note
1 The model described here was proposed by Dykas, Sulima and Tokarski (2008).



6 Bipolar growth models with
investment flows

6.1 Introduction

In the previous sections, we analyzed processes in a closed economy, under-
stood as an economy unrelated to other economies. In that type of econ-
omy, investments may only be financed using domestic savings. We cancel
that assumption in this chapter. It is aimed to analyze bipolar models of eco-
nomic growth that are developed to study two economies, conventionally
termed a rich economy and a poor economy. It is also assumed that those
economies can invest their savings internally or abroad.

Section 6.2 describes a model with exogenous investment rates. The
model was developed in a study published by Filipowicz and Tokarski
(2015). In Section 6.3, we question the assumption about an exogenous na-
ture of investment rates and flows. We modify this assumption in that model
by the statement that the volumes of investment flows between the econo-
mies covered by our analysis depend on the ratio of capital productivities
in those economies. According to our assumption, if capital productivity
in one of the economies grows faster than in the other economy, investment
inflow rises in the economy that is characterized by a faster growth of cap-
ital productivity and drops in the other analyzed economy. The model was
proposed in a study published by Filipowicz, Wista and Tokarski (2016).

In the theoretical growth models discussed in this chapter, neither trajec-
tories of analyzed macroeconomic variables nor points of long-run equi-
librium can be explicitly determined. Hence, Section 6.4 contains results
of numerical simulations of values of major macroeconomic variables at
calibrated parameters of the analyzed growth models.

Alternative approaches to the modelling of investment flow impact on
the processes of long-run economic growth (both theoretical and empiri-
cal) can be found e.g. in the studies by Lucas (1990), Barro, Mankiw and
Sala-i-Martin (1995), Borensztein, De Georgio and Lee (1995), Witkowska
(1997), Markusen and Venables (1999), Welfe (2000, 2009), Carkovic and
Levine (2002), Alfaro (2003), Alfaro, Chanda, Kalemli-Ozcan, and Sayek
(2003), Moudatsou (2003), Latocha (2005), Aizenman, Jinjarak and Park
(2011), Roman and Padureanu (2012), Ptaszynska (2015) or Dinh, Vo, Vo
and Nguyen (2019).
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6.2 A model with exogenous investment flows

The following assumptions about processes taking place in the two types of
economy underlie the analyzes done in Section 6.2:

1 The production process both in a rich economy (designated by the
letter R) and in a poor economy (designated by P) is described by the
Cobb-Douglas production function with external effects. Due to those
effects, labour productivity yg (yp) in a rich (poor) economy is affected
not only by the rate of capital per worker kp (kp) in that rich (poor)
economy, but also by the value of that macroeconomic variable in the
other analyzed economy. Hence, the labour productivity function in a
rich economy can be expressed by the formula:

vr(6)= (ke ()" (kp (1)), (6.1a)

and in a poor economy by:
v (6)=(kp ()" (ke (1)), (6.1b)

where it is assumed about parameters o and f that o, B,a+f € (0,1). a
represents the elasticity of labour productivity in a rich (poor) economy
with respect to capital per worker in that economy, § denotes the elas-
ticity of that labour productivity in a rich (poor) economy with respect
to capital per worker in a poor (rich) economy. We also assume that
o> f3, which means that the level of labour productivity in a rich (poor)
economy is more affected by capital per worker in that economy than by
the value of that variable in a poor (rich) economy. The influence of cap-
ital per worker in a P-type (an R-type) economy on labour productivity
in an R- type (a P- type) economy can be explained using three meth-
ods. First, it can result from gravity effects, like in the gravity growth
model (see Chapter 7, Mroczek, Tokarski and Trojak (2014) or Filipow-
icz (2019)). Second, that influence can result from a process whereby a
poor economy absorbs by imitation new technological developments,
thus benefiting from a higher value of capital per worker in a rich econ-
omy. Third, the efficiency of processes in poor economies is favourably
affected by well-developed infrastructure (e.g. transport) in rich econ-
omies while the efficiency of processes in rich economies is adversely
affected by underdeveloped infrastructure in poor economies.!

2 An increase in capital in a rich economy is described by a differential
equation:

KR(l)=SRDYR(l)+SpFYP(Z)—5KKR(l), (628.)

where K denotes the stock of capital in a rich economy Yy (Yp) repre-
sents the volume of production, i.e. output in a rich (poor) economy, sgp
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is the percentage of output produced in an R-type economy that is in-
vested in that economy, sppis the percentage of output produced in a P
economy and invested in an R-type economy, and &g € (0,1) represents
capital depreciation rate in an R-type economy. Similarly, it is assumed
that:

KP(Z)ZSPDYP(I)+SRFYR(l)—5pr(l), (62b)

where the variables and parameters are understood like in
equation (6.2a). It is assumed about investment proportions that
SRD> SRF> SpD, SpF € (O,l) and (SRD +SRF) € (0,1) and (SRD +SRF) € (0,1)
We also assume that sgp>sgr (spp 2spr), hence that domestic
investments made by a rich (poor) economy are not less than invest-
ments made abroad by those economies.

3 The trajectory of the total number of workers (in both economies) is
described by an exponential function given by the formula:

L(t)=e", 6.3)

where n > 0 is the growth rate of the number of workers (so that we
implicitly assume that the total number of workers at moment z = 0
equals 1).

4 A rich (poor) economy absorbs a portion of total worker resources
equal o (1-w), where w € (0,1). It follows from the above relation and
from assumption 3 that the growth paths of the number of workers in
a rich economy (Lg) and in a poor economy (Lp) are described by the

equations:

Lg(t)=we™, (6.4a)
and

Lp(t)=(1-w)e™. (6.4b)

Capital per worker in either of the economies can be expressed using the
equation: kg = K /L and kp= Kp/L p. Differentiating k g and k p with respect
to time, we get:

- _ Kr(t)Lr ()= Kr (1) Lr (1) _ Kr(r) Lg(t)
0 (Lr (1) T Le) Le()"

(1)
and (by analogy):

Jip (t)=ll<;((:))—§i8kp (0).
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Substituting relations (6.2a,b) and (6.4a,b) into the above equations and con-
sidering that:

L)_ . Le()_Lp(r)
L0 L) Lo

as per (6.3), we obtain the equation:

o (1) = SRDVR (l)L(f)+(1—w)ajzfg)P (1) L(1)—6gkg (1) L(1) kg (1),
hence:

K (1)=srove (0)+= 2 sprye (1)~ Hake (1) (6.52)
and (similarly):

b (1) =s5ppyp (04 sprvr (1) =kpkp (). (6.5b)

-0

where y; =8;+n>0 (for i = R, P) denote the rates of decline in capital per
worker in the analyzed economies. Substituting labour productivity func-
tions (6.1a,b) into relations (6.5a,b), we obtain the following system of differ-
ential equations:

Jor (6) = s (kg (1)) (Fep (1)) + 1 s (b ()" (ki (1) =tk (1)

kp (1) =spp (kp (1)) (kg (1)) +%w (ke ()" (kp (1))’ = pepkp (1) (6.6)

System of differential equations (6.6) makes increases in stocks of capital
per worker in a rich and poor economy depending on their values, on the
combination of proportions of (domestic and foreign) investments in out-
put, on the ratio by which labour resources are divided and on the rates of
decline in capital per worker. The system is considered (ignoring a trivial
solution) in phase space P = (O,+oo)2.

A non-trivial steady state of system of differential equations (6.6) repre-
sents the solution of the following system of equations:

_ l1-w _
SrpkR lkg"'TSPFkg k§ =g

SRFkgkg_l =up

SpDklgkg_l + 1 @
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Let us substitute: kg = ukp, where u > 0 denotes the value of capital per
worker in a rich economy relative to the value of that variable in a poor
economy (at any time ¢ € [0,+e0)). The above system of equations can be then
expressed as follows:

kP! (SRD”a_l + l;w spruP™! )= MR
6.7)

kg+ﬂ_l (SpDuﬁ + 1 @

o |
SRFU )— Hp

Dividing the first equation by the second equation in system (6.7), we get the
relation:

o1, 1-o B-1
SRpU + Spru
w _HR

>

[0
Slexlﬁ‘Fl SRFlla Mp

that implies the equation:
¢(u)=0, (6.8)
where:

¢ (u) = a®™! +ayuP TV —buP —byu®, ay=upspp >0,

-0 o
W =pp=_=SpF >0, by=ugrspp >0, and by =pipg o RF >0
Note that:
lim ¢ (u) =+oo,
u—0"
lim ¢(u)=—co
U—>too
and

Vu>0 ¢ (u)=—(1-0)au® > —(1-B)ayuP= - PP~ — abyu® < 0.

It follows from the above relations and from the Darboux property of a con-
tinuous function that equation (6.8) has exactly one solution u* > 0 (because
at u increasing from 0 to +eo, the values of function ¢(u) decrease from +eo to
—oo). Additionally, we get from the first equation in system (6.7):

noe-l 1—w w\ -1 /(1-a=p)
. SRD(“ ) +7st(u )
kp= #;" : (6.92)
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and this together with substitution kp = ukp leads to:

wo-l 1—@ RV ERUC)
" N SRD(M ) +—SPF(u )
kg =u @ : (6.9b)
HR

Equations (6.9a,b) describe the combination of capitals per worker in a
non-trivial steady state K'=(k;g,k;) € P of system of differential equations
6.7).

A Jacobian matrix of system of differential equations (6.6) is expressed
by the equation:

ctsokf e+ B Cp kB~ BsrokRKE T +ort~  spekf k]

J=
()

BsppkkB'+a 1 T asppk KB+ B ILSRFkg—‘kg —up
-

(6.10)

In the steady state, we get:

-

MR = sRDk%‘lkﬁ + sPFkﬁ‘lk%

and

® SRFk]%kllz_l.

Up :SPDkgkg_l +1

Hence, Jacobian matrix (6.10) can be written as:

J*z[jn jlz] ©.11)
1 gl
where:
o B l-w LB
(1—0()SRDkRkP+(1—ﬁ) SPFkPkR
Jiu=- o <0,
kg
ﬁSRDkI%kjﬁ) +o 1_wSPFkgkg
Ji2= o >0,
kp

ﬂSpDk%kI‘g +O€1i SRFk}ﬁ)k%
1= A —0 >0,
R
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and

()

(1-a)sppk§kB +(1-B) 1 srik Bk
Jn=- A —Q <0.
P

The eigenvalues of Jacobian matrix J* are given by the roots of the equation:

A2 —trJ A+detJ” =0. (6.12)
The discriminant A of equation (6.12) is described by the formula:

A=12J" —4det " = (ji1— jna ) +4j12ja1 >0,
hence, both eigenvalues represent real numbers.

From Vieta’s formulas, we conclude that the eigenvalues ; and 1, are de-

scribed by the formulas:

M+l =0rJ"
and

My =detJ”.

We conclude that 7rJ” = jj;+ j» < 0. Additionally, the relations are true:

l-w [0}
- (1- o) srpk&kE +(1- B) - sprkiB (1—a)sPDk%k1€+(1—ﬂ)l_wsRFkgkl%‘
J1J22 = :
kr kp
1—a)? sppspp + (1= B) spps
:( )" SrD P/f k( B)” spr RF(kRkP)a+/3
RKP
1_
(l—a)(l—ﬂ)( ® SRDSRFk]Zgakf)ﬁ'l' wSPDSPFkéﬁk%)a)
n - 0]
krkp
and
o ﬁSRDkI%k}ﬁ)-l‘(Xl_TwSppk%kg ﬁsPDk%k£+a%stk£k%
J12)21= :

kp kR

(azsPFSRF +B%srpSpD ) (krkp )mﬂ +of (1 :oa)

kgkp

@ 2007,2
SPPSPD T — SRDSRF )kP kP
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Since dCtJ* = j] 1j22 —j12j21, then:

2 2
detJ" = (I-a)” sppspp + (1= B)” sprsgrr (kRkP)OHB

ke gk p
w -
(1 —OC) (1 _ﬁ) _ SRDSRFkIZQak%B + a)SpDSkaIZQ‘Bk%a)
+
krkp
w l-w
(O‘ZSPFSRF + ﬁzSRDSPD)(kRkP)a+ﬂ +of o SRDSRF t p SpPFSPD )k%akfgﬁ
B kpkp
results in:
detJ = (I=a=B)(1-a+B)(srnsrp +SPFSRF)(kRkP)a+ﬁ
kpkg
0] 1-w
(I-a- /3)(1 SroSREKRAK AP + === sppsppkp®kaP )
+ —@ @ > 0.
kpkr

As the total of eigenvalues is negative, and their product is positive, both
eigenvalues represent negative real numbers. As per the Grobman-Hartman
theorem, system of differential equations (6.7) is asymptotically stable in a

sufficiently close neighbourhood of steady state (k;,k;).

u" =kpg / kp solving equation (6.8) describes the value of capital per worker
in a rich economy relative to capital per worker in a poor economy in the
long-run equilibrium in the growth model analyzed here. If u" =1, then con-
vergence in capital per worker occurs between a poor economy and a rich
economy. If u” =0, capital per worker in a poor economy kp (at certain mo-
ment ¢ > 0) reaches the value of capital per worker kg in a rich economy, to
eventually exceed that value continually while lim kr (1)

f—>too kp (t)
u" —>+oo and ¢t —>+oo, the ratio kg/kp approaches +eo. Hence, at " =1 there
is convergence in capital per worker while at u" — +eo (u* = O) a divergence
process takes place in which a poor economy catches up and then overtakes
a rich economy.

It follows from equation (6.8) that the long-run ratio of capitals per worker
u* can be written as:

=0. However, at

u =1 (a(srp.Sp.n).as (spr.®,8p,n),by (spp.6g.1),b2 (SrF,®,8x,1)). (6.13)
Equation (6.13) leads to the following conclusions:

*  Thelong-run ratio of stocks of capital per worker in rich and poor econ-
omies depends e.g. on the rates of their internal, domestic investment



134 Bipolar growth models with investment flows

(sgp and spp), rates of investment abroad (s and spp) rates of capital
depreciation in a rich economy and in a poor economy (dg and dp), the
percentage w of total worker resources that is absorbed by a rich econ-
omy and the growth rate of the number of workers (n) in both types of

economy.
«  Since*:
I 9 da
o’ __Osgp __Oa; OSpp __ u*up >0
dSRrD ai’ aﬁ aﬁ 5
du ou ou

so that the greater fraction of output produced in a rich economy is in-
vested in that economy, the greater is the long-run ratio kg / kp.

e It follows from:

3 b
Bu* _aSPD __abl aSPD _l/lﬂ/.LR <0
9spp - ai’ - 87q> - ai)

ou ou ou

that a high rate of domestic investment in a poor economy corresponds
to a low long-run ratio kg / kp.

e The inequality:

09 day N ¢ 0by uPupspr + u”URSRF

' day do by dw @ (1-w)’
do 99 - 9
Ju ou

<0,

implies that a high percentage @ of people working in a rich economy
(considering people working in both types of economy) corresponds to
a low ratio of long-run stocks of capital per worker kg and kp.

* A high rate of capital depreciation in a rich economy reduces the long-
run ratio k}; / k;. The reason is that:

, 90 O 0 oby g o o0
' _ 3k 96 dby sy _ PPV
0% 9 9

Ju Ju

SRF
<0.
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«  The effect of dp on the ratio of u" is opposite. This is because:

9¢ day  dp day o1 p11-o
o' __da) 35, day, a5, " ROFW T Teer
ddp 9 99 '
Jou Ju
*  Since:
9¢ day 9p day 0 Iby 0 0by
% __Oa on_ day On_db dn_dby 9n
on 99
Jdu
u“_lsRD—i-uﬂ_ll_wsPF—(uﬁsPD+u“ ® SRF]
_ (0] l-w
_9% ’
Jdu

the direction of effect of the growth rate of the number of workers 7 on

*

the ratio of u* is not obvious (because the partial derivative %L can be
n
both positive, negative and equal 0).

Let us use v = yr/yp to denote (at any time ¢ > 0) the ratio of labour produc-
tivities in rich economies and in poor economies at subsequent moments z.
Then, it follows from equations (6.1a,b) that:

=2 (0) _ (x ) (kr (1)) [k () J"‘ﬁ
() (kp () (ke () (kp())

hence v(t) = (u(t))aiﬁ, or:
* N
()

wherev” = yg / yp denotes the ratio of labour productivities in an R economy
*

and a P economy in a long run. Since « > f, then sgnai = sgnai (where x

denotes any independent variable that determines u*). This mea)rcls that the
direction of effect exerted by the several exogenous variables on the v* ratio
of labour productivities in a long-run equilibrium in the economic growth
model analyzed here is identical to the direction of effect exerted by those
variables on the u* ratio of capitals per worker.
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6.3 A model with investment flows conditional on capital

productivity

In the model analyzed in Section 6.2, we assumed that investment flows (be-
tween an R-type economy and a P-type economy) are exogenous. Hence,
investment flows were independent of capital productivity in both types of
economy. We cancel this assumption in the model described in Section 6.3
and propose that those flows from one type of economy to the other type of
economy (i.e. from economy i to economy j) are directly proportional to the
ratio of capital productivity in economy j to capital productivity in economy i.
Hence, the following assumptions are adopted in the model analyzed here:

1

2

Production processes in both types of economy are described by equa-
tions (6.1a,b).

Increases in the stocks of capital per worker (in rich and poor econo-
mies) are described by differential equations in the form?:

n (1) =50 (1) 3 (050 (02 3 (1)~ ik (1) (6.142)
and
Kp (1)=spp (1) yp () s (1) ;2 v (0)= 1k (1), (6.14b)

where the variables kg, kp, ygp, vp > 0, parameters4 Ur=0r+n>0,
up=0p+n>0and we (0,1) are read like in the model from Section 6.2.
The trajectories of investment rates (sgp, S Spp and spg) are described
by equations derived from assumptions 3—4.

Total savings rates in rich (poor) economies equal sg € (0,1) (sP € (0,1)).
Savings achieved in those economies are invested both internally and
abroad. Domestic investments of rich (poor) economies equal a 1-/p
(1-¢p) fraction of their savings and their investments abroad equal a
(g (¢p) fraction.

The proportion of national savings invested abroad ¢ (in rich econo-
mies) depends on domestic capital productivity (pgr = yr/kgr), and capital
productivity abroad (pp = yplkp). Moreover, we assume that the higher
the ratio of capital productivity in a poor economy (pp) to capital pro-
ductivity in a rich economy (pg), the larger fraction of domestic sav-
ings achieved in the rich economy will be invested in a poor economy.
Hence, we assume that:

(r(f)= TR , 6.15
r (1) () (6.15a)

1+exp| -
Pr(7)
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where yx € (0,1). It follows from equation (6.15a) that:

i lim (p="R

» X and if capital productivity in a poor economy was
RN

g)ftremely low (compared to capital productivity in a rich economy),
the rich economy would be ready to invest in the poor economy a /
fraction of its savings equal yg/2.

i p;im LR =Yg, i.e. if the ratio pp/pg was very high, the R-type econ-
Pp

PR
omy would invest in the P-type economy a fraction of its savings

equal yg.
D p
V. mtefn)
i Since: R_____ PR PRJS0 (for any £2>0), the
d(Pp/PR) ( p PR
l+exp| -
PR

greater the ratio of capital productivity in a P-type economy to the
value of that variable in an R-type economy, the greater fraction
of national savings achieved in the rich economy is invested in the
poor economy.

It is assumed that the trajectory /p is described by an equation simi-
lar to (6.15a), i.e.:

(p(1)= a : (6.15b)
Pr(1)

pp (1)

1+exp| -

where the parameter yp € (0,1) is interpreted in terms of economics
like the parameter yg in equation (6.15a). Obviously, function (6.15b)
is characterized by similar (economic and mathematical) properties as
function (6.15a).
The trajectories of numbers of workers in rich and poor economies are
described by equations (6.3) and (6.4a,b).

The quotients of capital productivities can be written as:

pr(t) _ yr(1) kg (t) _ yr()! yp (1)
pp(t)  yp(t)lkp(t) kg (t)lkp(t)

and it follows from the above relation and from equation (6.1a,b) that:

Pr(1) z{kR(f) Tﬁl _ (6.16)
pp(1) \kp(2)
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Equation (6.16) makes the ratio of capital productivity in a rich economy to
capital productivity in a poor economy (pg/pp) conditional on the relation-
ship between capital-labour ratios (kg/kp).

Substituting relation (6.16) into equations (6.15a,b), we obtain:

ER(I): y il . a-p- (6.17a)
I+exp —[kR (t))a & 1+exp(_(u(t)) ! 1)
kp (1)
and
lp(t)= Yp _ vp | o
o] [FrO T 1rexp(~(u(o) )
| ke

where the quotient u = kp/kp > 0 represents the relationship between
capital-labour ratios in a rich economy and in a poor economy.

The following system of differential equations is obtained from relations
(6.1a,b), (6.17a,b) and (6.14a,b):

kR<’1>=sR<1—fR<r>>(kR ()" (kp (1))”

s 0p () (kp () (kr (1)) = pirkr (1)

(6.18)
Ep(0) =5 (1= () (r () (ki ()]

© 1RO (kr ()" (kp ()" ~rkp (1)

+Sr
1

Let us demonstrate now that system of differential equations (6.18) has
exactly one non-trivial steady state in the phase space P=(0,+oo)2. In the

non-trivial steady state, the following holds: kg =kp =0 and kp > 0. It fol-
lows from the above relations and from formula (6.18) that the following
system of equations is satisfied in that state:

I-w
SR (1—fR (u))kﬁ’klﬁ,+s1> " ZP (H)kgkg Z/JRkR

>

Sp (1—€p(u))k1‘§k1€+sR 160 R (u)kﬁ‘kﬁ Zﬂpkp
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that, substituting u = kg/kp, can also be written as:

[SR (l—fR (u))u“+sP I—ngp (u)uﬁ)kg+ﬁ :,URkR

®
(SP(I—EP(M))uﬁ+sR HOER(u)uO‘)ng'B =upkp

Dividing the first by the second of the above equations, we get:

1-w)

SR(I—ZR(u))u“+(TSP€p(u)uﬁ

:7],{,
o
sP(l—Ep(u))uﬁwL%(R(u)u“ Hp

and performing some elementary transformation, we arrive at the equation:

Sp B WSR o SR a1_(1-@)sp B-1 | _
(1=l p(u))u? +— Ll p () u* = (1—C g (u))u® — Lp(u)u =0,
/,Lp( e )) (I-w)up = (4) ,LLR( = )) WUR p ()

that (considering our search for u > 0) gives:

o (1)=0, (6.19)

where:

Sp WSR o
P=, (= tr @)y, G
_S7R — u uail_& u u:B71
#R(l (g (u)) . Cp(u)uP™.

(6.20)

The function ¢ (u) is described by equation (6.20) and characterized by the
following properties:

i Equations (6.17a,b) lead to the conclusion that /g (0)=7%R and
1im+€ p(u)= 1irn+ Yp =7p, and consequently:
u—0 u—0 1+exp(— Ml—oc+/3 ]
lim go(u) = —o0;
u—0*

ii because lim (g (u)=yg and lim fp(u)=y—P, so lim @ (u)=roo;
. U—>+oo U—>+oo 2 Ustoo
iii since:

()= (1-o+ B) ygu®P exp(—ul““ﬁ)

(1+exp (—ul“’”ﬁ ))2

>0,
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1—O!+ﬁ y, uocfﬁfz exp _u—(l—a+[3)
f'p(u)=—( " | )<0’

(1 +exp (—u_(l_‘”ﬁ ) ))2

and

/(1) =22 (1= ()= )+ s p )]

(1-o)up
+Z—’;[4'R<u>u+<1—a>(l—fR<u))]u°“2+%[<1—mfp<u>—f'P<u>u]uﬁ‘2,

Then Vu>0 ¢'(u)>0.

It follows that if the ratio u = kgp/kp increases from 0 to +oo, the values of
function ¢ (u) increase from —eo to +eo. It follows from the above relations
and from the Darboux property that exactly one u* > 0 exists such that
solves equation (6.19).

A Jacobian matrix of system of differential equations (6.18) is expressed
by the equation:

Jpr /dkg  dpr/dkp (6.21)
0¢p 10kg  0pp/dkp

where:

8¢R de a-1; -1
TR = 1-lr(kp!lkp))kp———"—kp |kR 'k
. sR[oc( r(kr!kp))kp d(kr 1) <R R K

X )kR}k%—lkﬁl—uR

sp(1-w)
+ PN By (kg L kep)hep+—LP
o {B p(kr ! kp)icp d (kg ! kp

M:SR[ﬁ(l—fR (kR /kp))kp +M)kR}k%k£2

her d (kg | kp
+Lw“°){afp (kr ! kp)kp —%k@kﬁ‘zkﬁ
glfi: :sp[[}(l—ﬁp (kg kp))kp —d(]:llffkp)kzz}kp—lkg—l
+ ISR(0|:OMR (kr!kp)kp +d(kcjffkp) kR]kI%_lkg_l
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and
dPp dip o218
——=splo(1-Lp(kr!kp))kp+———"——kpg |k§ “ky
ks SP[ ( p(kr P)) P d (k! kp) R

dlg

PR o kKB —pp.
d(kR/kp) R:| RKp Hp

0]
ISR [mR (kg ! kp)kp—
In the steady state, we get:
ur=sg(1-Cr (kg !/ kp))k§ kB +mép (kg !kp)k§KE!
w

and

_ . _
up=sp(1-Lp (kg !kp))k§ 1k§+ljz)fR(kR/kp)kgk£ I

Hence, a Jacobian matrix in a steady state of the analyzed system of differ-
ential equations can be written as:

J*:[ e ] 622)

J21 J»

where>:

Ji=-sg|(1- a)(l ff{k ka+ Rk | e
P d kR

k ——
kp
_sp(l-0) (1—ﬁ)€p( ]kp— dlp K (k& KB <0
w kp d KR
kp

. k drl _
jor=sg| Bl 1=Lr| TR |lkp+— 7 Bkp kKA
kp d kg

kp

sor(l=o) fP(kRJkP— Dr e kg 2B >0
0] kp d kiR

kp
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. k dvl 1, B
Ji2=5p ﬁ[l—fP[RDkP— P kg kS
d

kp kr
kp
RO gl KR Ny AR Ve B > 0
- kp d k7R
kp

and

P kr
kp

. k dl _
Jo2=—sp (1_0‘)(1_@(]}]}@— P kg |k§ 2k1€
d k

—lsL“’ (1-B) (& ("""Jk}, + dtr kg [k§kB2 <0
-0 kp d kiR
kp
Eigenvalues of matrix J* solve the equation:
A2 —trJ A+detJ =0 (6.23)
The discriminant A of equation (6.23) is expressed by the formula:

* * . . \2 P
A=02J" —4detd” = (ji1 = jo2) +4j1221 >0,

and this leads to the conclusion that both eigenvalues of the analyzed matrix
represent real numbers.

We will demonstrate now that the total of eigenvalues (11 and 12) is nega-
tive, and their product is positive. From Vieta’s formulas, we get:

ll+2.2:t}’.]* =j11+j22 <0,
and

My =detJ” = ji1jn — ji2jo1-

It can be demonstrated, following a series of complex transformations that
will not be included here, that:

.. _ _ 0} _ _ - _ _
J11J22 Z%SRSPngr’B lk;’f*” 3+612S12emk12ea lkj%ﬁ 3+‘I3S12°7k?e'6 lkz%a ’,
(6.24a)



Bipolar growth models with investment flows 143
where:

= (1- a){l fR(k ka+ e - a){l fp(k ka+ LI,
kp d| K kp d

kr
kP kp
+ (1-B)¢ [ ]kP_ dlp kp | (1—[3)5R(kRjkp+ 4k kr
kP d kf]g kp d k7R
kp kp
kg dl dr
CI2—(1 a)l /R kp'l‘ R (1 ﬁ)ZR kp-l- R kR
kP d k7R kp d k7R
kp p

and

g3 =|(1-B)¢ (kP]kP_ ij; kr || (1- 05)[1 fP[kPDkP— d'p kg |,
d| — d

kr
kp kp
and

S o+ -1y 0+ -3 2 O 261,283 2 1=, 281,203
112121—71SRSPkRﬁ kpﬁ +nsg —— kg kpﬁ +ns —kR/3 kpt ™,

@ (6.24b)

where:

ﬁ[l KR(ZRJ]]{PJF dlg kr | ﬁ[l—ep[k J]kp— dip kg
P d|kR| P Jl kr

kp

+ afp[]]z )kp— dicp kR . agR(iR]kp-l- diR kR
P d "R P d

kp kp
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kr dr kg dl
n= ﬂ(l fR(k ]]kp‘i‘ kR kR OMR(k Jkp‘i‘ kR kR
P R P R
d d| —

kp kp
and
= Olfp(z Jkp— dfP kR . ﬁ[l fp[]; ]Jkp— dfP kR .
P d k7R P d kf]@
kp kp

Because |- > and 1- 8>, we get:

q>| B|1-Lr K kp+ dr kr || B|1-(p K kp— dp kr
kp dki kp dILR

+ OMP[I;R)ICP'F dﬁp kR . OMR kRJkP— dﬁR kR =n,
P
d d

kr kp kr
kp kp
q > ﬁ I—ER k7R kp+ de kR . (ZfR(kRJkP'F de kR =n
P ]LR kp ki
d d
L kp kp
and
q3> O!/P P— kR 1 B|1-1p K kp — dlp kg |=13.
kp kp d kg
kp
From the statement that for each i = 1, 2, 3 ¢; > r; and from equations

(6.24a,b), it follows that detJ" >0. Hence, both eigenvalues of the analyzed
Jacobian matrix represent negative real numbers. Consequently (as per the
Grobman-Hartman theorem), system of differential equations (6.18) is as-

ymptotically stable in its steady state.
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6.4 Numerical simulations of economy growth trajectories

6.4.1 Exogenous investment flows

To perform simulations of growth paths in the model from Section 6.2, we
assume e.g. that the ratio of elasticities of labour productivity functions
(6.1a,b), i.e. @ and f, can be expressed as 10:1 (i.e. the stock of domestic cap-
ital per worker has an effect on domestic flow of labour productivity that is
ten times stronger than the effect of stock of foreign capital per worker). ©
Then, the functions (in a discrete time 7 = 0, 1, ...) can be written as:

vre =kiPikB (6.25a)
and
yp = kNP (6.25b)

Parameter f is calibrated so that at a ratio of capital per worker in a rich
economy to capital per worker in a poor economy equal 5:1, the ratio of
labour productivities equals 3:1. This leads to the conclusion that as per
equations (6.25a,b):

B
YRe _ [@T
VPt kp

which gives:

3 = 59ﬁ:
thus:
9In5

Given the adopted assumptions (about the elasticities a« and f), the labour
productivity functions can be written as:

VRt = kg‘t7585k?)}07585 (6263)
and
Vp = k?)'t7585k1%}07585, (626b)

The capital depreciation rate, both in a rich economy and in a poor econ-
omy, is calibrated at the level of 7% (hence, dg =dp =0.07, and the growth
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rate of the number of workers at n = 0.005. Then, tg =up =0.075 and an
approximation of system of differential equations (6.6) is given by the fol-
lowing system of differential equations:

_ 0.75857.0.07585 , 1—@ 0.75857.0.07585
Ath_SRDkR[_] th—l +7w SPFth—l th—l —0.075th_1
2
_ 0.75857,0.07585 , @ 0.75857,0.07585
Ath_SPDth_l th—l +71_wSRFth_1 th—l —0.075](})[_1

or:

— 0.75857,.0.07585 , 1—® 0.75857,0.07585
th_SRDth_l th—l +TSPFkPZ_1 th—l +O.925th,1

. (6.27)

— 0.75857.0.07585 w 0.75857.0.07585
kPl_SPDth_l th—l +RSRFth—l th—l +O.925kpt_1

In all simulations described below, we assume that in the year ¢ = 0 capital
per worker in a rich economy equals 5, and in a poor economy it equals 1.
This implies, as per equations (6.26a,b), that in the year ¢ = 0 labour pro-
ductivity in a rich economy equals about 3.3895, and in a poor economy it
equals 1.1298.

Let us also use k; =lim kg;, k; = lim kp, to denote long-run capital per
=300 =300
worker in both analyzed types of economy, y; =lim yg;, y; = lim yp, to de-
—>o0 t—>o0

note long-term labour productivities, and u' = k}*g / k; andv" = y; / y; to de-
note long-run ratios of capital per worker (#*) and labour productivities (v*)
in an R-type economy to those in a P-type economy.’ Let also 7 represent
the year in which the poor economy overtakes the rich economy in terms of
labour productivity and capital per worker.

The numerical simulations of growth paths of capital per worker and la-
bour productivity were performed for the following variants:

I there are no investment flows between the economies (this is a base
version used as a reference for results obtained in other variants);
II a rich economy absorbs 20% of the total of workers;
IIT 40% of workers work in a rich economy;
IV the percentage of workers in either economy equals 50%0;
V a poor economy absorbs 40% of workers;
VI 20% of the total of workers work in a poor economy;
VII the savings rate equals 25% in a rich economy, and 15% in a poor
economy, and w equals (subsequently) 20%, 40%, 50%, 60% and 80%;
VIII the savings rate reaches the level of 15% in a rich economy, and 15%
in a poor economy, at w developing like in the preceding variant.
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We assume in variants [-VI that the savings rates in either analyzed econ-
omy equal (in nine various combinations) 17%, 20% or 23%. We also assume
in all variants (i.e. in cases [-VIII) that savings achieved in a rich econ-
omy are invested in 10% in a poor economy, and savings achieved in a poor
economy are allocated in 5% to investment in a rich economy.

Let us begin with the scenario of no investment flows. Complete na-
tional savings are allocated to domestic investment. Thus, we have a Solow
model extended by the effect of external factors originating from a poor
(rich) economy on a rich (poor) economy. Selected results of those numer-
ical simulations are contained in Table 6.1. It follows from those simula-
tions that:

* At the same savings rates achieved in both analyzed types of economy,
complete convergence occurs both in labour productivity and in invest-
ment rates. The reason is if savings rates in both analyzed economies
reach a level of s € (0,1), the rates of decline in capital per worker equal
1 >0, and the elasticities in labour productivity functions (6.1ab) equal
a and f (where o, B,(cr+ ) € (0,1) and a > f), then system of differential
equations (6.27) can be written as:

Akp, = Skl%t—lkléz—l —MkR-1
Akp; = Skgz—lklgz—l —lkpi

Performing some simple transformations, it can be demonstrated that
the non-trivial steady state of the above system of differential equations
represents a solution of the following system of equations:

[1_0‘ P } Inkg =lns|: 1} (6.28)
- l-a Inkp ul 1

Table 6.1 Selected simulation results in Variant I (no investment flows)

SR (%) sp (%) kg kp VR yp u* (o) v¥ (%) 1

17 17 1395 1395 616 61.6  100.0  100.0 4o
20 1764 2944 778 1104 599 705 35
23 2158 5593 952 1824 386 @ 522 22

20 17 2944 1764 1104 778 1669 1418  Never
20 3721 3721 1395 1395 100.0  100.0  +eo
23 4552 7070 1707 2306 644 740 34

23 17 559.3 2158 1824 952 2592 1916  Never
20 707.0 4552 230.6 1707 1553 1351  Never
23 8649 8649 2820 2820  100.0  100.0  +eo

Source: Own calculations.
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The solution of system of equations (6.28) is given by stocks kg and kp

that satisfy the relation: Inkp =Inkp = #ln 5 which leads to

(I-a) -p> n
kr=kp.

» If the savings rate in a rich economy is less by 3% points than in a poor
economy, then the P-type economy will overtake the R-type economy
after 34-35 years in terms of capital per worker and labour productiv-
ity. In a long run, capital per worker in an initially richer economy will
amount to about 60%—65% of capital per worker in an initially poorer
economy. Regarding output per worker, the proportion will drop to
about 70%—-75%.

» Iftherich economy had a savings rate equal 17% and the poor economy
by a savings rate greater by 6% points, capital per worker and labour
productivity in the latter economy would be greater than in the former
economy as soon as after 22 years. In a long-run, capital per worker
in the initially richer economy would be by more than 60% less than in
the initially poorer economy and consequently labour productivity
in the latter economy would be almost twice as great as in the former
economy.

* At savings rates greater by three points in an R economy, partial
convergence® of the poor economy with the rich economy takes place.
The ratio of capitals per worker drops then from 5:1 (in the year 1 = 0) to
1.669:1 or 1.553:1 (at t — ), and the ratio of labour productivities drops
from 3:1 to 1.418:1 or 1.351:1.

* Also a difference in savings rates amounting to 6% points (in favour
of the rich economy) leads to partial convergence of the poor economy
with the rich economy. The reason is that under those circumstances (as
per the quantities stated in Table 6.1) at t —oe: u —2.592 and v —1.916.
Partial convergence of a poorer economy with a richer economy at
higher savings rates in the rich economy results from two reasons indi-
cated below. First, due to the Cobb-Douglas production function used
in the Solow model, there are diminishing marginal productivities of
both physical capital and capital per worker, and this naturally leads to
convergence of major macroeconomic variables analyzed in the Solow
model. Second, due to an extension of the labour productivity function
(6.1a,b) by external effects, an increase in labour productivity in a poor
economy is also driven by an increase in capital per worker in a rich
economy (this correlation is ignored in the original Solow model).

*  The simulation exercises summarized in Table 6.1 also confirm the hy-
pothesis theoretically confirmed in Section 6.2 and predicting that the
higher savings rate is characteristic of one of the analyzed economies
the higher values are assumed by capital per worker and labour pro-
ductivity in both economies in a long-run equilibrium of the economic
growth model proposed here.
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Table 6.2 contains numerical simulation results of capital per worker and la-
bour productivity (in both types of economy) in Variant II described above.
The quantities given in that table lead to the following conclusions:

Assuming the same savings rates in a rich economy and in a poor econ-
omy, capital per worker and labour productivity partly converge in the
poor economy with those variables in the rich economy. The reason is
that under the analyzed circumstances the relationship between capital-
labour ratios drops from 5:1 (in the year ¢ = 0) to 1.306:1 (at t —+oo)
while the ratio of labour productivities drops from 3:1 to 1.2:1.

At a savings rate equal 17% in a rich economy and equal 20% in a poor
economy, the P-type economy will overtake (considering capital per
worker and output per worker) the R-type economy after 91 years. Un-
der conditions of long-run equilibrium, capital per worker will be by
about 1.4% less, and the labour productivity will be less by 0.9% in an
R-type economy than in a P-type economy. Hence, capital per worker
and labour productivity partly converge in this scenario.

A similar process will also take place if the savings rate equals 20% in a
rich economy and 23% in a poor economy it equals. The only difference
lies in the fact that under these conditions u” =1.024 and v =1.016.

If the savings rate in a poor economy was by 6% points greater than in a
rich economy, the poor economy would overtake the rich economy after
31 years. Under conditions of long-run equilibrium, capital per worker
will be by about 20.3% greater and labour productivity will be by 14.3%
greater in a P-type economy than in an R-type economy.

Considering the scenarios wherein the savings rate in a rich economy is
by 3% points greater than in a poor economy, we conclude that capital
per worker will be greater by about 70%—80% and labour productivity
will be greater by about 44%—-49% in the rich economy than in the poor
economy in a long-run equilibrium.

Table 6.2 Selected simulation results in Variant I (o = 20%)

sR(%) (%) ke kb gk ab W(H ()T

17

20

23

17 1823 1396 754 62.8  130.6 120.0 Never
20 305.5 3097 1185  119.6 98.6 99.1 91

23 5037 632.0 182.8 2134 79.7 85.7 31

17 311.7 1749 1152 717  178.2 148.4 Never
20 486.1 3722 1709 1424 130.6 120.0 Never
23 754.6 7370 2513 2472 1024 101.6 Never
17 5229 2210 173.6 96.4  236.6 180.0 Never
20 767.8 450.6 2452 170.5 170.4 143.9 Never
23 11299 8651 3454 2879 130.6 120.0 Never

Source: Own calculations.
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Numerical simulation results in Variant I1I (assuming that the proportion of
people working in a rich economy equals 40% of the total number of work-
ers) are given in Table 6.3. The simulations lead to the following conclusions:

At the same savings rates in both types of economies, the initially poor
economy will overtake the rich economy after about 49—60 years. In a long-
run equilibrium, the ratios of #* and v* will reach about 0.904 and 0.933.
However, if a poor economy is characterized by a savings rate greater by
3% points than a rich economy, the poor economy will catch up the rich
economy in terms of capital per worker and labour productivity after
27-28 years. In a long run, capital per worker in an R-type economy will
amount to about 65%—-68% of capital per worker in the other economy
while the ratio of labour productivities will approach about 75%-77%.
If the savings rate equals 23% in a poor economy and 17% in a rich econ-
omy, the poor economy will overtake the rich economy after 20 years.
In a long-run equilibrium, capital per worker in an R-type economy
will equal <50% and labour productivity about 62% of the respective
variables in the other analyzed economy.

If the savings rate in a rich economy was greater than in a poor econ-
omy by 3% points, partial convergence would occur, because in a long
run the ratio of u would approach about 1.2-1.3, while the ratio of v
would approach about 1.14-1.17.

However, a savings rate greater by 6% points in a rich economy than in
a poor economy will lead to u —1.676 and v —1.423.

Table 6.4 contains numerical simulation results for Variant IV (wherein each
of the analyzed economies absorbs 50% of the total of workers). The numeri-
cal simulation results contained in the table lead to the following conclusions:

At the same savings rates in both types of economy, the P-type econ-
omy will be characterized by greater values of capital per worker and

Table 6.3 Selected simulation results in Variant 111 (w = 40%)

SR (%) sp(“0) kg kp VR yp u* (%) v*(%) 1

17 17 129.6 143.4 58.3 62.5 90.4 93.3 60
20 189.6  291.6 82.2 110.2 65.0 74.6 28
23 278.1 558.5 115.4 185.7 49.8 62.1 20

20 17 2520 1993 99.0 84.4 1.265 117.4 Never
20 345.7 3824 1322 141.7 90.4 933 54
23 477.5 701.7 176.9  230.1 68.0 76.9 27

23 17 4669  278.6  162.2 114.0 167.6 142.3  Never
20 610.1 505.5 2078 182.8 120.7 113.7 Never
23 803.5 8888 2673  286.3 90.4 93.3 49

Source: Own calculations.
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Table 6.4 Selected simulation results in Variant IV (o = 50%)

Sk (%) sp (%) kg kp VR vp w* (%) v* (%) 1

17 17 1209 1538 556 655 786 849 40
20 1680 2988 751 1112 562 675 24
23 2349 5537 1014 1822 424 557 17

20 17 2459 2249 981 923 1093 1063  Never
20 3224 4100 1261 1486 786 849 35
23 4262 7234 1627 2334 589 697 22

23 17 4711 3299 1654 1297 1428 1275  Never
20 591.8  566.3 2048 198.8 1045  103.0  Never
23 749.5 9529 2549 3003 786 849 32

Source: Own calculations.

labour productivity after 32—40 years. In a long run, the ratio of capital
per worker in an R-type economy to that variable in a P-type economy
will reach about 0.786 and the ratio of respective labour productivities
should equal about 0.849.

If the savings rates in a poor economy are greater by 3% points than
in a rich economy, the poor economy should catch up the rich econ-
omy in 22-24 years. Then, also u — 0.562 (at sp = 17% and sp = 20%) or
u— 0.589 (in the case where sp = 20% and sp = 23%), and v — 0.675 or
v—0.697.

If the savings rate in a poor economy equals 23% while in a rich econ-
omy it is less by 6% points, the P-type economy will be characterized
by greater values of capital per worker and labour productivity than
the rich economy as soon as after 17 years. In a long run, the ratio of
capitals per worker will approach about 0.424, and the ratio of labour
productivities will approach about 0.557.

If the savings rates are greater by 3% points in a rich economy, long-run
capital per worker in that rich economy will be greater by about 4.5%—
9.3% than in a poor economy, and the ratio of labour productivities will
approach about 1.03-1.063.

If a rich economy is characterized by a savings rate greater by 6% points
than the savings rate in a poor economy, long-run capital per worker in
the rich economy will be greater by almost 43% and labour productivity
in the rich economy will be greater by more than 27%.

Considering a scenario wherein a rich economy absorbs 60% of workers
(Table 6.5), we can conclude that:

At the same savings rates, a poor economy is characterized by greater
values of the macroeconomic variables analyzed here than a rich econ-
omy after 23-29 years. In a long run, the ratio of capitals per worker
will amount to about 0.681, and the ratio of labour productivities will
amount to about 0.77.
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Table 6.5 Selected simulation results in Variant V (o = 60%)

SR(%) sp (%) Ky Kp yh yh wE(%) vE(%) T

17 17 117.0 171.6 54.7 71.1 68.1 77.0 29
20 155.1 317.2 71.0 115.7 48.9 61.4 20
23 207.3 565.9 92.4 183.4 36.6 50.4 15

20 17 247.5 265.3 99.8 104.7 93.3 954 56
20 311.9 4577 124.0 161.1 68.1 77.0 26
23 396.2 773.2 154.7 244.1 51.2 63.4 18

23 17 488.0 408.8 172.6 153.0 119.4 112.8 Never
20 592.5 662.8 207.5 224.0 89.4 92.6 43
23 724.9 1063.8 250.6 325.6 68.1 77.0 23

Source: Own calculations.

If savings rates in a poor economy were greater by 3% points thanin a
rich economy, the P-type economy would be characterized by greater
capital per worker and output per worker than the R-type economy
after 18-20 years. In the long-run equilibrium, capital per worker
in the initially rich economy should amount to about 48.9%-51.2%
of capital per worker in the initially poor economy, and this results
in a ratio of labour productivities in those economies equal about
0.614-0.634.

If a poor economy is characterized by a savings rate greater by 6%
points (than a rich economy), the poor economy will overtake the
R-type economy after 15 years. In the long-run equilibrium, u — 0.366,
and v — 0.504.

If the savings rate equalled 20% in a rich economy and 17% in a poor
economy, the poor economy would overtake the rich economy in terms
of capital per worker and labour productivity after 56 years. In a long
run, capital per worker in an R-type economy will amount to about
93.3% of capital per worker in the other analyzed economy while the
ratio of long-run labour productivities will equal about 0.954.
However, at savings rates equal 23% in a rich economy and 20% in a
poor economy u —1.045, and v —1.030.

If a rich economy is characterized by a savings rate greater by 6% points
than a poor economy, the rich economy will be characterized in the
long-run equilibrium by capital per worker greater by about 19.4% and
labour productivity greater by about 12.8% than the poor economy.

Analyzing a scenario wherein a rich economy absorbs 80% of workers
(Table 6.6), we can conclude that:

At the same savings rates, the initially poor economy reaches greater
values of the analyzed macroeconomic variables after 11-14 years.’
The quotients kg/kp and yr/yp approach then values of about 0.454 and
about 0.584.
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Table 6.6 Selected simulation results in Variant VI (o = 80%)

SR(%) sp(%) ke o kb yk ab WA (%)
17 17 122.2 268.8 58.5 100.2 454 58.4 14
20 148.0 434.1 70.2 146.2  34.1 48.0 11
23 180.7 6944  84.6 212.0  26.0 399 10
20 17 278.8 4764 1142 164.6  58.5 69.4 15
20 325.8 716.8 132.6 2271 454 58.4 12
23 383.3 1077.7  154.7 313.3 35.6 49.4 10
23 17 580.3 821.0 207.6  263.0 70.7 78.9 17
20 661.0 1167.7 2353 347.0  56.6 67.8 13
23 757.2 1666.2 268.0  459.1 454 58.4 11

Source: Own calculations.

If the savings rate in a poor economy is greater by 3% points, the poor
economy will overtake the rich economy after 10-11 years. The long-
run ratio of capitals per worker approaches about 0.341-0.356, and the
long-run ratio of labour productivities approaches about 0.480-0.496.
If the savings rate in a poor economy is greater by 6% points, that econ-
omy will be characterised by higher values of capital per worker and
labour productivity than an R-type economy after 10 years. In a long
run, capital per worker will be almost four times greater and labour
productivity will be more than 2.5 times greater in the poor economy
than in the rich economy.

If the savings rate is greater by 3% points in a rich economy than in a
poor economy, the poor economy will catch up the rich economy after
13-15 years. In a long run, the ratio of capitals per worker will equal
about 0.566-0.585, and the ratio of labour productivities will equal
about 0.678-0.694.

However, if a rich economy is characterized by a savings rate greater
by 6% points than a poor economy, the poor economy will overtake the
rich economy (in terms of capital per worker and labour productivity)
after 17 years. The ratio of capitals per worker approaches (in a long
run) about 0.707, and the ratio of labour productivities about 0.789.

Let us consider a scenario wherein a rich economy is characterized by a con-
siderably greater savings rate than a poor economy. Let us then assume that
the value of that macroeconomic variable equals 25% in a rich economy and
15% in a poor economy. We analyze long-run processes with a rich econ-
omy absorbing (subsequently) 20%, 40%, 50%, 60%, and 80% of the total of
workers (Table 6.7). Then, it is concluded that:

In each of the analyzed scenarios, capitals per worker and labour
productivities partly converge, but a poor economy overtakes a rich
economy (after 27 years), considering the analyzed macroeconomic var-
iables, only at v = 0.8.
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Table 6.7 Selected simulation results in Variant VII (sg = 25% and sp = 15%)

(%) kg kp e vp u' () V(%) ot

20 580.2 159.5 183.3 75.9 363.8 241.4 Never
40 587.9 237.9 190.8 102.9 247.1 185.4 Never
50 618.0 303.1 201.8 124.1 203.9 162.6 Never
60 663.1 403.2 217.6 154.9 164.5 140.4 Never
80 841.3 940.3 277.9 299.9 89.5 92.7 27

Source: Own calculations.

The higher the proportion of people working in a rich economy, the lower
the long-run ratios of capitals per worker and labour productivities.
Moreover, a high proportion of people working in a rich economy also
corresponds to high long-run values of capital per worker and labour
productivity both in the rich economy and in the poor economy.

Let us also consider a scenario wherein the savings rate in a rich economy
(15%) is considerably less than in a poor economy (25%). Numerical simula-
tion results for that scenario are stated in Table 6.8. The simulation results
given in that table lead to the following conclusions:

In each of the scenarios analyzed here, a poor economy will overtake a
rich economy (after 9-19 years). Moreover, the greater (considering the
number of workers) the rich economy, the sooner it will be overtaken by
the poor economy.

The greater the resource of workers absorbed by an R-type economy,
the lower the long-run capital per worker and labour productivity in
that economy and the greater the values of those macroeconomic vari-
ables in the other analyzed economy.

Table 6.9 contains ratios of average estimated k};, k;, y; and y; in the several
variants described above, compared to the base Variant I (a scenario wherein
there are no investment flows between the analyzed economies). Analyzing
the quantities from Table 6.9, we must remember that the figures resulting
from Variants II-VI and those resulting from Variants VII-VIII are not

Table 6.8 Selected simulation results in Variant VIII (sg = 15% and sp = 25%)

o (%) kg kp Vi Vi u' () ()t

20 544.7 894.8 199.1 279.4 60.9 71.3 19
40 255.5 732.6 110.4 226.7 349 48.7 15
50 200.6 697.0 91.6 214.3 28.8 427 13
60 164.7 679.3 78.7 207.1 24.2 38.0 12
80 122.7 7227 63.3 212.2 17.0 29.8 9

Source: Own calculations.
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Tuble 6.9 Ratios of average estimated kg, kp, yg and y} in the several variants
relative to Variant I (Variant I = 100)

Variable
Variant N X X .
kr kp YR yp
11 131.2 103.1 124.3 105.0
111 93.9 104.4 96.4 103.5
v 88.0 111.3 92.1 108.3
\'% 85.6 123.8 90.9 117.2
VI 90.8 193.5 98.2 165.3
VII 156.5 97.2 142.8 101.0
VIII 61.3 177.2 72.4 151.9

Source: Own calculations.

comparable, due to significantly different assumptions about developments

of exogenous variables. It follows from the summary in Table 6.9 that:

A rich economy benefits from openness to investment flows between it
and a poor economy only if the rich economy is small, considering the
number of workers. At w = 0.2, average estimated values of capital per
worker and labour productivity in that economy rise by more than 30%,
and estimated labour productivity rises by almost 25% (compared to
average estimated values without investment flows).

A poor economy benefits from openness to investment flows from a rich
economy in each of the analyzed scenarios. Moreover, the greater (con-
sidering the number of workers) the rich economy, the greater the bene-
fits derived by the poor economy.

If a rich economy is characterized by considerably greater (less) savings
rates than a poor economy, the rich (poor) economy benefits while the
poor (rich) economy loses from openness to investment flows (Variants
VII-VIII relative to the variant with no investment flows).

However, remember that we adopted a fundamental assumption in each
analyzed scenario that a rich economy invests in a poor economy a fraction
of its savings that is twice as large as the fraction invested by the poor econ-
omy in the rich economy. Let us consider what will happen, if either of the
analyzed economies invests in the other economy 10% of its savings. Table
6.10 contains similar indices as those given in Table 6.9.

The simulations summarized in Table 6.10 lead to the following

conclusions:

At 20% and 40% proportions of people working in a rich economy, that
economy benefits while a poor economy loses from openness to invest-
ment flows. If w = 0.5, both economies benefit to the same extent. How-
ever, if the proportion equals 0.6 or 0.8, a rich economy loses while a
poor economy benefits from openness to investments.
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Table 6.10 Ratios of average estimated kg, kp, yg and yp in the several variants
relative to Variant I, assuming that either economy invests 10% of its
savings in the other economy (Variant I = 100)

Variable
Variant R R R N

kR kp VR yp
11 178.7 95.6 156.3 101.5
111 112.8 95.2 110.2 98.0
v 101.3 101.3 102.0 102.0
A" 95.2 112.8 98.0 110.2
VI 95.6 178.7 101.5 156.3
VII 165.0 91.1 147.8 96.3
VIII 91.1 165.0 96.3 147.8

Source: Own calculations.

» If the savings rate equals 25% (15%) in a rich economy, and is less
(greater) by 10% points in a poor economy, investment flows between
those economies will lead to benefits derived by the rich (poor) economy
combined with losses suffered by the poor (rich) economy.

6.4.2 Investment flows depending on capital productivity

Numerical simulations of the trajectories of capital per worker and labour
productivity in a bipolar economic growth model can be conducted follow-
ing an approximation of system of differential equations (6.18) using the

following system of differential equations!*:
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where pr, = 28t = k}%flk,é, and pp; = % = k;‘%‘;lk,% denote capital productivity
Rt Pt
(respectively) in a rich economy and in a poor economy in the year ¢. The

above system of equations can also be written as:

kri=sg|1- IR kgt—lklét—l
I+exp _Ppi-t
PRi-1
-0
+tSp /e kgtflklgtfl +(1=pr) kpi—t
1+exp| - PRi=1 @
p
DPpr-1
(6.29)
kpe=sp| 1= s kgz_1k1€[_1
1+exp — PRt
Ppt-1
ppt—l w o B
+SREXp|—— —— kS kb + 1—/.lp kal
( pRt—l]l_w Rk pro *( )kpy

The parameters a, 5, ug, ug in system of differential equations (6.29), were
In3 = 10gand ug=uug=0.075.

n
It is assumed about parameters yp and yp that they equal 0.1. This implies

calibrated, like previously, at the levels: f =

that either of the analyzed economies is ready to invest in the other economy
not more (not less) than 10% (5%) of its savings.

Additionally, nine various combinations of savings rates are considered
(per each of Variants A-E described below) wherein the rates sg and sp can
assume the values 17%, 20% or 23%.

The numerical simulation results given below start from the following ad-
ditional assumptions:

a rich economy absorbs 20% of the total of workers;

w =04

50% of the total of workers work in either of the analyzed economies;
w = 0.6;

80% of the total of workers work in a rich economy;

the savings rate equals 25% in a rich economy, 15% in a poor economy,
and o assumes the subsequent values of 0.2, 0.4, 0.5, 0.6 or 0.8;
sgp=0.15, sp=10.25 at w, like in the preceding variant.

THO AW >

Q
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Selected numerical simulation results for Variant A are summarized in Ta-
ble 6.11. It follows from the table that:

No combination of the analyzed savings rates gives a poor economy the
chance to catch up a rich economy, in terms of capital per worker and
output per worker (although the process of partial convergence takes
place in each scenario considered).

At the same savings rates, long-run capital per worker will be greater
by about 65.4% in a rich economy than in a poor economy, and labour
productivity will be greater by about 41.0% in a rich economy than in a
poor economy.

If a poor economy is characterized by a savings rate greater by three
percentage points than a rich economy, the rich economy will be char-
acterized in a long run by capital per worker greater by about 29%.0-
33.3% and by labour productivity greater by about 19.0%-21.7% than
the poor economy. At a savings rate in a poor economy greater by 6%
points u” =1.071 and v" =1.048.

If the savings rate in a rich economy is greater by 3% points, the rich econ-
omy will enjoy in a long run capital per worker greater by about 110.2%—
119.0% and labour productivity greater by about 66.0%—-70.8%. At a savings
rate in a rich economy greater by 6% points # — 2.841, and v — 2.040.

Table 6.12 contains numerical simulation results for a proportion of workers
 equal 40%. The table leads to the following conclusions.

At the same savings rates in the analyzed economies, the ratio of long-
run capitals per worker reaches a value of about 1.145, the ratio of la-
bour productivities equals about 1.097.

If the savings rate in a poor economy is greater by 3% points, that econ-
omy will be characterized by greater capital per worker and greater

Table 6.11 Selected numerical simulation results in Variant A (o = 20%)

k(%) se(%) ko kb yx yp o wR(%) () T

17 17 222.6  134.6 87.5 62.1 1654 141.0 Never
20 389.1  301.6 142.1 1194 129.0 119.0 Never
23 6644  620.5 2252 2149 1071 104.8  Never

20 17 3657 167.0  129.6 759 2190 170.8 Never
20 5937 3589 1983 140.7 1654 141.0 Never
23 955.3  716.8 299.8 2464 1333 121.7 Never

23 17 594.8  209.3 190.7 93.5 2841 204.0  Never
20 905.7 4309 2770 166.8 210.2 166.0 Never
23 13799 8342 4009 2843 1654 141.0 Never

Source: Own calculations.
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Table 6.12 Selected numerical simulation results in Variant B (o = 40%)

SR (Y0) sp(“0) kg kp VR vp w* (%) v¥(%)

17 17 152.1 132.9 65.5 59.7 114.5 1097 Never
20 232.0 2737 95.3 106.6 84.8 89.3 4]
23 354.1 530.1 138.0 181.8 66.8 759 25

20 17 285.5 182.4 108.1 79.7 156.5 135.8  Never
20 4057 3543 148.4 1353 114.5 109.7  Never
23 580.6  657.5 204.2 2223 88.3 919 42

23 17 516.3 2528 173.7 106.7  204.2  162.8  Never
20 6943  463.6 2277 172.8 149.8 131.8  Never
23 943.0 823.6  300.0 273.6 114.5 109.7  Never

Source: Own calculations.

output per worker than a rich economy after 41-42 years. In a long run,
capital per worker will amount to about 84.8%-88.3% and labour pro-
ductivity to about 89.3%-91.9% in an R-type economy of the respective
values in a P-type economy. However, if a poor economy is character-
ized by a savings rate of 23% and a rich economy by a savings rate of
17%, the poor economy will overtake the rich economy after 25 years.
In this case, u = 0.668, and v =0.795.

Considering the scenario wherein the savings rate in a rich economy is by
3% points greater than in a poor economy, capital per worker in the rich
economy will be greater by about 50%-57% and labour productivity will
be greater by about 32%-36% than in the poor economy in a long-run. A
six-point difference in savings rates (in favour of a rich economy) leads to
the ratio k; / k; exceeding 2, and y; / y; greater than 1.6.

Results of numerical simulation in a variant wherein either economy ab-
sorbs 50% of the resource of workers are given in Table 6.13. That summary
leads to the following conclusions:

At the same savings rates, complete convergence of capitals per worker
and labour productivities will take place.

If savings rates in a poor economy are greater by 3% points, the poor
economy will overtake a rich economy in terms of capital per worker
and labour productivity after about three decades. In a long run, capital
per worker in an R-type economy will be less by about 23.5%-26.7%,
and labour productivity will be less by about 16.7%-19.1% than in a
P-type economy. If a poor economy is characterized by a savings rate
greater by 6% points, the poor economy will overtake the R-type econ-
omy after 21 years. In a long run, u# — 0.568, and v — 0.679.

At a savings rate in a rich economy greater by 3% points, long-run cap-
ital per worker in that rich economy will be greater by about 30%-37%
than in a poor economy. Long-run labour productivity will be greater
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Table 6.13 Selected numerical simulation results in Variant C (o = 50%)

SR(G) sp (%) K ke yh b uR(%) v (%) T

17 17 139.5 139.5 61.6 61.6  100.0 100.0 +o0
20 201.5 275.1 85.7 105.9 73.3 80.9 31
23 292.9 515.9 119.3 175.6 56.8 679 21

20 17 275.1 201.5 105.9 85.7 136.5 123.7 Never
20 372.1 372.1 139.5 139.5 100.0 100.0 +o0
23 508.3 664.6 1847 2218 76.5 83.3 30

23 17 515.9 292.9 175.6 119.3 176.2 147.2 Never
20 664.6 508.3 221.8 184.7 130.7 120.1 Never
23 864.9 864.9 282.0 282.0 100.0 100.0 +o0

Source: Own calculations.

by about 20%-24%. At a savings rate of 23% in a rich economy, and
a savings rate in a poor economy less by 6% points, u" =1.762, and
v =1.472.

Table 6.14 contains results of numerical simulations of long-term levels of
capital per worker and labour productivity and their ratios in a scenario
wherein a rich economy absorbs 60% of the total number of workers. The
results lead to the following conclusions:

* Atasavings rate of 17% in an R-type economy, a P-type economy (char-
acterized by a savings rate of 17%-23%) should overtake the former
within 18-47 years. Long-run ratios of capitals per worker u* should
then be contained in the interval from about 0.490 to 0.873, and ratios
of labour productivities in the interval from 0.614 to 0.912.

» If the savings rate equals 20% in a rich economy, and 17% in a poor
economy, long-run capital per worker will be by about 18.0% greater
and labour productivity will be by about 11.9% greater in the rich econ-
omy than in the poor economy. If the savings rate equals 20% in an

Table 6.14 Selected simulation results in Variant D (o = 60%)

s (Y0)  sp (%) kg kp VR yp wt (%) v*(%) 1

17 17 132.9 152.1 59.7 65.5 87.3 91.2 47
20 182.4 285.5 797  108.1 63.9 73.7 25
23 252.8 516.3 1067 1737 49.0 61.4 18

20 17 273.7 232.0 106.6 953 118.0 111.9 Never
20 354.3 4057 1353 1484 873 91.2 42
23 463.6 6943 1728 2277 66.8 75.9 24

23 17 530.1 3541  181.8  138.0  149.7 131.7 Never
20 657.5 580.6 2223 2042 113.2 108.9 Never
23 823.6 943.0 273.6  300.0 87.3 91.2 38

Source: Own calculations.
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R-type economy and 20% or 23% in a P-type economy, then the P-type
economy will overtake the other analyzed economy after 24—42 years.
In a long run, the quotient kg/kp will approach the value of about
0.668—0.873, and the quotient yp/yp will approach the value of about
0.759-0.912.

However, if the savings rate equals 23% in a rich economy and 17%
or 20% in a poor economy, u#—1.497 or u—1.132, and v —1.317 or
v —1.089. If the savings rates equal 23% in both analyzed types of econ-
omy, a poor economy will overtake a rich economy after 38 years, and
long-run ratios of capitals per worker and labour productivities will
reach the levels of u” =~ 0.873 and v = 0.912.

Table 6.15 contains selected numerical simulation results in the variant,
wherein a poor economy absorbs 20% of the total of workers. The summary
demonstrates that:

In each of the analyzed scenarios, a P-type economy will be character-
ized by greater values of capital per worker and output per worker than
an R-type economy.

At the same savings rates in both types of economy, a poor economy
will overtake a rich economy after 15-19 years. In a long run, capital
per worker in an R-type economy will amount to about 60.5%, and la-
bour productivity to about 70.9% of the respective values in a P-type
economy.

If a P-type economy is characterized by a savings rate greater by 3%
points than an R-type economy, the former economy will reach greater
values of capital per worker and labour productivity after 13—14 years.
The long-run ratio of capitals per worker will approach then about
0.457-0.476, and the ratio of labour productivities will approach about
0.586-0.602. If the savings rate in a P-type economy is greater by 6%
points, that economy will overtake an R-type economy after 12 years.

Table 6.15 Selected simulation results in Variant E (w = 80%)

sp (%) sp (%) kg kp VR yp u* (%) v} (%) ot
17 17 134.6 222.6 62.1 87.5 60.5 70.9 19
20 167.0 365.7 75.9 129.6 457 58.6 14
23 209.3 594.8 93.5 190.7 35.2 49.0 12
20 17 301.6 389.1 119.4 142.1 77.5 84.1 23
20 358.9 593.7 140.7 198.3 60.5 70.9 16
23 430.9 905.7 166.8 277.0 47.6 60.2 13
23 17 620.5 664.4 214.9 225.2 934 95.4 36
20 716.8 955.3 246.4 299.8 75.0 82.2 20
23 834.3 1379.9  284.3 4009  60.5 70.9 15

Source: Own calculations.
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In this scenario, long-run capital per worker in an R-type economy will
equal about 35.2% and labour productivity about 49.0% of the respec-
tive variables in the other analyzed type of economy.

If a rich economy is characterized by a savings rate greater by 3% points
than the other economy, the P economy will be characterized by greater
values of capital per worker and output per worker after 16-20 years.
In a long run, capital per worker in an R-type economy will amount to
about 75.0%-77.5%, and labour productivity to about 82.2%-84.1% of
the respective values in a P-type economy. At a six-point difference in
savings rates (in favour of an initially rich economy), it takes 36 years for
a poor economy needs to catch up an R-type economy, and u — 0.934
and v — 0.954 in a long run.

Let now us consider a scenario, wherein a rich economy is characterized by
a considerably greater savings rate (equal 25%) than a poor economy (that is
characterized by a value of that macroeconomic variable equal 15%). This
variant is analyzed in cases with the proportion w equal 20%, 40%, 50%,
60% or 80% (Table 6.16). Then, numerical simulations lead to the following
conclusions:

Complete convergence is not possible in any of the analyzed cases, but
partial convergence takes place in each case.

At a proportion of people working in a rich economy equal 20%, partial
convergence is very limited, because the ratio of capitals per worker
drops from 5:1 (in the year ¢ = 0) to about 4.245:1 (at t — o). The ratio of
labour productivities will drop then from 3:1 to about 2.683:1.

At a 40% proportion of people working in a rich economy, long-run
capital per worker in that economy will be almost three times greater
than in a poor economy, and labour productivity will be more than
twice as great as in a poor economy.

If the analyzed economies share the number of workers at a 1:1 propor-
tion, then in a long run u — 2.482 and v — 1.860.

In a scenario with a rich economy absorbing 60% of the total of work-
ers, long-run capital per worker in that economy will be more than twice

Table 6.16. Selected results of numerical simulations in Variant F (sg =25% and

sp=15%)
w (%) kr kp VR Vp u (%) v (%) r

20 6353 1496 1954 72.8 424.5 268.3 Never
40 6324  213.8  200.0 95.4 295.8 209.7 Never
50 661.1 2664 2104 1131 248.2 186.0 Never
60 706.2 3458 2256  138.6  204.2 162.8 Never
80 8879 7541 2847 2547 117.7 111.8 Never

Source: Own calculations.
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as great as in a poor economy, and its labour productivity will be by
more than 60% greater in a long run.

However, if a rich economy is considerably bigger considering the num-
ber of workers (i.e. when w = 0.8), its capital per worker and labour
productivity will be greater by about 12%-18% than in a poor economy
in a long run.

Table 6.17 contains selected numerical simulation results in Variant F, op-
posite to Variant E (in that the savings rate in a poor economy is greater by
10% points than in a rich economy). The results of numerical simulations
contained in the table lead to the following conclusions:

A P-type economy will overtake an R-type economy considering capital
per worker and labour productivity in all analyzed scenarios. The poor
economy needs from 10 to 28 years to catch up the rich economy.

The higher proportion of the total of workers is absorbed by an R-type
economy, (first) the faster it will be overtaken by a P-type economy and
(second) the lower are long-run ratios of u “and v,

The table contains ratios of average estimated kr, kp, y; and y; in the sev-
eral variants, relative to Variant I (a scenario wherein there are no invest-
ment flows). Table 6.18 leads to similar economic conclusions as Table 6.10.

Table 6.17 Selected results of numerical simulations in Variant F (sg = 15% and

sp=25%)
w (%) kr kp VR Vp u" (%) v (%) r

20 754.1 8879 2547 2847 84.9 89.4 28
40 3458 7062 1386 2256 49.0 61.4 17
50 2664 6611 113.1 210.4 40.3 53.8 15
60 213.8 6324 954 200.0 338 477 14
80 149.6 6353 728 195.4 23.6 37.3 10

Source: Own calculations.

Tuble 6.18 Ratios of average estimated kg, kp, yr and yp in the several variants

relative to Variant I (Variant I = 100)

Variable
Variant . . . .
kg kp YR yp
A 160.4 99.7 144.5 104.0
B 110.0 97.0 108.2 99.1
C 101.3 101.3 101.9 101.9
D 97.0 110.0 99.1 108.2
E 99.7 160.4 104.0 144.5
F 167.6 82.3 148.8 89.9
G 82.3 167.6 89.9 148.8

Source: Own calculations.
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6.5 Conclusions

The analyzes contained in this chapter can be summarized as follows!!:

1

II

III

v

VI

VII

The described bipolar economic growth models are based on the
Solow growth model (1956) with elements of the gravity model of eco-
nomic growth (Mroczek, Tokarski and Trojak, 2014).

It is assumed in those models that investments can be financed in
an economy using both domestic savings and foreign savings. The
first growth model discussed in this chapter bases on the assumption
about an exogenous structure of (domestic and foreign) investments.
In the second discussed model, investment flows are made condi-
tional on capital productivity in the analyzed economies (savings
flow principally from an economy characterized by a lower capital
productivity to an economy characterized by a higher value of that
macroeconomic variable).

Additionally, it is assumed in those models that the level of labour
productivity in either economy (i.e. in a rich and in a poor economy)
depends not only on capital per worker in that economy but also in
the other analyzed economy.

The systems of differential equations derived from the assumptions
adopted in the models have exactly one non-trivial steady state each.
Those states are characterized by asymptotic stability. As such, they
determine conditions for a long-run equilibrium of the analyzed
economies.

The ratios of long-run capitals per worker kg /kp and long-run labour
productivities yr/yp in the model characterized by exogenous invest-
ment flows (the model from Section 6.2) depend on investment rates,
rates of capital decline and on the proportions of workers absorbed
by the analyzed economies. The higher the investment rates in a rich
economy and the higher the decline rate of capital per worker in a
poor economy and the lower the decline rate of capital per worker in
a rich economy or investment rates in a rich economy and percentage
of people working in a rich economy, the greater are the ratios kg / kp
and yg/yp.

The trajectories of analyzed macroeconomic variables and long-run
equilibrium states can be determined in neither of the two considered
models. To illustrate the trajectories of analyzed variables, the au-
thors calibrated model parameters and performed numerical simula-
tions of those trajectories.

When calibrating model parameters, the authors sought such elas-
ticities o and B of labour productivity functions that lead (first) to
an impact of external factors (measured by the elasticity of domestic
labour productivity with respect to capital per worker abroad) that
is ten times lower than the elasticity of domestic output per worker
with respect to domestic capital per worker and (second) to a ratio of
labour productivities of 3:1 at a relationship between capital-labour
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ratios of 5:1. It was also arbitrarily assumed that e.g. the rate of de-
cline in capital per worker in either economy equals 7.5%, savings
rates fluctuate between 17% and 23% and the economies are ready
to invest abroad 5%-10% of their savings. The performed numerical
simulations are also based on the assumption that initial capital per
worker equals five in a rich economy, and one in a poor economy.
The results of numerical simulations given above indicate complete
or partial convergence between the analyzed economies (although
combinations of model parameters are also possible that lead to di-
vergence).!” The reason is that the analyzed growth models are char-
acterized by diminishing marginal productivities of capital (resulting
from the Cobb-Douglas production function) and that accelerated
capital accumulation in one of the economies stimulates production
in the other economy.

Moreover, the greater proportion of workers is absorbed by a rich
economy, the sooner it is caught up by a poor economy. The greater
the savings rate in a poor economy relative to the savings rate in a rich
economy, the greater the speed of the convergence process.

The numerical simulations described in this chapter also lead to the
following, more general conclusions. First, if a rich economy is smaller
(considering the number of workers) than a poor economy, and both
have similar savings rates, openness to investment flows between the
economies is beneficial to the rich economy, and disadvantageous
to the poor economy. Second, if a greater number of workers is ab-
sorbed by a poor economy, openness to investment flows is beneficial
to that economy and disadvantageous to a rich economy. Third, if a
rich (poor) economy is characterized by an investment rate greater
by 10% points, investment flows are beneficial to that economy and
disadvantageous to the other economy.

Notes

1 Poland could use e.g. German autobahns connecting us with France or Italy,
the Germans could not (until recently) use Polish motorways on their way to
Ukraine, because Polish motorways (simply) did not exist.

2 The following relation holds: Vi > 0 g—"’ =—((1-a)au® 2 +(1- B)ayuP 2 + BouP )
u

+ch2ua71) <0, so that an analysis of signs of partial derivatives u*, given by for-

mula (6.13), with respect to subsequent independent variables x, leads to:

3 Differential equations (6.14a,b) are interpreted in economic terms like equations
(6.5a,b).

4 Certainly, the parameters g, §p € (0,1) represent capital depreciation rates in
rich economies and poor economies, while n > 0 denotes the growth rate of the
number of workers in both types of countries.

5 While estimating the signs of the quantity j; (for 7, j = 1, 2), we use the relations:

dlR and

d (kg | kp) d (kg !kp)
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6
7

8

9

10

11

12

See also simulations in the study by Filipowicz and Tokarski (2015).
In the simulations described below, we adopt an approximated long-run value of

any variable x given by the formula: x* = lim x, = x; g9-

t—so0 .
The concept of convergence (or complete c_c)mvergence) is understood below as a
process wherein (using the symbols introduced in this study) u(r) — 1A v (t) % 1

Partial convergence is understood by the authors as a process wherein the I'dthS

of u and v drop (in time), approaching a value other than 1.

The statement is apparently illogical. However, remember that (first) the rich
economy invests in the poor economy a fraction of its savings that is twice as
large as the fraction invested by the poor economy in the rich economy, and (sec-
ond) the rich economy is four times bigger (considering the number of workers)
than the poor economy.

See also numerical simulations in the study by Filipowicz, Wista and Tokarski
(2015).

See also Filipowicz and Tokarski (2015) or Filipowicz, Wista and Tokarski
(2015).

If we assume in a model with exogenous investment rates that 10% of the total of
workers work in a rich economy, either economy invests abroad 10% of its sav-
ings, the savings rate equals 40% in a rich economy, and 10% in a poor economy,
then att — o, we get: u — 26.135 and v — 9.277. In a model with investment flows

conditional on capital productivity, considering the same assumptions and yg =

yp = 10%, we obtain u* =25.277 and v* = 9.068 (quantities strikingly similar to
those implied by a model with exogenous investment rates).



7 The gravity model of
economic growth

7.1 Introduction

The gravity model of economic growth described in this chapter bases on the
Solow growth model. We assume in the gravity model that variation across
total productivities of production factors in economies is affected by spatial
interactions between them that can be described by what is known as gravita-
tional effects. How those gravitational effects work in the discussed economic
growth model can be explained by analogy to Newton’s law of universal
gravitation. It is assumed that economies attract each other with a specific
force that is directly proportional to the product of their economic potentials
and inversely proportional to the square of the distance between them. We
will also propose golden rules of capital accumulation for the gravity model
of economic growth, and those rules will be defined in two ways. We assume
that the golden rule of capital accumulation can be defined as either such
combination of investment rates in economies covered by the gravitational
effects that maximizes the geometric mean of consumption per worker in all
economies, or such combination of investment rates that maximizes long-
run consumption per worker in each of the economies. The growth models
described in this chapter were proposed by Mroczek, Tokarski and Trojak
(2014), Filipowicz, Tokarski and Trojak (2015) and Filipowicz (2019).

7.2 Assumptions of the model

The gravity model of economic growth is based on the following assump-
tions about a finite N number of economies (see e.g. Mroczek, Tokarski, and
Trojak, 2014 or Filipowicz, 2019):

1 Labour productivity in each of the economies is described by a
Cobb-Douglas function given by the formula:

Vm yu(0)=a-(gn®)F - (kn(0), (7.1)

where y,, denotes labour productivity in economy m (form=1,2, ..., N),
a > 0 is a constant,! g,, represents gravitational effects that connect
economy m with other economies,? k; represents capital per worker in

DOI: 10.4324/9781003323792-8
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economy m, and o and B denote the elasticities of labour productivity
with respect to capital per worker and to gravitational effects. It is as-
sumed about the elasticities o and f that ¢, 8,(ax+ ) € (0,1), & > B and
B< 1—705' The assumptions about elasticities lead to the conclusion that
the labour productivity function: (first) is characterized by diminish-
ing marginal productivities of gravitational effects and of capital per
worker and (second) that gravitational effects are less important as a
determinant of labour productivity than capital per worker.

2 Total gravitational effects g, influencing economy m represent an arith-
metic means of individual gravitational effects g,,,,, form, n =1, 2, ...,
N at n#m) connecting that economy with each of the remaining econo-
mies. Hence:

Vm gm(t)=1v_1,i igmn(t)- (72)

3 Individual gravitational effects connecting any pair of economies (like
in Newton’s law of universal gravitation) are directly proportional to
the product of their economic potentials and inversely proportional to
the distance between them. The economic potential of each economy is
measured by capital per worker. Hence, individual gravitational effects
are defined by the relation:

km ([)2 kn ([) , (73)
dmn

where d,,, > 0 represents the distance (in geographic space) between

economy m and economy 7.

Vmn an#zm g, (t)=

4 An increase in capital per worker in economy m is defined by Solow
equation (2.15), hence:

Vi k(1) = S Vi (O =tk (1), (74)

where for subsequent m, s,, € (0,1) denotes the savings/investment rate in
economy m, and Y, = 8,, + n,, > 01is the rate of decline in capital per worker
in economy m, being the total of capital deprecation rate J,, € (0,1) and
the growth rate of the number of workers 7,,, > 0 in that economy.

7.3 A solution of the model

Substituting individual gravitational effects from equation (7.2) into (7.5),

we get:
k,,(t)-N-1 k,(t
RZCRE | IRG
Vm g(1)= M
N-1 drznn
nm
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kn N[ ka0 .
n#£m 75

dp ’

or:

Vm g, (1)=

where d,,, denotes the geometric mean of the distance between economy m
and the remaining economies. Equation (7.5) leads to the conclusion that
the total of gravitational effects affecting economy m is directly propor-
tional to the value of capital per worker in that economy and to capitals per
worker in the remaining economies and the greater the closer to the centre is
the location of economy m (i.e. the lower is the value of d,,,).

Substituting the equation of total gravitational effects (7.5) into labour
productivity function (7.1), we get:

km(t)'N]lf kn(l)
Hn;ém -(km(t))a,
N_\I/H ¢mdr2nn

VYm y,(t)=a

which results in:
I(N-1)

(Hnimkn (Z)JH .(km(l))m—ﬁ
a2 '

Vm y(t)=a (7.6)

Equation (7.6) makes labour productivity y,, in economy m conditional on
capital per worker k,, in that economy, capitals per worker k,, in the remain-
ing economies and on the geographic location of economy m, described by
the distance d,,,.

Substituting labour productivity function (7.6) into equations (7.4), we ob-
tain the following system of differential equations:

B
(H n#mkn (t))N_l) ' (km (t))a+ﬁ

d2p

Vm k(1) =as, — Uk (2). (1.7)

System of differential equations (7.7) is analyzed in the phase space
P =[0,4+e0)".

System of equations (7.7) has in the phase space P a trivial steady state
(that is ignored as uninteresting for economic and mathematical analyzes)
and (as will be demonstrated soon) exactly one non-trivial steady state
K€ (0,+o<>)N.

In the non-trivial steady state k, Vin ky, =0 Ak, > 0. It follows from equa-
tions (7.7) that the following hold in than point:



170 The gravity model of economic growth

kl—a—ﬂHk BI(N-1) _ d
21

n#l

l-o—f (N 1) _ asy
ky Hk " d 2

n#2

1- (N 1) __ 4aSn
k “ ﬁHk u d 2B
nzN N

The above system of equations (considering that K6(0,+°°)N) can be written:

(l—a—ﬁ)lnkl—%z Ink, =6,

n#l

n#2 s

(l—a—ﬁ)lnkz—%z Ink, =6,

| (l—a—,B)lnkN—N'B_lz Ink, =6y

nzN

asy,
dzp

m*m

where: Vm 6,, =In € R

Adding up the subsequent equations of system (7.8), we obtain:

(1-a=2$)Y Inky = ) O,

m
which results in:

z m Zm nu:?:i" .

Zlnkm—
1-a-28  1-a-28
m

Each equation in system (7.8) can be written:
N-2
Vm (l—a— = ]l e - ka =0,

and this together with equation (7.9) gives:

N-2 B
Vm (l1-o- Ink,,=6,,+——— ) Ink,
m ( o N lﬁJn +N_12n

B
_0”’+(N—1)(1—a—zﬂ)291v

(7.8)

(7.9)

hence, the following holds in the steady state K = (kf,k;,...,k;v) € (0,400)V:
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m

B
(N—l)(l—a—2[3)zn9"

Vm Ink,, =

N-2 ’
l-o—
N-1 P
or, considering the substitutions Vi 6, =In }2 5o we get:
m*m

In®m_ B In—%n
vm k= Hmdal (N—l)(l—a—zﬁ)zn Haudi?

(7.10)

Equations (7.10) describe the non-trivial steady state of system of differen-
tial equations (7.7).
Jacobian matrix J of system of equations (7.7) is described by the formula:

| n_ Bsin Bsin ]
@D Nk T (N-Dky
Bs2y2 »n Bsyya (7.1D)
I (N-Dk (‘Hﬁ)sz o (N —Dky
ﬁsl\;yN ﬁsj\.ny IN _
(V=D G

s

In the non-trivial steady state &, the following holds: Vj u; =s; %, so that
J
Jacobi matrix (7.11) can be written in that point as:

~(1-a—B)siyf Bsi Bsi
ki (N -1k, (N -Dky
. Bs»y» ~(1-a—B)s2y3 N Bsay> (7.12)
J = (N-Dkj ke (N -Dky
Psnyv Psnyw  ~(-a-Piyyy
(N-Dky (N-Dk) ky
Eigenvalues of matrix (7.12) solve the equation:
~(1-a—B)siyf _2 Bsin Bsit
ky (N-Dk; (N-Dky
Bs2y> —(1-a—B)s2y> i Bs2>
(N-Dki ks (N—l)kfv =
Bsy vy Bsyyn —(1-a— ﬁ)SNyN _2
(N =Dk (N =Dk, ky
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that can also be written as:

Aki B B
—(1-a-B)—
(-a=p) Syt N-1 N-1
B g 2 B
N-1 (=e=p) szy; N-1 =0,
B B g _ Aky
N-1 N-1 (-a=p) SNVN

which results in:

—
Ju—

B Bsiyr

| _(-a=B)N-)_AN-Dk; {

B Bsin
. : __(=a=pYN-1) _ MN-Dky
B Bsiyn
or:
Q- A 1 1
0= . et b o
1 1 -Q— (DN)»

where Q= (A-o=p)N-1) >0 and Vj o; = % >0. Determinant O,

following few elementary transformations, can be written as:

o=V Jeer1ro,n) kZﬁ ,
. . J

J J

hence, eigenvalues of matrix J* solve the equation:

'] J(@+1+02) 172‘479“160'/1 =0
. . J
J J

or:

1
-y —————=0. 7.13
29+1+a)j/1 (713
J
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Let us write eigenvalues / as:
A=a+bi, where a,b € R, and i =+/—1. Then, equation (7.13) can be re-
duced to the equation:

z;=1, (7.14)
Q+l+w;A

J

Since every complex number z satisfies the relation:

Where z is a complex conjugate of z, we get as per quotation (7.14):

Z Q+1+a)ja—a)jbi L
(Q+1+a)ja)2+a)2~b2

j J

Q+l+w;a . ;
> el by, - L (7.15)

I (Q+1+0;a) +w§b27 I (Q+1+w;a) +wlb? B

or:

which leads to the conclusion that b = 0. Hence, the eigenvalues of the Jacobi
matrix (7.12) are real numbers. And equation (7.14) can be written as:

> Loy (7.16)
Q+1+a)ja

J

We will now demonstrate that ¢ in equation (7.16) is a negative number. For
this purpose, an indirect proof will be given. Let us assume (despite our
hypothesis) that a = 0. Then:

Z 1 1 N _ N . N
Q+l+wja “=Q+1 Q+1 (I-a-BYN-D+p (N-DB+B
J

>

J

which is inconsistent with equation (7.16). Hence, all eigenvalues A of Jacobi
matrix J* are negative real numbers. It follows from the Grobman-Hartman
theorem that the Lyapunov asymptotically stable point x defined by equa-
tions (7.10) is the point of long-run equilibrium in the analyzed gravity model
of economic growth. It follows from equations (7.10) that:

*  Long-run capital per worker k:;l in economy m depends e.g. on the sav-
ings/investment rate s,,, in that economy, savings/investment rates s,, (for
n#m) in the remaining economies, the rate of decline in capital per
worker u,, in economy m, rates of decline in capital per worker yu, in
the remaining economies and on the geographic location of economy m
(described by geometric means of distances dy,d,...,dy).
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1+ B
olnk,, (N-1)(1-a—2pB)
s Since Vm o= >0, then the higher the sav-
S N -
B G L

ings/investment rate s,, in economy m, the higher the level of capital per
worker k,*n characteristic of that economy in a long run.

* A high rate of decline in capital per worker u,, in economy m corre-
sponds to a low value of k,,. This is because:

" 1+ B
Vi dlnk,, _ (N-D(1-a-2p) <0,

Ol 1_a_N—2ﬁ
N-1" "

*  The effect of d,, on k,, is similar which results from:

e
vy Oy _ (N-D(1-a-2B)

ad,, N-2,.);
l-ao—-—=8 4,
(e N2,
e  While Vm,n An#m 81;1km: B —— >0
Sy (Nl)(laZB)(laNﬁJn

implies that (due to gravitational effects) the higher the savings/invest-
ment rate s, in economy 7, the higher is capital per worker k,, in econ-
omy m in a long run.

* Also due to gravitational effects, the higher the values of decline x,
and geometric means d,,, the lower the values of capital per worker k,,,
because:

dlnky, _
My (N 1(1-a 2/3)(1 aNB)y

Vm,n An#m

and:
dlnky, _ 23

Vm,n A n#m = -
od,

<O0.
(N-D(1-a- 2ﬁ)(lo¢]]\\[72ﬁ]

It follows from equation (7.6) that:

Vm Iny, ()= dzﬁ zlnk (1) +(o+B)Ink,, (1),

n#m

or, in the state of long-run equilibrium:

a B
Vim 1nym_1ng2ﬁ Zlnk +(o+ B)Ink,. (7.17)

n;tm
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Equation (7.17) can also be written as:

28T N1

* a * N — 2 *
¥m Iny, =In -9+ B Y ink; +(a+ - ﬁ)lnkm,
n
that, considering (7.9) and (7.10), gives:
as,

Vm Iny,=In-% + B 5
I = g (N—l)(l—a—zmznund,%ﬁ

n

In-%m B —

+((x+N_2 g\ Hndil (N,l)(l,a,zﬁ)zn td,i?
_ N-2 ’
N-1 l-oo—-—=8

N-1

The above equation can also be written as:

a+N_2B
* a B as N-1 asy,
Vm Iny,=In—=4+ In—2 + In—2
TP (N—l)(l—a—zmg pndi? g N=2 g pdif
N
N B  a(N-1)+(N-2)B I %n
(N-D(I-a-2B) (N-D(1-a)-(N-2)B pnditP
n
hence:
a OH%_?ﬂ as
Vm Iny, =In—. + — In—2
Y dr%zl3 1— ,LJ Hmdr%ﬁ
N-1 (7.18)
+ P i
(Nl)(loc2l3){1aNll3Jn Hnl

Sinceitfollowsfromequations(7.10)and(7.18)thatVm sgn o ke, _ sgn o Yy

(where x denotes any independent variable determining long)frun capita?)f)er
worker or long-term labour productivity), the higher the savings/investment
rates s1, 52, ..., sy or the lower the rates of decline in subsequent capitals
per worker ul, 42, ..., up or the lower the average distances 671,32,. . .,c?N, the
higher is long-term labour productivity y, in any economy m = 1,2, ..., N.

7.4 Golden rules of capital accumulation

The golden rule of capital accumulation®in the gravity model of economic
growth will be defined using two approaches in the below theoretical ana-
lyzes. The golden rule of capital accumulation will be understood either as
such combination of savings/investment rates that maximizes the geometric
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mean of long-run consumption per worker in all economies (the analyzes
in Section 7.4.1) or such combination of those rates that in a long run maxi-
mizes consumption per worker in each of the economies (Section 7.4.2).

7.4.1 Maximization of the geometric mean of long-run
consumption per worker

Let us introduce s = (s1,5,...,5y ) € (O,I)N to denote any combination of sav-
ings/investment rates in the analyzed economies. Let us also write equation
(7.18) as follows:

N-2
o+ B
Vm 1ny;(s):@+N—A7}21nsm
| D,
Nlﬁﬁ (7.19)
+(N—1)(l—a—2ﬁ) o228 2
N-1"]"
where:
u a+]]\\,[_i[3 4
@:lng’%’ﬂ+li N*2 ln (jzﬁ

o——= Hmdm
N—lﬁ

+

nh—% eRr
(Nl)(lazﬁ)tla]]\\;jﬁ)zn: d2P

Since at each moment ¢ consumption per worker in economy m can be writ-
ten as:

Vm Cm(t)=(1_sn1)yn1(t)’

we get in a long run:

Vi cp(s)=(1-5) Y (5), (7.20)

or:
Vm vm(v)=lnc:,,(s)=ln(l—sm)+lny:n(s), (7.21)

Equations (7.20 and 7.21) make long-run consumption per worker (or its nat-
ural logarithm) conditional on savings/investment rates s.

Since at positive values of any property x the natural logarithm of the ge-
ometric mean of that property is the arithmetic mean of natural logarithms
of the values of that property (Inxg =Inx), we obtain the function y(s) in
the form:

D )

vs)=" (7.22)
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that represents the natural logarithm of the geometric mean of long-run
consumptions per worker. Consequently, the combination s € (O,I)N, which
maximizes function (7.22), describes the golden rule of capital accumulation
in the analyzed case.

It follows from equations (7.21 and 7.22) that the function v (s) can be
written as:

Z ln(l—sm)+2 Iny,(s)

V(s)=""tm v . (7.23)

From relation (7.17), we obtain:

D nyn(s) =Zlng%ﬁwz‘lnk;(s)+(a+ﬁ)21nk;(s)

=Zlnﬁ+(a+2ﬁ)21n K (s),

from the above relation and from ’enquation (7.9) that:
* 23 as
Iny,(s)= ) In a , or In—m
2= 2P a2 a2

a oa+2p a a+2p
=) In—-+ | — 1
anr%zﬁ l-a-2p nudeﬁ l—o— mznsm
m

m

and it follows

that can also be written as:
Yy =o+ 2 ‘“2’3 zlnsm, (7.24)
~ _
2ﬂ a
here: ®= Y In—4 4+ %F In—=
Waer Z alzf3 l-o- ZB Upd 2P
(7.24) into (7. 23) we obtain:
a+2p
) Zmln(l—sm Do 2[32 Ins,, +@
v(s)= N

First-order conditions for the maximization of function (7.25) can be writ-
ten as:

€ R. Substituting relation

(7.25)

oy
98,

Vm =0, (7.206)

and second-order conditions are reduced to the requirement that the Hes-
sian matrix:
9%V /0s? ?v/(9s19s3) ... 9*v/(ds;9sy)

FvI@sds) vl .. Pvl@sasy) | D

H=

?v/(@syds;) 9°v/(Osy9sy) ... azwas%V
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be negative-definite. The first- and second-order partial derivatives of the
function y(s) are given by the formulas:

1 o+2p
v 1—s, (—a-2B)s
vm O = m m (7.28)
05y, N
1 o+2B
v (s (-0 2)52
Vm S) = " <0 (7.29a)
s, N
and:
2_
Ym,nAm#n Call =0. (7.29Db)
0s,, 9s,,

It follows from equations (7.29a,b) that Hessian matrix (equation 7.27) can
be written as:

0%V / s} 0 0
e 0 *v /s ... 0
0 0 . %1053

This leads to the conclusion that its principal minors are described by the
formulas:

9*v /st 0 0
232 2
Ym m,, = 0 7v/dsy ... 0 _ E)izv
: : : IS
m
0 0 .. O*V/ds%
27
Since, as per equation (7.29a), all second-order partial derivatives a—; are
S}')’l

negative, the odd principal minors of Hessian matrix H are negative, and
its even principal minors are positive. It follows that Hessian matrix H is
negative-definite (i.e. the second-order condition for the maximization of
function y(s) is met).

It follows from equations (7.26) and (7.28) that the first-order condition for
the maximization of function v (s) can be reduced to the following equations:

o+f 1
(1_a_2ﬁ)sm 1_Sm
which results in:

S|=8$H=..=sy =a+2p. (7.30)

>
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Since equation (7.30) describes the combination of savings/investment rates
s that maximizes the geometric mean of long-run consumptions per worker,
that combination defines the golden rule of capital accumulation in the ana-
lyzed case. It follows from relation (7.30) that the rule represents a simple
generalization of the Phelps golden rule in the Solow model.

7.4.2 Maximization of long-run consumption per worker
in each of the economies

The process of determining the golden rule of capital accumulation in the
second analyzed case can be reduced to the maximization of function (7.21)
with respect to combination s.

Substituting equation (7.19) into (7.21), we obtain:

Vm vm(s)zln(l—sm)+N—_llnsm
N1 (7.31)

+ B ) Jztlnsn.

(N—l)(l—a—Zﬁ)(l—(x— ﬁZﬂ

It follows from equation (7.31) that savings/investment rate in economy 7
(for n = m) affects long-run labour productivity in economy m, but it has no
effect on the proportion 1 — s,, of consumption in output in that economy.
Therefore, the maximization of functions v,, with respect to combination s
can be reduced to the maximization of those functions with respect to rates
s, (hence, it is actually the problem of maximization of a function of one
variable).
Functions (7.31) can also be written as:

(1 B
Vi vp(s)=In(1 sm)+ﬂ,Nlnsm+(N71)(1ia72ﬁ)21nsn+®, (132)
where:
N-2
a+ B
a1 P (Nl)(lazﬁ)(laN_lﬁJ

or:

N-2 B
(Nl)(“+N—1ﬂJ+<1—a—2ﬁ>_

N-2
(N—l)(l—oc—NlﬂJ

Ay = (7.33)
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It follows from equation (7.32) that:
dvm 1 AN

Vm =— + (7.34a)
ds,, 1-5, Sn
and:
2
v Cm | L A (7.34b)
dsy, (1-5,)"  Sm

2
Since it follows from equation (7.34b) that for each m a;i‘;’” <0 holds, the

sm
second-order conditions are met for the maximization of function v,,. Set-

ting the derivatives dv,, /ds,, to 0 (in line with the first-order conditions for
the maximization of those functions), we get:

which results in:

Ay

S|=8H) =..=Sy = . 7.35
1= V. (7.35)
Equation (7.35) describes the golden rule of capital accumulation in the ana-
lyzed case.

Equations (7.33) and (7.35) lead to the following conclusions:

* Golden-rule savings/investment rates s,, depend on the elasticities o
and f of labour productivity function (7.1) and on the number of econo-
mies that are exposed to gravitational effects (i.e. N).

* Since Vm s =¥>O, then sgn O

diy  (1+Ay) Ox
notes any independent variable affecting s,, and Iy
« If the force of gravitational effects drops to 0 (ie. 8—0%), then

=sgnM—N, where x de-
0x

/IN—)la

, and thus for each m s, — a, 1.e. we get back to the original

golden rule of Phelps.

*  However, if _)(1205} or if the gravitational effects are extremely

strong, then Ay, — +e0, and thus Vi s,, > 1°.
* Since:

1n/1N=1n[(N—1)(a+N‘2)ﬁ+l B ]—ln(N—l)—ln(l—a—]]Hﬂ

N-1 o-2p
then:
l-a N-2
N-2+(N-Do+——— = N=2
dlnAy _ (1-a—2pB)* N-T o

+
i (Nl)(a’L]z\\Iz?ﬂ}laﬂzﬁ l_a_ﬁﬁ
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hence, I ’aln Ay >0 which implies that the stronger are gravitational

effects, the higher are golden-rule savings/investment rates s,,,.
*  Similarly, it follows from:

PR -
dndy _ (1-a-2B) 1

B g N2
(Nl)(oc+ ﬁJ+1 Y a N_lﬁ

that a high elasticity a corresponds to high savings/investment rates s,,.
*  For any N > 2 the following holds:

N-1 B )
N(‘“ N ﬁ}a— S 1)(‘“ ﬁJ*(l o 2p)

>0

Ay —Ay = —
N-1 N-2
N{l-o——— N-Dll-a-—=
[1-a-215) (v-f1-a-N-2p
and this (following a series of complex transformations) leads to:
/,LN+1 - /IN = <0.
N(N - 1)(1 aﬁIl [3)(1 oa-2pB)

It follows that the greater number of economies benefit from gravita-
tional effects (i.e. the greater is N), the lower value is assumed by A and
the lower are the savings/investment rates s,, that maximize long-run
consumption per worker in each of the analyzed economies.

N-1 B
o+ B+
lim A = lim N-2" (N-Dd-a-2B) _ a+p
¢ N N T i N-2 l-a-pB and thus if
l—a—N_l

N — oo, then Vm s,, > o+ 3, so that at a very large number of econo-
mies benefiting from gravitational effects, the optimum savings/invest-
ment rate in each of the analyzed economies is greater than the Phelps
rate (equal @), and less than the rate or+2 that maximizes the geomet-
ric mean of long-run consumptions per worker.

7.5 Conclusions

The discussion contained in this chapter can be summarized as follows:

I The gravity model of economic growth represents an extension of the
Solow growth model (1956) by incorporating spatial interactions caused
by gravitational effects. Gravitational effects draw upon Newton’s law
of universal gravitation. It is assumed that economies attract each other
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II

I

v

with a specific force that is directly proportional to the product of their
capitals per worker and inversely proportional to the square of the
distance between them. In addition to capital per worker, the total of
gravitational effects, understood as the geometric mean of gravitational
effects per unit, influences production processes.

The discussed theoretical model has an asymptotically stable steady
state that in terms of macroeconomics is equivalent to the point of long-
run equilibrium of the model. Under conditions of long-run equilibrium
in the analyzed growth model, capital per worker and labour produc-
tivity in an economy depend on the savings/investment rate, the rate of
decline in capital per worker, the mean distance of an economy from
other economies and on investment rates and capital depreciation rates
in the remaining economies.

The authors give two definitions of the golden rule of capital accumu-
lation in the gravity model of economic growth. The rule is defined as
such combination of investment rates in economies subject to the grav-
itational effect that maximizes the geometric mean of consumptions
per worker in all economies. Alternatively, the golden rule of capital
accumulation is defined as such combination of investment rates that
maximizes long-run consumption per worker in each of the economies.
If the golden rule of capital accumulation is identical with the maxi-
mization of the geometric mean of long-run consumptions per worker,
the savings/investment rates are equal (in each of the economies) to the
total of elasticity of output with respect to inputs of physical capital and
a double force of the gravitational effect.

If the golden rule of capital accumulation is defined as such combina-
tion of savings/investment rates that maximizes long-run consumption
per worker in each of the economies, the optimum investment rates de-
pend on the elasticity of output with respect to capital, on the action
force of the gravitational effect and on the number of economies subject
to the action of gravitational effect. Additionally, in this case both an
increase in the elasticity of output with respect to capital and an in-
crease in the action force of gravitational effects leads to an increase
in optimum investment rates. If the number of economies subject to
the gravitational effect grows, the investment rates drop that maximize
long-run consumption per worker in each of the economies.

Notes

1

2
3

The constant « in equation (7.1) can be understood (like total productivity of
production factors in the Cobb-Douglas production function) as labour produc-
tivity that could be achieved at per-unit gravitational effects and a per-unit level
of capital.

Those phenomena are referred to below as total gravitational effects.

The discussion contained in this section is based on the study by Filipowicz,
Tokarski and Trojak (2015).



8 Solow equilibrium at
alternative trajectories of the
number of workers

8.1 Introduction

It is assumed in the original Solow growth model that the number of work-
ers! rises at a constant growth rate, so that the value of that macroeconomic
variable increases exponentially to infinity. We modify that assumption in
our analyzes contained in this chapter, proposing two alternative versions.
We assume in version 1 that an increase in the number of workers forms a
logistic curve that approaches an asymptote. On the other hand, it is as-
sumed in version 2 that if labour productivity rises, the growth rate of the
number of workers drops from infinity to zero.

Given these modified assumptions about the growth rate of the number
of workers, we seek temporal paths of capital per worker and labour pro-
ductivity, to eventually compare those paths to the curves representing solu-
tions of the original Solow model (described in Chapter 2).

Similar analyzes were made in the study by Guerrini (2006; see also
Zawadzki 2007). As demonstrated by Guerrini (2006), if the Solow model
assumes a growth rate of the number of workers L(t) I L(t)=A(t) such that
at any moment ¢ € [0,+o0) the following holds:

0<A() <A™ lim A(1)=A.e[0,4"]

[—>too

then the Solow equation k (r)=sf (k())—(6+2(z)) k() has an asymptoti-
cally stable non-trivial steady state.

Additionally, the study by Guerrini (2010a) contains analyzes of the
Ramsay growth model with a logistic growth path of the population size. It
is demonstrated there that the analyzed model has exactly one non-trivial
steady state. Similar analyzes were made using Mankiw-Romer-Weil models
(Guerrini, 2010c).

The structure of this chapter: Section 8.2 describes the economic and
mathematical properties of alternative trajectories of the number of work-
ers. Section 8.3 contains analytical solutions of the Solow model at a logis-
tic curve of the number of workers (Section 8.3.1) and at a growth rate of
the number of workers falling as labour productivity rises (Section 8.3.2).

DOI: 10.4324/9781003323792-9
This chapter has been made available under a CC-BY-NC-ND license.
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The model parameters are calibrated in Section 8.4 to propose numerical
simulations of labour productivity growth paths at varying investment
rates. The chapter is finalized by Section 8.5, summarizing conclusions
drawn from the preceding analyzes.

8.2 Assumptions about alternative trajectories
of the number of workers

It is assumed in the analyzes contained in the following sections that the
trajectory of the number of workers in a Solow economy is described by a
logistic function that can be written as:

_ m
LO= 1y 8.1)

or that the trajectory represents a solution of the following differential
equation:

Lo _ n_ (8.2)
(1) »(@)
where: n>0,m >2, T>0, and y = Y/L denotes labour productivity.
It follows from relation (8.1) that: L(0)=1¢& T =m—1 which
leads to:
T:h’l(l’n—l). (83)

2n

If condition (8.3) is met, it is certain that the number of workers on the logis-
tic trajectory (8.1) at moment ¢ = 0 equals 1. Therefore, we assume further
that T'is described by formula (8.3) on growth path 8.1).2

Equation (8.1) also implies that:

m
1 L(1)="",
(1)="
II lim L(t)=m;

t—>+oo

. 2n(T—t)
I V>0 L(t)=2nm 5>0;

(1 4 e2n(T—t) )

. 2n(T-1) _ . .
IV Vt>0 L(t)=4n*m ( ¢ )13 , and consequently L >0 (L < 0) if and
1+e2n(T—t

only if t < T'(T >1).



Solow equilibrium at alternative trajectories 185

It follows from the above properties of logistic function (8.1) that the num-
ber of workers L rises at subsequent moments ¢ € [0,+c0) from 1 (at moment

In(m—1)

t = 0) to m (at t > +oo), so that until the moment 7 = we observe

. n .
an accelerating growth rate of the number of workers, and a decelerating
growth rate of the number of workers thereafter. Additionally, at moment

T= M, the number of workers equals m/2.

Equat’fon (8.2) describes a growth path of the number of workers known as
post-Malthusian.? If the number of workers L forms a trajectory described
by that equation, then at labour productivity y rising from 0 through 1 to
+oo, the growth rate of the number of workers L/ L drops at an increasing
rate from +oo through n (at y = 1) to 0.

Using A=L/ L to denote the growth rate of the number of workers, we
obtain:

eZn(Tft)
on a logistic trajectory of the number or workers or:
A()=—"- (8.4b)

on a post-Malthusian trajectory.

8.3 Analytical solutions

We assume in the analyzes made below in this chapter that the production
process is described by the Cobb-Douglas production function given by
(symbols like in the original Solow model from Chapter 2):

Y (6)=(K (1) (L)), (8.5)

where a € (0,1). To simplify notations, we implicitly assume in the produc-
tion function (8.5) that total productivity of production factors A4 equals 1
at each moment ¢. This certainly does not limit the scope of applicability of
the below discussion.

Let us also assume that at moment ¢ = 0, the capital K, output Y and the
number of workers equal 1. This implies that also labour productivity y and
capital per worker equal 1.

We also assume that the equation of capital accumulation is given by:

K(t)=sY (t)-6K(t), at 5,6 (0,1) (8.6)
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Then, the Solow equation resulting from equations (8.5 and 8.6) can be
written as:

k(t)=s(k(t))" ~ 8k (t)~A(1)k(2). 8.7)

If weassume, likein the original Solow model, thatateachmoment? € [0,+e0),
the growth rate of the number of workers equals n > 0, then it follows from

equation (8.7) and from the labour productivity function y ()= (k(t))a (cor-
responding to function (8.5)) that the trajectories of capital per worker k and
of labour productivity y can be written as:

/(1-cr)
k<t)=(5j i }M)@nyj |
n n

and:

i EEEN PR RIEUTY S
d 5+n o+n ’

and consequently, in a long run:
s /(1-ax) s /(1-ox)
>4 | k(t) >k = ——— ! = .
o= k)= (6+nj A=y (5+n)a

8.3.1 Growth paths at a logistic trajectory of the number of workers

It follows from equation (8.7) that the following holds*:

(k(0)) * k(1)=s-6 () (k(1) 7, (8.8)
where 6(¢) =3+ A(¢). Let us now make the Bernoulli substitution in the form:
() =(k(1) "= % = k(1)) “k (), (8.9)

so that non-linear differential equation (8.8) is reduced to a linear non-
homogeneous equation given by:

g(t)=(1-a)s—(1-a)0(t)q(t). (8.10)

Let us write the integral ¢(¢) of equation (8.10) as:

q(r>=exp[(1a> Je(z)dr} wlt) an
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where ¢,(¢) is an unknown complementary integral. Then:

qg(t)=—01- a)9(t)exp[(l -a) _[ 0(t)dt J qa (t)+exp[(l -a) _[ 0(t)dt ] Gq(1).
(8.12)

Substituting equations (8.11) and (8.12) into differential equation (8.10), we
obtain:

qd(r)=(1—a>s-exp[<1—a) | 9<r>dz],

hence:

qd(t)=(1—oc)sJ. exp[(l—a) JO(t)dt]dt. (8.13)

Calculating the integrals of equations (8.13) and (8.11), given the function
(1), we can find the integral k(¢) of the Solow equation (8.7). That integral
determines the path of capital per worker. From the above conclusion and

from the labour productivity function y(t) =(k(t))a (corresponding to the
Cobb-Douglas production function (8.5)), we can obtain the temporal path
of labour productivity y(z).

The integrals of equations (8.13) and (8.11) will be sought on a logistic
growth path of the number of workers. Then, as per equation (8.4a), the
trajectory () is given by:

2n(T—t)
0(1)=6+2n

1+62n(T7l) :

One of the integrals of the above equation can be written as:

_ 2 2n(T—1)
JB(t)dt—6t+2nJ Wdz_&—ln(ne ) (8.14)

Substituting the integral of equation (8.14) into equation (8.13):

qa()=(1-a)s J. exp((l - (x)(& - ln(1+82n(T7t)))) di
o (8.15)

~(1- a)sf S S
(1+e2n(T—t))l o

ot

Substituting: u=e' = du=e'dt, the integral | ———————dr can be

(1+e2l’l(T—f))

written as:
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(-a)t-1 (La)5-1
je—metd‘: j e
(1+62"(T”)) (1+e2”Tu’2”)

Since:

j y(l-0)8-1 e ull-2)8 gl (=0)d  2n-(1-0)8  Lur on | -
(e T e T |

where , F{(a,b,c,z) represents the Gaussian ergeometric function,” an
here , F (a,b p ts the G hyperg tric function,® and
C € R—aconstant of integration), then:

1-0)5t— 1-a)8
L”paetdt: . .2E((1_a)5,1a,zn_(l_a)a,ezn(Tt)}fC-
(l+e2"(T*f)) (1-a)é 2n 2

(8.16)

Substituting the integral of equation (8.16) into equation (8.15), we get a
complementary integral ¢, given by:

=5 -eér F 7(1_06)6 1— 21’!—(1—06)5 _2n(T—t) A
Qd(l) 56 2 1[ 2}’1 > (X, 2}’1 > e C’

where C = (I-a)sC e R. It follows from the above relations and from equa-
tions (8.11) and (8.14) that the integral ¢ of differential equation (8.10) is
given by:

that can also be written as:

l-o

s(1+e2”(T_t))
= . _ 2}1(T71‘)
a() 1) A [ 2n 2n e J
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1/(1-c)

We get from the Bernoulli substitution (8.9): k(r)=(q(7)) , and this

combined with equation (8.17) gives®:

s 0)

uw=‘5¢ﬂ[

(-5 | 27’1*(1*05)5’76271(7"—!)
2n ’ 2n

- 1/(1-a) (8.18)
N e—(l—a)&(l N e2n(T—t))l “é} *

Since y(1)= (k(t))a, then:

l-o

s 1+eZn(T7t) B B _
()jﬂpﬂé:wJ_%bzuméﬁgqu

y(1)=

_ /(1-a)
o (o) (1 N eZn(T—t))l o é}a * .

(8.19)

Equations (8.18) and (8.19) describe growth paths of capital per worker and
labour productivity in the Solow model with a logistic trajectory of the num-
ber of workers. Those paths are described by non-elementary functions.
Therefore, their graph will be analyzed in the section describing results of
numerical simulations (8.4).

However, note that at ¢ — +oo, the hypergeometric function:
R _(1705)5,1_0{’2117(1705)5’_62,1(7,,) SR _(1705)5’1_06,2n7(1705)5
2n 2n 2n 2n
and (as per equations (8.18) and (8.19)) the following holds:

o

s /(1-x) s /(1-ax)
The quantities |~ and 5 describe (respectively) capital per

903

worker and output per worker in the long-run equilibrium of the economic

I(1-ex)
j and

/(1-ox) /(1-ax)
( >( , the quantities are greater than in the similar origi-

/(1-ax)
growth model analyzed in this section. Since (Sj >(
o o+n

1) o+n

nal Solow model (with the Cobb-Douglas production function).



190  Solow equilibrium at alternative trajectories

8.3.2 Growth paths at a growth rate that drops with rising labour
productivity

Analysing the effect of a post-Malthusian trajectory of the number of work-
ers on the long-run equilibrium in a Solow economy, the equation describ-
ing the growth rate of the number of workers (equation 8.4b) together with
the labour productivity function y =k can be substituted into the Solow
equation (8.7). The following differential equation is then obtained:

that can also be written as:
k()= (sf Sk () % - n(k(z))l*z"‘)(k(z))"‘. (8.20)

Differential equation (8.20) will be analyzed in the phase space P = (0,+o).

Note that Vk € P sgnk =sgn¢(k), where the function ¢(k) is defined as
follows:

¢(k)=s—0k"* —nk! 2. (8.21)

The properties of function (8.21) should be considered atar € (0,1/2),00=1/2
and o € (1/2,1). The reason is that the signs of expressions 1—«a and 1-2¢
differ in each of the described cases and (consequently) the derivatives ¢’ (k)
for subsequent k € P exhibit different behaviours.

In the case of o € (0,1/2), we obtain:

1 ¢0)=5>0;
i lim g (k)=

i Vke P ¢'(k)=((2a-1)nk > - (1-2)8)k “ <0,

and hence (as per the Darboux property of a continuous function), there
exists exactly one k € P such that:

+ first, forany k € (O,E) ¢(k)>0,
* second, d)(k) =0
and B
+  third, for each k € (k,+o) ¢(k)<0.

Consequently, that k represents a non-trivial, stable steady-state point of
differential equation (8.20). Moreover, if s >d+n (s < 0+ n), then ¢(1) >
0 (¢(1) < 0), and at each moment ¢ € (0,+o0) k>0 (k < 0) which leads to the
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conclusion that the growth path of capital per worker k(f) approaches k
from the left (right).” However, at s = J + n, the following holds:

€ (0,40) K (£)=0

which implies that at each moment ¢ k (1) =k =1.
In the case of @ =1/2, the function ¢(k) can be written as:

¢(k)=s—n-8Jk.
Then:
i ¢(0)=s—n;
i lim ¢(k)=—oo;
k—>too
iii Vke P¢’(k)=—i<0.

Therefore:

1 Ifs<n, the value of function ¢(k) at k rising from 0 to +oo will fall from
s—n<0 to —eo, and differential equation (8.20) has no steady state.
Moreover, in this case Vk € P k <0, i.e. the values of capital per worker
will fall from 1 to 0.8

ii  However, at s > n, there exists exactly one non-trivial stable steady-state
point k € P and the growth paths of capital per worker and labour pro-
ductivity behave like at oc=(0,1/2).

Ata=(1/2,1), we get:

i hm(p() —oo;
k—0"

ii hm q)( ) =-+oo;
and'
il ¢’(k) =(2a Dnk=%—(1- a)5) and consequently (first) at

ke [0 I:c where:

la
= [Qa-1)n

the derivative ¢’ (k) is positive, (second) at k = k—it equals 0 and (third)

_ \
for ke [k,+oo | the derivative is negative. Therefore, in the interval
J
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v

vi

[O,ZJ, the function ¢(k) is increasing and in the interval [lzc,+oo], it 1is
decreasing.

If ¢£l=cg< 0, for each k € P k=k%$(k)<0 and then capital per worker
and labour productivity will fall (in time) from 1 to 0.

In the case of ¢ k |= 0, the point k represents a non-trivial steady state

of differential equation (8.20). Moreover, (first) ifk < 1, then k(z) will fall
- _o —

from 1 to k while y(?) will fall from 1 to k , (second) for k=1 at each
non-negative moment ¢ k(¢)=y(¢)=0 and k(¢)=y(¢) =1, and (third) for

k> 1, the following holds: & (¢), j(¢) >0, so that the values of capital per
worker and labour productivity will fall from 1 to 0.

However, at q)(k > 0, differential equation (8.20) has two non-trivial steady

states: k; € (0,7{ andk, € l=c,+oo).Then, foranyk(t) e (O,El)u (lgz,+oo)

we have k(¢), y(t) <0, and for each k() (121,15) k(t), y(t)>0. Conse-
quently, the point k; is a non-stable steady state of differential equation
(8.20), and the point k, is a stable steady state. Therefore, (first) if k; >0,
capital per worker and labour productivity will fall from 1 to 0, (second)
at k; =0, the values of those macroeconomic variables at each moment
t € [0,400) equal 1, (third) if ky <1< ks, capital per worker and labour
productivity will rise from 1 to (respectively) k, and Ef‘, (fourth) in the
case of k, =1 at each moment 7 k(7) = y(r) = 1 and (fifth) at k, <1, capital
per worker and labour productivity will fall from 1 to k, and EZ“ .

It follows from equations (8.21) and (8.22) that:

l-a)/a 20-1)/ o
= (2o—1)n (1-o)o
d’[k)‘s_a( (1—05)5\] _n((Za—l)n] ’

and consequently, (first) if

S>6((2a_1)njla)/a+n( (1—0()5 ]20{1)/05’
(I-a)é (LQa-1)n

differential equation (8.20) has two non-trivial steady states, (second) at

szg((zal)njla)/a+n( (1705)5 ]20:1)/0:'
(1-0)o (2oe—1)n
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the equation has one non-trivial steady state, and (third) for

1-o)/ o 20-1)/ o
(20— 1)n (1-a)8
<5[m] *(m] |

it has no non-trivial steady state.

8.4 Numerical simulations

Like in the studies by Filipowicz and Tokarski (2015), Filipowicz, Wista and
Tokarski (2016) or Filipowicz, Syrek and Tokarski (2017), the elasticity of
output with respect to capital (that is «) is calibrated so that the ratio of
labour productivities equals 3 at the ratio of capitals per worker in two econ-
omies that equals 5. Then, given the labour productivity function y = k%, we
obtain’:

In(n72) 103 _ 4 6ere1.
ln(lq/kz) In5

It is also arbitrarily assumed that 6 = 0.07, n = 0.01 and m = ¢, where ¢ is the

Euler number. Then, the moment T equals 7' = M = 27.066 on a logis-

tic growth path. The investment rate s is increased in steps of 10-percentage
points from 10% to 40%.

The model is numerically solved in a discrete time, replacing differential
equations with equivalent difference equations.

Figure 8.1 shows the trajectories of the number of workers on a logistic
growth path and post-Malthusian growth paths, and savings/investment
rates equal 10%, 20%, 30% and 40%. The figure demonstrates that:

*  On the logistic growth path of the number of workers, that value will
rise from 1 to about 2.718.

*  On the post-Malthusian growth path, at a savings/investment rate of
10% at infinity (like in the original Solow model), the number or workers
will approach infinity.

*  Asavings/investment rate of 20% leads to a long-run number of workers
about 3.489 times greater, of 30% — about 1.757 times greater, and of
40% — about 1.391 times greater than its input value.

Table 8.1 shows results of numerical simulations of labour productiv-
ity at standard, logistic and post-Malthusian trajectories of the number
of workers. Figures 8.2-8.5 illustrate the trajectories of labour produc-
tivity corresponding to standard, logistic and post-Malthusian curves
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Figure 8.1 Trajectories of the number of workers on a logistic growth path and
post-Malthusian growth paths, and investment rates of 10% (L(10)), 20%
(L(20)), 30% (L(30)) and 40% (L(40)).

Source: Own calculations.

Table 8.1 Simulations of labour productivity at standard (S), logistic (L) and post-Malthusian
(PM) trajectories of the number of workers and at 6 = 0.07, n = 0.01, & = 0.68261 and

m=e

Investment rate s (%)

Y";“’ 10 20 30 40
s L. pPM S L PM S L PM S L  PM

10 1124 1109 1128 1.841 1819 1.868 2714 2683 2772 3740 3700 3.836
20 1226 1205 1240 2700 2.660 2.815 4752 4688 5014 7387 7292 7.839
S0 1427 1435 1491 4789 4826 5385 10293 10.380 11764 18.039 18.198 20732
75 1514 1587 1.622 5845 6125 6.876 13.283 13918 15.893 24.000 25.146 28.870
100 1562 1716 1703 6452 7.078 7.833 15.040 16489 18.581 27.545 30.192 34.215
150 1601 1913 1785 6.968 8311 8765 16,551 19726 21.207 30.617 36477 39.456
200 1612 2.034 1815 7.117 8.972 9.089 16989 21408 22112 31.509 39.695 41.259
Too 1616 2153 1832 7175 9.562 9.252 17161 22.870 22.562 31.860 42459 42.151

Source: Own calculations.

of the number of workers. The table and figures lead to the following

conclusions:

* A savings/investment rate of 10% leads to the fastest growth of labour
productivity at a post-Malthusian trajectory of the number of workers
and the slowest growth of labour productivity at a logistic trajectory
of the number of workers over the first 50 years. That macroeconomic
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Figure 8.2 Growth paths of labour productivity at standard (S), logistic (L) and
post-Malthusian (PM) trajectories of the number of workers and s = 10%.
Source: Own calculations.
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Figure 8.3 Growth paths of labour productivity at standard (S), logistic (L) and
post-Malthusian (PM) trajectories of the number of workers and s = 20%.
Source: Own calculations.

variable will reach its highest value also on the post-Malthusian path,
and its lowest value on the standard rather than the logistic path after
100 years. In the long-run equilibrium (at £ —+e), labour productivity
will rise by about 61.6% (compared to its input value) on a standard
path, and by about 83.2% on the post-Malthusian path while it will be
more than doubled at a logistic trajectory.
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Figure 8.4 Growth paths of labour productivity at standard (S), logistic (L) and
post-Malthusian (PM) trajectories of the number of workers and s = 30%.
Source: Own calculations.

« If the savings/investment rate equals 20%, labour productivity initially
achieves its fastest growth at a post-Malthusian trajectory of the number
of workers, and its slowest growth at a logistic trajectory of the number of
workers. However, in the long-run equilibrium, labour productivity will be
about 9.5 times greater on the post-Malthusian and logistic growth paths,
and slightly more than 7 times greater on the standard growth path.

* At a savings/investment rate of 30%, the fastest growth of output per
worker is achieved on a post-Malthusian growth path, and the slowest —
on a standard growth path. In the long-run equilibrium, the value of
that variable (compared to year ¢ = 0) will be slightly more than 17 times
greater at a standard trajectory of the number of workers and about
22.5-23 times greater on the other analyzed growth paths of the number
of workers.

*  Similar graphs of the labour productivity function are generated at sav-
ings/investment rates of 40%. Long-run labour productivity values will
then be about 31.9 times greater on a standard growth path, 42.4 times
greater on a post-Malthusian growth path and 42.5 times greater on a
logistic growth path compared to year ¢t = 0 (Figure 8.6).

8.5 Conclusions

The analyzes contained in this chapter can be summarized as follows:

I The assumption underlying the original Solow model about a constant
growth rate of the number of workers is modified in this chapter. That
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Figure 8.5 Growth paths of labour productivity at standard (S), logistic (L) and
post-Malthusian (PM) trajectories of the number of workers and s =
40%.

Source: Own calculations.
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Figure 8.6 Growth paths of labour productivity at a post-Malthusian trajectory of
the number of workers and s = 10% (y(10)), s = 20% (»(20)), s = 30%
(¥(30)) and s = 40% (y(40)).

Source: Own calculations.

assumption is modified in two ways. First, it is assumed that the number
of workers changes forming a trajectory defined by a logistic function;
second, it is assumed that the growth rate of the number of workers
represents a decreasing function of labour productivity.
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On a logistic growth path of the number of workers, the trajectories
of capital per worker and labour productivity represent certain com-
posed functions with the Gaussian hypergeometric function. On a
post-Malthusian temporal path of the number of workers, the solution
of Solow equation depends on the elasticity of output with respect to
capital inputs. The equation may have no steady state and have one
non-trivial steady state or two non-trivial steady states.

In the numerical simulations described in this chapter, the elasticity of
output with respect to capital inputs was calibrated at 0.68216, and in-
vestment rates were modified in steps of 10 percentage points from 10%
to 40%.

At all simulated values of saving/investment rates and standard, logistic
or post-Malthusian trajectories of the number of workers, labour pro-
ductivity rises up to an asymptote. The dynamics of labour productivity
at a standard and a logistic trajectory of the number of workers are
very similar over the first 50 years. Then, the growth rate of labour pro-
ductivity dramatically drops in the model with a standard trajectory of
the number of workers (due to the convergence effect). Finally, labour
productivity stabilizes in the original Solow model on a distinctly lower
level than in the two other models. Long-run labour productivities are
very similar in the logistic and post-Malthusian models (except at a sav-
ings/investment rate of 10%).

In addition to the analyzed trajectory of the number of workers, the
described numerical simulations led to the conclusion that an increase
in savings/investment rates causes an increase in long-run labour pro-
ductivity and capital per worker. That conclusion is consistent with the
corresponding output of analysing the original Solow model.

Notes

1

2
3

This chapter bases on the study by Filipowicz, Grodzicki and Tokarski (2016).
See also Filipowicz, Syrek and Tokarski (2017).

T = 0in the case of m = 2.

That path is hereinafter referred to as a post-Malthusian path, because Thomas
Malthus proposed the hypothesis that populations had a natural tendency to
multiply geometrically. However, the population size cannot actually grow to
infinity, because it is limited by changing economic conditions, principally the
wage level and foodstuff supply. More on the subject e.g. in Filipowicz, Grod-
zicki and Tokarski (2016).

We ignore a trivial solution of that differential equation.

The Gaussian hypergeometric function , F (a,b,c,z)is a non-clementary function
that represents a solution of the following second-order differential equation:

2
z(lfz)%+(c7(a+b+l)z)fl—2}:abw(z),
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where a,b € R, and ¢ #0. The function can be written as:
2ﬂ(a>bacaz):1+ nZns
n=1

where:

([T w50 |TT o)
n'[H (c+jl)]

The mathematical properties of those functions are characterized e.g. in the
studies by Korn and Korn (1983, p. 269 ff)) or Cattani (2006). Applications of
Gaussian hypergeometric functions in the modelling of economic growth pro-
cesses are discussed in the studies by Boucekkine and Ruiz-Tamarit (2004, 2008)
or Zawadzki (2015) for the Uzawa-Lucas model, by Guerrini (2006) for the
Solow model and by Krawiec and Szydtowski (2002) for the Mankiw-Romer-
Weil model.

6 The constant of integration C in equations (8.18) and (8.19) should be purpose-
fully selected to meet the condition k (0) = k0 > 0, where k0 denotes capital per
worker at moment ¢ = 0. That constant is selected in the numerical simulations
described in Section 8.4 so that the equality holds k (0) = y (0) = 1.

7 Tt follows from the labour productivity function analyzed in this chapter that

Yn=

J=1

Sgnkzsgnj;, and thus the growth path of labour productivity y (f) exhibits
similar behaviour as the path of capital per worker, provided that at t — +oo

y(t)—> k™
8 Analogous values are assumed then by labour productivity y ().
9 If we assumed, in line with the Solow’s 1957 decomposition, that ¢=1/3, then

at ky/ kr =5, we would get: Ny % =3/5 =1.70998, a value that seems to be
2 2

strongly underestimated.



9 The Solow equilibrium at
sine-wave investment rates

9.1 Introduction

Investment belongs to key factors of long-term economic growth and is
highly sensitive to business cycles.! In the original Solow model, invest-
ments represent a constant fraction of output. In this chapter, we question
that assumption and introduce fluctuations on the investment side, with an
investment rate changing along a sine wave in time. The sine function is
adopted to describe changes in the investment rate because investment de-
pends to a great extent on business cycles that are characterized by periodic
fluctuations.

Similar analyzes are contained in the studies by Bolinska, Dykas, Mentel
and Misiak (2019), where the authors, in addition to fluctuations on the in-
vestment side, consider a growth rate of the number of workers that changes
in time and in a long run determine the exponential growth path of the num-
ber of workers approaching a constant asymptote.

The structure of this chapter is as follows. Section 9.2 describes assump-
tions of the model, including that about the investment rate. Section 9.3 pro-
poses a solution of the model based on cyclical growth paths of capital per
worker and labour productivity. Section 9.4 proposes calibrations of growth
paths of labour productivity and summarizes numerical simulations of
those paths for various cycle lengths of fluctuations in investment rates and
various levels of average investment rate. Section 9.5 contains conclusions
drawn from the discussed model and closes this chapter.

9.2 Assumptions of the model

The assumptions listed below underlie the growth model described in this
chapter.
I The production process is described by the Cobb-Douglas production
function given by the formula:

Y (6)=(K (1) (L(2)) . ©.1)

DOI: 10.4324/9781003323792-10
This chapter has been made available under a CC-BY-NC-ND license.


https://doi.org/10.4324/9781003323792-10

The Solow equilibrium at sine-wave investment rates 201

where the symbols have the same meanings as in Chapter 2, and Y, K, L
>0and e (0,1).

II The capital accumulation process is described by the differential
equation:

K(t)=s(t)Y (t)- 8K (2). ©.2)

where s(¢) € (0,1) is the investment rate at moment ¢, and é € (0,1) de-
notes the capital depreciation rate (that is constant in time).
IIT The investment rate at each moment ¢ is described by the sine wave:

s(l)=s+05in(2nt), 9.3)
w

where 5, s+0 € (0,1), and @ > 0. 5 denotes the average investment rate
in a business cycle, 0 is the amplitude of cyclical fluctuations in invest-
ment, and @ denotes the period of those fluctuations.

IV The trajectory of the number of workers is described by the exponential
function:

L(t)=e". 9.4)

It follows from equation (9.4) that at moment z = 0, the number of work-
ers amounted to 1 and rose at the growth rate n > 0.

9.3 Equilibrium in the model

Equations (9.1-9.4), like in the original Solow model, lead to the differential
equation:

k(1) :[s+esin(2(::t))(k(t))a —uk (1), 9.5)

where k = K/L denotes capital per worker, and u = § + n > 0 is the rate of cap-
ital decline per worker. Equation (9.5), naturally, describes rises in capital
per worker. That equation (ignoring its trivial solution k() = 0) is written as:

(k1)) “ k() :s+9sin(2(:tJ k()™

and after the Bernoulli substitution:

- z(t —a
20)=(k(0) = 2D =y k(o) ©9.6)
is reduced to the following linear non-homogeneous differential equation:
z'(t)=(1—a)s+(1—a)6sin(2nt)—(l—a),uz(t). ©.7)
0]

Let us write the integral of equation (9.7) as:

()= Mz ()= 2 (1) =—(1- o) e Mz (1) +e "M 2 (1), (9.8)
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where z; denotes an unknown complementary integral. Substituting equa-
tions (9.8) into (9.7) and making a few elementary transformations, we get:

24 (1) = (1- @) 5e" M 1 (1- ) 6D (1) 9.9)

where:
O(1)= sin(zﬂ t Je(la)’”.
0]
It follows from equation (9.9) that:

zy(0) = S pl-out +(1-a) _[ O(t)dt. (9.10)
u

Moreover, because the following holds for any a,b # 0:
i - t
J.e‘” sin (bi)dt = asm(bt; b;:os(b )
a+b
where F e R is the constant of integration, hence we obtain from
equation (9.10):

+F,

(I-o)u s1n(21J 277:cosL21
[0 0

[0

zg(t)=" -1 (1 _g)p i J+ F.  (9.11)
H (1 o 06)2[12 + L2
0]
Substituting the complementary integral equation (9.11) into equation (9.8):
(I-a)u s1n(2ﬂ tJ 2ﬂcostzﬂ t)
(0] W [0 7(1705);” +Fe—(1—tx)ut
(1-a) +4L

)= +(1-a)p
u

and from that relation and from Bernoulli substitution (9.6), we get’:

2 2 f-e)

2
_ (1- (x)/.tsm(t)— (t)
k()= > +(1- )0 o o), tou, paou
u

2
(1-app?+ 47
[0

©.12a)

From the Cobb-Douglas production function (9.1), we obtain the labour
productivity function y = k% that together with equation (9.12a) gives:

I(1-a)
_ (1- a)usm(ztj—z” (Mt)
W)=+ (1-a)0 @ Z’ O ), (-our | (et
H 2,2 7r
(I—a) u+—-

(9.12b)
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Equations (9.12a,b) describe the growth paths of capital per worker and out-
put per worker in the ninth growth model analyzed in this chapter.

9.4 Calibration of parameters and numerical simulations

Like in Chapter 8, the elasticity of the Cobb-Douglas production function

is calibrated in the following numerical simulation results at the level of

Oczln—3 =~ 0.68261, the capital depreciation rate at § = 0.07, and the growth
n
rate of working population at n = 0.01.

It is also assumed that the amplitude of sine-wave fluctuations in the in-
vestment rate reaches 10% of its average value, i.e.: 8 =0.1s which leads to
the form of investment rate equation:

s(t)=5 ~(1+O.lsin(2ntJ).
©

Numerical simulations were run for investment cycles characterized (con-
secutively) by periods of 3, 5, 10, 25 and 50 years. In those simulations, like
in Chapter 8, the investment rate was modified between 10% and 40%, in
steps of ten percentage points.

The model is numerically solved in a discrete time, by replacing differ-
ential equations with equivalent difference equation. The initial values of
capital and labour inputs equal 1.

Table 9.1 and Figure 9.1 summarize numerical simulation results of labour
productivity’ in investment cycles characterized by a period of three years.
The following tables and figures summarize simulation results for sine-wave
fluctuation periods of (respectively) 5, 10, 25 and 50 years. The last value @
can be identified with the Kondratiev wave (see Korotayev and Tsirel, 2010).

The simulation results contained in Tables 9.1-9.4 and Figures 9.1-9.5
lead to the following conclusions:

*  Labour productivity, regardless of the period of cyclical fluctuations
in the investment rate, will oscillate in a long run (at t —+o0) about the

Table 9.1 Simulation of labour productivity at @ =3

Year t Investment rate (%)
10 20 30 40

10 1.123 1.839 2.710 3.734
20 1.231 2.715 4782 7.437
50 1.430 4.804 10.327 18.099
75 1.510 5.828 13.244 23929
100 1.557 6.433 14995 27463
150 1.596 6.946 16.499  30.519
200 1.614 7.128 17.016 31.558
Oscillations at ¢ — 4oo® 1.611 7.152 17.106 31.758

In the original Solow model atf =+ 1.616 7.175 17.161 31.860

4 Tables 9.1-9.4 give the level of labour productivity in the year 7 = 1,000.
Source: Own calculations.
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Figure 9.1 Trajectories of labour productivity at @ = 3 and varying investment
rates s.
Source: Own calculations.

Table 9.2 Simulation of labour productivity at @ =5

Year t Investment rate (%)
10 20 30 40

10 1.123 1.837 2.707 3.729
20 1.223 2.692 4735 7.358
50 1.421 4.767 10.245 17.951
75 1.507 5.816 13.216  23.878
100 1.554 6.419 14.961 27.401
150 1.592 6.931 16.462 30452
200 1.603 7.078 16.897 31.338
Oscillations att — oo 1.607 7.136 17.067  31.686

In the original Solow model at# —+e0  1.616  7.175 17161  31.860

Source: Own calculations.

Table 9.3 Simulation of labour productivity at @ = 10

Year t Investment rate (%)
10 20 30 40

10 1.121 1.833 2.700 3.718
20 1.220 2.684 4.719 7.330
50 1.416 4.748 10.201 17.872
75 1.527 5.900 13.410  24.231
100 1.547 6.390 14.892  27.274
150 1.585 6.899 16.385  30.309
200 1.595 7.045 16.818 31.191
Oscillations att — oo 1.600 7.102 16.987  31.537

In the original Solow model atf —+e  1.616 7.175 17.161 31.860

Source: Own calculations.
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Table 9.4 Simulation of labour productivity at @ = 25

Year t Investment rate (%)
10 20 30 40

10 1.169 1.954 2.918 4.057
20 1.235 2.726 4.802 7.468
50 1.402 4.694 10.079 17.651
75 1.483 5.719 12990  23.464
100 1.528 6.308 14700  26.919
150 1.564 6.808 16.170 29.910
200 1.574 6.952 16.596  30.779
Oscillations at f — +oo 1.578 7.009 16.763 31.120

In the original Solow model atf —>+o0  1.616  7.175 17.161  31.860

Source: Own calculations.

Table 9.5 Simulation of labour productivity at @ = 50

Year t Investment rate (%)
10 20 30 40

10 1.157 1.924 2.865 3.974
20 1.314 2.964 5.282 8.275
50 1.380 4.610 9.890 17.312
75 1.589 6.152 13.995  25.301
100 1.498 6.182 14.402  26.371
150 1.532 6.669 15.837  29.294
200 1.542 6.809 16.253  30.143
Oscillations at f — +oo 1.546 6.863 16.416  30.476

In the original Solow model at# —=>+e0  1.616 7.175 17.161 31.860

Source: Own calculations.

value that emerges in the long-run equilibrium of the original Solow
model (without technological progress). Therefore, an increase in the
average investment rate s leads to a situation wherein capital per worker
and labour productivity reach, like in the original Solow model, growth
paths placed higher (see also Figures 9.1-9.5).

The absolute amplitudes of fluctuations in labour productivity increase
as economies approach the state of oscillation around the long-run
equilibrium in the original Solow model. Moreover, the longer the pe-
riods of cyclical fluctuations in investment rates, the greater are those
long-term absolute amplitudes of fluctuations in labour productivity.
Additionally, whatever periods of cyclical fluctuations in investment
rates are adopted, it is demonstrated in a long run that an average in-
vestment rate reaching 40% in the investment cycle will result in labour
productivity that is almost 20 times greater than at average investment
rates of 10%.
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Figure 9.2 Trajectories of labour productivity at @ = 5 and varying investment
rates s.
Source: Own calculations.
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Figure 9.3 Trajectories of labour productivity at @ = 10 and varying investment
rates s.
Source: Own calculations.

*  Comparing long-run labour productivity for periods of fluctuations in
investment rates of varying lengths, we obtain greater values of that
variable for shorter periods of cyclical fluctuations in investment rates.

« Ataverage investment rates of 10% in the investment cycle, cyclical peri-
ods of three and five years will result in an increase in labour productivity
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Figure 9.4 Trajectories of labour productivity at @ = 25 and varying investment
rates s.
Source: Own calculations.
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Figure 9.5 Trajectories of labour productivity at @ = 50 and varying investment
rates s.
Source: Own calculations.

by about 61% in a long run. A period of fluctuations in investment rates
lasting ten years will lead to an increase in long-run labour productivity
by about 60%, and periods of fluctuations in investment rates lasting 25
and 50 years will lead to an increase in long-run labour productivity by
(respectively) 58% and 55%.

* The trajectories of labour productivity at average investment rates of
20% are situated higher than at investment rates of 10%, regardless of
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fluctuation period lengths. An average investment rate at the level of
20% results in an increase in long-run labour productivity by more than
7 times for each period of fluctuations in investment rates, except the
period of 50 years corresponding to an increase by 6.86 times.

The fluctuation periods lasting three and five years, at an average in-
vestment rate of 30%, result in an increase in long-run labour produc-
tivity by more than 17 times. An average investment rate at the level of
30%, for other periods of fluctuations in investment rates, results in an
increase in long-run labour productivity by 16.42-16.99 times compared
to its initial value.

If the economy is characterized by average investment rates of 40%,
then for fluctuation periods lasting three to ten years, labour produc-
tivity will increase by about 32 times compared to the initial period.
For periods of fluctuations in investment rates lasting 25 and 50 years,
investment rates of 40% will lead to an increase in long-run labour pro-
ductivity by (respectively) 31.12 and 30.48 times.

9.5 Conclusions

The analyzes made in this chapter can be summarized as follows:

|

II

111

v

In this chapter, we modified the fairly restrictive assumption adopted
in the original Solow model saying that investment in physical cap-
ital is constant in time. The authors assume an investment rate that
changes in time and deviates from its average level, undergoing cyclical
fluctuations.

In the theoretical part of the study, the adopted assumptions about fluc-
tuations in investment rates led to the determination of growth paths
of capital per worker and of labour productivity. The periods of fluc-
tuations in investment rates of 3, 5, 10, 25 and 50 years were assumed
in the numerical simulations, and the average value of investment was
modified in steps of ten percentage points from 10% to 40%.

In a long term of growth, labour productivity, at cyclical growth
paths, will oscillate around long-run labour productivity calculated
in the original growth model. This leads to the conclusion that labour
productivity will reach growth paths situated higher when average
investment rates are greater. Additionally, the amplitudes of cyclical
fluctuations in labour productivity increase as economies approach
the state of oscillation around the long-run equilibrium in the original
Solow model.

Whatever periods of cyclical fluctuations in investment rates are
adopted, it is demonstrated in a long run that an average investment
rate reaching 40% in the investment cycle will result in labour produc-
tivity that is almost 20 times greater than at average investment rates of
10%. In addition, long-run labour productivity assumes greater values
at shorter cycles of investment rate fluctuations.
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Notes

1 This chapter bases on the studies by Dykas and Misiak (2016ab).

2 The constant of integration F in equations (9.12a) should be purposefully se-
lected to meet the condition k(0) = k0 > 0, where k0 denotes capital per worker
at moment 7 = 0.

3 The trajectories of capital per worker are similar to the trajectories of labour
productivity.



10 SIR-Solow model

10.1 Introduction

The epidemiological-economic model described in this chapter represents a
compilation of the SIR (Susceptible —Infectious/Infected — Removed/Recov-
ered) epidemiological model proposed by Kermack and McKendrick (1927)
and the neoclassical model of economic growth proposed by Solow (1956).

The methods of analytical description of the spread of contagious dis-
eases has been widely discussed in the scientific literature (see Murray, 2003;
Ruan, 2007; Xiao and Ruan, 2007; Fei-Ying, Wan-Tong and Zhi-Cheng,
2015; Jardon-Kojakhmetov, Kuehn, Pugliese and Sensi, 2021) that adopts
the epidemiological model known as SIR, proposed by Kermack and McK-
endrick (1927). The original SIR model ignores restrictions imposed on so-
cial and economic life to contain the spread of an epidemic, and economic
consequences of the epidemic and of those restrictions imposed to contain
its spread. Barwolff (2020) expanded the SIR model to include analyzes of
epidemic spread and subsidence. Barwolff assumes in his study that the gov-
ernment imposes severe restrictions on social and economic life when the
proportion of infected people reaches a threshold defined by the govern-
ment. Barwolff also assumes that the more restrictive lockdown is intro-
duced, the slower is the pace of epidemic spread. However, he argues that a
lockdown leads only to a displacement of the climax of the pandemic, but
not really to an efficient flattening of the curve representing the number of
infected people.

The effects of a rapid spread of a pandemic on economic growth were
not analyzed in mainstream economic research in the past. The economic
effects of HIV/AIDS in Asia (Bloom and Lyons, 1993) and in selected coun-
tries of Europe, Africa, North America and South America (Bloom and
Mahal, 1995; Kambou, Devarajan and Over, 1992) were analyzed in the
last two decades of the 20th century. For example, Bloom, Mahal in their
studies published in 1995 and 1997 argue that the HIV/AIDS epidemic had
no material effect on the rate of growth of income per capita in 51 devel-
oped and industrialized countries of the world in the years 1980-1992. After
two decades, Cuesta (2010) came to a similar conclusion about Honduras,
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the country most severely affected by the HIV/AIDS epidemic in South
America.

The current scale and rate of spread of the COVID-19 pandemic caused by
a coronavirus entails serious disturbances in social and economic life. The
pandemic of 2020 represents the worst global health crisis since the times of
Spanish flu that struck in 1918. In response to the chain of events observed,
several measures are being presently considered. Alvarez, Argente and Lippi
(2020) and Atkeson (2020) address the problem of optimization of the sever-
ity level of a lockdown. They use the SIR model under conditions of chang-
ing economic activity of the population and enterprises. The importance of
social distance is emphasized by Lik Ng (2020) who indicates adverse effects
of a lockdown policy treated as the principal method preventing the spread
of pandemic. Research into trade-off in public choices was also initiated
in 2020. Aum, Lee and Shin (2020) analyze a trade-off between GDP and
public health under pandemic conditions. They argue that a lockdown not
only limits the spread of pandemic but also mitigates the accumulated GDP
loss in the long run. If no lockdown measures are taken during a pandemic,
mass quarantining is necessary, leading to adverse economic effects. The
self-employed who achieve relatively low income form the group exposed
to the most severe consequences of a lockdown. Brock and Xepapadeas
(2020) adopt an even wider perspective. They argue that continuous growth
of consumption activities, capital accumulation and climate change could
increase the exposure of society to the risk of infection. In their opinion, a
policy preventing the spread of epidemic should consist of two components.
The first component includes short-term measures. The second component
includes economic policies aimed at changing consumption patterns and
addressing climate change.

Research projects described in the scientific literature also include studies
into the effects of an epidemic on economic growth, employing neoclassi-
cal growth models. Cuddington (1993) used the Solow model to analyze the
growth path of per-capita GDP in the context of HIV/AIDS epidemics and
its demographic consequences. The model used by him indicated a material
risk of reduction in the GDP growth rate in Tanzania by the year 2010. Cud-
dington and Hancock (1994) adopted the same methodological approach to
assess the effect of HIV/AIDS on the economy of Malawi. Delfino and Sim-
mons (2005) identify significant empirical links between the health structure
of the population and the productive system of an economy that is subject to
infectious disease, in particular tuberculosis. Another neoclassical model of
economic growth used in research into the effects of spread of the HIV virus
on economic growth was proposed by Mankiw, Romer and Weil (1992). Lo-
vasz and Schipp (2009) used that model to assess the effects of educational
and health capital, and of the pace of epidemic spread on aggregate macro-
economic indicators. The effect of the HIV virus is not the same in all coun-
tries, and even within individual countries. The economies characterized by
developed healthcare infrastructures are capable of providing means aimed
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to prevent a rapid spread of an epidemic in its early phase. Additionally,
Lovasz and Schipp, when analyzing the problem of accumulation of human
capital under epidemic conditions, argue that a loss of human capital due to
an epidemic does not always entail the same consequences. The education
level and number of skilled workers and their outflow from production pro-
cesses due to an epidemic affects the GDP growth rate to a varying extent.
Similarly, the social capital stock is interrelated with economic growth un-
der epidemic conditions.

The above outline of main topics of research into the impact of an epidemic
on economic growth provides foundations to the epidemiological-economic
model proposed in this chapter. The proposed model incorporates restric-
tions imposed by the government on social and economic life in two alterna-
tive versions: in a gradual, continual manner as a function of the proportion
of infected people in the population and as a strict lockdown adopted
abruptly by the government. The value of aggregate production is affected
by: the capital stocks, the rising percentage of infectious people that reduces
investment and the rate of capital accumulation, and the scale of lockdown
restrictions. The model proposed in this chapter is not strictly related or
limited to the COVID-19 pandemic, as it is useful in analyzing the effects
of any epidemic that leads to material social damage (a high percentage of
infected and dead people, limited interpersonal contacts due to lockdown
measures implemented) and economic losses (a drop in production caused
by a collapse of aggregate demand and a reduction in supply capacity of the
economy, and consequently in the rate of capital accumulation).

10.2 An epidemiological-economic model

The original SIR model does not include restrictions imposed on social
and economic activity in response to the spread of an epidemic.! For this
reason, an analysis of the process of spread and subsidence of an epidemic
was made using the SIR model as modified by Barwolff (2020). Barwolff
assumes that governments impose restrictions on social and economic life
when an epidemic begins to spread out of control (the percentage of infected
people exceeds certain critical level defined in an arbitrary manner by the
government). Barwolff also assumes that the more restrictive lockdown is
introduced, the slower is the pace of epidemic spread.

Barwolff’s study is based on the assumption that the state introduces
lockdown measures rapidly in an arbitrary manner (within a period or at
certain time intervals). In our epidemiological-economic model, we as-
sume that the level of lockdown severity is defined using a specific func-
tional rule. Namely, we assume that the severity index of a lockdown is
an analytical function of the percentage of the infected. If the percentage
grows, the government does not use arbitrary criteria but follows the rule
described by the function when imposing restrictions on social and eco-
nomic life.
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10.2.1 The epidemiological module

We consider two scenarios when analyzing the spread and subsidence of an
epidemic. Like in the original SIR model, we consider a scenario wherein
the government has no access to a vaccine (preventing the disease spread)
and a scenario wherein the government has a vaccine.

In the scenario with the government having no access to a vaccine, we
assume that the spread of epidemic is described by the following differential
equations:

AS, =B, S; 1111
Al =B, S 1l =Y
AH, =vyhl, 4
AD, =y(1-h)I,

(10.1)

where S € (0,1) represents the percentage of susceptible people on day ¢
(fort=1,2,..), I, € (0,1) — the percentage of the infected, H, € (0,1) — the
percentage of the recovered (the recovered are not eventually included in
the group of the susceptible), D, € (0,1) — the percentage of the dead.”> We
also assume that B,he (0,1), ye (0,8) and x, € [0,1] in consecutive days
t=1,2,.... The parameter § in the system of equations (10.1) describes the
pace of epidemic spread, y represents the percentage of infected people
who either recover or die, and % represents the mortality rate among the
infected. The parameter x, that can vary in its value in time (like in the
original study of Barwolff from 2020) represents an indicator of restrictions
imposed on social and economic life on consecutive days of epidemic dura-
tion. If the parameter equals 1, the government does not impose any restric-
tion on social and economic life in response to the epidemic. If x, = 0, a full
lockdown is imposed. The lower is the value of the «, indicator, the stricter
lockdown is imposed. Additionally, the lower is the value of that indicator,
the slower is the spread of epidemic.

It follows from the first equation in the system (equation 10.1) that a re-
duction in the percentage of the susceptible (that is —AS)) is directly pro-
portional to the indicator of restrictions imposed on social and economic
life (x,), the percentage of the susceptible (S,_;) and the percentage of the
infected (/,_;). The second equation in the system (10.1) is interpreted so that
an increase in the percentage of the infected (that is Al,) equals the differ-
ence between a reduction in the percentage of the susceptible (that is —AS))
and the percentage of the infected who recover or die (y/,_;). Equations
three and four in the system of differential equations (10.1) imply that / part
of the infected recover and 1-/ part of them die.

Additionally, it follows from the second equation in the above system
of differential equations that the percentage of the infected 7, rises as long

B,

as the percentage of the susceptible S, is greater than the expression ~—=.
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Hence, restrictions imposed on social and economic life by the government
(and described by a dropping value of the parameter «,) lead to a postpone-
ment of the initial day of a fall in the percentage of the infected.

In the vaccination scenario, the SIR model is reduced to the following
system of differential equations that represents an extension of the system
of equations (10.1):

AS —Br;Si 11,4 for t<t+21
T —BK;S; 11,1 —€pm;_21S,_p1 for t27+21

Al =B, S 11 —vI

AH, =yhl,_; 102

AD, =y(1-h) I,

0 fort<t+21
AP, =
3/77517215:721 for t>27+21

P, € (0,1) in the system of equations (10.2) represents the percentage of ef-
fectively vaccinated people (that is people who are no longer susceptible to
infection after their vaccination), 7 — the first day of vaccination, € € (0,1) —
an indicator of vaccine effectiveness (that is the percentage of vaccinated
population that will not contract the disease), p € (0,1) — the percentage of
those who wish to receive the vaccine, and =, € (0,1) (for consecutive days
t =1z, r+ 1...) — the percentage of those who wish to receive the vaccine and
are vaccinated until day 7. We also assume that people effectively vaccinated
develop immunity to the disease in 21 days after vaccination.

A modification in the system of differential equations (10.2) compared to
the system of equations (10.1) can be reduced to the conclusion that begin-
ning on day 21 after the first day of vaccination, the percentage of the sus-
ceptible is reduced by the percentage of effectively vaccinated people (that
is by epm; 215, 21)-

When analyzing models without vaccination and with vaccination, we
adopt two alternative scenarios of changes in the severity indicator of re-
strictions imposed on social and economic life x,. We assume that:

K =1-1°, (10.3)

or:

1 for Ig <t
K; = _ , (10.4)
6 for Ig =1
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14
where TGt = HI,,,- represents a geometric moving average of the percentage

of the infectel:a1 in the most recent two weeks. Regarding the parameters 6, o
and 1 in the equations (10.3 and 10.4), we assume that: 6, 1 € (0,1), and ¢ > 0.

We assume in equation (10.3) that if the percentage of the infected /, rises
from 0 to 1, the restriction severity indicator «, drops from 1 to 0, and if
o € (0,1) (o >1), subsequent falls in the indicator «,, corresponding to
identical rises in the percentage of the infected /,, are increasingly bigger
(smaller).? Equation (10.4) implies that we consider a scenario wherein the
government does not impose any restriction on social and economic life,
if the geometric moving average of the percentage of the infected over the
most recent two weeks does not exceed the percentage ;. When that percent-
age is exceeded, the government imposes a lockdown and the indicator «,
drops abruptly from 1 to 6.

The indicator of immunization coverage T, is described by the following
equation:

_at

Tcl R
b+t

where a,b >0, and ¢ represents consecutive days of vaccination. That indi-
cator of vaccination coverage (at ¢ increasing from 0 to +e) rises with a
decreasing pace from 0 to a.*

10.2.2 The economic module

We adopt the following assumptions about developments of basic macroe-
conomic variables in our economic module®:

1 The value of production on day ¢ (that is Y;) is described by a modified
Cobb-Douglas production function (1928) expressed by the formula:

Y, =k KFL, (10.5)

where o € (0;1) represents output elasticity Y, of capital input K,. In
function (10.5), we take into account both supply and demand factors
affecting the value of production. The supply component (like in the
original Cobb-Douglas production function) is described by the ex-
pression K*L=* hence if the epidemic did not strike, the value of pro-
duction (like in the Solow model) would amount to® K¥L=*. We also
assume that if the government imposes a lockdown and reduces the in-
dicator of social and economic activity from 1 to x; € (0;1), the value
of aggregate demand falls and (due to Keynesian multiplier effects) the
volume of production also falls from a level of K*L™ to x,K*L™®.
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Hence, a relative reduction in the volume of production caused by a fall
in d like in the original model proposed by Solow, capital accumulation
(daily, in a discrete time) is described by a differential equation in the
following form:

AK,:s£—5KH,
365 365

(10.6)

Where s € (0;1) represents the savings-investment rate, and d € (0;1) —
capital depreciation rate.

2 The value of demand for labour (and the number of currently employed
people) is described by:

g=wa—a—am;i} (10.7)

Where w,¢ € (0;1), and Y >0 represents the value of production in the
Solow long-run equilibrium (that is at AK, = 0). The parameter ¢ repre-
sents elasticity of demand for labour relative to the volume of produc-
tion. 7, and D, in equation (10.7) represent (like in the epidemiological
module of the proposed model) percentages of the infected and those
who died of the epidemic.

It follows from equation (10.7) that in our model, if the epidemic did
not strike, at production rising from Y, < Y" to Y, the percentage of

the employed would rise from a level of @ ;:’*T to w. In the time of

epidemic, the percentage of the employed represents (1-1, — D;) part of
the demand for labour, because the infected and dead (certainly) do not
work.

3 The unemployment rate u, is (by definition) described by the formula:

L
5
w

u =1- (10.8)
where w € (0;1) represents the percentage of the professionally active.
We assume implicitly that on day ¢ = 1 the population amounted to 1,
and on consecutive days equalled 1- D, while the number of profession-
ally active people amounted to w(1- D).

It follows from equations (10.5-10.8) that in the Solow long-run

1 o

ethbﬁum(iaaxAK;:onyzw,K*za{;)l“,Y*:w(;}‘iand
u :W;w, where asterisks next to consecutive variables indicate their

w JOTSI .
values 1n the long-run equilibrium of the economic growth model ana-
lyzed here.
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The following system of differential equations is obtained from equa-
tion (10.5-10.8):

Y, =k, KFL
Ak =5 e85
v (10.9)
L, :a)(l—I,—D[)(Y—t*),
U = l—ﬁ
w
U, :4{/(1_1[)KluNth
L u Yy,

where uy, and Yy, represent (respectively) an unemployment rate and a pro-
duction value that would be recorded if the epidemic did not strike (that is in
a scenario wherein on each day ¢ = 1, 2, ... the percentage of the susceptible
S; would equal 1).

The last equation in system (10.9) describes the social utility function U,.
The function represents a geometric average of the indicator of social and
economic activity x, the percentage of the susceptible 1-1,, the ratio of the
unemployment rate under non-epidemic to that rate under epidemic con-
ditions (uy,/u,) and the ratio of production under non-epidemic conditions
to production under epidemic conditions (Y,/Y ;). The function of social
utility:

Ul =4\-/(1_I[)Ktum}]t
U Yy

takes into account both social (described by the indicator ;) and health
(1-1;), and economic (uy,/u, and Y,/Y ;) consequences of the epidemic.
Additionally, the social utility function U, assumes values from the in-
terval [0;1]. If the epidemic did not strike, x; =1-1, = Une - L, and hence
U Ni
U, = 1. The lower values are assumed by function U, the highér are aggre-

gate social, health and economic costs of the epidemic. During a full lock-
down (that is at x, = 0), the value of social utility function falls to 0.

10.3 Calibrated model parameters
10.3.1 Parameters of the epidemiological module

We assume that the infection lasts for 14 days on average. Hence, the
parameter y in the epidemiological module is selected at the level of
y=1/14=0.071429.
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The parameter f is calibrated so that peak incidence, if the government
does not impose any lockdown, falls on day 365 of the epidemic. Hence the
parameter equals 0.1066 in consecutive versions of numerical simulations.

We also assume that the mortality rate among the infected amounts to
2%, hence 7 = 0.98. We assume than | person per million was infected on
day one of the epidemic, that is I; =107°.

When analyzing the equation of social and economic activity indicator
k; =1-1I7, we assume o equal 0.5 (if the government imposes severe restric-
tions to contain the epidemic) or 1 (if a liberal approach is adopted). When

_ 1 for Ig <1 ) .
we use the function k;, = _ to describe restrictions imposed
01 for Ig 21

by the government to contain the epidemics, we assume that the government
adopts a lockdown when the geometric moving average of the percentage
of the infected I exceeds 1 = 0.5% and then social and economic activity
will be reduced by 15% (that is @ = 0.85). If the government adopts a liberal
approach to the epidemic, we assume : = 1% and 6 = 0.95.

When analyzing the models with vaccination, we assume that vaccines
are administered as of day 300 of the pandemic. We also assume that a per-
centage p = 48% of the population wish to receive the vaccine and the effec-
tiveness of vaccination ¢ equals 95%.

We make two alternative assumptions about the dynamics of daily immu-
nization coverage in the population n;:

»  First, we assume that the parameters ¢ and b in the indicator of im-
munization coverage are such that the indicator equals 1% on day 7

of vaccination and 2% on day 100. Hence, we obtain: 7—a=0.001 and
1004 b7

=0.002 which gives (in line with the Cramer’s rule): a = 0.00216

alj-d b =8.140. The scenarios are referred to below as scenarios with slow
progress in immunization coverage of the population.

e Second, we assume that n7 = 0.001 and 7100 = 0.006. In this case, the
Cramer’s formula produces: a = 0.00962 and b = 60.345. The scenarios
are referred to below as scenarios with rapid progress in immunization
coverage.

10.3.2 Parameters of the economic module

The elasticity o of Cobb-Douglas production function (10.5) is calibrated at
the level of 0.5. We also assume a 20% savings-investment rate s and a 5%
capital depreciation rate d. The long-run capital output ratio K*/Y* at the
values of those parameters set as above equals 4.

We assume the indicator of economic activity of the population w = 46%,
that is similar to the value recorded in the EU states.
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The parameter o in the function of demand for labour (10.7) is calibrated
at the level of 0.44, and consequently the long-run unemployment rate
equals about 4.35% at w = 0.46. The parameter ¢ is selected so that under
non-epidemic conditions, in an economy with an initial capital input K1
representing 40% of capital in the Solow long-run equilibrium (that is K*),
the unemployment rate equals 10%. Then, the elasticity of demand for la-
bour L, relative to production Y, equals about 0.106.

10.4 Scenarios and numerical simulation results

The numerical simulations discussed below include 12 scenarios of epidemic
development. The first four of those scenarios give the government no access
to a vaccine, and a vaccine is available in the remaining 8§ scenarios (see the

statement in Table 10.1).

Table 10.1 Scenarios of epidemic development

Scenario «kt

Vaccine

Notes

1 1_\/2

1 -1,
I ~
1 for Ig <0.0005
K; = _
“| 0.85 for I, =0.0005
v _
1 for Ig <0.001
K; = _
" 0.95for I, >0.001
\'% 1_@
VI 1-1,
VII _
1 for I <0.0005
K; = _
“7| 085 for I, >0.0005
VIII _
1 for I, <0.001
K; =

0.95 for I, 20.001

IX 1_@

X -1,
Xl 1 for Ig <0.0005
K; = _

"| 0.85 for I, =0.0005
X1 1 for Ig <0.001
K, =

0.95 for I >0.001

None

First vaccinations
on day 300 of
the epidemic
following the
formula:

_ 0.00216¢
8.14+¢
where 7 is the

consecutive day
of vaccination

First vaccinations
on day 300 of
the epidemic
following the
formula:

_ 0.00962¢
60.345+¢

t

1

Slow progress in
immunization
coverage.
About 17.2% of
those wishing
to receive the
vaccine are
immunized
within 100 days

Rapid progress in
immunization
coverage.
About 39.8% of
those wishing
to receive the
vaccine are
immunized
within 100 days

Source: Own assumptions.
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In the scenarios wherein the government has no access to a vaccine (sce-
narios [-1V), we assume that the government reduces the intensity of social
and economic activity gradually, in line with a functional formula (10.3)
(scenarios I and II) or that activity is restricted abruptly (scenarios III and
IV). In scenarios I and III, the government imposes severe restrictions to
contain the spread of epidemic; in scenarios II and IV, the government
adopts a liberal approach.

The scenarios with vaccination (V-XII) can be divided into those with
slow progress (scenarios V-VIII) and those with rapid progress (IX-XII) in
immunization coverage of the population. Scenarios V and IX assume that
the government adopts a lockdown like in scenario I; scenarios VI and X
assume a lockdown as in scenario II, etc.

The results of numerical simulations of epidemiological indicators in the
extended SIR model (systems of equations (10.1 and 10.2)) in consecutive
scenarios are contained in Table 10.2. Figures 10.1-10.4 represent curves of
analyzed epidemiological variables.’

The simulation results contained in Table 10.2, and Figures 10.1-10.4 lead
to the following conclusions:

« If the government did not adopt any lockdown measures and had no
access to a vaccine, the greatest percentage of the infected would be
recorded (as already indicated) on day 365 of the epidemic. If the gov-
ernment has no access to a vaccine and imposes a severe lockdown, the
peak will be postponed to day 391 (scenario I) or 456 (scenario II) of
the epidemic. If a mild lockdown is imposed, the greatest number of the
infected will be recorded on day 365 (scenario II) or 383 (scenario IV).

Table 10.2 Epidemiological indicators in consecutive scenarios

Scenario Variable
Km Sm IM HM DM PM T

I 0.8347 0.5762 0.0273 0.4153 0.0085 - 391
11 0.9475 0.4566 0.0525 0.5326 0.0109 - 365
111 0.85 0.6043 0.0246  0.3878 0.0079 - 456
v 0.95 0.4728 0.0490  0.5167 0.0105 - 383
\" 0.8380 0.1485 0.0263 0.3374 0.0069 0.5072 381
VI 0.9480 0.1122 0.0520 0.4927 0.0101 0.3850 363
VII 0.85 0.1650 0.0189 0.2650 0.0054 0.5646 428
VIII 0.95 0.1181 0.0473 0.4649 0.0095 0.4075 378
X 0.8389 0.0014 0.0260  0.2885 0.0059 0.7042 377
X 0.9481 0.0010 0.0519 0.4632 0.0095 0.5264 363
XI 0.85 0.0016 0.0167 0.1939 0.0040 0.8006 408
XII 0.95 0.0011 0.0468  0.4259 0.0087 0.5643 376

Note: The subscript m indicates the minimum value of a variable, M indicates its maximum
value. T indicates the day of the greatest percentage of the infected.
Source: Own calculations.
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Figure 10.1 Curves of S, I, Hand P in scenarios I, Vand IX (at , = 1_\/2). (a) Sce-
Source: Own calculations
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Figure 10.3 Curves of S, I, H and P in scenarios III, VII and XI, at
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Figure 10.4 Curves of S, I, H and P in scenarios IV, VIII and XII, at
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. (a) Scenario IV, (b) scenario VIII, and (c)

for I <0.001

0.95 for I, =0.001

1

;

scenario XII.

Source: Own calculations.
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* At slow progress in immunization coverage of the population (scenar-
ios V=VIII), the greatest number of the infected is recorded between
days 381 and 428 of the epidemic (if severe restrictions are imposed in
response to the epidemic) or between days 363 and 378 (if a liberal ap-
proach to the epidemic is adopted). On the other hand, rapid progress in
immunization coverage results in a postponement of epidemic peak to a
date between days 377 and 408 of the epidemic (if severe restrictions are
imposed in response to the epidemic), or between days 363 and 376 (if a
liberal approach to the epidemic is adopted).

* In the scenarios wherein the government has no access to a vaccine, a
maximum limitation of social and economic activity (at the peak of ep-
idemic) can reach 15%-16.5% under conditions of a severe lockdown or
5%—6.5% under conditions of a mild lockdown. The scenarios wherein
the government uses vaccination (i.e. scenarios V-XII) have no signifi-
cant effect on that parameter.

* Ifnovaccine is administered, the maximum percentage of infected peo-
ple will reach 2.5%-2.7% (severe restrictions in scenarios I and III) or
4.9%-5.3% (liberal scenarios II and IV). In the case of slow progress in
immunization coverage, that percentage will drop to about 1.9%-2.6%
under conditions of a severe lockdown or to 4.7%-5.2% if a liberal ap-
proach is adopted. In the case of rapid progress in immunization cover-
age, that percentage will slightly fall.

* In the scenarios without vaccination, the percentage of the suscepti-
ble (uninfected) will reach after the epidemic about 57.6%—-60.4% under
conditions of a severe lockdown or 45.7%-47.3% under conditions of a
mild lockdown.

» Ifthe government has access to a vaccine but progress in immunization
coverage is slow, the percentage of uninfected population (understood
then as S,, + Py, will reach 65.6%-73.0% under conditions of a severe
lockdown or 49.7%-52.6% if a liberal approach is adopted.

» Rapid progress in immunization coverage leads to an increase in those
indicators to 70.6%—80.2% (a severe lockdown) or 52.7%-56.5% (a mild
lockdown).

* If no vaccine is administered, 7.9%-8.5% of the population will die of
the epidemic under conditions of a severe lockdown imposed by the
government or 10.5%-10.9%c%under conditions of a mild lockdown.
Slow progress in immunization coverage will reduce those indicators
to 5.4%-6.9% (a severe lockdown) or 9.5%-10.1% (a liberal approach).
Rapid progress in immunization coverage will reduce the rate of mor-
tality caused by the epidemic to 4.0%-5.9% of the population (a severe
lockdown) or 8.7%-9.5% (a mild lockdown).

An analysis of the epidemic effect on the values of principal macroeconomic
indicators (in the real economy sector) includes the scenarios described
above in 2 versions. We consider values of those indicators in an economy
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Tuble 10.3 Economic indicators in consecutive scenarios at K1/K = 0.4 (a poorly
developed economy)

Scenario Variable

. Y . K U, U i ]
min—— E Y, min—- E K, max—t ¢ m,m Ut Ug
t Yy, & 0 Ky &4 1 ouy ugy

Y Kt
t t
From monthly data From daily data

| 0.801 0.932 0987 0993  1.212 1.068  0.855 0.951
11 0.891 0.977 0996 0998  1.112 1.023 0901 0.974
11 0.814 0.902 0982 0990  1.197 1.100  0.866 0.936
v 0.893 0.965 0994 099  1.109 1.034 0903 0.969
A% 0.805 0.945 0990 0994  1.208 1.055  0.858 0.961
VI 0.894 0.979 0996 0998  1.108 1.021 0.902 0978
VII 0.821 0.919 0.985  0.991 1.190 1.082  0.869 0.947
VIII 0.895 0.968 0.994 099  1.107 1.031 0.905 0973
IX 0.806 0.953 0991  0.994  1.206 1.046  0.859 0.967
X 0.895 0.980 0.996 0.998  1.107 1.020 0902 0.981
X1 0.824 0.934 0988 0.992  1.186 1.066  0.870 0.956
X1I 0.896 0.971 0.995 0997  1.106 1.029 0905 0.976

Note: The subscript N indicates non-epidemic conditions, and G indicates the geometric
average.
Source: Own calculations.

conventionally termed “poorly developed” (with capital input K1 represent-
ing 40% of the value of that variable in the Solow long-run equilibrium) and
in a strongly developed economy (with K1 = 0.9K").%

Selected results of numerical simulations are contained in Table 10.3 (a
poorly developed economy) and Table 10.4 (a strongly developed economy).
Figures 10.5-10.7 depict curves of the social utility function U, in consecutive
scenarios both in a poorly developed and in a strongly developed economy.

The simulation results contained in Tables 10.3 and 10.4 lead to the fol-
lowing conclusions:

* In a poorly developed economy that has no access to a vaccine, falls
in production at peak incidence (measured by the indicator min—*,

t
where Yy, represents the value of production that could be achievecllv tif
the epidemic did not strike) will reach 18.6%-19.9% under conditions of
a severe lockdown or 10.7%-10.9% if a liberal approach is adopted. In
a strongly developed economy, the falls are slightly smaller and reach
(respectively) 18.3%—19.7% or 10.4%-10.6%.

* Slow progress in immunization coverage of the population combined
with severe restrictions imposed in response to the epidemic will reduce
falls in production to 17.9%-19.5% in a poor economy or 17.7%-19.3% in
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a wealthy economy. If a liberal approach to the epidemic is adopted, falls
in production will reach (respectively) 10.5%-10.6% or 10.2%-10.3%.
Rapid progress in immunization coverage has no material effect on falls
in production at peak incidence.

If severe restrictions are imposed in response to the epidemic, without
vaccination, accumulated falls in the value of production will reach
over three years about 6.8%-9.8% in a poorly developed economy or
6.7%-9.6% in a strongly developed economy. If a liberal approach to the
epidemic is adopted, the falls will reach 2.3%-3.5% in a poor economy
and 2.2%-3.3% in a wealthy economy.

Slow progress in immunization coverage of the population combined
with severe restrictions imposed in response to the epidemic will lead
to accumulated falls in production by 5.5%-8.1% in a poorly developed
economy or by 5.4%-7.9% in a strongly developed economy. A liberal
approach to the epidemic will lead to accumulated falls in production
by 2.1%-3.2% in a poor economy or 2.0%-3.1% in a wealthy economy.
A rapid pace of progress in immunization coverage of the population
will reduce falls in production in a poor economy to 4.7%-6.6% (se-
vere restrictions imposed) or 2.0%-2.9% (a liberal approach), and in a
wealthy economy to 4.6%—6.5% or 1.9%—2.8%.

A more general conclusion can be reached: the introduction and rapid
administration of a vaccine will have a stronger effect on accumulated

Table 10.4 Economic indicators in consecutive scenarios at KI/K* = 0.9 (a

strongly developed economy)

Scenario Variable

. Y, . K, u, i i ]
min—- Z Y, min—t 2 K, max—- G min Ui Ug
t t t

t Yy T Kye Ze 0 une  ugn
Y, K
S Sk

From monthly data From daily data
I 0.803 0.933 0.990  0.995 1.436 1.135 0.819 0.938
II 0.894 0.978 0.997  0.998 1.225 1.044 0.865 0.960
111 0.817 0.904 0986  0.992 1.404 1.198 0.831 0.922
v 0.896 0.967 0.995  0.997 1.219 1.067 0.866 0.954
A\ 0.807 0.946 0.992  0.995 1.428 1.108 0.823  0.950
VI 0.897 0.980 0.997  0.998 1.218 1.041 0.866  0.967
VII 0.823 0.921 0.989  0.993 1.389 1.160 0.834 0.936
VIII 0.898 0.969 0.996  0.997 1.215 1.061 0.868 0.962
IX 0.808 0.954 0.994  0.996 1.425 1.091 0.824 0.957
X 0.898 0.981 0.997  0.998 1.215 1.038 0.867 0971
XI 0.826 0.935 0991 0.994 1.382 1.129 0.835 0.947
XII 0.899 0.972 0.996  0.998 1.213 1.056 0.869  0.966
Note: The subscript N indicates non-epidemic conditions, and G indicates the geometric

average.

Source: Own calculations.
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falls in production than on the depth of recession. In addition, both ac-
cumulated falls in production and the depth of recession will be slightly
greater in a poorly developed economy than in a strongly developed
economy.

*  Both one-off (at the epidemic peak) and accumulated falls in capital
stock are significantly smaller than falls in production. Whether the
government has access to a vaccine or not, whether severe restrictions
are imposed or a liberal approach to the epidemic is adopted, accumu-
lated falls in capital stock in both analyzed types of economy, that is

2K
ZtKNt

* Relative increases in the unemployment rate (understood as max &) at

, will not exceed 1%.

tu
peak incidence in a poor economy without vaccination will reach allvl[)out
20%, if severe restrictions are imposed in response to the epidemic or
about 10%-11%, if a liberal approach is adopted. In a wealthy economy
the indicators will reach 40%-44% or 22%-23%.’

»  The indicators only slightly fall with slow or rapid progress in immuni-
zation coverage.

*  The average unemployment rates over a three-year period (and more
precisely the products ;—G) will be higher in the scenarios of severe
restrictions imposed by tgggovernment in response to the epidemic and
will decrease with an increase in the pace of immunization coverage of
the population. Those products will also be higher in a wealthy econ-
omy. However, it must be emphasized that the geometric average of the
unemployment rate ugy is significantly lower in a wealthy economy than
in a poor economy due to the model design.

*  Figures 10.5-10.7 (depicting curves of the social utility function in
consecutive scenarios in a poor and in a wealthy economy) lead to the
following conclusions. First, falls in social utility U in both types of
economy, in scenarios of severe restrictions imposed in response to the
epidemic (the scenarios marked with odd Roman numerals), are signif-
icantly greater than in scenarios of a liberal approach (the scenarios
marked with even numbers). Second, the sooner a vaccine is adminis-

tered, the smaller are falls in social utility. Third, falls in social utility
. . . Upn; Yt

are slightly smaller in a poor economy, because expressions Yo
U N

are higher in that type of economy. ' '
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Figure 10.5 Curves representing social utility in scenarios I-1V. (a) A poorly devel-
oped economy and (b) a strongly developed economy.
Source: Own calculations.

10.5 Conclusions

This chapter discusses the effect of an epidemic on economic growth. The
analysis is conducted using a model of economic growth under epidemic
conditions. The epidemiological module introduces an indicator that shows
restrictions imposed on social and economic life during the epidemic. The
indicator is defined in two versions; in the first version, it changes continu-
ally on consecutive days of the epidemic as a function of the percentage of
infections, and in the second version, it changes discretely when the gov-
ernment abruptly imposes a lockdown. The epidemiological section also
includes a scenario wherein a vaccine (against the spreading disease) is
available to the government and a population vaccination programme is
implemented. In the section of the model discussion that is dedicated to
economy, it is assumed that the production process is described by a neo-
classical Cobb-Douglas production function; accumulation of fixed capital,



230 SIR-Solow model

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80

28
55
82
109
136
163
190
217
244
271
298
325
352
379
406
433
460
487
514
541
568
595
622
649
676
703
730
757
784
811
838
865
892
919
946
973
1000
1027
1054
1081

Figure 10.6 Curves representing social utility in scenarios V-VIII. (a) A poorly de-
veloped economy and (b) a strongly developed economy.
Source: Own calculations.

like in the original Solow model of 1956, is defined as the difference between
investment and the depreciated value of that capital. Also a social utility
function is introduced, defined as a geometrical average of the indicator
of social and economic activity, the percentage of the uninfected, the ratio
of unemployment rate under non-epidemic conditions to that rate under
epidemic conditions and the ratio of production during the epidemic to pro-
duction under non-epidemic conditions.

The chapter also discusses scenarios of epidemic development depending
on the availability of a vaccine to the government. In the scenarios wherein
the government has no access to a vaccine, it was assumed that the govern-
ment imposes restrictions on social and economic activity following certain
functional relation or abruptly. The scenarios with vaccination are divided
into those with slow and those with rapid progress in immunization cover-
age of the population. Those scenarios also include a lockdown imposed by
the government, like in the scenarios without vaccination.
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Figure 10.7 Curves representing social utility in scenarios IX-XII. (a) A poorly de-
veloped economy and (b) a strongly developed economy.
Source: Own calculations.

Falls in production in an economy without access to a vaccine reach at
peak incidence 18.3%-19.9%, if severe restrictions are imposed in response
to the epidemic or 10.4%-10.9%, if a liberal approach is adopted. Slow pro-
gress in immunization coverage of the population combined with severe
restrictions imposed in response to the epidemic will reduce falls in produc-
tion by 17.7%-19.5%. If a liberal approach to the epidemic is adopted, falls in
production will reach (respectively) 10.2%-10.6%. Additionally, rapid pro-
gress in immunization coverage has no material effect on falls in production
at peak incidence.

If the government imposes severe restrictions in response to the pandemic
and has no access to a vaccine, accumulated falls in the value of production
will reach over three years about 6.7%-9.8%, and if a liberal approach to
the epidemic is adopted, the falls will reach 2.2%-3.5%. Slow progress in
immunization coverage of the population combined with severe restrictions
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imposed in response to the pandemic will lead to accumulated falls in pro-
duction by 5.4%-8.1% while a liberal approach to the pandemic will lead
to accumulated falls in production by 2.0%-3.2%. A rapid pace of progress
in immunization coverage of the population reduces accumulated drops
in production to about 4.6%—6.6%, if severe restrictions are imposed or to
1.9%-2.9%. Consequently, the introduction of vaccination and rapid pro-
gress in immunization coverage will have a stronger effect on accumulated
falls in production than on the depth of recession. Additionally, whether the
government has access to a vaccine or not, falls in the capital stock will be
significantly smaller than falls in production and will not exceed 1%.

Relative increases in the unemployment rate at peak incidence in a poor
economy without vaccination will reach about 20%—44%, if severe restric-
tions are imposed in response to the epidemic or about 10%-23%, if a lib-
eral approach is adopted. The introduction and acceleration of vaccination
entails a minor reduction in relative rises in the unemployment rate at peak
incidence. Additionally, average unemployment rates over a three-year pe-
riod will be higher in the scenarios of severe restrictions imposed by the
government in response to the epidemic and will decrease with an increase
in the pace of immunization coverage of the population.

Falls in social utility will be significantly greater in scenarios of severe
restrictions imposed in response to the epidemic than in scenarios of a lib-
eral approach. Implementation of a vaccination programme will result in a
reduced depth of fall in social utility, and the faster is progress in immuni-
zation coverage of the population, the relatively smaller are falls in social
utility.

Notes

1 This model is based on the model proposed in Dykas and Wista (2022).
2 Certainly, on each day ¢ the equation is true: S, + I, + H,+ D, = 1.

3 Thisisbecauseweobtainfromacontinuous functionf(x) =1_xG:f’(x)=_cx"*1
and f”(x):(l—a)o-xcfz, and consequently for ¢ > 0: Vxe (0,1) f(x)<0,
o€ (0,])= f"(x)>0A0>1= f"(x)<0.

4 This is because we obtain from a continuous function f(r)= ba—tl:
+
/(0)=0,
lim f(#)=a,
t—>too
) ab ) 2ab
()= >0AVE>-b f7(t)=-
0 ary 0= ey

5 Assumptions 1) and 2) refer directly to the Solow model, and assumptions 3) and
4) extend that model to include basic variables describing the functions of the
labour market.
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To simplify notation, we assume that the total factor productivity on each day

t, described by the formula ﬁ, equals 1. This has no effect on the scope of

applicability of the below discussion.

All epidemiological simulations are carried out for a five-year period while mac-
roeconomic simulations for a three-year period. This is because curves of mac-
roeconomic variables stabilize after three years.

Those economies are also termed below “poor” and “wealthy”.

The parameters of the macroeconomic module of the proposed model are cal-
ibrated so that the initial unemployment rate in a poorly developed economy
amounts to about 5%, and in a strongly developed economy to about 10%.

Hence, the value of indicator max %~ amounting e.g. to 1.1 means that the un-

. t Upy .
employment rate rises from 5% to 5.5% in a wealthy economy of from 10% to 11%
in a poor economy. The indicator g /ugy is to be similarly interpreted.
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