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macroeconomic problem.

This book not only continues the neoclassical tradition of thought in 
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model. It is a useful tool in analysing contemporary issues related to growth.
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Without the fundamental discoveries by Isaac Newton (the three universal 
laws of motion, the law of universal gravitation) and Albert Einstein (the 
theory of relativity), today’s theoretical physics would be severely deficient. 
Its development was also greatly stimulated by the quantum theory (quan-
tum mechanics) with its foundations laid by Albert Einstein, Max Planck, 
Werner Heisenberg and Erwin Schrödinger. The solution to numerous 
engineering and technical problems, the development and application of 
countless inventions that serve (with better or worse outcomes) both indi-
viduals and entire human societies would be impossible without advanced 
physics.

In macroeconomics, John M. Keynes and Robert M. Solow occupy sim-
ilar positions as Newton, Einstein and Planck in physics. John M. Keynes 
was first to propose (in the 1930s) a coherent macroeconomic theory, and R. 
M. Solow (in the 1950s) laid foundations for the today’s theory of economic 
growth. The macroeconomic theory proposed by Keynes can be described 
as a short-run and demand-side model while Solow developed a long-run 
and supply-side model.1 The analyzes made by Keynes and Solow provided 
foundations for macroeconomic models that describe both short-run and 
long-run economic processes with increasing accuracy. The models result in 
improved quantification, better understanding and more correct forecasting 
of macroeconomic processes.

Economic growth was first addressed by the classical school of economy 
in the 18th century. However, that topic aroused the deepest interest in 
the 20th and 21st centuries when the phenomenon of increase in the value 
of output produced in an economy and the determinants of that increase 
became mathematically formalized.

Evsey D. Domar, an American economist who analyzed economic growth 
processes in the mid-20th century concluded that:

In economic theory, growth has occupied an odd place: always seen 
around but seldom invited in. It has been either taken for granted or 
treated as an afterthought. In the meantime, we have cheerfully gone 
ahead discussing employment and investment, interest and profits, accu-
mulation of capital, business cycles, and many other exciting problems 

Introduction
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2  Introduction

which clearly demand the explicit use of the rate of growth, and which 
we have most ingeniously tried to solve in a theoretical wonderland…

(Domar 1957, p. 16)

The Keynesian school pioneered in proposing formalized economic growth 
models, including principally the model developed by Roy F. Harrod (1939), 
Evsey D. Domar (1946) and (after the publication of the Solow growth 
model) the models created by Michał Kalecki (1963, 1996) and Nicholas 
Kaldor (1963). The Keynesian economic growth models were heavily in-
fluenced by the Great Depression in the 1930s. This explains why strong 
emphasis is placed in those models on discrepancies between demand-side 
and supply-side factors that determine economic growth. Considering 
that Keynesian economic growth models assume almost zero substitution 
of production factors (capital and labour) used in the production process, 
those models suggest that a free-market economy is exposed to an almost 
permanent risk of imbalance. The risk is posed by incomplete utilization of 
economy’s output capacity, a deficiency that was relatively readily accepted 
by Keynesian macroeconomics that paid particular attention to this prob-
lem (Barro and Sala-i-Martin 1995, p. 10).

Solow proposed in 1956 a neoclassical growth model (referred to in this 
monograph as the Solow model) as an opposition (or alternative) to Keynes-
ian growth models. The pioneering analyzes made by Solow were triggered 
by the following observation: “Harrod’s writings, especially, were full of 
incompletely worked out claims that steady growth was in any case a very 
unstable sort of equilibrium”, and:

An expedition from Mars arriving on Earth, having read this litera-
ture [on Keynesian growth models] would have expected to find only the 
wreck-age of a capitalism that had shaken itself to pieces long ago. Eco-
nomic history was indeed a record of fluctuations as well as of growth, 
but most business cycles seemed to be self-limiting.

(Solow, 1988, pp. 307–308)

Thus, either the real economies somehow manage to function on the edge 
of no-control as suggested in the Keynesian growth models proposed by 
Harrod and Domar or those models are inadequate. Solow, writing about 
his early (i.e. dating back to the 1950s) work on neoclassical growth model, 
explains:

That was the spirit in which I began tinkering with the theory of eco-
nomic growth, trying to improve on the Harrod-Domar model (…). I 
know that even as a student I was drawn to the theory of production 
rather than to the formally almost identical theory of consumer choice. 
It seemed more down to earth. I know that it occurred to me very early, 
as a natural-born macroeconomist, that even if technology itself is not 
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so very flexible (...) [and the economy can choose in the production pro-
cess from] capital-intensive or labor-intensive or land-intensive goods.

 (Solow, 1988, p. 308)

Those observations inspired Solow to develop a neoclassical economic growth 
model. The model was eventually augmented to include e.g. an economy with 
two stocks of capital (the Mankiw-Romer-Weil model of 1992) and with any 
finite number N of capital stocks (the Nonneman-Vanhoudt model of 1996).

The Solow model of economic growth also provided foundations for mod-
els embedded in the new theory of economic growth (known as the theory 
of endogenous growth), such as the renowned growth models developed by 
Paul M. Romer (1986, 1990) and Robert E. Lucas (1988).

The importance of economic growth theory in today’s macroeconom-
ics is demonstrated by the number of Sveriges Riksbank Prizes in Eco-
nomic Sciences in Memory of Alfred Nobel awarded in that field of study  
(R. Frisch, J. Tinbergen, S. Kuznets, J.R. Hicks, K.J. Arrow, G. Debreu, 
R.M. Solow, R.E. Lucas., W.D. Nordhaus or P.M. Romer).

Our book entitled The Solow Model of Economic Growth: Application to 
Contemporary Macroeconomic Issues also represents that area of research. 
The title not only indicates the topic of economic growth as the principal 
axis of our analyzes but also refers to the work of Robert M. Solow. The 
authors of this book base on broadly understood achievements of R.M. 
Solow and enter into debate with his thought. This book not only continues 
the neoclassical tradition of thought in economics focused on quantitative 
economic changes but also, and to a significant extent, discusses alternative 
approaches to certain questions of economic growth, utilizing conclusions 
that can be drawn from the Solow model.

The augmentations of the Solow model described in this monograph (ex-
cept the Phelps capital accumulation model and the Mankiw-Romer-Weil 
and Nonneman-Vanhoudt models) were developed at the Department of 
Mathematical Economics, Jagiellonian University in Kraków, over the last 
two decades. The authors were supported in their work on those models 
by (in alphabetical order) Mgr. Mateusz Biernacki, Mgr. Monika Bolińska, 
Mgr. Olesia Chornenka, Dr. Katarzyna Filipowicz, Dr. Maciej Grodzicki, 
MEng. Oleksii Kelebaj, Mgr. Agata Luśtyk, Dr. Robert Syrek and Dr. Mar-
iusz Trojak from the Jagiellonian University. Work on the gravity model of 
economic growth was also supported by Dr. Svitlana Chugaievska (Depart-
ment of Math Analysis, Business Analytics and Statistics of Zhytomyr Ivan 
Franko State University, Ukraine) and by Dr. Tomasz Misiak (Faculty of 
Management, Rzeszów University of Technology, Poland).

The authors address in their discussion the following research topics: fis-
cal and monetary policy vs economic growth; economic growth at returns 
to scale conditions; bipolar growth models with investment flows; a gravity 
growth model, and the 2020+ pandemic vs economic growth, also in the 
context of Polish economy.



4  Introduction

The book consists of ten chapters.
Chapter 1 is aimed to concisely describe selected scientific inspirations 

that led to the development of the Solow growth model in its versions pro-
posed in 1956–1957. Particular attention is paid to the studies by Roy F. 
Harrod (1936, 1939), Evsey D. Domar (1946) and Nicholas Kaldor (1963).

Chapter 2 outlines the basic version of the Solow economic growth model 
that provides foundations for further discussions and proposed modifica-
tions. The chapter also describes selected special cases of the Solow model, 
such as the model with a power Cobb-Douglas production function (1928) 
and a CES (Constant Elasticity of Substitution) production function.

Chapter 3 describes generalizations of the Solow model i.e. the Mankiw-
Romer-Weil model developed in 1992 and the Nonneman-Vanhoudt model 
proposed in 1996. The Mankiw-Romer-Weil growth model considers hu-
man capital accumulation in addition to physical capital accumulation. The 
Nonneman-Vanhoudt model describes an economy characterized by a finite 
number N of capital stocks.

Chapter 4 describes selected generalizations of the Mankiw-Romer-Weil 
model and a compilation of the Solow model with a Keynesian growth 
model proposed by Domar that consider the effect of both fiscal and mone-
tary policy on long-run economic growth.

The neoclassical economic growth models base on a strong assumption of 
constant returns to scale. Chapter 5 questions that assumption to examine 
the long-run equilibrium in those models in the case of economy character-
ized by decreasing or increasing returns to scale.

The analysis in Chapter 6 covers bipolar models of economic growth de-
scribing two economies (conventionally termed a rich economy and a poor 
economy), and the effect of capital accumulation and investment flows on 
the dynamics of economic growth. Two models are proposed: a model with 
exogenous investment rates and a model wherein the assumption about the 
exogenous nature of investment rates and flows is cancelled.

The gravity model of economic growth described in Chapter 7 bases on the 
Solow model of economic growth. The Solow growth model assumes a closed 
and isolated economy while the gravity growth model also considers spatial in-
teractions occurring in a set of (national or regional) economies. Since spatial 
interactions take place in the analyzed group of economies, the development of 
each of them also affects capital accumulation and growth rates in other econ-
omies. The concept of total and individual gravitational effects is introduced 
to describe spatial interactions in the gravity model of economic growth. The 
method used to quantify the force of individual gravitational effects bases on 
the field equations (employed in economic theory to analyze migration and 
foreign trade) that generalize Newton’s law of universal gravitation.

Chapter 8 analyzes Solow equilibrium at alternative trajectories of the 
number of workers. It is assumed in the original Solow growth model that 
the number of workers rises at a constant growth rate, so that the value of 
that macroeconomic variable increases exponentially to infinity. We mod-
ify that assumption in our analyzes contained in Chapter 8, proposing two 
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alternative versions. We assume in version 1 that an increase in the num-
ber of workers forms a logistic curve that approaches an asymptote. On the 
other hand, it is assumed in version 2 that if labour productivity rises, the 
growth rate of the number of workers drops from infinity to zero.

In Chapter 9, the Solow equilibrium is analyzed at sine-wave investment 
rates. The principal assumption underlying the discussion in Chapter 9 reads 
that the investment rate at each moment t is determined by a pre-defined sine 
wave. We also compare obtained solutions of the Solow model characterized 
by sine-wave investment rates with solutions of the original Solow model.

Chapter 10 is aimed to assess the effect of an epidemic on medium-term 
economic growth (i.e. over five years). The analysis is conducted using an 
epidemiological-economic model that combines the SIR (Susceptible – 
Infectious – Recovered) epidemiological model proposed by Kernack and 
McKendrick (1927) with a neoclassical model of economic growth proposed 
by Solow.

The authors wish to thank all who read previous versions of the proposed 
augmentations of the Solow growth model. We owe especial thanks to our 
colleagues from the research centres that closely cooperate with the Depart-
ment of Mathematical Economics at the Jagiellonian University: the Faculty 
of Economics and Sociology at the University of Łódź, the Poznań Univer-
sity of Economics and Business and the Faculty of Economic Sciences and 
Management, Nicolaus Copernicus University in Toruń. Thus, the authors 
extend their thanks to (in alphabetical order): Prof. Adam Krawiec (Jagiel-
lonian University), Prof. Eugeniusz Kwiatkowski (University of Łódź), Prof. 
Michał Majsterek (University of Łódź), Prof. Maciej Malaczewski (Univer-
sity of Łódź), Prof. Krzysztof Malaga (Poznań University of Economics and 
Business), Prof. Magdalena Osińska (Nicolaus Copernicus University in To-
ruń), Prof. Emil Panek (Poznań University of Economics and Business), Prof. 
Iwona Świeczewska (University of Łódź) and Prof. Zenon Wiśniewski (Nico-
laus Copernicus University in Toruń). Our thanks are also due to Prof. Armen 
Edigarian and Dr. Piotr Kościelniak from the Institute of Mathematics at the 
Jagiellonian University for their verification of, and comments to, mathemat-
ically complex elements of the proposed economic growth models.

Naturally, the authors assume full responsibility for possible mistakes 
and deficiencies found in this study.

Note
	 1	 Interestingly, concepts similar to Keynesian aggregated demand and Solow’s 

determinants of long-run economic growth were almost simultaneously intro-
duced by Michał Kalecki in Poland and Theodor W. Swan in Australia (hence 
the Solow model is also known in the literature on macroeconomics as the 
Solow-Swan model).



DOI: 10.4324/9781003323792-2

1	 R. M. Solow’s inspirations

1.1  Introduction

Economic growth was first addressed by the classical school of economy 
in the 18th century. In the years 1870–1945, studies were focused on effec-
tive allocation of limited resources, adopting a marginalist approach. Al-
most three decades after the Great Depression (1929–1933), discussions held 
among macroeconomists centred on the causes, effects and assessments of 
Keynesian responses to that series of events (Snowdon and Vane, 2000). The 
question why is economic growth spatially differentiated (analyzed both 
theoretically and empirically) became the leading research topic in econom-
ics of the second half of the 20th century. A majority of studies aimed to de-
velop the theory of endogenous growth. However, they were preceded by an 
important event in the history of economic growth theories that occurred at 
the dawn of the second half of that century: the publication of two break-
through papers by R.M. Solow (1956, 1957). 

D. Romer (2012, p. 8) emphasized after almost 60 years that:

The Solow model is the starting point for almost all analyses of growth. 
Even models that depart fundamentally from Solow’s are often best un-
derstood through comparison with the Solow model. Thus understand-
ing the model is essential to understanding theories of growth.

This is confirmed by the number of citations of both studies. It is almost 
impossible to review all responses to the concepts proposed by R.M. Solow 
(1956, 1957) that were published until today.

Hence, this chapter is aimed to concisely describe selected scientific inspira-
tions that led to the development of the growth model in its versions proposed 
in 1956 and 1957. In his Nobel-prize lecture (Lecture to the memory of Alfred 
Nobel, December 8, 19872), R.M. Solow emphasized: “(…) in the 1950s I was 
following a trail that had been marked out by Roy Harrod and by Evsey Do-
mar (…)” (see also: Solow, 1988), and in Addendum (August, 2001), he added3:

Another, much less prominent, line of thought may be worth mention-
ing. It goes back to the 1950s when Nicholas Kaldor tried to produce a 

This chapter has been made available under a CC-BY-NC-ND license.

https://doi.org/10.4324/9781003323792-2
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coherent growth model based entirely on relationships among rates of 
growth, conspicuously without any explicit function relating inputs and 
outputs.

1.2  Harrod’s equilibrium

Harrod’s equilibrium analysis was based on three assumptions (1936, p. 33; 
1939, p. 14):

	 1	 Saving is proportional to national income, St = sYt; the level of a com-
munity’s income is the most important determinant of its supply of 
saving,

	 2	 Investment, the demand for saving, is proportional to the growth of na-
tional income, It = g(Yt+1 − Yt); the rate of increase of its income is an 
important determinant of its demand for saving, and

	 3	 Saving equals investment, the demand for saving equals the supply of 
saving, St = It.

From this, one derives the “fundamental equation” of equilibrium:

ρ− ≡ =ω
+  

       ,1Y Y
Y

s
g

t t

t

in which ρω is the “warranted” rate of growth. Put differently, national 

income follows the first-order difference equation Y
s g

g
Yt t 1= +

− , with 1 > 

g>s>0.
Harrod supplemented his formal analysis with speculations about the 

consequences of deviations of actual aggregate income from warranted 
aggregate income. Harrod said that such deviations were bound to occur 
because the warranted rate of growth usually differs from a “natural” rate 
of growth that is determined by changes in productivity and the labour force 
(Blume and Sargent, 2015, p. 350).

Harrod (1939) addressed the following issues:

	 1	 the implications of the qualification that fixed-coefficients like the 
saving rate are not fixed exogenously but, instead, are determined by 
economic forces,

	 2	 alternative senses and sources of instability,
	 3	 some possible interactions between a multiplier (reflecting consumption 

decisions) and an accelerator (reflecting real investment decisions).

Harrod discussed these things in ways that readers today will find difficult 
to comprehend and appreciate, partly because of progress that the study 
of economic dynamics has made since 1939, partly because Harrod chose 
not to use or extend some lines of work preceding 1939 that would be more 
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familiar to today’s reader and partly because his analysis, done without ben-
efit of a formal model, is hard to follow and the analytic categories differ 
from those we use today (Blume and Sargent, 2015, p. 351). 

In the theory, for Harrod (and for Keynes), no distinction was drawn be-
tween capital goods and consumption goods. In measuring the increment of 
capital, the two were taken together; the increment consisted of total pro-
duction less total consumption (Harrod, 1936, p. 18). Today we think of cap-
ital as a factor of production; consequently, the marginal product of capital 
is crucial to determining interest and wage rates, the distribution of output 
between capital owners and workers and so forth.

The parameter g describes for Harrod the demand for saving, not as we 
read it today, the inverse marginal or average product of capital. “It may be 
expected”, Harrod (1936, p. 17) writes, “to vary as income grows and in dif-
ferent phases of the trade cycle; it may be somewhat dependent on the rate of 
interest”. Similarly, “s is regarded as likely to vary with a change in the size 
of income” (Harrod, 1936, pp. 24–25).

Harrod is clear (Blume and Sargent, 2015, p. 351) that the “warranted” 
rate of growth is in fact the equilibrium growth rate of a model. If the key 
parameters s and g in fact vary with endogenous variables, then equilibrium 
is not yet determined until these additional relations are appended to the 
model. The easiest way to fill in the gaps, of course, is to read the Essay as a 
fixed-coefficients model, and this has become the tradition.

Harrod argues that sustainable growth is possible only if the “warranted 
growth rate” (GW) equals the “natural growth rate” (GN). The warranted 
growth rate results from the balance of savings and from the effect of real-
ized investment outlays on economy’s production capacity and is calculated 
as the quotient of savings rate s 0;1( )∈  (proportion of savings in output) and 

the capital-output ratio v
K
Y

K =  (where K is the stock of capital in the econ-

omy, and Y denotes output) which can be written as G
s

v
W

K
=  (Gandolfo, 

1971, pp. 41–43). The natural growth rate GN results from an increase in the 
number of workers and technological progress and is calculated as the total 
of growth rate of the number of workers n > 0 and growth rate of labour 
productivity g > 0 which can be written as G n gN = + .

Harrod’s economy achieves the state of long-run equilibrium when the 
warranted growth rate equals the natural growth rate which can be written 

as 
s
v

g n= + .

The growth rate of the number of workers and the rate of technological 
progress are understood as exogenous variables in the Harrod model, while 
the capital-output ratio in Keynesian models is constant in time; hence, for 
Harrod’s economy to achieve the state of long-run equilibrium, the sav-
ings rate must be s = vK(g + n). At an excessively high savings rate [i.e. s > 
vK(g + n)], the warranted growth rate describing the supply capacity of the 
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economy is greater than the natural growth rate. As a result, a fraction of 
the production potential available in the economy is unused because of too 
low effective demand. However, if s < vK(g + n), then GW < GN and the situ-
ation is opposite. Harrod (1936, 1939) argues that the savings rate in a mar-
ket economy changes spontaneously and the long-run equilibrium (without 
government intervention) is only possible by special coincidence, and devia-
tions from that equilibrium can lead to secular stagnation.

1.3  Domar’s equilibrium

Domar’s analysis was based on five assumptions (1946, p. 137):

	 1	 There is a constant general price level, 
	 2	 No lags are present,
	 3	 Savings and investment refer to the income of the same period, both are 

net, i.e., over and above depreciation, 
	 4	 Depreciation is measured not with respect to historical costs, but to the 

cost of replacement of the depreciated asset by another one of the same 
productive capacity,

	 5	 Productive capacity of an asset or of the whole economy is a measurable 
concept.

The central theme of the paper Capital Expansion, Rate of Growth, and 
Employment (Domar, 1946) is the rate of growth, a concept that has been 
little used in economic theory, and in which Domar had put much faith as 
an extremely useful instrument of economic analysis.

One does not have to be a Keynesian to believe that employment is 
somehow dependent on national income, and that national income has 
something to do with investment. But as soon as investment comes in, 
growth cannot be left out, because for an individual firm investment 
may mean more capital and less labor, but for the economy as a whole 
(as a general case) investment means more capital and not less labor. 
If both are to be profitably employed, a growth of income must take 
place.

(Domar, 1946, p. 147)

Domar (1957) argues that:

	 1	 Demand on the product market Yd(t) in continuous time t ∈ [0;+∞) de-
pends on exogenous net investment I(t), in accordance with Keynes’s 

multiplier formula Y
s

Id 1= , where s ∈ (0;1) is the marginal (= average) 

propensity to save which means that 1/s is the Keynesian investment 
multiplier. 
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	 2	 Investments also produce effects on the side of aggregate supply in the 
economy, and the relationship between current net investment outlets 
and an increase in supply capacities of the economy4 Ys

  is described 
by the equation Y IS = κ , where κ > 0 denotes “potential social average 
investment productivity”.5

It follows from assumption 1 that an increase in demand Yd
  is described by 

the formula Y
I
s

d =



. The state of equilibrium in Domar’s economy, defined 

as a situation where aggregate demand and aggregate supply are equal, leads 

to the conclusion that the following holds 


κ=I
s

I. This implies a growth rate 

of investment in the form 


κ=I
I

s or 
I
I

s
vK

=


 (it can also be demonstrated that 

if 


κ= =I
I

s
s

vK
, then 

 

κ= = =Y
Y

Y
Y

s
s

v

d

d

s

s
K

, so that also aggregate demand and 

supply will rise at the rate s
s

vK
κ = ).

Domar’s economy reaches the state of long-run equilibrium when the 

growth rate of investment equals (κ =s
s

vK
). However, a question arises what 

will happen in that economy, if the actual growth rate of investment equals 
ι ≠ κs? It can be demonstrated that if ι < ks, the analyzed economy will be 
characterized by a state of permanent surplus supply.

At constant ι, κ and s, that state of imbalance will become worse in time, 
and it will be almost impossible to rescue the economy from that condition. 
The reason is that if ι < κs and Ys(t) > Yd(t) at each time t ∈ [0;+∞), then in-
vestors realize that there are unused production capacities in the economy 
and will tend to reduce the actual growth rate of investment ι, thus increas-
ing the difference between the rates κs and ι, and contributing to a growing 
imbalance on the output market (this phenomenon is known in economics 
as the Domar paradox). This leads to the conclusion that the Domar-model 
economy, like the previously analyzed the Harrod-model economy, is char-
acterized by a knife-edge balance on the single possible growth path that 
can warrant macroeconomic equilibrium. Each departure from that path 
leads to the state of long-term, deepening disequilibrium.

Harrod and Domar seemed to be answering a straightforward question: 
when is an economy capable of steady growth at a constant rate? They 
arrived by noticeably different routes, at a classically simple answer: 
the national saving rate (the fraction of income saved) has to be equal 
to the product of the capital-output ratio and the rate of growth of the 
(effective) labor force. Then and only then could the economy keep its 
stock of plant and equipment in balance with its supply of labor, so that 
steady growth could go on without the appearance of labor shortage on 
one side or labor surplus and growing unemployment on the other side. 
They were right about that general conclusion.

(Solow, 1988, p. 307)
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1.4  Kaldor’s economic growth model

The production function in Kaldor’s model6 has the same characteristics 
as the production function in the Domar model. Also an increase in capital 
stock is defined similarly. The number of workers grows at the rate n > 0. 
The single (but principal) difference between Kaldor’s model and earlier 
Keynesian economic growth models lies in that the savings rate is disag-
gregated, on an entire-economy scale, into savings rates from the total of 
wages and total of profits. Kaldor writes that domestic product (income) 
may be divided into the categories of wages W (including salaries) and prof-
its Π (hence, Y = W + Π) and argues that “the important difference between 
[those categories lies] in the marginal propensities to consume (or save), 
wage-earners’ marginal savings being small in relation to those of capital-
ists” (Kaldor, 1963, p. 83). 

Thus, Kaldor assumes in his growth model that sW < sΠ, where sW and 
sΠ ∈ (0;1) denote the propensities to save out of wages and profits. That 
assumption also implies the equation of savings rate in the entire economy 
(Kaldor, 1963, p. 83; Blaug, 1990, p. 189):

s s s s
Y

W W .( )= + − Π
Π

It can be demonstrated that equilibrium in Kaldor’s economy is conditional 
on satisfying the inequality:

s
v

n
s
v

W

K K
≤ ≤ Π 	 (1.1)

or

π≤ ≤0
1

,
vK

	 (1.2)

where π = Π
K

 is the profit rate in the entire economy (Allen, 1975, pp. 215–216).

Due to the relaxation of rigid assumptions about the savings rate in 
Kaldor’s model (i.e. the disaggregation of that rate into savings from wages 
and from profits), the conditions for long-run equilibrium in Kaldor’s 
economy (equations 1.1 and 1.2) reduce the edge-knife problem posed by 
prior Keynesian growth models. The conditions indicate that for Kaldor’s 
economy to achieve the state of long-run equilibrium it is necessary and 
sufficient that the growth rate of the number of workers n is contained in 
a closed interval bounded from below by the quotient of savings rate from 
wages to the capital-output ratio and bounded from above by the propor-
tion of savings rate from profit to capital-output ratio. Thus, if savings rates 
reach e.g. sΠ = 66%, sW = 0% (the case of zero savings from wages), and n + 
g = 4%, the capital-output ratio will not exceed about 50/3 (Kaldor, 1963,  
p. 301; Allen, 1975, p. 217). 

Assuming that the capital-output ratio in viable economies equals about 
3–5, the probability of an economy encountering the knife-edge problem is 
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relatively low. An analysis of the condition for equilibrium (equation 1.2) 
demonstrates that at a capital-output ratio of 3–5 the rate of profit that war-
rants equilibrium in Kaldor’s economy may not exceed about 20%–33%, and 
if that value is exceeded, the model gets into a state of permanent imbalance, 
like the previously analyzed Keynesian growth models.

1.5  Principle of the original Solow economic growth model

The core version of the economic growth model proposed by R.M. Solow 
bases on the assumption that the manufacturing process of aggregate stream 
of goods (products and services) is described by the neoclassical production 
function written as:

( )=( ) ( ), ( ) ,Y t F K t L t 	 (1.3)

where: K ≥ 0 is the (physical) capital stock and L ≥ 0 denotes the number of work-
ers. It is assumed about that function that it is homogeneous of degree 1 and 
characterized by decreasing marginal productivities with respect to the stocks 
of capital and labour. It also meets the Inada conditions both with respect to K 
and L (the formal and mathematical properties of the production function (1.3) 
are discussed in detail in Chapter 2). In the Solow model, it is also assumed that 
the number of workers (L) is described by the exponential function:

=( ) ,0L t L ent 	 (1.4)

where L0 > 0 is the number of workers t 0≥  and n > 0 denotes the growth rate 
of the number of workers.

The assumption that the production function is homogeneous of degree 1 
leads to a transformation of function (1.3) to its intensive form: 

( )=( ) ( ) ,y t f k t 	 (1.5)

where: y = Y/L denotes labour productivity, and k = K/L is the value of 
(physical) capital per worker. Function (1.5), in terms of macroeconomics, is 
an aggregate labour productivity function, that makes labour productivity y 
dependent on capital per worker k; one of its characteristics is that f(0) = 0, 

= +∞
→+∞
lim ( )f k

k
, ′ >( ) 0f k  and ′′ <( ) 0f k .

R.M. Solow assumes that an increase in the capital stock (K) is calculated 
as the difference between investment and capital depreciation which can 
formally be written as:

 δ= −( ) ( ) ( ),K t sY t K t  	 (1.6)

where: ∈ (0;1)s  denotes the savings/investment rate, and 0;1( )δ ∈  is the cap-
ital depreciation rate.
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Additionally, investment is financed out of savings (being a fixed, equal s 
fraction of produced output Y). 

The above assumption leads to the following differential equation (known 
as the Solow’s equation):

 δ( )= − +( ) ( ) ( ) ( ),k t sf k t n k t  	 (1.7)

Equation (1.7) describes an increase in capital per worker as the difference 
between savings/investments per worker sf(k) and capital decline per worker 
(n + δ)k that is caused both by capital depreciation (δk) and by an increase in 
the number of workers (nk).

The phase diagram of equation (1.7) is shown in Figure 1.1. The point k* 
represents the stock of capital per worker in the Solow’s long-run equilib-
rium, being the single non-trivial stable steady-state of Solow’s equation.

Assuming also that the production function (1.3) is a Cobb-Douglas pro-
duction function, we obtain a labour productivity function in the form:

y t k t ,( )( ) ( )= α
 	 (1.8)

then, capital per worker in the Solow’s long-run equilibrium (calculated 
from equation (1.7)) is given by the formula:

δ
=

+








α−
*

1/(1 )

k
s

n
 	 (1.9) 

savings-labour ratio
capital decline labour ratio

y*

k0 k* capital-labour
ratio

0

sf(k(t))

k(t)

(d  + n)k(t)

Figure 1.1  Phase diagram of differential equation (1.7).
Source: Aghion and Howitt (2009).
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and labour productivity (substituting equation (1.9) to equation (1.8)) is 
given by:

y
s

n
*

/ 1

=
δ+









( )α −α
	  (1.10)

It follows from equations (1.9) and (1.10) that the higher the savings/in-
vestment rate s or the lower the capital depreciation rate d or the lower the 
growth rate of the number of workers n, the higher are the values of capital 
per worker k* and labour productivity y* in the long-run equilibrium of the 
core-version Solow model (see, e.g., Solow, 1956; Aghion and Howitt, 2009; 
Tokarski, 2009, 2011; Romer, 2012).

1.6  Conclusions

The discussion contained in this chapter, being an introductory section, can 
be summarized as follows:

First, the Harrod, Domar and Harrod–Domar models were influenced by 
the Great Depression in the 1930s. Those models propose their common gen-
eral conclusion that the economy is exposed to the state of permanent imbal-
ance, resulting among others from the assumption of almost zero substitution 
of capital and labour inputs in the production process. The models emphasize 
the role of government’s activity in maintaining the economy on a growth 
path that guarantees the long-run macroeconomic equilibrium. The principal 
difference between Kaldor’s model and earlier Keynesian economic growth 
models lies in that the savings rate is disaggregated, on an entire-economy 
scale, into savings rates from the total of wages and total of profits.

Second, the Solow model was developed in response to the Harrod and 
Domar models that describe economic reality with insufficient accuracy. Ad-
mittedly, economies undergo certain short-term fluctuations, but they tend to 
remain on a growth path that guarantees the long-run macroeconomic equi-
librium. In that model, the long-run values of capital per worker and labour 
productivity are influenced among others by the savings/investment rate and 
the rate of capital decline per unit of effective labour. It can be concluded that 
the higher the savings/investment rate or the lower the decline rate, the higher 
are the long-run values of the analyzed macroeconomic variables.

Third, the principal conclusion of the Solow model is that the accumula-
tion of physical capital cannot account for either the vast growth over time 
in output per person or the vast geographic differences in output per person 
(Romer, 2012, p. 8).

Notes
	 1	 R.M. Solow, Prize Lecture (1987), https://www.nobelprize.org/prizes/economic- 

sciences/1987/solow/lecture/.

https://www.nobelprize.org
https://www.nobelprize.org
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	 2	 R.M. Solow, Prize Lecture (1987), https://www.nobelprize.org/prizes/economic- 
sciences/1987/solow/lecture/.

	 3	 The form  =( )x t
dx
dt

 or x
dx
dt

=  denotes a derivative of the variable x with respect 

to time t, i.e. (in terms of economics) an increase in the value of this variable at 
time t.

	 4	 κ in the Domar model can also be treated as an inverse of the capital-output ratio 
vK. The reason is that if the economy is characterized by a single-factor produc-

tion function in the form Y
K
v

s

K
= , and an increase in the capital stock K  equals 

net investments I, then Y
K
v

I
v

s

K K
= =



, i.e. κ = 1/ vK .

	 5	 A simplified version of the Kaldor’s model is based on the study by Allen (1975, 
pp. 215–217). The complete Kaldor’s model is described in his study (1963,  
pp. 93–144), see also: Blaug (1990, pp. 186–209).

https://www.nobelprize.org
https://www.nobelprize.org
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2	 The Solow model

2.1  Introduction

This chapter describes a basic version of the Solow economic growth model 
that provides foundations for the growth models characterized in the subse-
quent chapters of this monograph. The version is based on the publication 
by Romer (2012), Chapter 1 (see also Tokarski, 2009, 2011). Compared to 
the original version of the Solow model (as proposed in his article published 
in 1956), we will also consider the effect of capital depreciation and exog-
enous technological change/progress on the processes of equilibrium and 
economic growth.

This chapter also describes two special cases of the Solow model. These 
are the cases wherein the production function is a Cobb-Douglas power 
function (1928) or CES production function (Constant Elasticity of Substitu-
tion proposed in an article published by Arrow, Chenery, Minhas and Solow 
(1961)). A special version of the model will also be analyzed, known as the 
golden rules of capital accumulation proposed by Phelps (1961) that directly 
refer to the Solow model with the Cobb-Douglas production function.

2.2  The Solow model with a neoclassical production function

The Solow growth model in its basic version adopts the following assump-
tions about economy behaviour in a long run:

	 1	 The production process is described by a neoclassical production func-
tion expressed by the formula:

Y t F K t E t( )( ) ( )=( ) , , 	 (2.1)

where Y denotes the output (at the moment t )[∈ +∞0; , where the moment 
t = 0 is identical with the initial moment at which economy is analyzed), 
K refers to physical capital input,1 E – to units of effective labour. The 
production function (2.1) makes the output Y depend on capital input 

This chapter has been made available under a CC-BY-NC-ND license.
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K and units of effective labour E. It is assumed that this function has 
the following properties (details can be found e.g. in Żółtowska (1997)):

	 i	 Its domain is defined as the set )[ +∞0; 2 and F ) )[ [+∞ → +∞:  0; 0;2 .

	ii	 Function F is differentiable at least twice in the set ( )+∞0; 2.

	iii	 K E F E F K( ) ) ( ) ( )[∀ ∈ +∞ = =, 0;   0, ,0 02 , hence both capital inputs 
and units of effective labour are indispensable in the production 
process.

	iv	 ( ) ) ( ) ( )[∀ ∈ +∞ = = +∞
→+∞ →+∞

K E F K E F K E
K K

, 0;   lim , lim ,2
, i.e. very large  

inputs of one of the production factors (at positive inputs of  
another production factor) correspond to a very large volume of 
output.

	 v	 The following inequalities are true: 
F
K

= ∂
∂

>MPC 0 and 
F
E

= ∂
∂

>MPE 0 

for all K E( ) ( )∈ +∞, 0; 2, where marginal product of capital (MPC) 
and marginal product of units of effective labour (MPE) are posi-
tive. Thus, an increase in capital inputs or in units of effective la-
bour leads to an increase in output.2

	vi.	 K E
K

F
K E

F
E

( ) ( )∀ ∈ +∞ ∂
∂

= ∂
∂

< ∧ ∂
∂

= ∂
∂

<, 0;  
MPC

0   
MPE

0,2
2

2

2

2  i.e. with 

an increase in capital inputs or in units of effective labour, their 
marginal products fall. It follows from assumptions (v–vii) that the 
production function F is characterized by diminishing marginal 
productivities with respect to both K and E.

	vii	 The Inada conditions are satisfied: E
K

∀ > = +∞
→ +

0  lim MPC 
0

 and 

K
=

→+∞
lim MPC 0 and K

E
∀ > = +∞

→ +
0  lim MPE

0
 and 

E
=

→+∞
lim MPE 0. The 

Inada conditions together with assumption (vi) imply that when in-
puts of one of the production factors rise from 0 to +∞ (at positive 
inputs of another production factor), the marginal product of that 
factor falls from +∞ to 0.

	viii	 The production function is homogeneous of degree 1, i.e.:

 K E F K E F K Eς ς ς ς( ) ) ( ) ( )[∀ ∈ +∞ ∧ ∀ > =, 0;     0  , , ,2

hence an increase in inputs of production factors by ς  times leads to 
an increase in output by ς  times. This property is known in macro-
economics as constant returns to scale.

A production function that satisfies assumptions (i–viii) is termed 
a neoclassical production function.

	 2	 Capital accumulation is described by the following differential equation:

K t I t K t δ( ) ( ) ( )= − , 	 (2.2)
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where I denotes investments, and δ ( )∈ 0;1  represents the rate of capital 
depreciation (i.e. a percentage of capital that is consumed in the pro-
duction process).

	 3	 In a closed economy (like that analyzed by Solow), investments I are 
financed using savings S, hence:

I t S t=( ) ( ), 	 (2.3a)

where savings represent a fraction of output that is not consumed. Con-
sequently, consumption C can be described using the formula:

C t Y t S t( ) ( )= −( ) . 	 (2.3b)

	 4	 Savings represent a constant fraction of output equal s ( )∈ 0;1 , i.e.:

S t sY t( ) ( )= . 	 (2.4)

The rate s represents a percentage proportion of savings S (determining 
the amount of investment I) in the output Y. Therefore, that rate will be 
hereinafter referred to as the savings/investment rate (a proportion of 
savings/investment in output).

	 5	 The units of effective labour E are calculated as a product of technology 
A and the number of workers L, hence:

E t A t L t( ) ( ) ( )= . 	 (2.5)

	 6	 The growth path3 of technology is described by the function4:

A t egt( ) = , 	 (2.6)

where g > 0 represents the rate of technological change5 as defined by 
Harrod (or Harrodian rate of technological progress).6

	 7	 The trajectory of the number of workers is expressed by the equation:

L t ent( ) = , 	 (2.7)

where n > 0 denotes a rate of increase in the number of workers.
Let

y t
Y t
L t

( ) ( )
( )

= , 	 2.8a)

k t
K t
L t

( ) ( )
( )

= , 	 (2.8b)
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and

p t
Y t
K t

( ) ( )
( )

= , 	 (2.8c)

denote, respectively, labour productivity (the output per worker), the capi-
tal-labour ratio (capital per worker) and capital productivity (the output per 
capital unit). Let:

y t
Y t
E t

E ( ) ( )
( )

=   	 (2.9a)

and

k t
K t
E t

E ( ) ( )
( )

=   	 (2.9b)

denote the output per unit of effective unit of labour (or effective labour) 
and capital per unit of effective labour. Then, we obtain from equations 
(2.5), (2.8a) and (2.9a):

y t A t y tE( ) ( ) ( )= ,

and, considering equation (2.6), we get:

y t e y tgt
E( ) ( )= ,

or, after taking logarithms of both sides (using a natural logarithm) and 
differentiating with respect to time t, we obtain:

y t
y t

g
y t
y t

E

E

 ( )
( )

( )
( )

= + . 	 (2.10a)

By applying similar operations to equations (2.8b) and (2.9b), the following 
relation is obtained:

k t
k t

g
k t
k t

E

E

 ( )
( )

( )
( )

= + . 	 (2.10b)

It follows from equations (2.10a,b) that if the output per unit of effective 
labour (capital per unit of effective labour) rises/falls, the productivity of 
labour (capital-labour ratio) rises at a growth rate greater/less than the rate 
of technological progress as defined by Harrod, that is g. If the output per 
unit of effective labour (capital per unit of effective labour) is constant in 
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time, the growth rate of labour productivity (capital-labour ratio) equals the 
Harrodian rate of technological progress.

Considering property (viii), the production function (2.1) is homogeneous 
of degree 1; hence, for Eς = 1/ , we obtain:

( )( ) ( )
( )

( )
( ) ( )= =









 =y t

Y t

E t
F

K t

E t
F k tE E,1 ,1 ,

or

y t f k tE E( )( ) ( )= , 	 (2.11)

where f k F kE E( ) ( )= ,1 . Function (2.11) is termed the production function 
in its intensive form. The function makes the output per unit of effective 
labour depend on capital inputs per unit of effective labour. Additionally, it 
follows directly from properties (i–viii) of the production function (2.1) that 
the production function in its intensive form (2.11) is characterized by the 
following properties:

a	 Its domain is defined as the set [0; +∞) and f ) )[ [+∞ → +∞: 0; 0; .
b	 Function f is differentiable at least twice in ( )+∞0; .
c	 f(0) = 0.
d	  f k

kE
E( ) = +∞

→+∞
lim .

e	  f k f kE E( ) ( )′ > ∧ ′′ <0  0. Hence, function (2.11) is characterized by di-
minishing marginal productivities of capital per unit of effective labour.

f	 f k
kE

E( )′ = +∞
→ +

lim
0

 and f k
kE

E( )′ =
→+∞

lim 0. Consequently, function f satis-

fies the Inada conditions with respect to kE.

Substituting equations (2.6 and 2.7) into (2.5), we obtain:

E t e t( ) = λ ,	 (2.12a)

where λ = + >g n 0. Taking logarithms on both sides of the above equation 
and differentiating after time t the resultant relation, we obtain:

E t

E t



λ( )
( )

= .	 (2.12b)

It follows from equation (2.12b) that λ represents the rate of increase in units 
of effective labour (equal to the total of the Harrodian rate of technological 
progress g and the rate of increase in the number of workers n).
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From relations (2.3a–2.4), we obtain:

I t sY t( ) ( )= ,

and it follows from the above relation and from equation (2.2) that:

K t sY t K t δ( ) ( ) ( )= − . 	 (2.13)

Differentiating equation (2.9b) with respect to time t, we get:

k t
K t E t K t E t

E t

K t
E t

k t
E t
E t

E E


   

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) ( )

( )
=

−
= − .2  	 (2.14)

Substituting relations (2.12b and 2.13) into the above equation, we obtain:

k t sy t k tE E E
 δ λ( ) ( ) ( ) ( )= − + .	  (2.15)

Equation (2.15) is known as the Solow equation (see equation (1.7)). Its eco-
nomic interpretation can be reduced to the statement that an increase in 
capital per unit of effective labour kE

( ) equals the difference between sav-
ings/investment per unit of effective labour (i.e. syE) and the capital decline 
per unit of effective labour kEδ λ( )( )+ , and that decline results both from 
depreciation of capital kEδ( ) and from an increase in units of effective la-
bour kEλ( ). Moreover, it follows from the Solow equation that if savings/
investment per unit of effective labour are greater (less) than the capital de-
cline per unit of effective labour, the stock of capital will rise (fall) in time. If 
sy kE Eδ λ( )( )= + , then kE

 = 0 and the analyzed stock will not change.
Substituting function (2.11) into the Solow equation, we obtain the follow-

ing ordinary differential equation:

k t sf k t k tE E E
 µ( )( ) ( ) ( )= − , 	 (2.16)

where µ δ λ= + .
Let us demonstrate now that differential equation (2.16) has two steady 

states, a trivial steady state (at kE = 0) and a non-trivial steady state kE( )> 0* .  

We will also demonstrate that the non-trivial steady state kE
*  represents the 

point of long-run equilibrium in the Solow model.
A trivial steady state exists because if kE = 0, both the right and the left 

side of differential equation (2.16) equals 0. The trivial steady state will be 
ignored in further discussion, because it is irrelevant for both economic and 
mathematical conclusions.

Note that if kE > 0, then kE
 > 0 kE

( )< 0  if and only if capital productivity 

(2.8c) that can also be expressed as p k
f k

k
E

E

E
( ) ( )=  is greater (less) than the 
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quotient μ/s > 0. Let us determine the properties of function p(kE) at kE ris-
ing from 0 to +∞. The properties of function f lead to the conclusion that7:

( ) ( ) ( )= = ′ = +∞
→ + → +









→ +
p k

f k
k

f k
kE

E
kE

E

E

H

kE
Elim lim lim

0 0

0
0

0

this results from the first Inada condition,

p k
f k

k
f k

kE
E

kE

E

E

H

kE
E( ) ( ) ( )= = ′ =

→+∞ →+∞

∞
∞









→+∞
lim lim lim 0

(in line with the second Inada condition) and8:

p k
f k k f k

k k
E

E E E

E E
( ) ( ) ( )′ =

′ −
= − <MPE

0.2 2

Thus, if capital per unit of effective labour kE rises from 0 to +∞, capital 
productivity p(kE) falls from +∞ to 0. It follows from the above relation, 
from the Darboux property of a continuous function and from differential 
equation (2.16) that there exists exactly one positive kE

*  such that:

a  k k p k
s

t kE E E E


µ( ) ( ) )[∀ ∈ > ⇒ ∀ ∈ +∞ >0,     0;   0* ,

b  p k
s

t kE E


µ( ) )[= ⇒ ∀ ∈ +∞ =  0;   0* ,

c  k k p k
s

t kE E E E


µ( ) ( ) )[∀ ∈ +∞ < ⇒ ∀ ∈ +∞ <,     0;   0* .

Therefore, if the economy was characterized by capital per units of effec-
tive labour kE(0) less/greater than kE

*  at the moment t = 0, then fluctuations 
in that stock at each subsequent moment t will be positive/negative and the 
economy will approximate the stock kE

*  on the left/right side. If k kE E( ) =0 * , 
then k t kE E( ) = *  at any moment t > 0. Hence, the stock kE

*  represents the stock 
of capital per unit of effective labour in the Solow’s long-run equilibrium (or 
simply long-run stock of capital per unit of effective labour) such that9:

k k t k
t

E E( ) ( )∀ > =
→+∞

0 0  lim .*  	 (2.17a)

It follows from the above relation and from the production function in its 
intensive form equation (2.11) that in a long run (i.e. at t → +∞), the output 
per unit of effective labour approaches yE

*  defined by the formula:

y f kE E( )= .* *  	 (2.17b)
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Under the conditions of Solow’s long-run equilibrium, capital and output 
(both relative to a unit of effective labour) are constant. Hence, the capi-
tal-labour ratio k and labour productivity y rise as per equations (2.10a,b) 
at growth rates that equal the Harrodian rate of technological progress g. If 
the economy reaches point kE

*  on the left/right side, the growth rates y and 
k are greater/less than g.

It also follows from equation (2.16) and former substitutions ( g nµ δ= + + ) 
that the long-run stock kE

*  is an implicit function (e.g. of the rates s, δ and n) 
that solves the following equation:

k s n p k
g n
s

E Eδ δ( ) ( )Φ = − + + =, , , 0.*  	 (2.18)

It follows from equation (2.18) and from the formulas for derivatives of an 
implicit function that:

k
s

s

k

g n
s p k

E

E

E

δ
( )

∂
∂

= −

∂Φ
∂
∂Φ
∂

= − + +
′

> 0,
*

*

2

k

k
s p k

E

E

Eδ
δ

( )
∂
∂

= −

∂Φ
∂
∂Φ
∂

=
′

<1
0

*

*

2

and

k
n

n

k
s p k

E

E

E( )
∂
∂

= −

∂Φ
∂
∂Φ
∂

=
′

<1
0.

*

*

2

It can be concluded from the above relations that the higher the savings 
(investment) rate s or the less the capital depreciation rate δ or the growth 
rate of the number of workers n, the greater the long-run capital per unit 
of effective labour kE

*  in the Solow’s equilibrium. This in turn implies that 
the long-term growth path of the capital-labour ratio k t( )*  reaches a higher 
level (see e.g. Romer (2012), Chapter 1 or Tokarski (2011), Chapter 5).

Moreover, since for each kE > 0 f kE( )′ > 0: 
y
s
E∂

∂
> 0

*
 and 

y y
n

E E

δ
∂
∂

∂
∂

<, 0
* *

. In 

terms of economics, the signs of the above partial derivatives lead to similar 
conclusions as the signs of partial derivatives kE

* .

2.3  Special cases

Section 2.2 contains a description of the Solow growth model with a gen-
eral, neoclassical production function. However, an analytical form of that 



24  The Solow model

function is not known, and hence neither a point of long-run equilibrium 
in the Solow model can be analytically determined nor equations can be 
found for growth paths followed by the analyzed macroeconomic variables 
to reach that equilibrium.

Therefore, special cases of the Solow model will be analyzed in Section 2.3, 
namely models with the Cobb-Douglas production function and with the CES 
production function. In the first of those cases, both the point of Solow’s long-
run equilibrium and the paths leading to that equilibrium can be determined. 
In the second case, a non-trivial steady state of the long-run equilibrium in the 
Solow model can be determined and its economic properties analyzed.

2.3.1  The Cobb-Douglas production function

The Cobb-Douglas production function is described by the following 
formula:

Y F K L aK L( )= = α α−, ,1  	 (2.19)

where a > 0, and α ( )∈ 0;1 .
Parameter a in the production function is known as the total factor 

productivity. The parameter obviously indicates how much output can 
be produced from certain amounts of capital input K and labour input L. 
Transforming equation (2.19), total factor productivity can also be described 
by the formula:

a
Y

K L
p y= =α α

α α
−

− ,1
1

hence, total factor productivity can be defined as a geometric weighted 
mean of capital productivity p and labour productivity y with weights equal 
(respectively) α and α−1 .

If 
Y
K

K
Y

Kε = ∂
∂  and 

Y
L

L
Y

Lε = ∂
∂

 denote (respectively) the elasticity of output 

with respect to capital and the elasticity of output with respect to labour, it 
can be demonstrated that those elasticities equal α and α−1 .

The elasticities are also frequently identified with proportions of inputs 
of production factor in the output in studies into economics, e.g. in Clark’s 
marginal theory of distribution. However, that approach is wrong, which 
can easily be demonstrated.

The main hypothesis of Clark’s marginal theory of distribution can be 
reduced to the statement that under conditions of a competitive economy, 
each production factor receives a reward equal to its marginal product. An 
explanation: if the profit function (in real terms) of a typical manufacturer 
is described by the formula:

k l f k l w k w lk l( ) ( ) ( )π = +, , – , 	 (2.20)
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where k, l ≥ 0 represents capital and labour inputs in an enterprise, f denotes 
a homogeneous production function of degree 1 (and the Cobb-Douglas 
production function represents its special case), wk, wl > 0 represent pro-
duction factor prices, then the first-order conditions that must be met to 
maximize profit can be expressed by the following equations:

f
k

w
f
l

wk l
∂
∂

= ∧ ∂
∂

=    ,

where f k∂ ∂  and f l∂ ∂  represent marginal products of production factors. 
Thus far, the reasoning is correct. However, a problem appears: if the pro-
duction function f is homogeneous of degree 1, then the Hessian of the profit 
function is not negative-definite (and this is the second-order condition for 
the profit function π to be maximized).

Moreover, there is no combination of production factors v k l( ) ( )= ∈ +∞, 0, 2 
that could maximize function (2.20). To demonstrate this, an indirect proof 
will be produced (see Tokarski and Zachorowska-Mazurkiewicz, 2016).

Assume, despite the above hypothesis, that a combination exists 
v k l( ) ( )= ∈ +∞, 0, 2 such that the function k l( )π ,  has a local extreme point. 

An open neighbourhood ( )⊂ +∞z 0, 2 of point v  exists such that:

a	 v z v v v v( ) ( )∀ ∈ ∧ ∀ ≠ π < π       for a local maximum

or

b	 v z v v v v( ) ( )∀ ∈ ∧ ∀ ≠ π > π       for a local minimum.

Let us assume any circle zκ ⊂  and a ray γ that starts at the origin of coor-
dinate system and goes through point v . Then, exactly two different points 
exist v v κ γ∈ ∩,1 2  such that:

v v( ) ( )π π < π,  1 2  	 (2.21a)

for a maximum, or

v v( ) ( )π π > π,  1 2  	 (2.21b)

for a minimum. Let the point v1 be located closer to the origin of coordinate 
system than v2.

As both the production function f(k, l) and the cost function c(k, l) = wkk 
+ wll are homogeneous of degree 1 and f(0, 0) = 0 and c(0, 0) = 0, also the 
profit function (2.20) is characterized by homogeneity of degree 1 and by 
π(0, 0) = 0. Consequently, on each ray x1 = ζx2 (that starts in the origin of 
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coordinate system and has a positive slope ζ), the values of function π rise 
(fall) from 0 to +∞ (−∞). Thus, also the following is true in particular:

a	 if v( )π > 0, then v v vπ π π( ) ( ) ( )< <1 2 ,
b	 if v( )π = 0, then v v vπ π π( ) ( ) ( )= =1 2 ,

or
c	 if vπ ( ) < 0, then v v v( ) ( ) ( )π > π > π1 2 ,

which is inconsistent with inequalities (2.21ab).
This reasoning can be extended into any n-dimensional (for n = 3, 4, …), 

homogeneous production function and cost function of degree 1 (which 
is demonstrated in the study published by Tokarski and Zachorowska-
Mazurkiewicz (2016)).

Hence, Clark’s marginal theory of distribution is false (in the case of both 
bivariate and multivariate production functions with constant returns on 
scale), and parameters α and α−1  in the Cobb-Douglas production function 
cannot be interpreted as participations of capital and labour in the output 
(the same is true for the parameters of bivariate and multivariate power pro-
duction functions analyzed in this chapter).

It can be demonstrated that the Cobb-Douglas production function sat-
isfies conditions (i–viii) applicable to the production function (2.1) with re-
spect to K and L. This is because:

•	 Assumptions (i–ii) are satisfied directly as per equation (2.19).
•	 ∀ ∈ +∞ = =α α−( , ) [0, ) (0, ) 0 02 1K L F L a L  and = =α α−( ,0) 0 01F K aK .

•	 ∀ ∈ +∞ = = +∞α α
→+∞

−
→+∞

( , ) [0, ) lim ( , ) lim2 1K L F K L aL K
K K

 and 

F K L
L

( ) =
→+∞
lim ,

 
aK L

L
= +∞α α

→+∞
−lim 1 .

•	 α∀ ∈ +∞ = >α α− −( , ) [0, ) MPK 02 1 1K L aK L  and aK Lα( )= − >α α−MPL 1 0.

•	 For all α α( ) ( ) ( )∈ +∞ ∂
∂

= − <α α− −,  0,   
MPK

1 02 2 1K L
K

aK L  and similar 

MPL
L

aK Lα α( )∂
∂

= − − <α α− −1 01 .

•	 For K, L > 0 aL K
K K

α= = +∞α α

→ +
−

→ +
−lim MPK lim

0

1

0

1 , aL
K

α= α
→+∞

−lim MPK 1  

K
K

=α
→+∞

−lim 01 , aK L
L L

α( )= − = +∞α α

→ + → +
−lim MPL 1 lim

0 0

1  and 
L

=
→+∞
lim MPL  

aK L
L L

α( )= − =α α
→+∞ →+∞

−lim MPL 1 lim 01 .

•	 K L F L aK L F K La a a aς ςΚ, ς ς ς ς∀ ≥ ∧ > = =  − −L = a K, 0 0 ( ) ( ) ( ) ( , )1 1

Considering the Solow model with the Cobb-Douglas production function, 
we will replace relation (2.1) with the Cobb-Douglas function described by 
the formula:
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Y t K t E t( ) ( )( ) ( ) ( )= α α−
,

1
 	 (2.22)

assuming also that equations (2.2–2.7) are satisfied. According to relation 
(2.6), the total productivity of production factors in equation (2.22) equals 
e gtα( )−1 . Consequently, we assume that the total productivity of production 
factors rises in time due to the effect of technical progress as defined by 
Harrod.

Dividing the sides of Cobb-Douglas function (2.22) by E > 0, we obtain 
the production function in its intensive form, described by the formula 
(symbols as in Section 2.2):

( )( ) ( )= α
y t k tE E . 	 (2.23)

Substituting relation (2.23) into the Solow equation (2.15), we obtain:

k t s k t k tE E E
 µ( )( ) ( ) ( )= −α

, 	 (2.24)

where µ δ= + +g n. Equation (2.24) is a Bernoulli differential equation. Its 
integral meeting the condition kE(0) = kE0 > 0 (where kE0 denotes the stock 
of capital per unit of effective labour at the moment t = 0) determines the 
growth path of capital per unit of effective labour. Given that integral and 
using equation (2.23), we can determine the trajectory of output per unit of 
effective labour.

Ignoring the trivial solution (kE = 0), the Bernoulli equations can be ex-
pressed as follows:

k t k t s k tE E E
 µ( ) ( )( ) ( ) ( )= −α α− −

.
1

 	 (2.25)

Bernoulli’s substitution:

q t k tE( )( ) ( )= α−
,

1
 	 (2.26a)

results in:

k t k t
q t

E E




α( )( ) ( ) ( )=
−

α−

1
. 	 (2.26b)

It follows from equation (2.25) and relation (2.26a,b) that:

q t s q t α α µ( ) ( ) ( ) ( )= − − −1 1 . 	 (2.27)

The integral of equation (2.27) can be expressed by the formula:

q t q t ed
t( ) ( )= α µ( )− − ,1  	 (2.28a)
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where qd represents a complementary integral of integral q, hence:

q t q t e q t ed
t

d
t

  α µ( ) ( ) ( ) ( )= − −α µ α µ( ) ( )− − − −1 .1 1  	 (2.28b)

It follows from relations (2.27) and (2.28ab) that:

q t e s q t sed
t

d
t

 α α( ) ( ) ( ) ( )= − ⇒ = −α µ α µ( ) ( )− − −1 1 ,1 1

hence:

q t s e dt
s

ed
t t∫α

µ
φ( ) ( )= − = +α µ α µ( ) ( )− −1 ,1 1  	 (2.29)

where Rφ ∈  represents the constant of integration. Substituting the comple-
mentary integral (2.29) into equation (2.28a):

q t
s

e e
s

et t t

µ
φ

µ
φ( ) = +









 = +α µ α µ α µ( ) ( ) ( )− − − − − .1 1 1  	 (2.30)

Bernoulli substitution (2.26a) gives:

k t q tE ( )( ) ( )= α( )−
,

1/ 1

and this together with equation (2.30) implies:

k t
s

eE
t

µ
φ( ) = +









α µ

α
( )

( )
− −

−

.1
1/ 1

 	 (2.31)

Equation (2.31) produces an infinite family of integrals of Bernoulli differ-
ential equation (2.24). To determine the trajectory of capital per unit of ef-
fective labour, the constant of integration f must be selected so as to satisfy 
a Cauchy boundary condition kE(0)=kE0. Hence:

k
s s

g n
kE Eµ

φ
δ
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
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


 =

+ +
+
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





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α α( ) ( )− −

0
1/ 1 1/ 1

0,

and consequently that constant is represented by φ  described using the 
formula:

k
s
g nEφ

δ
= −

+ +
α− .0

1  	 (2.32)

Thus, the growth path of capital per unit of effective labour is expressed in 
this version of the Solow model by the formula:
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 	 (2.33a)

while according to the equation of production function in its intensive form 
(2.23), the trajectory of output per unit of effective labour:
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 	 (2.33b)

where φ  describes relation (2.32). Given the growth paths of output and cap-
ital per unit of effective labour (i.e. yE and kE), and knowing that the labour 
productivity y(t) equals e y tgt

E ( ) and the capital-labour ratio k t e k tgt
E( ) ( )= , 

the trajectories of those macroeconomic variables can be determined.
However, let us return to the constant φ  described by equation (2.32). 

Note that it follows from equation (2.32) that if k
s
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E δ
>
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, then φ  is negative (positive), while 
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. Initial capital per unit of effective labour 
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 will be termed high (low) kE0.

Let us now differentiate time paths (2.33ab) with respect to time t. We see 
that:
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which implies that:

k t y tE E


 φ( ) ( )= = −sgn sgn sgn . 	 (2.34)

A conclusion can be drawn from equation (2.34) and previous findings that 
if the economy was characterized by a high/low initial capital per unit of 
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effective labour (i.e. φ  was positive/negative), then increases in capital an 
in output per unit of effective labour were negative/positive, and thus the 
values of those variables fell/rose. However, if:

k
s
g n

E δ
=

+ +
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




α( )−

,0

1/ 1

then φ = 0 and the values of those variables did not change in time. It fol-
lows from the above statements and from relation (2.10ab) that at high/low 
initial values of capital per unit of effective labour, the growth rates of la-
bour productivity y y( )/  and of capital-labour ratio k k( )/  were less/greater 
than the Harrodian rate of technological progress g. On the other hand, at 

k
s
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E δ
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, the values of kE and yE did not change while 
y
y

k
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g
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= = .
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t

E ( )=
→+∞
lim*  and y y tE

t
E ( )=

→+∞
lim*  denote the long-run stock of cap-

ital and output per unit of effective labour (that represent a special case of 
kE

*  and yE
*  from Section 2.2); then, using the relation (2.33a,b), we obtain:
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 	 (2.35a)

and (similar):
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 	  (2.35b)

Because at t → +∞ k t kE E( ) → *  and y t yE E( ) → * , hence k t y tE E


( ) ( ) →,  0; then 
the growth rates of labour productivity and capital-labour ratio approach 
the rate of technological progress as defined by Harrod.

Moreover, it follows from equations (2.35a,b) that10:
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It follows from the above relations that a high savings/investment rate or a 
low capital depreciation rate or a low growth rate of the number of workers 
are accompanied by high values of kE

*  and yE
* , and (thus) by high levels of 

long-run growth paths of capital-labour ratio and labour productivity.
Differentiating equations (2.35a,b) with respect to α, we obtain:

k y s
g n

E

α α α δ( )
∂

∂
= ∂

∂
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− + +
ln ln 1

1
ln

*

2

arriving at the conclusion that if s > δ + g + n (s < δ + g + n), then 
k yE E

α α
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k yE E

α α
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





ln ln

0
* *

 and a high elasticity α is accom-

panied by high (low) levels of long-run growth paths of labour productivity 
and capital-labour ratio.

2.3.2  The CES production function

The CES production function11 is described by the formula (Arrow, Chen-
ery, Minhas, and Solow (1961), see also e.g. Chiang (1994, pp. 426–430) or 
Tokarski (2009), Chapter 1, Section 1.4)12:

Y F K L a K Lα α( )( ) ( )= = + −σ σ σ− − −
, 1 ,

1/
 	 (2.36)

where a > 0, α ( )∈ 0;1 , σ ( )∈ +∞0; . Y, K i L (like formerly) represent the output 
and capital and labour inputs. Parameter a represents the total productivity 
of production factors, because F(1, 1) = a. Parameter α has no direct economic 
interpretation13 while parameter σ represents the elasticity of substitution 
between production factors, because that elasticity equals σ+1/ (1 ) (Chiang, 
1994, p. 428). We will now demonstrate that the CES function satisfies most of 
the assumptions underlying the neoclassical production function (2.1).

	 i	 The set ( )+∞0; 2 represents the domain of CES function and 

F ( ) ( )+∞ → +∞:  0; 0;2  which results directly from equation (2.36).
	ii	 The CES function is freely differentiable in its domain.
	iii	 The following is true:
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0 0
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Consequently, property (iii) of the neoclassical production function 
is only asymptotically satisfied, because the domain of CES function 

( )+∞0; 2 is contained in the domain of function (2.1), i.e. )[ +∞0; 2, and 
the point (0,0), where property (iii) of function (2.1) is satisfied, does not 
belong to the domain of CES function.

	iv	 If L > 0, then 
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and for K > 0
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Moreover:
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Hence, property (iv) of function (2.1) in the case of CES production 
function is only partly satisfied.

	v	  The marginal product of capital F K( )∂ ∂  is described by the equation:

F
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.

The positive value of the marginal product of labour F L( )∂ ∂  is simi-
larly demonstrated:
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	vi	 Second-order partial derivatives of the CES function are described by 
the equations:
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The partial derivative 
∂
∂
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2  is negative, because 
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0, because the CES production function (see property 

(viii)) is homogeneous of degree 1, hence the following is true (as per 
Euler’s homogeneous function theorem):
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The negative value of the partial derivative F L∂ ∂2 2 is similarly 
demonstrated.

(vii) The CES production function partly satisfies the Inada condi-
tions. This is because:
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and
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hence the CES production function is homogeneous of degree 1 (charac-
terized by constant returns to scale).

Note that at σ → +0 , the CES production function is convergent with the 
Cobb-Douglas function. This is because:
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Let us consider now a special case of the Solow model wherein the produc-
tion process is described by the CES production function expressed using 
the formula14:

Y t K t L tα α( )( ) ( )( ) ( ) ( ) ( )= + −σ σ σ− − −
1 ,

1/
 	 (2.37)

where the symbols have the meanings given above. We also assume that the 
remaining assumptions of the Solow model are satisfied. Dividing function 
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(2.37) by units of effective labour E > 0, we obtain the CES function in its 
intensive form described by the equation:
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.1/  	 (2.38)

Substituting the production function in its intensive form equation (2.38) 
into the Solow equation (2.15), we obtain the following ordinary differential 
equation:
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where g nµ δ= + + . This equation will be considered in the phase space 
P ( )= +∞0; . It follows from equation (2.39) that:
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i.e. (with an additional assumption that 
s
µ

α> σ1/ ) we arrive in this version of 

the Solow model at a non-trivial stable steady state that is represented by the 
stock of capital per unit of effective labour, expressed by the formula:
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 	 (2.40a)

The steady state kE
*  represents a point of stable equilibrium, because if 
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, then at any moment t >0 k tE
 ( ) > 0, and at 
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, we obtain k tE
 ( ) < 0. This leads to the conclu-

sion that for any kE(0) at t → +∞, capital per unit of effective labour kE(t) 
approaches kE

* , hence kE
*  described by formula (2.40a) determines the long-

run output per unit of effective labour in this version of the Solow model.
It follows from equations (2.40a) and (2.38) that the long-run output per 

unit of effective labour is described by the equation15:
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Differentiating equation (2.40a) over s, δ and n (keeping in mind that 
g nµ δ= + + ), we obtain:
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The signs of the above partial derivatives lead to the conclusion that the 
higher the rate s or the lower the rates δ and n, the greater the stock kE

*  
and stream yE

* , and (thus) the growth paths of labour productivity and capi-
tal-labour ratio reach higher levels (the conclusions are thus similar to those 
drawn from the versions of the Solow model discussed above).
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2.4  Phelps’ golden rules of capital accumulation

It follows from equations (2.3b) and (2.4) that consumption C in the Solow 
model at any moment t )[∈ +∞0;  can be described by the formula:

C t Y t S t( ) ( ) ( )= − .

Dividing the above equation by units of effective labour E > 0, we arrive at 
the equation:

c t s y tE E( ) ( ) ( )= −1 ,

where cE represents consumption per unit of effective labour. Since in a long 
run (at → +∞t ) ( ) →y t yE E

* , hence ( ) →c t cE E
* , where cE

*  is described by the 
equation:

( )= −c s yE E1 .* *  	 (2.41)

An analysis of equation (2.41) demonstrates that if the savings/investment rate 
s rises, then (on the one hand) the proportion of consumption in output falls, 
i.e. − s1 , and (on the other hand) the output per unit of effective labour in 
Solow equilibrium rises, hence yE

* . Thus, consumption per unit of effective 
labour in a non-trivial steady state of the Solow model (i.e. at consumption per 
unit of effective labour equal cE

* ) can rise, fall or remain constant as a function 
of increase in the savings/investment rate s. As a result, the long-run consump-
tion per worker c = C/L will follow a growth path on a higher or lower level, or 
(in the case of constant cE

* ) the position of that path will not change.
Phelps’ golden rule of accumulation is defined as a savings/investment 

rate s that leads to the maximum long-run consumption per unit of effective 
labour cE

* , thus placing the economy on the highest long-run time path of 
consumption per worker.

It follows from equations (2.35b) and (2.41) that, assuming the Cobb-Doug-
las production function, consumption cE

*  can be described by the formula:

δ
( )= −

+ +









α α( )−

c s
s
g n

E 1 .*
/ 1

 	 (2.42)

Hence, the determination of the golden rule of accumulation can be reduced 
to the maximization of the expression (2.42) with respect to ( )∈s 0;1 .

First, note that:

=
→ +
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Elim 0,
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*

=
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*
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and

( )∀ ∈ >s cE0;1   0,*

hence, for each s in the interval (0, 1) ( )= ′dc
ds

v sEsgn sgn
*

, where:

α
α

θ( ) ( )= = − +
−

+v s c s sEln ln 1
1

ln ,*  	 (2.43)

where θ
α

α
δ( )= −

−
+ + ∈g n R

1
ln . Since it follows from equation (2.43) that:

α
α

α
α

′ = −
−

+
−

= −
− −

( )
1

1 (1 ) (1 )(1 )
,v s

s s
s

s s

if α( )∈s 0; , then ( )′ >v s 0 while at α( )∈s ;1  ( )′ <v s 0. This means that at a 
savings/investment rate s = α, the function v(s) and the long-run consump-
tion per unit of effective labour cE

*  reach their maxima in the interval (0, 1).
This leads to the conclusion that the golden rule of capital accumulation 

is represented by a savings/investment rate s that equals the elasticity α of 
output Y with respect to capital inputs K.

2.5  Conclusions

The discussion contained in in this chapter can be summarized as follows:

	 I	 The assumptions listed below underlie the Solow growth model. The 
production process is described be a neoclassical production function 
that makes the volume of output depend on (physical) capital inputs and 
on units of effective labour (representing a product of available tech-
nology and the number of workers). The function is characterized e.g. 
by unconditional availability of each factor in the production process, 
diminishing marginal productivities and constant returns to scale. An 
increase in the stock of capital results from the difference between in-
vestment (financed from savings) and capital depreciation. Technology 
grows at the Harrodian rate of technological progress, and the number 
of workers increases at a constant growth rate. Consequently, units of 
effective labour rise at a growth rate obtained as the total of Harro-
dian rate of technological progress and growth rate of the number of 
workers.

	II	 The assumptions adopted in the model lead to the Solow equation that 
describes an increase in capital per unit of effective labour. It follows 
from the Solow equation that the increase represents the difference 
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between savings/investment per unit of effective labour and capital de-
cline per unit of effective labour. The decline results from both capital 
depreciation and an increase in units of effective labour.

	III	 The Solow equation has two steady states: a trivial and non-trivial one. 
In the non-trivial steady state (identical with the point of long-run equi-
librium in the Solow model), capital per unit of effective labour rises 
with an increase in the savings/investment rate or with a reduction 
in capital depreciation rate and in the growth rate of the number of 
workers.

	IV	 In a long-run Solow equilibrium, the labour productivity (output per 
worker) and capital-labour ratio (capital per worker) rise at a growth 
rate that equals the Harrodian rate of technological progress. The lo-
cation of trajectories followed by those macroeconomic variables de-
pends on the value of capital per unit of effective labour in the Solow 
long-run equilibrium. The greater/lower that capital value, the higher/
lower the positions of long-run growth paths of labour productivity and 
capital-labour ratio.

	 V	 Those conclusions are also confirmed in special cases of the Solow model 
i.e. the model with the Cobb-Douglas production function and with the 
CES production function (proposed by Arrow, Chenery, Minhas and 
Solow).

	VI	 Phelps’ golden rule of accumulation is defined as a savings/investment 
rate that locates a Solow economy on the highest long-run growth path 
of consumption per worker. In the Solow model with the Cobb-Douglas 
production function, that rate equals the elasticity of output with re-
spect to capital.

Notes
	 1	 Physical capital inputs will also be referred to (simply) as capital inputs.
	 2	 According to assumption 5, E = AL (where A represents available technology 

and L denotes the number of workers), hence the marginal product of labour 
(MPL) can be expressed as:

= ∂
∂

= ∂
∂

∂
∂

= ⋅F
L

F
E

E
L

AMPL MPE,	

		  i.e. according to assumption (v), we also obtain a positive MPL.
	 3	 The growth path (time path or trajectory) of variable x is understood hereinafter 

as a specific function x (t) that describes the values of that variable at subsequent 
moments )[∈ +∞t 0; .

	 4	 We implicitly assume that the initial stock of technology, i.e. A (0), equals 1. 
However, this assumption has no effect on the generality of further analyzes. A 
similar assumption is adopted for L (0) in equation (2.7).

	 5	 Technical change can be defined (after Solow) as follows: “When we think about 
technical progress in the economist’s abstract way it is only too natural to im-
agine a standard production diagram with inputs measured along the axes and 
a family of equal-output curves of the conventional shape, and to say that when 
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technical progress occurs, the family of equal-output curves shifts in such a way 
that more output can be produced from given inputs or the same output can be 
produced with fewer inputs” (Solow 1963, p. 48). See also Solow (1957).

	 6	 I.e. the rate of such technological change that directly boosts the productivity of 
labour. More on that topic, see e.g. Allen (1975, p. 237) or Tokarski (2009, Chap-
ter 1, Section 1.5).

	 7	 Such expressions as 





H

0
0

 and ∞
∞







H  will denote indeterminate forms like 0/0 

and ∞/∞, and will indicate that the authors use L’Hospital’s rule.
	 8	 ( ) ( )′ − = − <f k k f kE E E MPE 0 results from the fact that output Y can be ex-

pressed as:

( )=Y f k EE ,

		  hence:
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2

.

	 9	 An alternative proof of stability of the non-trivial steady state of the Solow equa-
tion can be found in the study published by Milo and Malaczewski (2005).

	10	 We use here the following property of a multivariate function. If the function 
y = f (x), ( )= … ∈x x x x Rn

n, , ,1 2 , is (firstly) differentiable and (secondly) assumes 

positive values in the set ⊆Z Rn, then for each i = 1, 2, …, n: 
∂
∂

= ∂
∂

y
x

y
xi i

sgn
ln

sgn .

	11	 Section 2.3.2 is based on studies conducted by Tokarski (2008a, 2009) (Chapter 
2, Section 2.5). The possible use of the CES production function in the Solow 
model is discussed e.g. by Klump and Preissler (2000), Klump, McAdam, and 
Willman (2011) and Sasaki (2017). See also Sulima (2011), who analyzes a Non-
neman-Vanhoudt model (representing a generalization of the Solow model) with 
the CES production function.

	12	 Note that at σ =1, the expression 
α α α α

+ −







=
+ −

σ σ

σ

K L K L

1

1

1
11/

 in the CES produc-

tion function represents a weighted harmonic mean of capital and labour inputs 
with weights equal α and 1 − α.

	13	 However, parameter α is identified with the proportion of capital inputs in the 
output in Clark’s marginal theory of distribution.

	14	 Since we assume that technology is described by the equation ( ) =A t egt, we can 
also assume that the total productivity of production factors at the moment t = 
0 equals 1, hence parameter a in the production function (2.37) also equals 1.

	15	 Since it follows from equation (2.38) that α( )∀ > ′ = σ− −k f k akE E E0  1 

α α( )+ − >σ σ− − −
kE 1 0

1
1 , 
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E Esgn sgn
* *

 and 
µ µ
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k yE Esgn sgn
* *

.
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3	 Generalizations of the Solow model 
(the Mankiw-Romer-Weil and 
Nonneman-Vanhoudt models)

3.1  Introduction

This chapter describes generalizations of the Solow model, known in the 
literature, i.e. the Mankiw-Romer-Weil model developed in 1992 and the 
Nonneman-Vanhoudt model proposed in 1996. The Mankiw-Romer-Weil 
model considers human capital accumulation in addition to physical capital 
accumulation.1 Therefore, that model is also known as a model of human 
capital accumulation. The Nonneman-Vanhoudt model is designed to ana-
lyze processes in an economy with a finite number of N stocks of capital 
(including various types of physical, human, social, etc. capital).

Our analysis of the Mankiw-Romer-Weil and Nonneman-Vanhoudt models 
(like the previous analysis of the Solow model) will begin with their purely gen-
eral versions and then will proceed to special cases with the Cobb-Douglas and 
Constant Elasticity of Substitution (CES) production functions. We will also 
analyze the stability of non-trivial steady states of systems of differential equa-
tions that result from the assumptions adopted in the discussed growth models 
(see also Dykas, Sulima and Tokarski, 2008; Dykas, Edigarian and Tokarski, 
2011; Sulima, 2011). We will find the golden rules of capital accumulation that 
(what will be demonstrated) represent simple generalizations of Phelps’ golden 
rules of accumulation from the Solow model of economic growth.

3.2 � The two-capital Mankiw-Romer-Weil model (a model of 
human capital accumulation)

3.2.1  The model with a neoclassical production function

The assumptions listed below underlie the economic growth model analyzed 
in this chapter.2

	 1	 The production process is described by a neoclassical production 
function expressed by the formula:

( )( ) ( ) ( ) ( )=Y t F K t H t E t, , , 	 (3.1)

This chapter has been made available under a CC-BY-NC-ND license.
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where Y, K and E represent (like in the Solow model) the output, stock 
of physical capital and units of effective labour, respectively, and H de-
notes the total stock of human capital consisting of all workers in the 
economy. It is assumed that the production function (3.1), being a gener-
alization of function (2.1), is characterized by the following properties3:

	 i	 Its domain is defined as the set )[ +∞0; 3 and ) )[ [+∞ → +∞F : 0; 0;3 .

	ii	 Function F is differentiable at least twice in the set ( )+∞0; 3.

	iii	 For any ( ) )[∈ +∞K H E, , 0;  3 , the following is true:
	iv	 ( ) ( ) ( )= = =F H E F K E F K H0, , ,0, , ,0 0.

	 v	 ∀ ∈ +∞ = =
→+∞ →+∞

( , , ) (0; )    lim ( , , ) lim ( , , )3K H E F K H E F K H E
K H

 

( ) ( ) ( ) ( ) ( )∀ ∈ +∞ = = = +∞
→+∞ →+∞ →+∞

K H E F K H E F K H E F K H E
K H E

, , 0;    lim , , lim , , lim , ,3 .

	vi	 ( ) ( )∀ ∈ +∞ ∂
∂

∂
∂

∂
∂

>K H E
F
K

F
H

F
E

, , 0;   , , 03 , where subsequent partial de-

rivatives represent the marginal product of physical capital (MPK), 
marginal product of human capital and marginal product of units 
of effective labour (MPE).

	vii	 ( ) ( )∀ ∈ +∞ ∂
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<K H E
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, , 0;   , , 03
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	viii	 For any ( ) ( )∈ +∞ ∂
∂
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→ + → + → +

K H E
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F
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0 0 0
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lim lim lim 0

F
K

F
H

F
EK H E

 (we assume thus that the 

Inada conditions are satisfied).
	ix	 ς ς ς ς ς)[∀ ∈ +∞ ∧ ∀ > =( , , ) 0;   0    ( , , ) ( , , )3K H E F K H E F K H E .

	 2	 An increase in the stock of physical/human capital equals the differ-
ence between investment sKY/sHY in that capital and its depreciation 
δKK/δHH (where sK/sH denotes the rate of investment in physical/human 
capital, and δK/δH represents the depreciation rate of that capital). It 
is assumed that the rates sK, sH, δK i δH belong to the interval (0,1) and 
that ( )+ ∈s sK H 0;1 . Assumption 2 can be expressed using the following 
differential equations:

 δ= −( ) ( ) ( )K t s Y t K tK K 	 (3.2a)

and

 δ= −( ) ( ) ( ).H t s Y t H tH H 	 (3.2b)

	 3	 Units of effective labour change as per equation (2.12a), hence their 
growth rate l equals the total of the Harrodian rate of technological 
progress (g) and the growth rate of the number of workers (n).

Like in the Solow model, let:

=( )
( )
( )

,y t
Y t
L t

 	 (3.3a)
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=( )
( )
( )

k t
K t
L t

 	 (3.3b)

and

=( )
( )
( )

,h t
H t
L t

	  (3.3c)

denote, respectively, the output and the stocks of physical and human capi-
tal per worker, and let:

( ) ( )
( )

=y t
Y t
E t

E , 	 (3.4a)

( ) ( )
( )

=k t
K t
E t

E  	 (3.4b)

and

( ) ( )
( )

=h t
H t
E t

E ,	 (3.4c)

denote the values given above per unit of effective labour. It follows from 
assumption 3 about units of effective labour and equations (3.3a–c) and 
(3.4a–c) that:

 ( )
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= +
y t
y t

g
y t
y t

E

E
,	 (3.5a)
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k t
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k t
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E

E
	 (3.5b)

and

 ( )
( )

( )
( )

= +
h t

h t
g

h t
h t

E

E
.	 (3.5c)

It follows from equations (3.5a–c) that if the variables yE, kE, hE rise/fall, 
then the growth rates y, k, h are greater/less than the Harrodian rate of 
technological progress g. When the analyzed macroeconomic variables ex-
pressed per unit of effective labour remain constant, the growth rates of 
labour productivity and of physical and human capital per worker equal the 
Harrodian rate of technological progress.

Dividing the production function (3.1) by units of effective labour E > 0 
and using assumption (1) viii.), we obtain:
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and this together with equations (3.4a–c) leads to the production function in 
its intensive form described by the formula:

( )( ) ( ) ( )=y t f k t h tE E E, , 	 (3.6)

where f(kE, hE) = F(kE, hE, 1).
Function (3.6) represents a simple generalization of function (2.11) known 

from the Solow model. Consequently, it is characterized by the following 
properties:

a	 Its domain is defined as the set +∞[0; )2 and +∞ → +∞: [0; ) [0; )2f .
b	 The function is differentiable at least twice in the set +∞(0; )2.
c	 ( ) ( ) ( )∀ ∈ +∞ = =k h f h f kE E E E, [0; )    0; ;0 02 .

d	 ( ) ( ) ( )∀ ∈ +∞ = = +∞
→+∞ →+∞

, (0; )     lim , lim ,2k h f k h f k hE E
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E E
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E E .
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f	 For any ( ) ∈ +∞, (0; )2k hE E , the Inada conditions are satisfied, i.e.: 
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= +∞
→ + → +
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0 0
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hkE E hE E
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hkE E hE E
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Differentiating equations (3.4bc) after time t, we obtain:



 
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From the above relation and equation (2.12b), we get:

λ λ= − ∧ = −
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



k t
K t
E t

k t h t
H t
E t

h tE E E E( )
( )
( )

( ) ( )
( )
( )

( ),

and considering equations (3.2ab), we arrive at the following system of dif-
ferential equations:

µ

µ

= −

= −











k t s y t k t

h t s y t h t

E K E K E

E H E H E

( ) ( ) ( )

( ) ( ) ( )
, 	 (3.7)

where µ δ µ δ= + + > = + + >g n g nK K H H0,  0 denotes the rate of physical/hu-
man capital decline per unit of effective labour. System of equations (3.7), 
also known as equations of motion of the Mankiw-Romer-Weil model, rep-
resents a simple generalization of the Solow equation (2.15). Thus, its eco-
nomic interpretation can be reduced to the statement that an increase in the 
stock of physical/human capital per unit of effective labour equals the dif-
ference between investment in physical/human capital per unit of effective 
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labour and capital decline that results from depreciation of physical/human 
capital and from an increase in units of effective labour.

Substituting the production function in its intensive form into system of 
differential equations (3.7), we get:

µ

µ

( )
( )

= −

= −











k t s f k t h t k t

h t s f k t h t h t

E K E E K E

E H E E H E

( ) ( ), ( ) ( )

( ) ( ), ( ) ( )
. 	 (3.8)

We will demonstrate now that system of differential equations (3.8) has two 
steady states: a trivial steady state (0, 0) and a non-trivial steady state in the 
phase space ( )= +∞P 0; 2.

The existence of the trivial steady state results directly from property (c) 
of function (3.6). That point will be ignored in further analyzes (like in the 
case of the Solow model).

The non-trivial steady state solves the system of equations:
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µ
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, 	 (3.9)

where:
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,
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H E E
E E

E
,

,
 make 

(respectively) the productivity of physical capital pK and productivity of hu-
man capital pH depend on inputs of both physical capital kE and human 
capital hE per unit of effective labour.

The Jacobian determinant J  of system of equations (3.9) is defined by the 
formula:
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Since:
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the Jacobian (3.10) satisfies the relation:
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Considering that the production function (3.1) is homogeneous of degree 1 
and given Euler’s homogeneous function theorem, we conclude that for any 

∈ +∞( , , ) (0; )3K H E , the following is true:
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and consequently the Jacobian determinant (3.11) is positive. As a re-
sult, there is a point κ ( )= ,* * *k h PE E   that solves system of equations 
(3.9). The point also represents the steady state of system of differential  
equations (3.8).

As the non-trivial steady state κ of the analyzed system of differen-
tial equations represents a special case of the non-trivial steady state 
of system of differential equations (3.40) known from the Nonneman- 
Vanhoudt model, and that steady state is Lyapunov asymptotically sta-
ble (Section 3.3.1), thus also the analyzed point κ is Lyapunov asymptot-
ically stable.

Obviously, the growth rates of physical capital k k/  and human capital 
h h/  per worker (like in the Solow model) equal the Harrodian rate of tech-
nological progress g in steady state κ, as per equations (3.5bc). It follows 
from equation (3.6) that the long-run output per unit of effective labour 
equals ( )=y f k hE E E,* * * , and the labour productivity rises at the growth rate 
y y/  equal g  as per equation (3.5a).

Moreover, since g nK Kµ δ= + +  and g nH Hµ δ= + + , it follows, from this 
relation and from system of equations (3.9), that the stocks kE

*  and hE
*  can be 

understood as certain implicit functions of investment rates sK, sH, of depre-
ciation rates δK, δH and the growth rate of the number of workers n. Hence, 
the subsequent partial derivatives kE

*  and hE
*  with respect to those rates solve 

the following systems of equations:
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It follows from equations (3.13abcde) that:
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This leads to the conclusion that the higher the rates of investment in 
physical capital sK or human capital sH or the lower the depreciation rates of 
those stocks δK and δH or the lower the growth rate of the number of work-
ers n, the greater the stocks kE

*  and hE
*  in the long-run Mankiw-Romer-Weil 

equilibrium, and (thus) the higher the levels reached by long-run growth 
paths of analyzed stocks of capital per worker.

Moreover, as the production function in its intensive form (3.6) has 
positive partial derivatives with respect to kE

*  and hE
*  due to property (e), the 

signs of partial derivatives yE
*  with respect to investment rates sK, sH, depre-

ciation rates δK, δH and growth rate of the number of workers n are identical 
with the signs of partial derivatives kE

*  and hE
* . Economic conclusions drawn 

from the signs of partial derivatives yE
*  with respect to sK, sH, δK, δH and n 

are similar to the conclusions drawn from the signs of partial derivatives kE
*  

and hE
* .

3.2.2  A model with the Cobb-Douglas production function

It is assumed in the original Mankiw-Romer-Weil model (i.e. a model with 
the Cobb-Douglas production function) that the production process is de-
scribed by an extended Cobb-Douglas function expressed by the formula:

( ) ( ) ( ) ( ) ,1Y t K t H t E tK H K H( ) ( ) ( )= α α α α− −  	 (3.14)

where ,  ,  1 (0;1)K H K Hα α α α( )− − ∈ , and assumptions 2–3 underlying 
the model from Section 3.2.1 are satisfied. Parameters αK and αH in the 
production function (3.14), like parameter α in the original Cobb-Douglas 
production function, represent the elasticities of output Y with respect to 
the stock of physical capital K and human capital H.
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As function (3.14) represents a simple generalization of the Cobb-Douglas 
function (2.19), it satisfies all the conditions applicable to the production 
function (3.1).

Dividing the production function (3.14) by E > 0, we get the production 
function in its intensive version expressed by the formula:

( ) ( ) ( ) .y t k t h tE E
K

E
H( ) ( )= α α 	 (3.15)

Substituting relation (3.15) into (3.8), we obtain the following system of ordi-
nary differential equations:
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The non-trivial steady state (the trivial steady state is ignored) of system of 
differential equations (3.16), i.e. κ ∈ P, represents a solution of the system of 
equations described by the formula:
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that can also be expressed as a matrix:
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Using Cramer’s rule, we find that the following equations are solved in point 
κ ( )= ,* *k hE E :
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because µ δ= + +g nK K  and µ δ= + +g nH H . Since it follows from equation 
(3.15) that:

α α= +ln ( ) ln ( ) ln ( ),y t k t h tE K E H E

then (in particular):

α α= +ln ln ln ,* * *y k hE K E H E

and this together with relations (3.18a,b) leads to:

α
δ

α
δ

α
= + +

+
+ +

− α−
ln

ln ln

1
.*y

s
g n

s
g n

E

K
K

K
H

H

H

K H

	 (3.18c)

Equations (3.18a–c) lead to the following conclusions. First, partial loga-
rithmic derivatives kE

* , hE
*  and yE

*  with respect to investment rates sK and sH 
are positive, and hence the higher those rates, the higher levels are reached 
by long-run growth paths of the stocks of physical and human capital per 
worker and of labour productivity. Second, partial derivatives of the ana-
lyzed logarithms with respect to the deprecation rates of various stocks of 
capital and the growth rate of the number of workers are negative, and that 
leads to the conclusion that high values of rates δK, δH or n are accompanied 
by trajectories of k, h i y situated at low levels in a long term. Third, the signs 
of partial derivatives kEln * , hEln *  and yEln *  with respect to the elasticity αK 
and αH are ambiguous, because e.g.:
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3.2.3  A model with the CES production function

Let us consider now the Mankiw-Romer-Weil model of human capital accu-
mulation with the CES production function.6 We assume that the produc-
tion process is described by a function that can be described as an extended 
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CES production function (2.37), expressed by the equation (with previous 
symbols preserved):

α α α α( )( ) ( ) ( )( )= + + − −σ σ σ σ− − − −
( ) ( ) ( ) 1 ( ) ,

1/
Y t K t H t E tK H H K 	 (3.19)

where α α α α( )− − ∈,  ,  1 (0;1)K H H K , and σ ∈ (0;1). Parameters α α, K H  and 
σ are interpreted in terms of economics like parameters α and σ in function 
(2.36). Additionally, the production function (3.19) has similar properties as 
functions (2.36 and 2.37), because it represents its extension.

Dividing equation (3.19) by units of effective labour E > 0, we get the 
relation:

α α α α( )( ) ( )= + + − −σ σ σ− − −
( ) ( ) ( ) 1 .

1/
y t k t h tE K E H E K H  	 (3.20)

Substituting function (3.20) into the system of equations of motion in the 
Mankiw-Romer-Weil growth model, we obtain the system of differential 
equations:
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(3.21)

The system will be analyzed in the phase space ( )= +∞P 0; 2.
Consequently, there exists a steady state κ ∈ P of system of differential 

equations (3.21). First, let us demonstrate that system of differential equa-
tions (3.21) has exactly one steady state. The steady state κ ( )= ∈,* *k h PE E  
represents a solution of the following system of equations:
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that can also be expressed as follows:
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hence, system of equations (3.23) has a solution.
Using the Grobman-Hartman theorem (Ombach, 1999, theorem 6.2.1), it 

can be demonstrated that the steady state is asymptotically stable.7 For this 
purpose, we will show that all eigenvalues have real parts that are negative 
in the Jacobian matrix J of system of equations (3.23). The matrix is de-
scribed in any point ( ) ∈k h PE E,  by the equation:
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	  (3.24)

where = ∂
∂

mpk
y
k

E

E
 and = ∂

∂
mph

y
h

E

E
 denote (respectively) the MPK and of hu-

man capital per unit of effective labour (equal MPK and MPH). However, 
note that in the steady state κ (when Θ = Θ =k h 0), sKpK = μK and sHpH = μH 
(where pK = yE/kE and pH = yE/k = hE represent productivities of the physical 
and human capitals). Matrix (3.24) can be described in this point using the 
formula:

κ
( )

( )
=

−

−













( ) .J

s mpk p s mph

s mpk s mph p

K K K

H H H
	 (3.25)

Eigenvalues of matrix (3.25) solve the equation: κ( )−det ( )J vI , where I de-
notes an identity matrix. Hence:

κ( )
( )

( )
− =

− −

− −


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
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




det ( ) .J vI
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s mpk s mph p v

K K K

H H H



54  Generalizations of the Solow model

Consequently, the sought eigenvalues u represent a solution of the equation:

( )( )( ) ( )− − − − − ⋅ =s mpk p v s mph p v s s mpk mphK K H H K K 0,

which leads to the equation:

( )( ) ( )
( )

+ − + −
− ⋅ + ⋅ − =
v s p mpk s p mph v

s s mpk p mph p p p
K K H H

K H H K K H 0.

2
 	 (3.26)

The discriminant Δ of equation (3.26) is expressed by the formula:

( )( ) ( ) ( )∆ = − + − + ⋅ + ⋅ −s p mpk s p mph s s mpk p mph p p pK K H H K K H K K H4 ,
2

thus:

( )( ) ( ) ( )∆ > − + − + ⋅ + ⋅ >s p mpk s p mph s s mpk p mph pK K H H K K H K4 0.
2

Consequently, both eigenvalues of the Jacobian matrix (3.25) are real num-
bers. Moreover, the values satisfy the following relations as per Vieta’s 
formulas8:

( )( ) ( )+ = − − + − <v v s p mpk s p mphK K H H 01 2  

and

( ) ( )= ⋅ + ⋅ − > ⋅ + ⋅ >v v s s mpk p mph p p p s s mpk p mph pK H H K K H K H H K 0,1 2

hence, the values are negative numbers. It follows from the above conclusion 
and from the Grobman-Hartman theorem that the steady state κ of the ana-
lyzed version of Mankiw-Romer-Weil model is asymptotically stable.

However, let us return to system of equations (3.23) that leads to the con-
clusion (substantiated by the former discussion) that certain implicit func-
tions exist θ θ( )= ,* *q qk k K H  and θ θ( )= ,* *q qh h K H  that solve that system of 
equations. Moreover, derivatives of those functions (with respect to θK, θH) 
solve the following systems of equations:
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 	 (3.27a)
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and
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 	 (3.27b)

It follows from equation (3.27a) that:
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 	 (3.28a)

and
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 	 (3.28b)

It is demonstrated by analogy that:

θ
∂
∂

> 0
*qk

H
 	 (3.28c)

and

θ
∂
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> 0.
*qh

H
 	 (3.28d)

It follows from substitutions θ
δ
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+ +
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and
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and from the above results and equations (3.28a–d), we get:
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The above inequalities lead to similar conclusions in terms of economics as 
corresponding inequalities from the Mankiw-Romer-Weil model with a gen-
eral production function or with the Cobb-Douglas production function.

3.2.4 � Golden rules of accumulation in the Mankiw-Romer-Weil 
model

A single stock of capital was analyzed in the Solow model (the stock of phys-
ical capital) and hence only one investment rate was analyzed, namely the 
rate of investment in physical capital s. Two stocks of capital are considered 
in the Mankiw-Romer-Weil model (physical and human) and consequently 
two investment rates exist – the rate of investment in physical capital sK and 
the rate of investment in human capital sH. The golden rule of capital accu-
mulation was defined in the Solow model as a rate of investment s that leads 
to a maximum consumption per unit of effective labour (the model from 
Section 2.4), while in the model analyzed in the current section, the golden 
rule of capital accumulation can be defined (by analogy) as a combination 
of the rates sK and sH that leads to a maximum value of consumption per 
unit of effective labour.

It follows from the assumptions underlying the Mankiw-Romer-Weil 
model that an sK fraction of output in an economy is allocated to investment 
in physical capital, and an sH fraction is allocated to investment in human 
capital. The fraction of output available for consumption equals s sK H1– – .  
Hence, consumption at any time )[∈ +∞t 0,  can be expressed using the for-
mula (see also (2.3b) in Chapter 2):

( ) ( ) ( )=C t s s Y tK H1– – ,

or, dividing the above equation by units of effective labour E > 0:

( ) ( ) ( )=c t s s y tE K H E1– – ,
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where cE denotes (like in the model from Section 2.4) the consumption per 
unit of effective labour. Since in the Mankiw-Romer-Weil model ( ) →y t yE E

*  
(at → +∞t ), then ( )c tE  approaches cE

*  described by the formula:

( )=c s s yE K H E1– – .* *  	 (3.29)

Taking the long-term consumption per unit of effective labour cE
*  from 

the Mankiw-Romer-Weil model with the Cobb-Douglas production func-
tion (Section 3.2.2, equation (3.18c)), the relation (3.29) can be expressed as 
follows:

( ) ( ) ( )= Ω
α

α α
α

α α1– – ,*
1– – 1– –c s s s sE K H K

K
K H H

H
K H  	 (3.30)

δ δ( ) ( )
Ω =

+ + + +
>α

α α
α

α α

where
1

0
1– – 1– –g n g nK

K
K H H

H
K H

Since both investment rates sK and sH as well as their total must belong to 
the interval (0,1), determination of the golden rule of capital accumulation 
in the Mankiw-Romer-Weil model can be reduced to finding a combination 
of the rates sK and sH that maximizes function (3.30), i.e. leads to maximum 
values of that function within a right-angled triangle with vertices (0,0), 
(0,1), (1,0). On the legs of that triangle, we get:
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and on the hypotenuse:
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Function (3.30) assumes positive values inside the triangle. Its maximization 
is thus identical with the maximization of the following function:

α
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	  (3.31)

First-order conditions for the maximization of function (3.31) are described 
by the formulas:
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	  (3.32a)
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and
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	  (3.32b)

and second-order conditions are reduced to the requirement that the Hes-
sian matrix:
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be negative-definite. The Hessian H  can be described using the formula:
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implying that its principal minors (m1 and m2) are expressed by the formulas:
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Consequently, the Hessian H  is negative-definite.
Transforming the first-order conditions, it can be demonstrated that the 

system of equations consisting of (3.32ab) has exactly one solution in point 
α α( ) ( )=, ,s sK H K H . This means that the golden rule of capital accumulation 

in the Mankiw-Romer-Weil model is given by investment rates (in the stocks 
of capital distinguished in that model) that equal the elasticities of output 
with respect to those stocks. It is a simple generalization of Phelps’ golden 
rules of capital accumulation from Section 2.4.
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3.3  The multi-capital Nonneman-Vanhoudt model

3.3.1  The model with a neoclassical production function

The economic growth model analyzed in this section is based on the follow-
ing assumptions about long-time processes in the economy9:

	 1	 The value of output Y depends on N various stocks of capital K1, K2, …, 
KN and on units of effective labour E. The relations between capital in-
puts and the value of output are described by a neoclassical production 
function expressed by the formula:

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )= κ =Y t F t E t F K t K t K t E tN, , ,..., , ,1 2 	 (3.33)

where κ ( ) )[= ∈ +∞, ,..., 0,1 2K K KN
N  denotes a combination of inputs 

of various stocks of capital. It is assumed that function F, by analogy 
with the production functions (2.1) and (3.1), satisfies the following 
assumptions10:
	 i	 The domain of this function is defined as the set )[ +∞ +N0, 1 and F : 

) )[ [+∞ → +∞+N0, 0,1 .
	ii	 The production function (3.33) is differentiable at least twice in its 

domain.
	iii	 κ ) )[ [∀ ∈ +∞ ∧ ∀ ∈ +∞0,     0,EN  it is true that:

       
   



( ) ( ) ( )
( )

= = =
= =

F K K E F K K E F K K E
F K K K

N N

N

0, , , ,   ,0, , ,   , , ,0,  
, , , ,0 0

2 1 1 2

1 2
.

	iv	 In addition11:

       κ κ κ( ) ( ) ( ) ( )∀ ∧ ∈ +∞ ∧ ∈ +∞ = = +∞
→+∞ →+∞

0, 0,   lim , lim , .i E F E F EN

Ki E

	 v	 The first partial derivatives of function (3.33) in the set ( )+∞ +N0, 1 are 
positive, hence:

       ∀ = ∂
∂

∧ = ∂
∂

>i
F
K

F
E

i
i

MPK     MPE 0,

where MPKi is the marginal product of the ith stock of capital, and 
MPE (like previously) is the marginal product of units of effective 
labour.

	vi	 κ ( ) ( )∀ ∧ ∈ +∞ ∧ ∀ ∈ +∞ ∂
∂

< ∧ ∂
∂

<    0,     0,   0    0
2

2

2

2i E
F

K
F

E
N

i
, i.e. function 

F is characterized by diminishing marginal productivities of each 
stock of capital and of units of effective labour.

	vii	 The Inada conditions are satisfied, i.e.:

      κ ( ) ( )∀ ∧ ∈ +∞ ∧ ∀ ∈ +∞ = = +∞
→ + → +

    0,     0,     lim MPK lim MPE
0 0

i EN

Ki
i

E
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and

      κ∀ ∧ ∈ +∞ ∧ ∀ ∈ +∞ = =
→+∞ →+∞

    (0, )     (0, )    lim MPK lim MPE 0i EN

Ki
i

E

	viii	 Constant returns to scale take place in the production process, 
hence:

       κ ς ςκ ς ς κ( ) ( ) ( ) ( )∀ ∈ +∞ ∧ ∀ ∈ +∞ ∧ ∀ > =0,     0,      0    , , .E F E F EN

	 2	 An increase in the ith stock of capital (for I = 1, 2, …, N) is described by 
the following differential equation:

 δ( ) ( ) ( )= – ,K t sY t ti i i 	 (3.34)

where si denotes the rate of investment in the ith stock of capital, and δi 

is the depreciation rate of that stock. It is assumed about the rates si and 

δi that δ ( )∀ ∈  , 0,1i si i  and ∑ ( )∈s

i

i 0,1 .

	 3	 The trajectories of technology and of the number of workers are de-
scribed like in the Solow model from Chapter 2. Thus, the growth path 
of units of effective labour is described by equation (2.12a).

It is clear that a model of economic growth with these parameters repre-
sents a multi-capital generalization of both the single-capital economic 
growth model proposed by Solow and the two-capital model proposed by 
Mankiw-Romer-Weil.

Let

( ) ( ) ( )=y t Y t L t/  	 (3.35a)

denote labour productivity and

( ) ( ) ( )∀ =i k t K t L ti i    /  	 (3.35b)

the stock of ith capital per worker. Let:

( ) ( ) ( )=y t Y t E tE /  	 (3.36a)

denote the output per unit of effective labour, and

( ) ( ) ( )∀ =i k t K t E tEi i    /  	 (3.36b)

ith capital per unit of effective labour. Let us also express by κE:

κ ( )= , , , .1 2k k kE E E EN
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any combination of capital inputs per unit of effective labour in the set 

)[ +∞ N0, .
From equations (3.35ab), (3.36ab) and the assumption that units of effec-

tive labour rise at growth rate λ (representing the total of the Harrodian rate 
of technological progress g  and the growth rate of the number of workers 
n), we get:

 

 ( )
( )

( )
( )

( )
( )

( )
( )

= + ∧ ∀ = +
y t
y t

g
y t
y t

i
k t
k t

g
k t
k t

E

E

i

i

Ei

Ei
      . 	 (3.37)

Equation (3.37) is interpreted in terms of economics by analogy with equa-
tions (3.5a–c).

From the assumption that the function F is homogeneous of degree 1 at 
ς = >1/ 0E , we get the production function in its intensive form expressed 
by the formula:

κ κ( )=








 =( )

( )
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,1 ( ) .y t F
t

E t
f tE E  	 (3.38)

It follows from assumptions (i–viii) about the production function (3.33) 
that function (3.38) is characterized by the following properties:

a	 Its domain is defined as the set )[ +∞ N0,  and ) )[ [+∞ → +∞f N: 0, 0, . Addi-
tionally, the analyzed function is differentiable at least twice in the set 

( )+∞ N0, .

b
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k
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, where mpkEi denotes 

the marginal product of the ith stock of capital per unit of effective 
labour (equal MPKi).

e	 κ ( )∀ ∧ ∈ +∞ = +∞ ∧ =
→ + →+∞

    0,   lim      lim 0
0

i mpk mpkE
N

kEi
Ei

kEi
Ei .

f	 It follows from assumption (viii) and from Euler’s homogeneous 
function theorem that:

∑κ κ ( )∀ ∈ +∞ ∧ ∈ +∞ = = + ⋅(0, )     (0, )    ( , ) MPK MPE .E Y F E
i

K EN
i i
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Dividing the above equation by units of effective labour and consider-
ing that for each i (from 1 to N) mpki = MPKi, we get:

∑κ κ( ) ( ) ( )∀ ∈ +∞ = = +0,     MPEy f
i

mpk kE
N

E E i i

hence (first)

∑κ κ( ) ( ) ( )∀ ∈ +∞ >0,     f
i

mpk kE
N

E i i

and (second) for any i = 1, 2, …, N it is true that:

>p mpki i .

Consequently, the productivity of the ith stock of capital (pi = Y/Ki = yE/
KEi) is greater than the marginal product of that capital (MPKi = mpki).

Differentiating equation (3.36b) after time )[∈ +∞t 0, , we get:



 

∀ = −    ( )
( )
( )

( )
( )

( ).i k t
K t
E t

E t
E t

k tEi
i

Ei

Considering that (as per assumption 3)  λ=/E E  and given equation (3.34), 
we obtain the relation:

 µ∀ =    ( ) ( ) – ( ),i k t s y t k tEi i E i Ei  	 (3.39)

where µ δ= + +g ni i  denotes the rate of decline of the ith capital per unit of 
effective labour. System of differential equations (3.39) represents a general-
ization of system of equations of motion (3.7) from the Mankiw-Romer-Weil 
model. Therefore, each of these equations can be economically interpreted 
so that an increase in the ith stock of capital per unit of effective labour ( )kEi  
equals the difference between investment (siyE) in that stock and its decline 
µ( )ki Ei , resulting both from depreciation of that stock of capital δ( )ki Ei  and 

from an increase in units of effective labour ( )( )+g n kEi .
Substituting the production function in its intensive form (equation 3.38) 

into system of equations (3.39), we reduce it to the following system of dif-
ferential equations:

 κ µ( )∀ =    ( ) ( ) – ( ).i k t s f t k tEi i E i Ei  	 (3.40)

In phase space )[= +∞P N0, , system of equations (3.40) has both 
a trivial steady state (0, 0, …, 0) and a non-trivial steady state 

κ ( ) ( )= ∈ +∞, , , 0,*
1

*
2

* *k k kE E E EN
N .
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In phase space P, the non-trivial steady state of system of differential 
equations (3.40) represents a solution of the following system of equations:

κ µ κ µ( ) ( )∀ ψ = =    , , – 0.i s s pi E i i i i E i  	 (3.41)

The Jacobian J  of system of equations (3.41) is defined by the relation:
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The above Jacobian can also be expressed as follows, as per equation (3.41):
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	  (3.42)

The following is true for each i = 1, 2, …, N in phase space P:
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It follows from equations (3.43ab) that Jacobian (3.42) can be expressed as 
follows:
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hence:
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Given that for each i = 1, 2, …, N 
κ( )

=

∂
∂mpk

p

f
k

k

f
i

i

Ei
Ei

E
, and considering prop-

erty ( f ) of the production function in its intensive form (2.38), it follows that 

∑
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∂ < 1

mpk
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k
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i

i

i

i Ei
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E
, and thus Jacobian (3.44) is positive/negative for 

an even/odd N in any point κ ∈ PE . This means that system of differential 
equations (3.40) has a non-trivial steady state κ ∈* PE  that solves system of 
equations (3.41).

It also follows from assumption (viii) about production function F and 
from property (d) of the production function in its intensive form f that the 
solution is unique.
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We will now demonstrate that the point κ ∈* PE  is Lyapunov asymptot-
ically stable (proof given by Dykas, Edigarian and Tokarski (2011)).12 The 
following function will be used for this purpose:

∑κ ρ ( )( ) = 





– ,* 2

V
i

k kE i Ei Ei  	 (3.45)

where ρ = ∂ ∂ >f k
s

i
Ei

i

/
0. Function (3.45) satisfies conditions (i–ii) applicable 

to the definition of a strong Lyapunov function.13 To verify that function f 
is decreasing in its solution, it is enough to demonstrate that an open neigh-
bourhood Π ⊂ P of the steady state κ ∈ Π*

E  exists such that the following 
inequality is true:

∑κ Π κ ρ κ µ( )( ){ } ( )( )∀ ∈ <    – – 0.* *

i
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A Taylor series expansion of function f in the neighbourhood of point 

E
*κ ∈ Π leads to:
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Thus, inequality (3.46) can be expressed as:
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It follows from the definiteness of function ε and from the relation: 

ρ κ( )= ∂
∂

*s
f

k
i i

Ei
E  that inequality (3.46) is satisfied if the following inequality 

is true:

∑ ∑ρ ρ µ( )( ) ( )−












 < −






*

2

* 2

i
s k k

i
k ki i Ei Ei i i Ei Ei  	 (3.48)



66  Generalizations of the Solow model

It follows from property ( f ) of the production function in its intensive form 

(2.38) that: ∑ < 1
i

mpk
p

i

i
, hence in the steady state κ ∈ Π*

E  we get the ine-

quality: ∑
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Using the above inequalities, we can determine the majorant for the left-
hand side of inequality (3.48):
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We demonstrated that the function V realizes a strong Lyapunov function 
for problem (3.41), and this combined with the Lyapunov theorem implies 
the asymptotic stability of point κ ∈* PE .

Let us proceed to the economic properties of point κ ∈* PE . Since the point 
is characterized by Lyapunov asymptotic stability, it represents the point of 
stable long-run equilibrium in the Nonneman-Vanhoudt model. Moreover, 
since at → +∞t  the combination of capital inputs per unit of effective labour 
κ κ( ) → *tE E, then ( ) → *y t yE E, where as per equation (3.38) we get:

( )=y f kE E .* *  	 (3.49)

Since in the steady state of the Nonneman-Vanhoudt model  =y yE E/ 0 and 
∀ i = 1, 2, …, N  =k kEi Ei/ 0, it follows as per equation (3.37) that the growth 
rates of labour productivity y y/  and of various stocks of capital per worker 
k ki i/  equal the Harrodian rate of technological progress g.

Let us now return to system of equations (3.41). It follows from that sys-
tem of equations that long-term stocks of various capitals per unit of effec-
tive labour in point κ ∈* PE  represent implicit functions of the combination 
of ( )= …s s s sN, , ,1 2  and µ µ µ µ( )= …, , ,1 2 N . Hence:

µ( )∀ =    , .* *i k k sEi Ei 	 (3.50)
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Subsequent partial derivatives (for i, j = 1, 2, …, N, where ≠i j ) of function 
(3.50) solve the following systems of equations:
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It follows from equations (3.51a) and (3.44) that:
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and by analogy:
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and
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hence:

∑
∑µ

∂
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=
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<≠k
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 	 (3.52c)

and similarly:

∑
∑

µ
∂
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=
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<≠k
mpk
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s p
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mpk
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 	 (3.52d)

It follows from relations (3.52ab) that the higher the rate of investment in the 
ith or in the jth stock of capital (where ≠i j ), the higher values are achieved 
by kEi

*  and the higher level is reached by the growth path of the ith stock of 
capital. Moreover, calculating exact differential of the production function 
in its intensive form (3.38), we get:

∑=dy mpk dkE

i

i Ei , 	 (3.53)

and it can be concluded from this relation and from prior discussion that 
an increase in one of the investment rates si entails an increase in each of 
the stocks of capital per unit of effective labour in the combination κ*

E . This 
causes, as per equation (3.53), an increase in yE

*  and labour productivity 
shifts to a long-term growth path situated on a higher level.

Since (for each i = 1, 2, …, N) µ δ= + +g ni i , it follows from relations (3.52cd) 

that: 
δ

∀ ∂
∂

<  0
*

i
kEi

i
, 

δ
∀ ∧ ≠ ∂

∂
<,       0

*
i j j i

kEi

j
 and ∀ ∂

∂
<i

k
n
Ei  0
*

. This implies as per 

equation (3.53) that 
δ

∀ ∂
∂

<  0
*

i
yE

i
 and 

∂
∂

<y
n
E 0
*

. Hence, the higher the depreci-

ation rates of various stocks of capital or the higher the growth rate of the 
number of workers, the lower the various stocks of capital and output (per 
unit of effective labour) in a long-run equilibrium of Nonneman-Vanhoudt, 
and also consequently the lower the levels of long-term trajectories of labour 
productivity and of various stocks of capital per worker.
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These conclusions represent a generalization of similar conclusions drawn 
from the Solow and Mankiw-Romer-Weil models.

3.3.2  A model with the Cobb-Douglas production function

Like in the original model proposed by Nonneman and Vanhoudt, let us 
introduce an N + 1-factor, extended Cobb-Douglas production function ex-
pressed by the formula:

∏( ) ( )( ) ( ) ( )=














∑α α
,

1–
Y t K t E t

i

i
i

i
i  	 (3.54)

where Y, K1, K2, …, KN, E denote (like previously) the value of output and 
inputs of various stocks of capital and units of effective labour, and pa-
rameters αi represent the elasticities of output with respect to various in-
puts of capital. It is assumed about these parameters that α∀ ∈  (0,1)i i  and 

∑α ( )∈ 0,1

i

i . The production function (3.54) represents an extension of the 

production functions (2.19) and (3.14) and as such satisfies assumptions  
(i–viii) applicable to the production function (3.33).

Additionally, assumptions 2–3 underlying the model from Section 3.3.1 
are regarded as satisfied.

Dividing the production function (3.54) by units of effective labour E > 
0, we get:

∏( )( ) ( )= α
.y t k tE

i

Ei
i  	 (3.55)

Substituting equation (3.55) into system of differential equations (3.40), we 
arrive at differential equations:

 ∏ µ( )( ) ( ) ( )∀ = α
  – .i k t s k t k tEi i

l

El
l

i Ei  	 (3.56)

It is obvious that the system of differential equations has a trivial steady 
state that will be ignored in further analyzes.

The non-trivial steady state κ ∈* PE  represents a solution of the following 
system of equations:

∏ µ
∀ =α α

≠

  ,1– –
i s k k

s
i Ei

i

j i

Ej
j i

i
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or
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 	 (3.57)

Subtracting equation Nth from ith equation (for i = 1, 2, …, N − 1), we get:

µ µ
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
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
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i
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N
EN  	 (3.58)

Substituting equation (3.58) into the last equation in system (3.57), we get:
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 	 (3.59)

After several transformations, we obtain from equations (3.58 and 3.59):
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 	 (3.60)
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Taking the logarithm of the production function in its intensive form (3.55), 
we get that for each )[∈ +∞t 0, :

∑ α( )( ) ( )=ln ln ,y t k tE

i

i Ei

and thus in particular at → +∞t :

∑ α( )=ln ln* *y kE

i

i Ei

Substituting formula (3.60) into the above equation and performing some 
elementary transformation, we arrive at the relation:

∑
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α
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α
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i

i
i

i

i
i

 	 (3.61)

Equations (3.60 and 3.61) give various stocks of capital per unit of effec-
tive labour and the output per unit of effective labour in the Nonneman-
Vanhoudt model with the Cobb-Douglas production function. An analysis 
of those equations clearly indicates that the signs of derivatives kEi

*  and yEi
*  

with respect to investment rates si, depreciation rates δi and growth rate of 
the number of workers n are identical as in the model from Section 3.3.2.

3.3.3  A model with the CES production function

Another version of the Nonneman-Vanhoudt model to be analyzed in this 
chapter includes the CES production function expressed by the formula14:

∑ ∑α α( )( ) ( )= +




























σ σ

σ

( ) ( ) 1– ( ) ,
– –

–1/

Y t K t E t

j

j j

j

j  	 (3.62)

where the variables Y, K1, K2, …, KN and E have the same meanings as in the 
previously discussed versions of the Nonneman-Vanhoudt model, and the 
parameters α1, α2, …, αN and σ are the same as in the CES function in the 

Solow or Mankiw-Romer-Weil model. Thus, it is assumed that each of the 

parameters αj belongs to the interval (0,1), ∑α ( )∈ 0,1

j

j  and σ ( )∈ +∞0, .
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The remaining assumptions underlying the model analyzed here are iden-
tical with assumptions 2–3 underlying the model from Section 3.3.1.

Dividing both sides of the CES function (3.62) by E > 0, we obtain the 
production function in its intensive version expressed by the formula:

∑ ∑( )( )( )= κ = α + α














σ

σ

( ) ( ) 1– ,
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–1/

y t f k tE E

j

j Ej

j

j  	 (3.63)

where ( ) ( )κ = ∈ = +∞k k k PE E E EN
N, , , 0,1 2  denotes a combination of in-

puts per unit of effective labour in phase space P. Substituting relation (3.63) 
into system of differential equations (3.39), we obtain the following form of 
that system of equations:

 ∑ ∑α α µ( )( )∀ = +














σ
σ

    ( ) 1– – ( ).–
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j k s k t k tEj j

l

l El

l

l j Ej  	 (3.64)

We will demonstrate that (first) system of differential equations (3.64) has a 
steady state in phase space ( )= +∞P N0,  and (second) that the steady state is 
asymptotically stable.

System of equations (3.64) can be reduced to a system of equations in the 
following form:

κ µ κ µ( ) ( )∀ ψ =    , , – ,j s s pj E j j j j E j, 	 (3.65)

where κ κ( ) ( )∀ =    /j p f kj E E Ej  denotes the productivity of jth stock of 
capital. Since system of equations (3.65) represents a special case of sys-
tem (3.41), its Jacobian is expressed by equation (3.44). This means that the 
Jacobian has a nonzero value for any κ ∈ PE , and thus system of equations 
(3.65) has a solution. This leads to the conclusion that system of differential 
equations (3.64) has a non-trivial steady state κ ∈* PE .

Jacobian matrix J of system of differential equations (3.64) is expressed 
by the formula:
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� � � �
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In the steady state κE
*  for each j = 1, 2, …, N, we get: µ = s pj j j, hence the 

matrix can be expressed by the formula:
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	  (3.66)

Eigenvalues υ of matrix (3.66) solve the equation:

( ) =J vIdet – 0,

where I denotes an identity matrix. Since:
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hence:
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thus:
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so that eigenvalues υ of Jacobian matrix (3.66) solve the solution:
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–1 1– 0. 	 (3.67)

We will demonstrate now that eigenvalues υ represent real numbers. An 
indirect proof will be provided for this purpose (see Dykas, Sulima and 
Tokarski (2008), see also Sulima (2011) and a similar proof for a gravity 
model of economic growth in the study by Mroczek, Tokarski and Trojak 
(2014)).

Equation (3.67) is true if and only if:

∑
+

=p

mpk
v

s mpkj
j

j j j

1
1. 	 (3.68)

Let us assume then that the roots of equation (3.68) represent certain com-
plex numbers in the form:

= +v a bi, 

where ∈a b R,  and =i –1. Hence, equation (3.68) can be expressed by the 
formula:

∑
+ +
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1
1. 	 (3.69)
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As every complex number z satisfies the relation:

=
z

z

z

1
,2

where =z a bi–  is a complex conjugate of z, so that we get as per quotation 
(3.69):
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which leads to the conclusion that b = 0. Hence, all eigenvalues υ of Jacobian 
matrix J are real numbers. Consequently, equation (3.69) can be expressed 
as follows:
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Another indirect proof will be provided to demonstrate that eigenvalues υ=a 
are negative. Let us now assume that ≥a 0. Then, as per (3.70):
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which is inconsistent with equation (3.70). This means that eigenvalues υ < 0.
As per the Grobman-Hartman theorem, the steady state κE

*  of system 
of differential equations (3.70) in the Nonneman-Vanhoudt model with the 
CES production function is asymptotically stable.

The partial derivatives of implicit functions µ= ( , )* *k k sEj Ej , for subsequent 
j = 1, 2, …, N, and µ= ( , )* *y y sE E  resulting from system of equations (3.65) be-
have identically as the corresponding partial derivatives of system of equa-
tions (3.41) – see relations (3.52a–d). Therefore, their interpretation in terms 
of economics is identical.

3.3.4 � Golden rules of accumulation in the Nonneman-Vanhoudt 
model

The golden rules of capital accumulation are defined in the Nonneman- 
Vanhoudt model as a combination of investment rates = ∈( ,..., ) (0,1)1 1s s s sN

N,  
where the sum of those investment rates also belongs to the interval (0,1) 
that leads to a maximum long-term consumption per unit of effective labour 
cE

*  (Dykas, Sulima and Tokarski 2008). That consumption value, like in the 
Solow or Mankiw-Romer-Weil model, can be expressed as follows:
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Taking the long-run output per unit of effective labour from equation (3.61), 
i.e. from the original version of the Nonneman-Vanhoudt model with the 
Cobb-Douglas production function, we get:
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where ∏µΩ =
∑
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. It follows from equation (3.71) that:
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∑( ) ( ) ( )∀ ∈ ∧ ∈ >s s c si
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hence, the maximization of function ( )sEc*  with respect to s (at limitations 
imposed on subsequent si) is identical with the maximization of function v(s) 
expressed by the formula:
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First-order conditions for the maximization of function (3.72) can be re-
duced to:
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and the second-order condition is satisfied when the Hessian:
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where 

∑
=









>a

s
i

i

1

1–

12  and 
∑

α

α

∀ =








>i b

s

i
i

i
i i

   

1–

0
2

 is negative-definite 

at least in the point in which condition (3.73) is satisfied.
Subsequent principal minors mi (for i = 1, 2, …, N) of the Hessian H  can 

be expressed as follows:

i m

a b a a

a a b a

a a a b

b b

b b

a a a b

i

i

i

i

i

i

   

– –                         ... –

– –            ...

                             

–

– –                          ... –

–1

–    0       ... –

0 –      ...

           

–

         ...  

1

2

1

2

� � � �

� � � �

( )
( )

( )

( )

∀ =

+

+

+

=

+

b

a b a b a b

b

a b a b a
b

i

j

j

i

i

j

j

j
j

–1

1 0        ... –1

0  1         ...
           

–1

/   /   ...   / 1

–1

1      0       ... 0

0     1       ...
             

0

/   /       ...  
1

1

,

1 2

1 2

� � � �

� � � �

∏

∏

∑

( )

( )

=

+

=









+

therefore:

∏ ∑( )∀ =






















+















    –1
1

1 .i m b a
b

i
i

j

j

j
j



Generalizations of the Solow model  83

Since the expression ∏ ∑
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1
1  is positive, the odd principal 

minors mi of the Hessian H  are negative, and the even principal minors 
are positive. Consequently, the Hessian is negative-definite, i.e. the second-
order condition for the maximization of function v(s) is satisfied.

First-order conditions (3.73) can be reduced to the following linear system 
of equations:
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Using Cramer’s rule, we can demonstrate that system of equations (3.74) 
is solved by a combination of investment rates α α α( )= ∈, , , (0,1)1 2s N

N.  
Hence, Phelps’ golden rule of accumulation in the Nonneman-Vanhoudt 
model is a combination of investment rates that equals the combination of 
output elasticities with respect to various inputs of capital. This rule repre-
sents a generalization of Phelps’ golden rules from the Solow and Mankiw-
Romer-Weil models.

3.4  Conclusions

The analyzes contained in this chapter can be summarized as follows:

	 I	 The Mankiw-Romer-Weil and Nonneman-Vanhoudt models repre-
sent natural generalizations of the neoclassical Solow growth model. 
The Mankiw-Romer-Weil model includes two types of capital, and the 
Nonneman-Vanhoudt model considers multiple capitals.

	II	 Both models of economic growth discussed in this chapter (like the 
Solow model) assume that an increase in each of the analyzed stocks 
of capital equals the difference between investment in that stock and its 
depreciation, and units of effective labour rise at the growth rate that 
equals the sum of the Harrodian rate of technological progress and the 
growth rate of the number of workers.

	III.	Both the Mankiw-Romer-Weil and Nonneman-Vanhoudt models have 
a non-trivial steady state of a system of equations of motion and that 
state is Lyapunov asymptotically stable. In that state, labour productiv-
ity and various stocks of capital per worker rise at the Harrodian rate of 
technological progress.

	IV	 In the point of long-run equilibrium of the analyzed growth models, the 
positions of growth paths of labour productivity and of various stocks 
of capital per worker depend on rates of investment in those stocks, 
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their depreciation rates and the growth rate of the number of workers. 
The higher the investment rates or the lower the depreciation rates or 
the lower the growth rate of the number of workers, the higher levels are 
reached by those growth paths.

	 V	 The golden rules of capital accumulation in the Mankiw-Romer-Weil 
and Nonneman-Vanhoudt models are defined as combinations of in-
vestment rates corresponding to combinations of elasticities of output 
with respect to various inputs of capital.

Notes
	 1	 The stock of human capital can be defined as “a general skill level, so that a 

worker with human capital h (t) is the productive equivalent of two workers with 
1/2h (t) each, or a half-time worker with 2h (t)” (Lucas, 1988, p. 17). See also e.g. 
Becker (1975), Lucas (1990, 2010), Welfe (2000, 2009), Zienkowski (2003), Malaga 
(2004), Roszkowska (2005, 2013, 2014), Cichy and Malaga (2007), Cichy (2008) 
and Mroczek and Tokarski (2013).

	 2	 This model represents a generalization of the Mankiw-Romer-Weil model. 
The original study published by Mankiw, Romer and Weil (1992) discusses 
a model with the Cobb-Douglas production function. Alternative versions 
of the Mankiw-Romer-Weil model can be found e.g. in the studies published 
by Zawadzki (2012, 2015), and its possible application in analyzes of regional 
growth is discussed by Malaga and Kliber (2007).

	 3	 The economic interpretation of properties (i–viii) of the production function 
(3.1) is analogous to the interpretation of the corresponding properties of 
function (2.1).

	 4	 This is because the output Y can be described using the formula: 

Y F K H E f k h EE E, , ,( ) ( )= =  which implies that: F
K

f
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k
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hE E E E
E
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E,     ,         ,( ) ( ) ( )∀ ∈ > ∂
∂

∧ > ∂
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.

	 6	 This section is based on studies conducted by Tokarski (2008a, 2009) (Chapter 3, 
Section 3.4). See also Sulima (2011).

	 7	 The asymptotic stability of steady states in Mankiw-Romer-Weil and 
Nonneman-Vanhoudt models with the CES production function needs to be 
demonstrated considering the properties of that function that fails to satisfy all 
conditions applicable to a neoclassical production function.

	 8	 The inequalities are satisfied: p mpk p mphK H > ∧ >  because: f k h
f

k
k f k h

f
h

hE E
E

E E E
E

E,     ,( ) ( )> ∂
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∧ > ∂
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f k h
f

k
k f k h

f
h

hE E
E

E E E
E

E,     ,( ) ( )> ∂
∂

∧ > ∂
∂

, hence the expression s p mpk s p mphK K H H( ) ( )− + −  

is positive.
	 9	 This section is based on a study published by Dykas, Edigarian and Tokarski 

(2011), because the original article by Nonneman and Vanhoudt (1996) uses 
only an extended version of the Cobb-Douglas production function (the model 
known from Section 3.3.2) and fails to analyze the stability of the non-trivial 
steady state. See also Dykas, Sulima and Tokarski (2008).

	10	 The economic interpretation of properties (i–viii) of the production function 
(3.33) is obviously analogous to the interpretation of the corresponding proper-
ties of functions (2.1) and (3.1).
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	11	 The expression i  ∀ will hereinafter mean i N1,2,...,∀ = . The expressions iΣ  and 

iΠ  will be read similarly.
	12	 Lyapunov stability is defined as follows (see Ombach, 1999, p. 214). Let us in-

troduce an open set RnΩ ⊂  and a function f Rn: Ω → , f C1 ( )∈ Ω . The system 
x f x( )′ =  generates a local flow t x, 0( )ϕ  and point x Ω0 ∈  represents a steady state 
of ϕ . Then point x0 is Lyapunov asymptotically stable if and only if:

  i	� A neighbourhood W of point x0 exists such that x W Ix:  0, )[∀ ∈ +∞ ⊂ , where 

I t R x tx :  , Ω{ }( )= ∈ ∈  represents motion of point x.
  ii	� A neighbourhood U of point x0 exists and V U∃ ⊂  such that 

x V t t x U  0 :  ,( )∀ ∈ ∀ ≥ ϕ ∈ .
iii	 A neighbourhood Q of point x0 exists such that x Q t x x

t
:  , 0( )∀ ∈ ϕ →

→∞
.

	13	 Let E Ω⊂  denote a neighbourhood of the steady state x0, V E:  0, )[→ +∞ , 

V C E1 ( )∈ . Function V is termed a strong Lyapunov function if and only if (see 
Ombach 1999, p. 227):

  i	 x E x V x:  00 ( ){ }∀ ∈ > .
  ii	V x x x0 0( ) = ⇔ = .
 iii	 x E x V x:  00  ( ){ }∀ ∈ < .

	14	 See also Sulima 2011.
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4	 Fiscal and monetary policy vs 
economic growth

4.1  Introduction

Chapters 2 and 3 described both the single-capital, neoclassical Solow 
growth model and the two- and multi-capital Mankiw-Romer-Weil and 
Nonneman-Vanhoudt models. Those models did not address the effect of 
macroeconomic policy (i.e. fiscal and monetary policy) on the processes 
of long-run equilibrium and economic growth. Therefore, this chapter de-
scribes proposed generalizations of the Mankiw-Romer-Weil model and a 
compilation of the Solow model with a Keynesian growth model proposed 
by Domar (1946, 1957) that consider the effect of both fiscal and monetary 
policy on economic growth.

Section 4.2 describes models of economic growth that represent generaliza-
tions of the two-capital Mankiw-Romer-Weil growth model. Those models are 
based on the assumption that investments in physical and human capital are 
financed both from disposable income (income after taxes) of the private sec-
tor and from taxes collected by the government sector of the economy (Section 
4.2.1); Section 4.2.2 describes a model with a separated capital of the government 
sector. The growth models described in Section 4.2 were proposed in the studies 
published by Tokarski (2000, 2005, Chapter 4) and Tokarski (2009, Chapter 7).

Section 4.3 contains a description of a Domar-Solow model. The eco-
nomic growth model analyzed in that part of this monograph is termed a 
Domar-Solow model for two reasons. First, we will consider the effect of in-
vestment inputs in the economy on both the demand and the supply side of 
the economy, like in the original Domar model (the neoclassical Solow growth 
model does not include any analysis of the effect of investments on the value of 
aggregate demand in the economy). Second, the economic growth model ana-
lyzed there can be termed a Solow model, because (like in the Solow model) 
the production process is described using the neoclassical Cobb-Douglas 
production function, characterized by output elasticity of capital (an elastic 
capital-output ratio). The model was proposed by Tokarski (2009, Chapter 8).

An alternative approach to analyzing the effect of fiscal and monetary policy 
on the processes of long-run equilibrium and economic growth can be found 
in the following studies: Barro (1989, 1990, 1991), Grossman and Helpman 
(1991), Engen and Skinder (1992), Barro, Mankiw, and Sala-i-Martin (1995), 

This chapter has been made available under a CC-BY-NC-ND license.
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Kelly (1997), Aghion and Howitt (1998), Kneller, Bleaney, and Gemmell (1999), 
Welfe (2000, 2009), Folster and Henrekson (2001), Konopczyński (2004, 2005, 
2006, 2009b, 2014, 2015), Krawiec (2005), Pietraszewski (2009), Dykas and To-
karski (2013), Malaga (2013) and Nowzosad and Wisła (2016).

4.2  Fiscal policy in a Mankiw-Romer-Weil model

4.2.1  The basic model

The following assumption underlies the discussion contained in this section:

	 1	 Like in the original Mankiw-Romer-Weil model, the production pro-
cess is described by a three-factor Cobb-Douglas production function 
expressed by the formula:

( ) ( ) ( )= α α α α− −( ) ( ) ( ) ( ) ,1Y t K t H t E tK H K H 	 (4.1)

where ≥Y K H E, , , 0 and ( ) ( )α α α + α ∈, , 0,1K H K H  are read as in the 
model from Section 3.2.2.

	 2	 At any moment t ∈ [0; +∞), increases in stocks of physical capital K  and 
human capital H  equal the differences between investments in those 
stocks (that is IK and IH) and their depreciation (δKK and δHH). This 
means that the following differential equations are true:

 δ= −( ) ( ) ( )K t I t K tK K 	 (4.2a)

and

 δ= −( ) ( ) ( ),H t I t H tH H 	 (4.2b)

where δ δ ∈, (0,1)K H  denote depreciation rates of the analyzed stocks.
	 3	 The stock of effective labour E = AL rises at a growth rate that equals 

the total of Harrodian rate of technological progress >g 0 and the 
growth rate of the number of workers n > 0. Hence, its trajectory is de-
scribed by equation (2.12a).

	 4	 The state collects (in the forms of taxes and increase in in public debt, 
etc.) a tth fraction of output, where t ∈ (0; 1). The rate t will hereinafter 
be termed the fiscalism index of the economy.1

	 5	 A sKGth fraction of output tY collected by the state is allocated to investment 
in physical capital, a sHGth fraction tY represents investment of the gov-
ernment sector in human capital ( ) ( )+ ∈s s s sKG HG KG HG, , 0,1 . This leads 
to the conclusion that the value of investment of the government sector in 
physical capital accumulation IKG (understood as a sum of direct invest-
ment of the central budget, regional and local budget investment in social 
and economic infrastructure and investment transfers to the private sector) 
and human capital accumulation IHG (defined as outlays of the government 
sector on public education, healthcare, etc.) is given by the formulas:

τ=( ) ( )I t s Y tKG KG 	 (4.3a)
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and

( ) ( ).I t s Y tHG HGτ= 	 (4.3b)

The variables sKG and sHG will hereinafter be termed investment rates 
of the government sector in the stocks of physical and human capital, 
because they represent a proportion in government budget revenues tY 
invested by the government sector in those stocks.

	 6	 The private sector2 invests an sKPth fraction of income after taxes 
(1 )Yτ−  in the stock of physical capital, and sHPth fraction of that in-
come in human capital, and ( ) ( )+ ∈s s s sKP HP KP HP, , 0,1 . Hence, invest-
ment in physical capital IKP and human capital IHP of that sector is 
described by the formulas:

( ) (1 ) ( )I t s Y tKP KP τ= − 	 (4.4a)

and

( ) (1 ) ( ).I t s Y tHP HP τ= − 	 (4.4b)

	 7	 Total investment outlays on physical capital IK (human capital IH) equal 
the total of outlays of the private sector IKP (IHP) and of the government 
sector IKG (IHG). Hence, the following equations are true:

( ) ( ) ( )= +I t I t I tK KG KP 	 (4.5a)

and

( ) ( ) ( )= +I t I t I tH HG HP .	 (4.5b)

From relations (4.3a,b), (4.4a,b) and (4.5a,b), we get:

1I t s s Y tK KG KPτ τ( )( ) ( ) ( )= + −

and

1 .I t s s Y tH HG HPτ τ( )( ) ( ) ( )= + −

It follows from the above equations and from equation (4.2ab) that the 
accumulation of various stocks of capital is described by the differential 
equations:

( ) (1 ) ( ) ( )K t s s Y t K tKG KP K
 τ τ δ( )= + − − 	 (4.6a)

and

( ) (1 ) ( ) ( ).H t s s Y t H tHG HP H
 τ τ δ( )= + − − 	 (4.6b)

It follows from equations (4.6ab) that total investment rates (of the private 
sector and the government sector) in the stocks of physical and human 



Fiscal and monetary policy vs economic growth  89

capital equal, respectively, (1 )s sKG KPτ τ+ −  and (1 )s sHG HPτ τ+ − . Moreo-
ver, as assumptions 1–3 underlying the analyzed growth model are identi-
cal with the corresponding assumptions underlying the model from Section 
3.2.2, the long-run output per unit of effective labour yE

*  can be expressed as 
follows as per equation (3.18c):

ln
ln
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ln
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	 (4.7)

Equation (4.7) leads to the following conclusions:

•	 Since 
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, the higher the 

investment rates of the private sector or the government sector in the 
stocks of physical or human capital, the higher the long-run output per 
unit of effective labour (and the higher level is reached by the long-run 
growth path of labour productivity).

•	 It follows from 
∂
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ln
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 and 
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*
 that (like in the 

original Mankiw-Romer-Weil model) high rates of capital depreciation 
or a high growth rate of the number of workers is accompanied by low 
values of yE

*  (and a low level of the trajectory of long-run output per 
worker).

Differentiating equation (4.7) with respect to the fiscalism index of the econ-
omy t, we get:
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	 (4.8)

The following nine cases have to be considered in an analysis of  
relation (4.8):

	 I	 sKG = sKP and sHG = sHP, i.e. a case in which both analyzed sectors of 
the economy are characterized by equal investment rates in the stocks 
of physical and human capital;

	 II	 sKG > sKP and sHG = sHP, i.e. a situation in which the government sec-
tor is characterized by a higher investment rare in physical capital and 
by the same rate of investment in human capital as the private sector;

	 III	 sKG < sKP and sHG = sHP, i.e. a case opposite to case II;
	 IV	 sKG = sKP and sHG > sHP, i.e. a situation in which the government sec-

tor has a higher (than the private sector) rate of investment in human 
capital and the same rate of investment in physical capital;

	 V	 sKG > sKP and sHG > sHP, i.e. a case in which the government sector has 
both investment rates analyzed here greater than the private sector;
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	 VI	 sKG < sKP and sHG > sHP, i.e. the government sector has a higher rate of 
investment in human capital, and the private sector has a higher rate 
of investment in physical capital;

	VII	 sKG = sKP and sHG < sHP, i.e. a situation opposite to case IV;
	VIII	� sKG > sKP and sHG < sHP, i.e. the government sector has a higher rate of 

investment in physical capital, and the private sector has a higher rate 
of investment in human capital;

	 IX	 sKG < sKP and sHG < sHP, i.e. the private sector is characterized by 
higher rates of investment in both stocks of capital considered in the 
Mankiw-Romer-Weil model.

If the first of the above cases is true, i.e. sKG = sKP and sHG = sHP, partial 
derivative (4.8) equals zero, and this implies that at each fiscalism index t 
the economy follows the same long-run growth path of labour productivity. 
This is because at sKG = sKP and sHG = sHP total investment rates in the en-
tire economy (i.e. sK and sH) are independent of the fiscalism index t.

In case II, i.e. when sKG > sKP and sHG = sHP, partial derivative (4.8) can 
be expressed by:
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which implies that each increase in the fiscalism index of the economy t 
leads to an increase in yE

*  and to the growth path of labour productivity 
situated at a higher level.

At sKG < sKP and sHG = sHP, i.e. in case III, partial derivative (4.8) can be 
reduced to the relation:
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which means that an increase in the fiscalism index t leads to a reduction in the 
output per unit of effective labour yE

*  in a Mankiw-Romer-Weil long-run equi-
librium, and thus to a lower level of long-run growth path of labour productivity.

If case IV is true (i.e. when sKG = sKP and sHG > sHP), the partial derivative 
ln *yE

τ
∂

∂
 is described by the relation:
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and the conclusion is that under such circumstances, an increase in the fis-
calism index of the economy leads to an increase in yE

*  and in a higher level 
of long-run path of economic growth.

In case V, i.e. when sKG > sKP and sHG > sHP, partial derivative (4.8) as-
sumes positive values and then each increase in t moves a Mankiw-Romer-
Weil economy onto a long-run growth path of labour productivity situated 
on a higher level.
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If case VI is true, when sKG < sKP and sHG > sHP, partial derivative (4.8) 

can be both positive and negative. Consequently, the derivative 
ln *yE

τ
∂

∂
 can 

be expressed by the formula:
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(4.9)
It follows from equation (4.9) that:
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and
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Formulas (4.9) and (4.10a–c) lead to the following conclusions:

•	 If s s s s s sH HG HP KP K KP KG HPα α( ) ( )− ≤ − , it follows from equation (4.9) 
that for each t ∈ (0,1) the relation is true:
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i.e. each increase in the fiscalism index of the economy t  leads to a fall 
in yE

*  and to a lower level of the long-run growth path of labour produc-
tivity in a Mankiw-Romer-Weil economy.

•	 When:

s s s s s sH HG HP KP K KP KG HPα α( ) ( )− > −
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is negative. Then, an increase in the fiscalism index t in the interval 
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economy climbs onto a long-run growth path of labour productivity on 
a higher level. At τ = τ, the output per unit of effective labour yE

*  reaches 
it maximum with respect to the fiscalism index of the economy t  and 
the economy climbs onto the highest long-run growth path of labour 
productivity. If the fiscalism index of the economy exceeds the value of 
τ, an increase in that index entails a reduction in the value of variable 
yE

*  and the economy goes down to a lower growth path of the output per 
worker.

•	 This means that in the analyzed case, the optimum fiscalism index of 
the economy is τ expressed by the formula:
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•	 And if:
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for each t ∈ (0;1):
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and this implies, as per equation (4.9), 
ln

0
*yE

τ
∂

∂
> , i.e. a high fiscalism 

index of the economy t  corres0.ponds to a high output per unit of effec-
tive labour yE

*  in the Mankiw-Romer-Weil long-run equilibrium and a 
to high level of the long-run growth path of labour productivity.

Equation (4.11) leads to the following conclusions:

•	 The optimum fiscalism index of the economy τ depends on the elasticity 
aK and aH of output Y with respect to inputs of physical capital K and 
human capital H, investment rates sKG and sHG of the government sector 
of the economy and investment rates sKP and sHP of the private sector.

•	 Because at sKG < sKP, sHG > sHP, s s s s s sH HG HP KP K KP KG HPα α( ) ( )− > −
and

s s s s s s s s s sH HG HP KP K H KP KG HG HP K KP KG HPα α α α( ) ( ) ( ) ( ) ( )− < + − − + − ,

it is true that:
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then, the higher the elasticity aK of output with respect to inputs of phys-
ical capital, the lower the optimum fiscalism index of the economy τ .

•	 As:
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it can be concluded that a high elasticity aK of output with respect to 
inputs of human capital corresponds to a high optimum fiscalism index 
of the economy τ .

•	 Differentiating equation (4.11) with respect to investment rates sKG and 
sHG in the government sector, we get:
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It follows from the above inequalities that high investment rates in the 
government sector of the economy analyzed here are accompanied by a 
high optimum fiscalism index of the economy.

•	 It follows from:
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that at high investment rates sKP and sHP in the private sector, the opti-
mum fiscalism index of the economy τ is low.

In case VII, i.e. at sKG = sKP and sHG < sHP, the partial derivative 
ln *yE

τ
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expressed by the formula:
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which means that each increase in the fiscalism index of the economy trans-
lates into a reduction in yE

*  and a lower level of the long-run growth path of 
labour productivity.

In case VIII, i.e. at sKG > sKP and sHG < sHP, partial derivative (4.8) can be 
expressed as:
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(4.12)

Economic conclusions of equation (4.12) are analogous to those drawn from 
relation (4.9), because case VIII represents an opposite of case VI. Hence, 
the optimum fiscalism index is given by formula (4.11).
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If case IX is true, i.e. sKG < sKP and sHG < sHP, the following inequality is 
satisfied as per equation (4.8):
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which means that under those circumstances, each increase in the fiscalism 
index of the economy t leads to a reduction in the output per unit of effec-
tive labour yE

*  and brings long-run labour productivity to a lower path of 
economic growth.

This analysis of the long-run effectiveness or ineffectiveness of expansion-
ary fiscal policy (consisting in an increase in fiscalism index of the economy t)  
under conditions of varying ratios of investment rates in the government 
sector and private sector is summarized in Table 4.1.

The statement contained in Table 4.1 leads to the following conclusions:
•	 An expansionary fiscal policy of the state is effective (considering long-

run economic growth) at each fiscalism index of the economy only if the 
private sector is characterized by a lower rate of investment in physical 
capital or human capital than the government sector, at the same or 
lower rate of investment in the other of the discussed factors of pro-
duction. The reason is that if the government sector is characterized by 
higher rates of investment than the private sector (or by one rate greater 
than and the other equal to that characteristic of the private sector), 
each increase in the fiscalism index of the economy entails a rise in the 
rate (rates) of investment in the entire economy, and this in turn leads 
the economy onto growingly high economic growth paths. The conclu-
sion is that under the analyzed conditions, the most advantageous fis-
calism index (considering long-run economic growth) is t = 1.

•	 When the private sector is characterized by greater investment rates than 
the government sector (or by one of those rates being greater at the other 
equal), each increase in the fiscalism index of the economy reduces joint 
investment rates (or one of them) and brings the analyzed economy onto 
a lower path of economic growth. Therefore, the most advantageous fis-
calism index of the economy in the described case is t = 0.

Table 4.1 � Long-run effects of expansionary fiscal policy at various ratios between 
investment rates in the private sector and government sector

> >s s sHG H HP = =s s sHG H HP < <s s sHG H HP

> >s s sKG K KP Effective Effective An optimum fiscalism 
index existsa

= =s s sKG K KP Effective Neutral Ineffective
< <s s sKG K KP An optimum fiscalism 

index existsa
Ineffective Ineffective

a If (0,1)τ ∉ , the optimum fiscalism index equals 0% or 100%.
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•	 If the rates of investment in the stocks of physical and human capital in 
the private sector and in the government sector are equal, fiscal policy 
has no effect on the level of long-run economic growth path.

•	 If the private sector is characterized by a greater rate of investment in 
one of the stocks of capital analyzed in the Mankiw-Romer-Weil model, 
while the government sector shows a greater rate of investment in the 
other stock of capital, a fiscalism index exists at which the economy 
reaches the highest path of economic growth. The index depends both 
on the rates of investment in the two stocks of capital in the private 
sector and in the government sector and on the elasticity of production 
function with respect to inputs of physical and human capital.

This discussion leads to the conclusion that an optimum fiscalism index of 
the economy t* is given in each of the cases considered above (except case 
I that is rather uninteresting in macroeconomic analyzes) by the formula:

0  in cases III, VII, IX or 0

in cases VI,VIII and (0,1)

1 in cases  II,IV,V  or 1
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If we additionally assume that the state can only set the fiscalism index of 
the economy at the level of t  ∈ [tm;tM] ⊂ (0;1), i.e. that the state can only 
set that index within the interval [tm; tM] which is acceptable to the private 
sector of the economy, it must be concluded that a macroeconomic analysis 
of the effectiveness of fiscal policy makes sense only in the interval [tm; tM]. 
The following cases are possible under the above circumstances:

•	 If t* ∈ [0; tm), the optimum fiscalism index of the economy contained 
within the interval [tm; tM] equals the minimum, socially acceptable 
fiscalism index tm. Although the economy could reach a higher long-
run growth path of labour productivity (corresponding to the fiscalism 
index of the economy t*), the above fiscalism index is insufficient to 
perform minimum functions of the state and the economy will remain 
on a growth path corresponding to a non-optimum fiscalism index tm.

•	 However, if t* ∈ [tm; tM], the state should choose the fiscalism index of 
the economy t*, because it is not only optimum for long-run economic 
growth but also acceptable to the private sector.

•	 If t* ∈ (tM; 1], the state should choose a maximum socially acceptable 
fiscalism index of the economy tM, because then the output per unit of 
effective labour reaches its maximum yE

*  in the long-run equilibrium 
of the economy (in the interval [tm; tM]) and the Mankiw-Romer-Weil 
economy reaches the highest path of labour productivity in a long term.
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4.2.2  A model with public capital

Section 4.2.1 discussed an economic growth model wherein the stocks of 
physical and human capital (and flows of investments in those stocks) were 
disaggregated into those financed by the private sector and those financed 
by the government sector of the economy. Section 4.2.2 contains an analysis 
of a growth model with two stocks of capital distinguished. Those stocks in-
clude (physical and human) capital that can be financed both by the private 
sector and the government sector and a stock of capital that is financed only 
by the government sector of the economy. That stock includes physical capi-
tal consisting of public social and economic infrastructure, public transport 
or aimed at environmental protection and human capital generated by state 
financing of basic research, elementary education, healthcare, etc.

The following assumptions underlie the analysis contained in this section:

	 1	 The production process is described by a production function expressed 
by the formula:

( ) ( ) ( ) ( ) ,1Y t K t P t E tK P K P( ) ( ) ( )= α α α α− − 	 (4.13)

where Y, E > 0 have the same meanings as in the model from Section 
4.2.1, K > 0 is the stock of capital that can be financed by both sectors 
of the economy, P > 0 is the stock of capital financed by the govern-
ment sector. The parameters aK and aP represent elasticities of output 
with respect to the stocks of capital distinguished in this model. It is 
assumed about these parameters that , , (0,1)K P K Pα α α α( )+ ∈ . It can 
be concluded from equation (4.13) that both the government sector and 
the private sector benefit from accumulated capital that is financed only 
by the government sector (i.e. from capital accumulation P). The reason 
is that an increase in capital P entails a rise in capital productivity K, 
because that productivity is given by the formula:

( )
( )

( ) ( ) ( ) .1 1Y t
K t

K t P t E tK P K P( ) ( ) ( )= α α α α− − −

	 2	 Growths in capital financed by both sectors of the economy K  and in 
capital financed only by the government sector P are described by the 
following differential equations:

( ) ( ) ( )K t I t K tK K
 δ= − 	 (4.14a)

and

( ) ( ) ( ),P t I t P tP P
 δ= − 	 (4.14b)

where IK denotes investments in capital K financed by both sectors of the 
economy, IP represents investments financed by the government sector, 
and ,  (0,1)K Pδ δ ∈  – depreciation rates of the discussed stocks of capital.
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	 3	 The state collects taxes using a fiscalism index 0,1τ ( )∈ . Thus, the state 
receives an income equal τY , and the private sector – an income given 
by 1 Yτ( )− .

	 4	 The public sector allocates an sPth fraction of its income Yτ  to invest-
ments in capital P, sKGth fraction to investments in capital K. We also 
assume that ( ) ( )+ ∈s s s sK P K P,  0,1, .

	 5	 The private sector allocates to investments in capital K a fraction of its 
income 1 Yτ( )−  equal ( )∈sKP 0,1 .

	 6	 Units of effective labour are defined by a trajectory given by equation 
(2.12a).

It follows from assumptions 4–5 that total investments in stocks K 
and P are given by the formulas:

1I t s s Y tK KG KPτ τ( )( ) ( ) ( )= + −

and

.I t s Y tP Pτ( ) ( )=

It follows from the above formulas and from equation (4.14ab) that the 
accumulation of various stocks of capital is described by the equations:

1K t s s Y t K tKG KP K
 τ τ δ( )( ) ( ) ( ) ( )= + − − 	 (4.15a)

and

P t s Y t P tP P
 τ δ( ) ( ) ( )= − 	 (4.15b)

The growth model described by equations (4.13), (4.15a,b) and (2.12a) 
is mathematically characterized by the same properties as the original 
Mankiw-Romer-Weil model. Therefore, the long-run output per unit of ef-
fective labour is described by equation (3.18c). Hence, we get:
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	 (4.16)

It follows from equation (4.16) that (like in the model from Section 4.2.1) the 
higher the rates of investment (made by both the government sector and the 
private sector) or the lower the depreciation rates of the analyzed stocks of 
capital, or the lower the growth rate of the number of workers, the greater 
the value of yE

*  and the higher the level of the long-run growth path of labour 
productivity.

Differentiating relation (4.16) with respect to the fiscalism index  
t, we get: 
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When analyzing equation (4.17) in the context of expansionary fis-
cal policy, two cases must be considered. First, a case wherein the rate 
of investment by the government sector sKG is not less than the rate 
of investment by the private sector sKP and, second, a case wherein  
sKG < sKP.

In the first case, derivative (4.17) is positive, so that an increase in the 
fiscalism index of the economy entails a rise in yE

*  and brings the economy 
onto a higher long-run trajectory of labour productivity.

If sKG < sKP, it is true that:
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so that an optimum fiscalism index of the economy τ is given by the formula:
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Importantly, the rate τ does not need to belong to the interval (0, 1). Hence, 
an optimum fiscalism index can be expressed as:
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An analysis of equation (4.19) additionally assuming that 0,1τ ( )∈  leads to 
the following conclusions:

•	 Since 0
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< , the higher the elasticity of 

output with respect to capital stock that can be financed by both sectors 
of the economy, the lower the optimum fiscalism index.

•	 And the higher the elasticity of output with respect to capital P, the higher 

the optimum fiscalism index, because 0
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< , the greater the fraction 

of private sector’s output allocated to investment, the lower the opti-
mum fiscalism index.
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•	 And the higher the rate of investment by the government sector in cap-
ital K, the higher the optimum fiscalism index of the economy, because 

0
*

2s
s

s sKG

P KP

K P KP KG

τ α
α α( )( )
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=
+ −
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Since the relations between t* described by equation (4.19) and the interval 
of socially acceptable fiscalism [tm, tM] are analogous as between t* in the 
model from Section 4.2.1 and that interval, the state (when choosing a fis-
calism index of the economy) should adopt similar criteria as indicated in 
Section 4.2.1. This means that (first) at t* < tm the fiscalism index tm should 
be chosen, and (second) in the case of t* t [tm, tM], the state should choose the 
fiscalism index of the economy τ given by equation (4.18), and (third) when 
t* > tM, the state should choose the maximum socially acceptable fiscalism 
index tM.

4.3  Monetary rules in a Domar-Solow model

The following assumptions underlie the model of monetary rules in a 
Domar-Solow economy:

	 1	 The production process (like in the Solow model with the Cobb-Douglas 
production function) is described by a macroeconomic production 
function given by the formula:

,
1

Y t K t e L tS gt( )( )( ) ( ) ( )= α α−
	 (4.20)

where YS is the aggregate supply that could only be achieved using the 
full production capacity of the economy, K represents inputs of physical 
capital, L denotes inputs of labour, >g 0 is the Harrodian rate of tech-
nological progress, and 0,1α ( )∈  is the elasticity of aggregate supply YS 
with respect to capital inputs K.

	 2	 The value of aggregate demand YD in a Domar-Solow economy de-
pends on the real interest rate r, the value of aggregate supply YS and the 
Keynesian multiplier of autonomous spending m > 1. The effect of that 
multiplier is analogous to its effect in the original Keynesian growth 
model proposed by Domar (1946, 1957). The influence of real interest 
rate on the value of aggregate demand YD results from its effect on con-
sumer demand, investment demand and (through interest rate parity 
and the exchange rate fixing process) on net exports. It is also assumed 
that the elasticity of aggregate demand with respect to the real interest 
rate equals β− , where 0,1β ( )∈ . The long-run effect of aggregate supply 
on the value of aggregate demand in the economy results from the fact 
that an increase in output entails a rise in demand in a long term due 
to a higher income from production factors. Thus, we assume in the be-
low discussion that the aggregate demand rises with an increase in the 
aggregate supply, and its elasticity with respect to that supply amounts 
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to 0,1γ ( )∈ . The fact that 1γ <  can be economically explained: if the ag-
gregate demand depends on autonomous spending a > 0 as per equation 
YD = a + cY (where the marginal propensity to consume c belongs to the 
interval (0;1)), then:
  

=
+

<Y
Y

cY
a cY

Y
Y

D

D .

Consequently, the function of aggregate demand can be expressed as 
follows in the economic growth model analyzed here:

.Y t m Y t r tD S( ) ( )( ) ( ) ( )= ⋅ ⋅
γ β−

	 (4.21)

	 3	 An increase in the stock of capital K  (like in the Solow model) repre-
sents the difference between investment I and capital depreciation dK, 
where the capital depreciation rate d belongs to the interval (0,1). It is 
assumed about the investment function I(r) that it is given by the for-
mula 0I r I r( ) = β−  (where I0 > 0) which implies that β−  also represents 
the elasticity of investment with respect to the real interest rate. Thus, 
we implicitly assume that the sensitivity of investment I to fluctuations 
in the real interest rate r equals the sensitivity of other components of 
the aggregate demand YD to that macroeconomic quantity. The equa-
tion of increase in the stock of capital is expressed as:

.0K t I r t K t δ( )( ) ( ) ( )= ⋅ −β−
	 (4.22)

	 4	 The central bank follows three rules in its policy of real interest rates. 
First, the bank prevents the value of aggregate demand YD in the econ-
omy from exceeding the value of aggregate supply YS, because a surplus 
demand would exert inflationary pressure. Second, the central bank 
adapts the value of demand to the aggregate supply, to avoid unused 
production capacities in the stock of capital accumulated in the econ-
omy. Third, assuming that at time t = 0, the unemployment rate u equals 
the unemployment rate of equilibrium u*, the central bank endeavours 
to maintain at any time t ∈ [0; +∞) an unemployment rate equal to the 
unemployment rate at time t = 0.3 It follows from the first two rules in-
dicated above that for any t ∈ [0; +∞):

( ) ( )=Y t Y tD S ,	 (4.23)

the third rule leads to an equation of long-run growth rate of the num-
ber of workers:

 ( )
( )

=
L t
L t

n,	 (4.24)

where n > 0 represents the growth rate of the number of workers that 
equals the growth rate of labour supply that in a long term results prin-
cipally from demographic factors. It follows from the above assump-
tions (about the rules of long-run monetary policy) that the central bank 
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should maintain the real interest rates r at such a level that equations 
(4.23 and 4.24) are satisfied and the influence of those interest rates on 
the equilibrium in the Domar-Solow economy is exercised through the 
channels described by formulas (4.20–4.22).

The approach to achieving those objectives by modifications or the real 
rather than nominal interest rates can also be explained as follows. An ap-
proximate relation between the real (r) and nominal (R) interest rates is de-
scribed by the identity: r R= − π, where π represents the inflation rate.4 Let 
also the long-time inflation rate be given by the formula:

t t
Y t

Y t
h

Y t Y t

Y t

D S

S



µ( ) ( ) ( )
( )

( ) ( )
( )

π = − +
−

	 (4.25)

where μ denotes the growth rate of nominal money supply, and h > 0 is a 

coefficient describing the effect of relative output gap 
−Y Y

Y

D S

S  on the infla-

tion rate π. An assumption follows from relation (4.25) that the inflation rate 

can result from monetary factors 
Y
Y



µ −








  and from the inflationary pressure 

caused by the occurrence of output gap 
−







Y Y

Y

D S

S  in the economy. How-

ever, if the central bank manages to eliminate the output gap 
− =









Y Y

Y

D S

S 0 ,  

inflation will only be caused by monetary sources. Then, equation (4.25) can 
be reduced to the relation:

t t
Y t

Y t



µ( ) ( ) ( )
( )

π = −

and the real interest rate r is given by the formula:

.r t R t t R t t
Y t

Y t



µ( ) ( ) ( ) ( ) ( ) ( )
( )

= − π = − + 	 (4.26)

If we additionally assume that the central bank follows a policy of increase 
in nominal money supply (and not in interest rates) to achieve a long-run 
inflation target equal pT, it must set a growth rate of nominal money supply 
m at:

.t
Y t

Y t
T



µ ( ) ( )
( )

= π +

This in turn reduces equation (4.26) to the relation:

r t R t t( ) ( ) ( )= − π
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and then changes in nominal interest rates R (at an inflation target pT) are 
identical with changes in real interest rates r.

Let Y represent the output produced in the economy that satisfies the 
equilibrium condition (4.23); then, the following relation is true:

( ) ( ) ( )= =Y t Y t Y tD S .	 (4.27)

It follows from equations (4.21) and (4.27) that:

,Y t m Y t r t( ) ( )( ) ( ) ( )= ⋅ ⋅γ β−

which leads to the formula:

.1/
1

r t m Y t( )( ) ( )= β
γ
β
−

	 (4.28)

Equation (4.28) describes a time path of the real interest rate r and makes 
it depending, e.g., on the Keynesian multiplier m and the value of output Y.  
It follows from this equation that the real interest rate r (that brings a 
Domar-Solow economy in the state of equilibrium) is directly proportional 
to the Keynesian multiplier m and inversely proportional to the value of 
output Y.

Substituting the production function (4.20) into equation (4.28), and re-
membering that under equilibrium conditions YS = Y, we get:

,1/
1 1 1

r t m K t e L tgt( )( )( ) ( ) ( )= β
α γ

β
α γ

β
( ) ( )( )− − −

which gives (taking the logarithm of both sides and differentiating with re-
spect to time):

1
1 ,g t G t g

L t

L t
r K

γ
β

α α( ) ( ) ( ) ( )
( )

= − − + − +




















where =g r rr /  represents the growth rate of interest rate, and =G K KK /  is 
the growth rate of capital stock. Substituting the growth rate of the number 
of workers from equation (4.24) into the above equation, we arrive at the 
relation:

( )( ) ( ) ( )( )= − − γ
β

α + − α +g t G t g nr K
1

1 .	 (4.29)

Equation (4.29) makes the growth rate of real interest rate gr  depend-
ing on the growth rate of the stock of physical capital GK, the growth 
rate of the number of workers n and the Harrodian rate of technological  
progress g.

Equation (4.22) can be expressed as:

,0G t I
r t

K t
K δ ( )( ) ( )

( )
+ =

β−
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which leads to the formula:

.
G t

G t
g t G tK

K
r K



δ
β( )

( ) ( ) ( )
+

= − − 	 (4.30)

Since it follows from equation (4.29) that:

1 1 ,g t G t g nr Kβ γ α α( )( ) ( ) ( ) ( ) ( )− = − + − +

from the above relation and from equation (4.30), we arrive at the following 
differential equation (Riccati differential equation):

 ( )( )( ) ( ) ( )= + δ κ − κG t G t G tK K K ,1 2 	 (4.31)

where 1 1 01 g nκ α γ( )( ) ( )= − − + >  and 1 1 02κ γ α( )= − − > . Since it follows 

from equation (4.22) that G
K
K

K



δ= > − , differential equation (4.31) is ana-

lyzed only at ,GK δ> − .
Relation (4.31) makes an increase in the growth rates of capital GK  de-

pending on growth rates of that variable, i.e. GK. Since > −δGK , then 
sgn sgn 1 2G GK K

 κ κ( )= − . This means that if the growth rate of stock of capi-

tal belongs to the interval , 1

2
δ κ

κ
−









, then  >GK 0, and if 1

2
GK

κ
κ

> , then  <GK 0.  

It follows that the stable steady-state point of differential equation (4.31) is 

given by a growth rate * 1

2
GK

κ
κ

= . That stable steady-state point can also be 

expressed as:

1 1

1 1
.* 1

2
G

g n
K

κ
κ

γ α
α γ

( )( ) ( )
( )

= =
− − +

− −
	 (4.32)

It follows from equation (4.32) that the long-run growth rate of capital GK
*  

in the Domar-Solow model equilibrium is directly proportional to the rate 

of technological progress g  (because 
1 1

1 1
0

*G
g
K γ α

α γ
( )( )

( )
∂
∂

=
− −
− −

> ) and to the 

growth rate of the number of workers n (because 
1 1

1 1
0

*G
n
K γ α

α γ
( )( )

( )
∂
∂

=
− −
− −

> ), 

and inversely proportional to the elasticity of output with respect to capital 

a 
1

1 1
0
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2
G g nK

α
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( )
∂
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= −
− +

− −
<











  and to the elasticity of aggregate demand with 

respect to aggregate supply, i.e. the parameter g 
1

1
0
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2
G g nK

γ
γ
α αγ

( )( )
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∂
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= −
− +
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<



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


.

Taking the logarithm of both sides and differentiating with respect to 
time t the production function (4.20), we get:

1 ,G t G t g
L t

L t
Y K



α α( ) ( ) ( ) ( )
( )

= + − +












104  Fiscal and monetary policy vs economic growth

where =G Y YY /  denotes the growth rate of output. Because, as per equa-

tion (4.24), 


=L
L

n, then the above equation can be expressed as:

1 ,G t G t g nY Kα α( ) ( ) ( ) ( )= + − +

or at → +∞t :

lim 1 .* *G G t G g nY
t

Y Kα α( ) ( ) ( )= = + − +
→+∞

	 (4.33)

Substituting the long-run growth rate of capital from (4.32) into equation 
(4.33), we arrive at the relation:

1

1 1
*G

g n
Y

α
α γ

( )( )
( )

=
− +
− −

	 (4.34)

Equation (4.34) leads to the following conclusions. First, the long-run 
growth rate of output (like the long-run growth rate of stock of capital) 
depends on the Harrodian rate of technological progress g, on the growth 
rate of the number of workers n, on the elasticity of output with respect to 
capital (that is a) and on the elasticity of aggregate demand with respect 
to aggregate supply (that is g). Second, high values of g and n correspond 

to a high long-run growth rate of output 
1

1 1
0

* *G
g

G
n

Y Y α
α γ( )

∂
∂

= ∂
∂

= −
− −

>








 .  

Third, the higher the elasticities a and g, the lower the rate GY
*  

1
0 and

1

1
0

*

2

*

2
G g n G g nY Y

α
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α αγ γ
α α

α αγ
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− +
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




∂
∂

= −
− +
− +

<



 . Fourth, com-

paring the long-run growth rate of output (4.34) to the long-run growth rate 
of stock of capital (4.32) and with growth rates of output and capital (equal 

+g n) in the Solow model equilibrium, we conclude that the following ine-
qualities are true:

1 1

1

1

1
,

g n g n
g n

γ α
α αγ

α
α αγ

( )( ) ( ) ( ) ( )− − +
− +

<
− +
− +

< +

and it follows from them that the long-run growth rate of capital GK
*  in a 

Domar-Solow model is lower than the long-run growth rate of output GY
*  

in that economic growth model, which in turn is lower than the long-run 
growth rates of capital and output in the original Solow model.

Moreover, it follows from equation (4.29) that 

( ) ( )= −g t G tKsgn sgn . Thus, 

if the growth rate of capital is greater/less than 
1 1

1 1

g nγ α
α γ

( )( ) ( )
( )

− − +
− −

, the 

growth rates of interest rate at subsequent moments t are increasingly high. 
In a long term, the growth rate of interest rate gr  approaches gr

* described 
by the formula:

lim
1

1 ,* *g g t G g nr
t

r K
α

β
α α( )( ) ( ) ( )= = − − + − +

→+∞
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and this together with (4.32) leads to:

1 1

1 1
.*g

g n
r

γ α
α γ β( )

( ) ( ) ( )
( )

= −
− − +

− −
	 (4.35)

It follows from equation (4.35) that the long-run growth rate of interest rate 
is directly proportional to the elasticities a, b and g, because:

1
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and inversely proportional to the rate of technological progress g  and the 
growth rate of the number of workers n, because:
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4.4  Conclusions

The discussion contained in this chapter can be summarized as follows:
	 I	 The analyzes of the effect of fiscal policy on the process of long-

run economic growth done in Section 4.2.1 (based on an extended 
Mankiw-Romer-Weil growth model) were based on the disaggrega-
tion of the rates of investment in physical and human capital stocks. 
That disaggregation meant that investments in those stocks of cap-
ital were divided into investment made by the private sector and in-
vestment made by the government sector. This type of extension of 
the Mankiw-Romer-Weil economic growth model makes possible an 
analysis of the effect of fiscalism index of the economy on the process 
of long-run economic growth.

	II	 The discussion contained in that section leads to the conclusion that 
the higher the rates of investment in physical and human capital in 
both analyzed sectors of the economy, the higher (at a given fiscal-
ism index of the economy) the path of long-run economic growth. 
However, the higher (lower) the fiscalism index of the economy, the 
stronger (weaker) influence is exerted on the location of that economic 
growth path by the rates of investment in the private sector (govern-
ment sector).

	III	 However, the favourable effect of a high fiscalism index of the econ-
omy on the location of that long-run economic growth path is possible 
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only if the government sector is characterized by a rate of investment 
that is higher than that of the private sector in at least one of the stocks 
of capital considered in an extended Mankiw-Romer-Weil model, with 
an equal or greater rate of investment in the other stock of capital. 
If the private sector is characterized by higher investment rates (or 
by one investment rate higher than in the government sector and the 
other equal to that in the government sector), a low fiscalism index of 
the economy is more favourable to long-run economic growth.

	IV	 If the private sector is characterized by a higher rate of investment in the 
stock of physical or human capital and the government sector is char-
acterized by the second of the investment rates analyzed in Chapter 4, 
an optimum fiscalism index of the economy exists. That fiscalism index 
is described as an optimum because it enables the Mankiw-Romer-Weil 
economy to reach the highest long-run growth path of labour produc-
tivity. That index is directly proportional to the rates of investment in 
the government sector and inversely proportional to the rates of in-
vestment in the private sector. Moreover, an optimum fiscalism index 
of the economy also depends on the elasticity of output with respect to 
physical and human capital. If the government sector is characterized 
by a higher rate of investment in the stock of physical (human) capital 
than the private sector, the optimum fiscalism index of the economy 
is directly proportional to the elasticity of production with respect to 
inputs of physical (human) capital and inversely proportional to the 
elasticity of output with respect to inputs of human (physical) capital.

	 V	 The disaggregation of physical capital and human capital done in Sec-
tion 4.2.2 into a stock of capital that can be financed either by the 
private sector or the government sector and a stock of capital that can 
only be financed by the government sector of the economy introduces 
a modification to the previous conclusions. Given the above assump-
tion, if the government sector is characterized by a higher (than the 
private sector) rate of investment in the stock of capital financed by 
both sectors of the economy, an increase in the fiscalism index always 
brings the economy onto a higher path of economic growth. If the 
private sector is characterized by a higher rate of investment in that 
stock of capital, an optimum fiscalism index exists. Moreover, that 
index is directly proportional to the rate of investment made by the 
government sector in the stock of capital financed by both sectors and 
to the elasticity of output with respect to capital financed only by the 
government sector of the economy. Additionally, an optimum fiscal-
ism index is inversely proportional to the rate of investment made by 
the private sector and to the elasticity of output with respect to capital 
financed by both analyzed economy sectors.

	VI	 Since an optimum fiscalism index of the economy (in both models 
analyzed in this chapter) can assume any value, and microeconomic 
entities certainly accept fiscalism indexes contained within a definite, 
socially acceptable interval, the optimum fiscalism index does not 
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need to be a value that the state can impose on the economy. If an 
optimum fiscalism index of the economy belongs to the interval of 
socially acceptable fiscalism, the state can choose optimum fiscalism 
by increasing or reducing the fiscalism index of the economy and bring 
the economy to the highest path of long-run economic growth. How-
ever, if an optimum fiscalism index of the economy is located below 
the lower (above the upper) socially acceptable limit, the state, aiming 
to bring the economy to the highest growth path of labour productiv-
ity in a long term, can only set a fiscalism index of the economy at the 
lower (upper) limit of the socially acceptable interval of fiscalism.

	VII	 The larger the interval of socially acceptable fiscalism, i.e. the more 
freedom the state enjoys in setting the fiscalism index, the more proba-
ble is that the optimum fiscalism index will be contained in the socially 
acceptable interval. This in turn increases the probability that fiscal 
policy can bring the economy to the highest growth path in a long term.

	VIII	 However, the state can place the optimum fiscalism index of the economy 
within the socially acceptable interval by changing its investment rates. 
A change in the combination of investment rates in the government sec-
tor together with setting an optimum fiscalism index of the economy 
within an interval acceptable to microeconomic entities will result in 
the economy being brought onto the highest available (given the rates of 
investment by microeconomic entities) path of economic growth.

	IX	 In an analysis of the effect of monetary policy (real interest rates set by 
the central bank) on the equilibrium of long-run economic growth, a 
compilation of the Domar and Solow models provides a useful growth 
model. The reason is that a change in real interest rates should lead to 
a change in investment outlays in the economy. This will affect both 
the demand side of the economy (through Keynesian multiplier ef-
fects) and its supply side (by a change in the growth rate of the stock of 
physical capital). A compilation of the Domar growth model (effects 
of investments on demand and supply) with the Solow model (with 
its elastic capital-output ratio resulting from the Cobb-Douglas pro-
duction function) enables us to determine a long-run equilibrium of 
the economy that is free from the problem of a unique growth path of 
investments that enables the economy to fully use its available produc-
tion capacities (as is in the original Domar model).

	X	 Moreover, that compilation is also useful when establishing long-run 
rules of monetary policy followed by the central bank and consisting 
in changes to the real interest rate. It follows from the Domar-Solow 
economic growth model analyzed in this chapter that the central bank 
can adapt the real interest rate to the growth rate of capital stock, 
aiming to fully use production capacities available in the economy. 
The growth rate of real interest rate under those conditions is a linear 
decreasing function of the growth rate of physical capital stock. The 
reason is that under the conditions of a high growth rate of capital, the 
central bank should reduce real interest rates at a tempo preventing 
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a fall in the aggregate demand in the economy below the value of its 
aggregate supply. From this point of view, a rise in the real interest 
rate can only be reasonable if the growth rate of capital is very low, 
because under such circumstances maintaining a low value of the real 
interest rate entails the risk of expanding aggregate demand and con-
sequently of short- or long-run inflationary pressure.

	XI	 It also follows from the Domar-Solow model discussed in this chap-
ter that if the central bank follows the described monetary rules, the 
growth rates of capital and output will reach in a long run (like in the 
neoclassical Solow, Mankiw-Romer-Weil and Nonneman-Vanhoudt 
growth models) a certain constant level determined to a significant 
extent by the exogenous Harrodian rate of technological progress and 
by the growth rate of the number of workers. Importantly, the long-
run growth rates of those macroeconomic variables in Domar-Solow 
models are lower than the growth rates of those variables in neoclassi-
cal economic growth models. The reason is that the neoclassical mod-
els ignore limitations to demand (related to the process of economic 
growth) and analyze only a path of aggregate supply while “in the 
described reality, the theoretical assumption that output will reach its 
potential level is usually not satisfied” (Welfe, 2000, p. 64). A Domar-
Solow model considers also limitations to demand in the process of 
economic growth and thus leads to a solution with long-run growth 
rates lower than in the neoclassical models.

Notes
	 1	 The fiscalism index of the economy t analyzed here can be formally expressed as:

τ ( ) ( )
( )

=
+T t D t

Y t
.

˙

		  where T is the total of revenues from taxes, customs duties, etc., D denotes the 
present net increase in public debt, and Y denotes the output.

	 2	 The private sector is understood as all households and enterprises (regardless 
of their ownership). The investment rate of that sector is defined as the ratio of 
its total investment outlays financed from own resources (not from subsidies or 
transfers from the government budget) to its disposable income (where taxes also 
include a net increase in public debt financed by households and enterprises). 
This means that investment financed by the private sector from subsidies or 
transfers from the government budget are included in investment of the govern-
ment sector of the economy.

	 3	 Certainly, if the initial unemployment rate u is greater of less than the unemploy-
ment rate of equilibrium u*, certain adaptive mechanisms on the labour market 
must take place in a short and medium term, to make u equal u*. However, those 
mechanisms can be subject to short- and medium-term rather than to long-run 
macroeconomic analyzes.

	 4	 Precisely, the real interest rate should be expressed as: = +
+ π

− = − π
+

r
R R

r
1
1

1
1

. How-

ever, a simplified form of the real interest rate equation (as = − πr R ) has no 
material effect on the below discussion.
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5	 Economic growth at returns 
to scale conditions

5.1  Introduction

We analyzed neoclassical economic growth models in the preceding 
chapters, assuming that the production process is characterized by constant 
returns to scale (i.e. when the production function is homogeneous of de-
gree 1). In this chapter, we will depart from that assumption and analyze 
the long-run equilibrium in those models when the economy is affected by 
decreasing or increasing returns to scale (the degree of homogeneity of the 
production function will be higher or less than 1).

The subsequent sections of this chapter will contain analyzes of a 
single-capital (Solow) model, a two-capital (Mankiw-Romer-Weil) model 
and a multiple-capital (Nonneman-Vanhoudt) model with a degree of ho-
mogeneity of the production function different from 1. We will also derive 
golden rules of capital accumulation under conditions of returns to scale in 
the production process.

The growth models described in this chapter were proposed in the studies 
by Tokarski (2007, 2008b, 2009, Chapter 9), Tokarski (2011, Chapter 7) and 
Dykas, Sulima, and Tokarski (2008).

5.2  Returns to scale in a single-capital (Solow) model

The following assumption about the economy underlies the discussion 
contained in this section:

	 1	 The production process is described by a power (Cobb-Douglas) 
production function given by the formula:

( ) ( )( ) ( ) ( )= α αΘ−
Y t K t E t , 	 (5.1)

where Y, K, E > 0 and α ( )∈ 0,1  are understood as in the Solow model 
from Section 2.3.1, and α α( )Θ ∈ +,1  is the degree of homogeneity of 
function (5.1). Hence, if that degree belongs to the interval α( ),1 , de-
creasing returns to scale are observed, and at α( )Θ ∈ +1,1 , increasing 

This chapter has been made available under a CC-BY-NC-ND license.

https://doi.org/10.4324/9781003323792-6
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returns to scale take place. Importantly, given the production function 
analyzed here, (first) the elasticity of output with respect to labour inputs 
equals αΘ −  and (second) the production process is characterized by 
diminishing marginal productivities of both capital inputs and labour.

	 2	 The process of capital accumulation is described by a differential equa-
tion like in the original Solow model:

 δ( ) ( ) ( )= −K t sY t K t , 	 (5.2)

where δ ( )∈s, 0,1  denote (respectively) the savings/investment rate and 
the capital depreciation rate.

	 3	 The trajectory of units of effective labour E is described by the equation:

( ) = ( )+E t e g n t , 	 (5.3)

where >g n, 0 are (respectively) the Harrodian rate of technological pro-
gress and the growth rate of the number of workers (thus, the trajectory 
of the number of workers is described by the equation ( ) =L t ent).

Let y = Y/L denote labour productivity, and k = K/L – capital-labour ratio. 
Let also =G Y YY /  and =G K KK /  denote the growth rates of output and 
capital, and =g y yy /  and =g k kk /  – the growth rates of labour produc-
tivity and capital-labour ratio. Since, as per assumption 3, the number of 
workers rises at the growth rate n, the growth rate of labour productivity 
(capital-labour ratio) equals the difference between the growth rate of prod-
uct stream (capital stock) and the growth rate of the number of workers.

Substituting equation (5.3) into the production function (5.1), we get:

( )( ) ( )= α α( )( )Θ− +Y t K t e g n t , 	 (5.4)

which gives (taking the logarithm of both sides and differentiating with re-
spect to time t):

α α µ( ) ( ) ( )= + Θ −G t G tY K , 	 (5.5)

where µ = + >g n 0 is the growth rate of units of effective labour. It follows 
from equation (5.5) that the growth rate of output equals the sum of growth 
rates of capital and units of effective labour weighted by the elasticities α 
and αΘ − .

Differential equation (5.2) can be expressed as:

δ δ( ) ( )
( ) ( ) ( )

( )
= − ⇒ + =G t s

Y t

K t
G t s

Y t

K t
K K    ,
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which gives (taking the logarithm of both sides and differentiating with re-
spect to time t):



δ
( )

( ) ( ) ( )
+

= −
G t

G t
G t G tK

K
Y K ,

or, multiplied by δ+GK  and considering equation (5.5):

 δ α µ α( )( )( ) ( ) ( ) ( ) ( )= + Θ − − −G t G t G tK K K1 . 	 (5.6)

The differential equation makes an increase in the growth rate of capital 
depending on the growth rate of that variable. It is a Riccati differential 
equation like equation (4.31) and will be considered at δ> −GK . Therefore, 

 α α( )( ) ( )= Θ − − −G GK Ksgn sgn 1 . Hence, for any δ α µ
α

( )∈ −
Θ −

−








GK ,

1
, we get 

 >GK 0, and if 
α µ
α

( )>
Θ −

−
GK 1

, then  <GK 0. This leads to the conclusion that 

the stable steady-state point of differential equation (5.6) GK
*  is described by 

the formula:

α µ
α

α
α

( ) ( )( )=
Θ −

−
=

Θ − +
−

G
g n

K 1 1
.*  	 (5.7)

The rate GK
*  represents a long-run growth rate of the stock of capital in the 

growth model analyzed here. Equation (5.7) leads to the following economic 
conclusions. First, the long-run growth rate of capital depends on four fac-
tors: the Harrodian rate of technological progress g, the growth rate of the 
number of workers n, the elasticity α of output with respect to capital in-
puts and the degree of homogeneity of the production function Θ. Second, 

it follows from 
α
α

∂
∂

= ∂
∂

= Θ −
−

>G
g

G
n

K K

1
0

* *
 that the higher the Harrodian rate 

of technological progress g or the growth rate of the number of workers n,  
the higher the long-run growth rate of capital GK

* . Third, the direction  
of the effect that elasticity α exerts on the analyzed growth rate depends on 
the degree of homogeneity of the production function Θ. The reason is that 

α α
( )( )

( )
∂
∂

=
Θ − +

−
G g nK 1

1

*

2 , hence if increasing/decreasing returns to scale take 

place, then the higher the elasticity α, the higher/lower the long-run growth 

rate of capital. Fourth, it follows from 
α

∂
∂Θ

= +
−

>G g nK

1
0

*
 that the higher the 

degree of homogeneity of the production function, the higher the long-term 
growth rate of capital.

Using ( )=
→+∞

G G tY
t

Ylim*  to designate the long-run growth rate of output 

and given equations (5.5) and (5.7), we can demonstrate that the long-run 
growth rate of output equals the long-run growth rate of capital, hence 
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α
α

( )( )=
Θ − +

−
=G

g n
GY K1

* * . This means that the long-run growth rate of prod-

uct stream equals the long-term growth rate of the capital stock.
Since at any moment ≥t 0, the growth rates of labour productivity (gy) 

and capital-labour ratio (gk) equal the differences between the growth rates 
of output (GY) and capital (GK) and the growth rate of the number of work-
ers (n), in the long-run equilibrium, we get particularly:

= − ∧ = −g G n g G ny Y k K    ,* * * *

where gy
* and gk

* denote the long-run growth rates of (respectively) labour 
productivity and capital-labour ratio. Substituting the long-run growth rates 

of output and capital equal 
α

α
( )( )Θ − +

−
g n

1
 into the above relations, we get:

α
α

( ) ( )= =
Θ − + Θ −

−
g g

g n
y k

1
1

.* *  	 (5.8)

Equation (5.8) leads to the following conclusions. First, the long-run growth 
rates of labour productivity and capital-labour ratio in the growth model 
analyzed here depend on the same macroeconomic variables that deter-
mine the long-term growth rates of product stream and capital stock. Sec-
ond, the higher the Harrodian rate of technological progress, the higher 

the long-run growth rates of output and capital per worker, because 
α
α

∂
∂

= ∂
∂

= Θ −
−

>
g

g
g
g

y k

1
0

* *
. Third, it follows from 

α
∂
∂

= ∂
∂

= Θ −
−

g

n
g
n

y k 1
1

* *
 that if de-

creasing/increasing returns to scale take place in the economy (i.e. Θ is dif-
ferent than 1), then the higher the long-run growth rate of the number of 
workers, the higher/lower the growth rates gy

* and gk
*. Fourth, under con-

ditions of increasing (decreasing) returns to scale, a considerable elasticity 
of output with respect to capital α is accompanied by high (low) long-run 
growth rates of capital-labour ratio and labour productivity, because then 

α α α
( )( )

( )
∂
∂

= ∂
∂

=
Θ − +

−
>

g g g ny k 1

1
0

* *

2  
α α α

( )( )
( )

∂
∂

= ∂
∂

=
Θ − +

−
<











g g g ny k 1

1
0

* *

2 . Fifth, since 

partial derivatives 
α

∂
∂Θ

= ∂
∂Θ

= +
−

g g g ny k

1

* *
 are positive, the higher the degree 

of homogeneity of the production function (5.1), the higher the analyzed 
growth rates.

A more general conclusion can be drawn: if increasing/decreasing returns 
to scale take place in the production process, both the long-run growth 

rates of capital and output (equal 
α

α
( )( )Θ − +

−
g n

1
) and capital-labour ratio 

(amounting to 
α

α
( ) ( )Θ − + Θ −

−
g n1
1

) are greater/less than the corresponding 
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growth rates in the original Solow model (equal +g n in the case of =G GK Y
* *  

and n for =g gk y
* *). Moreover, at increasing/decreasing returns to scale, a 

high growth rate of the number of workers raises/reduces the long-run rates 
of capital-labour ratio and labour productivity.

5.3 � Returns to scale in a two-capital (Mankiw-Romer-Weil) 
model

In a two-capital (Mankiw-Romer-Weil) economic growth model with 
returns to scale, the following assumptions about economy are adopted:

	 1	 Output is described by an extended production function given by the 
formula:

( ) ( ) ( )( ) ( ) ( ) ( )= α α α αΘ− −
Y t K t H t E tK H K H , 	 (5.9)

where Y, K, H, E denote, like in the original Mankiw-Romer-Weil 
model described in Chapter 3, α α ( )∈K H, 0,1  the elasticity of output 
with respect to physical (αK) and human (αH) capital, and Θ is the de-
gree of homogeneity of the production function (5.9). Since it is required 
that the production function (5.9) be characterized by diminishing 
marginal productivities of units of effective labour E, we assume that 

α α( ) ( )Θ − − ∈K H 0,1 . We thus assume that α α α α( )Θ ∈ + + +K H K H,1
. This means that if α α( )Θ ∈ +K H ,1 , decreasing returns to scale take 
place, and increasing returns to scale occur at α α( )Θ ∈ + +K H1,1 .

	 2	 The processes of accumulation of physical and human capital are 
described by the differential equations:

 δ( ) ( ) ( )= −K t s Y t K tK K  	 (5.10a)

and

 δ( ) ( ) ( )= −H t s Y t H tH H . 	 (5.10b)

The rates of investment sK and sH and depreciation rates δK and δH 
are economically interpreted like in the original Mankiw-Romer-Weil 
model. It is then assumed about those rates that ( ) ( )+ ∈s s s sK H K H, ,  0,1  
and δ δ ( )∈K H, 0,1 .

	 3	 The trajectory of units of effective labour is given by equation (5.3).

Let =G Y YY / , =G K KK /  and =G H HH /  represent growth rates of 
(respectively) the product stream and stocks of physical and human 
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capital, and =g y yy / , =g k kk /  and =g h hh /  – the growth rates of 
those macroeconomic quantities per worker.

From the production function (5.9) and equation (5.3), we get:

( ) ( )( ) ( ) ( )= α α α α( )( )Θ− − +Y t K t H t eK H K H g n t ,

which gives, taking the logarithm of both sides and differentiating with re-
spect to time ≥t 0 :

θ α α( ) ( ) ( )= + +G t G t G tY K K H H , 	 (5.11)

where θ α α( )( )= Θ − − + >g nK H 0. Equation (5.11) makes the growth rate of 
product stream (GY) depending in the analyzed economic growth model e.g. 
on the growth rates of physical (GK) and human (GH) capital.

From equations (5.10a,b), ignoring trivial solutions K(t) = H(t) = 0, we 
directly get:

δ( ) ( )
( )

+ =G t s
Y t
K t

K K K  	 (5.12a)

and

δ( ) ( )
( )

+ =G t s
Y t
H t

H H H . 	 (5.12b)

The system consisting of equations (5.12a,b) is analyzed at > ⇒ >K H Y, 0  0.  
It follows that at any moment ≥t 0: δ> −GK K and δ> −GH H .

From equations (5.12a,b), taking the logarithm of both sides and differen-
tiating with respect to time ≥t 0, we get:





δ

δ

( )
( ) ( ) ( )

( )
( ) ( ) ( )

+
= −

+
= −














G t
G t

G t G t

G t
G t

G t G t

K

K K
Y K

H

H H
Y H

.

Substituting relation (5.11) into the above system of equations, we obtain:





δ
θ α α

δ
θ α α

( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

+
= − − +

+
= + − −














G t
G t

G t G t

G t
G t

G t G t

K

K K
K K H H

H

H H
K K H H

1

1

. 	 (5.13)
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The system of differential equations (5.13) makes an increase in the growth 
rates of the stocks of physical ( GK ) and human GH( ) capital depending on 
those growth rates (i.e. GK and GH).

It follows from the first equation in system (5.13) that at δ> −GK K:  >GK 0 

( )<GK 0  if and only if 
θ α

α
< +

−
G

G
K

H H

K1
 

θ α
α

> +
−









G

G
K

H H

K1
. The same applies 

to an increase in the growth rates of human capital. Consequently, a phase 
diagram of the system of differential equations assumes the form given in 
Figure 5.1.

It follows from the phase diagram of the analyzed system of differential 
equations that it has a stable point of long-run equilibrium ( )G GK H,* *  that 
solves the following system of equations:

θ α α
θ α α

( )
( )

= − − +
= + − −





G G
G G

K K H H

K K H H

0 1
0 1

.

The system can also be expressed as a matrix:

α α
α α

θ
θ

− −
− −













=






G
G

K H

K K

K

H

1
1

. .

The point ( )G GK H,* *  that solves the above system of equations determines the 
long-run growth rates of physical and human capital in the Mankiw-Romer-
Weil equilibrium with returns to scale.

–δH

GK

+

–δK

GH

+ –
0=KG

0=HG

–

GH
*

GK
*

Figure 5.1  A phase diagram of system of differential equation (5.13).
Source: The author’s own study.
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Using the method of Cramer determinants, the long-term growth rates of 
physical GK

*  and human GH
*  capital can be described by the following formulas:

θ
α α

α α
α α

( )( )= =
− −

=
Θ − − +

− −
G G

g n
K H

K H

K H

K H1 1
.* *  	 (5.14)

It follows from the above formulas and from relation (5.11) that also the 
long-run growth rate of product stream GY

*  equals in the analyzed economic 

growth model 
α α

α α
( )( )Θ − − +

− −
g nK H

K H1
. This leads to the following economic 

conclusions. First, the growth rates (5.14) represent a simple generalization of 
the growth rates (5.7) from the previously analyzed single-capital model with 
returns to scale. Second, the long-run growth rates of the stocks of capital 
and product stream depend on the Harrodian rate of technological progress 
(g), the growth rate of the number of workers (n), the elasticity (αK and αH) of 
the production function with respect to inputs of physical and human capital 
and the degree of homogeneity (Θ) of that function. Third, because:

α α
α α

∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= Θ − −
− −

>G
g

G
n

G
g

G
n

G
g

G
n

K K H H Y Y K H

K H1
0.

* * * * * *

A high rate of technological progress or high growth rate of the number of 
workers is accompanied by high long-run growth rates of the analyzed mac-
roeconomic variables. Fourth, if increasing (decreasing) returns to scale 
take place in the economy, then the higher the elasticities αK and αH, the 
higher (lower) the long-run growth rates GK

* , GH
*  and GY

* , because:

α α α α α α α α
( )( )

( )
∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=
Θ − +
− −

>G G G G G G g nK

K

H

K

Y

K

K

H

H

H

Y

H K H

1

1
0,

* * * * * *

2

α α α α α α α α
( )( )

( )
∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

= ∂
∂

=
Θ − +
− −

<










G G G G G G g nK

K

H

K

Y

K

K

H

H

H

Y

H K H

1

1
0 .

* * * * * *

2

Fifth, it follows from 
α α

∂
∂Θ

= ∂
∂Θ

= ∂
∂Θ

= +
− −

>G G G g nK H Y

K H1
0

* * *
 that a high de-

gree of homogeneity of the production function corresponds to high growth 
rates of the analyzed macroeconomic variables.

The growth rates of output and various stocks of capital per worker are 
given by the differences between the rates GK, GH or GY and the growth rate 
of the number of workers n. Hence, also the long-term rates of those varia-
bles are given by the differences between GK

* , GH
*  and GY

*  and n. It follows, 
considering also equation (5.14), that:

α α
α α

( ) ( )= = =
Θ − − + Θ −

− −
g g g

g n
k h y

K H

K H

1
1

,* * *  	 (5.15)
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where gk
*, gh

* and gy
* represent the long-run growth rates of (respectively) 

capital-labour ratio, human capital per worker and labour productivity. It 
follows from equation (5.15) that:

•	 The growth rates (5.15) represent a generalization of the growth rates 
(5.8) from the Solow model with returns to scale.

•	 The growth rates gk
*, gh

* and gy
* are determined by the same macroeco-

nomic variables as the growth rates GK
* , GH

*  and GY
* .

•	 Since 
α α
α α

∂
∂

= ∂
∂

=
∂
∂

= Θ − −
− −

>g
g

g
g

g

g
k h y K H

K H1
0

* * *
, the long-run growth rates of 

output and various stocks of capital per worker are directly propor-
tional to the Harrodian rate of technological progress.

•	 It follows from 
α α

∂
∂

= ∂
∂

=
∂
∂

= Θ −
− −

g
n

g
n

g

n
k h y

K H

1
1

* * *

 that if increasing/decreas-

ing returns to scale take place in the production process, a high growth 
rate of the number of workers leads to high/low rates gk

*, gh
* and gy

*.
•	 The higher the degree of homogeneity of the production function, the higher 

the analyzed growth rates, because 
α α

∂
∂Θ

= ∂
∂Θ

=
∂
∂Θ

= +
− −

>g g g g nk h y

K H1
0

* * *

.

•	
α α α α α α α α

∂
∂

= ∂
∂

=
∂
∂

= ∂
∂

= ∂
∂

=
∂
∂

= Θ − +
− −

g g g g g g g nk

K

h

K

y

K

k

H

h

H

y

H K H

( 1)( )
(1 )

* * * * * *

2 , then under 

conditions of increasing/decreasing returns to scale, high elasticities 
αK and αH of the production function raise/reduce the long-run growth 
rates of output and various stocks of capital per worker.

5.4 � Returns to scale in a multiple-capital  
(Nonneman-Vanhoudt) model

The following assumptions underlie this analysis of the effect of returns 
to scale on the long-run economic growth equilibrium in a multi-capital 
growth model:

	 1	 The production process is described by the N + 1-factor production 
function given by the formula:

∏( ) ( )( ) ( ) ( )=














∑α αΘ−
Y t K t E t

i

i
i

i
i  	 (5.16)

where Y, Ki and αi (for i = 1, 2, …, N) are interpreted like in the original 
Nonneman-Vanhoudt model, and Θ is the degree of homogeneity of the 
production function (5.16). It is assumed about the parameters αi and Θ  

that each of the elasticities and their sum belong to the interval (0,1). The 

assumption that ∑ ∑α αΘ ∈ +














i

i

i

i,1  is adopted to obtain a production 



118  Economic growth at returns to scale conditions

function that is characterized by diminishing marginal productivities 
both for various stocks of capital and units of effective labour.

	 2	 An increase in each stock of capital is described by the differential 
equations:

 δ( ) ( ) ( )∀ = −i K t sY t K ti i i i    , 	 (5.17)

where si denotes the rates of investment in various stocks of capital, and 

δi – their depreciation rates. It is assumed about those rates (like previ-

ously) that δ ( )∀ ∈i si i    ,  0,1  and ∑ ( )∈s

i

i 0,1 .

	 3	 The growth path of units of effective labour is described by equation 
(5.3).

Like previously, we ignore the trivial solution ( )∀ =i K ti  0. Let y = Y/L 
represent labour productivity, ki = Ki/L − inputs of ith capital per worker, 

=G Y YY /  – the growth rate of output, =G K Ki i i/  – the growth rates of 
various stocks of capital, =g y yy /  – the growth rate of labour productivity 
and =g k ki i i/  – the growth rates of various stocks of capital per worker  
(for all i).

From the production function (5.16), taking the logarithm of both sides 
and differentiating with respect to time )[∈ +∞t 0, , we get:

∑ ∑α α( ) ( ) ( )
( )

= + Θ −












G t G t

E t
E t

Y

i

i i

i

i

and from the above relation and equation (5.3), that leads to 


= +E
E

g n, we 

arrive at the formula:

∑α θ( ) ( )= +G t G tY

i

i i , 	 (5.18)

where ∑θ α ( )= Θ −












 +g n

i

i . Equation (5.18) makes the growth rate of output 

GY depending e.g. on the growth rates of various stocks of capital Gi and the 
growth rate of units of effective labour +g n.

From equations (5.17), we get:

δ( ) ( )
( )

∀ + =i G t s
Y t
K t

i i i
i

   ,
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which gives (taking the logarithm of both sides and differentiating with re-
spect to time )[∈ +∞t 0, ):



δ
( )

( ) ( ) ( )∀
+

= −i
G t

G t
G t G ti

i i
Y i    . 	 (5.19)

Equations (5.19) make an increase in the growth rates of various stocks 
of capital Gi( ) depending on those growth rates (Gi) and the growth 
rate of output GY. These equations are analyzed in the phase space 

δ{ }( )= … ∈ ∀ > −P G G G R i GN
N

i, , :   1 2 , because:

δ∀ + = >i G s
Y
K

i i i
i

  0.

Let us substitute relation (5.18) into equations (5.19). We arrive then at the 
following system of differential equations:

 ∑δ
θ α( )

( ) ( ) ( ) ( )∀
+

= − − +
≠

i
G t

G t
G t G ti

i i
i i

j i

j    1 . 	 (5.20)

The system of differential equations (5.20) in the phase space P has exactly 
one steady state ( )Γ = … ∈G G G PN, , ,1

*
2
* * . The reason is that Γ represents the 

solution of the following linear system of equations:

∑α θ( )∀ − − =
≠

i G Gi i

j i

j    1 . 	 (5.21)

It can easily be demonstrated that system of equations (5.21) is solved by 
point Γ in which for each i=1, 2, …, N:

∑
∑

∑
θ

α

α

α

( )
=

−
=

Θ −








 +

−
G

g n

i

j
j

j
j

j
j1 1

.*  	 (5.22)

It follows from equations (5.18) and (5.22) that in the steady-state Γ the 

growth rate of output GY
*  also equals 

∑
∑

α

α

( )Θ −








 +

−

g n
j

j

j
j1

.

We will demonstrate in Section 5.5, analysing system of equations (5.30), 
that the steady state (5.22) is Lyapunov stable.
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Since the steady state Γ is characterized by Lyapunov stability, the growth 
rates of various stocks of capital …G G GN, , ,1

*
2
* *  corresponding to that point 

and the growth rate of product stream GY
*  can be understood as growth rates 

of those macroeconomic quantities under conditions of long-run equilibrium 
in a multi-capital growth model with returns to scale. The following conclu-
sions can be drawn from equation (5.22). First, the growth rates expressed 
by formulas (5.22) represent a generalization of the growth rates (5.7) from 
the single-capital model and the growth rates (5.14) from the two-capital  
model. Second, the long-run growth rates …G G GN, , ,1

*
2
* *  and GY

*  depend 
on the rate of technological progress g, the growth rate of the number of 
workers n, the elasticity αi of the production function and the degree of ho-

mogeneity Θ  of that function. Third, since 
∑
∑

α

α
∂
∂

= ∂
∂

=
Θ −

−
>G

g
G
n

Y Y j
j

j
j1

0
* *

, the 

higher the rate of technological progress or the growth rate of the number of 
workers, the higher the long-run growth rates analyzed here. Fourth, a high 
degree of homogeneity Θ corresponds to high values of …G G GN, , ,1

*
2
* *  and 

GY
* , because 

∑ α
∂
∂Θ

= +

−
>G g nY

j
j1

0
*

. Fifth, since for all i: 

∑α
α

( )( )∂
∂

=
Θ − +

−










G g nY

i

j
j

1

1

*

2 ,  

if increasing/decreasing returns to scale take place in the production pro-
cess, the growth rates analyzed here are directly/inversely proportional to 
the elasticities analyzed here.

Since the growth rates of various stocks of capital per worker gi (labour 
productivity gy) equal the differences between growth rates of those stocks 
Gi (product stream GY) and the growth rate of the number of workers n, the 
following equations are satisfied under conditions of long-run equilibrium:

= = = … = = −g g g g G ny N Y ,*
1
*

2
* * *

and it follows from the above relation and from equation (5.22) that:

∑
∑

α

α

( )
= = = … = =

Θ −








 + Θ −

−
g g g g

g n

y N
j

j

j
j

1

1
.*

1
*

2
* *  	 (5.23)

It follows from equation (5.23) that:

•	 The growth rates (5.23) represent a generalization of analogous growth 
rates from the economic growth models previously analysed in Chapter 5.

•	 The long-run growth rates = = = … =g g g gy N
*

1
*

2
* *  depend on the same 

factors as the growth rates …G G GN, , ,1
*

2
* *  and GY

* .
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•	 It follows from 
∑
∑

α

α

∂
∂

=
Θ −

−
>

g

g
y j

j

j
j1

0
*

 that the growth rates analyzed 

here are directly proportional to the Harrodian rate of technological 
progress.

•	 Since 
∑ α

∂
∂

= Θ −

−

g

n
y

j
j

1

1

*

, under conditions of increasing/decreasing re-

turns to scale, a high growth rate of the number of workers raises/re-
duces the long-run growth rates of various stocks of capital and product 
stream per worker.

•	 Additionally, under conditions of increasing/decreasing returns to scale, 
high elasticities αi lead to high/low growth rates = = = … =g g g gy N

*
1
*

2
* * : 

The reason is that i = 1, 2, …, N we have: 

∑α
α

( )( )∂
∂

=
Θ − +

−










g g ny

i

j
j

1

1

*

2 .

5.5 � Golden rules of capital accumulation at returns  
to scale conditions

The golden rule of capital accumulation1 was defined in Chapters 2 and 3 
as a rate of investment (Chapter 2) or a combination of investment rates 
(Chapter 3) that leads to a maximum long-run consumption per unit 
of effective labour. This implicitly means that the investment rate or the 
combination of investment rates brings the economy onto the highest path 
of consumption per worker. The golden rule of capital accumulation will 
be defined in Section 5.5 in the same manner. However, it will be derived 
in a growth model with returns to scale and a finite number of N (N being 
a natural number) capital stocks. Certainly, at N = 1 that rule refers to a 
single-capital model from Section 5.2, at N = 2 – a two-capital model from 
Section 5.3, and at N > 2 – a multi-capital model from Section 5.4.

Let us derive auxiliary artificial variables described by:

∑
∑
α

α

( ) ( )

( )
=

Θ −
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

 +

−
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i

i
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,	 (5.24a)
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exp
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 	 (5.24b)
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and

∑
∑
α

α

( ) ( )

( )
=

Θ −





 +

−

















c t
C t

g n
ti

i

i
i

ˆ

exp
1

, 	 (5.24c)

where C is the volume of consumption in the entire economy, and the re-
maining symbols have the same meanings as in the multiple-capital model 
from Section 5.4. It follows from equations (5.42a–c) that if output Y, various 
stocks of capital K1, K2, …, KN and consumption C (in the entire economy) 

rise at a growth rate equal 
∑

∑
α

α

( )Θ −





 +

−

g n
i

i

i
i1

 (i.e. a growth rate that equals 

the long-run equilibrium growth rate from the multiple-capital growth 
model described in Section 5.4), the artificial variables ŷ, k̂1, k̂2, …, kN

ˆ  and ĉ  
assume certain constant values.

Consumption C is defined in a closed economy as a non-invested fraction 
of production, and can be expressed as:

∑( ) ( )= −












C t s Y t

i

i1 , 	 (5.25)

where s1, s2, …, sN denote rates of investment in various stocks of capital, 
and each of those rates and their sum belongs to the interval (0,1). It follows 
from equation (5.25) that at investment rates that are constant in time, the 
growth rates of production and consumption are equal. Hence (in particu-

lar), if production rises in a long run at the growth rate 
∑

∑
α

α

( )Θ −





 +

−

g n
i

i

i
i1

, 

the growth rate of consumption also equals 
∑

∑
α

α

( )Θ −





 +

−

g n
i

i

i
i1

.

Note that it follows from equations (5.25), (5.24a) and (5.24c) that:

∑( ) ( )= −












c t s y t

i

iˆ 1 ˆ . 	 (5.26)
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It follows from equation (5.26) that if ( ) =
→+∞

y t y
t
lim ˆ ˆ*, also ( ) =

→+∞
c t c

t
lim ˆ ˆ* given 

by the equation:

∑= −












c s y

i

iˆ 1 ˆ .* *  	 (5.27)

An increase in ĉ* raises the long-run growth path of consumption per 
worker c(t). Since consumption C (like output Y) rises in a long run at the 

growth rate equal 
∑

∑
α

α

( )Θ −





 +

−

g n
i

i

i
i1

, the golden rule of capital accumula-

tion should maximize ĉ* with respect to the combination of investment rates 
( ) ( )… ∈s s sN

N, , , 0,11 2  at ∑ ( )∈s

i

i 0,1 .

The production function (5.16), divided by 
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, can 

be expressed as:

∏( )( ) ( )=
α

y t k t

i

i
iˆ ˆ . 	 (5.28)

Differentiating both sides of equations (5.24b) with respect to time )[∈ +∞t 0, ,  
we get:
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where 
∑

∑
α

α

( )
Φ =

Θ −








 +

−
>

g n
j

j

j
j1

0 denotes the long-run growth rates of

product stream and various stocks of capital in the model from Section 5.4. 
Substituting relations (5.17) into differential equations (5.29), we arrive at 
the relation:

δ θ( ) ( ) ( ) ( ) ( ) ( )∀ = − Φ + = −i
dk t

dt
s y t k t s y t k ti
i i i i i i   

ˆ
ˆ ˆ ˆ ˆ ,

where for subsequent is θ δ= Φ + >i i 0. Substituting function (5.28) into the 
above differential equations, we get:

∏ θ( )( ) ( ) ( )∀ = −
α

i
dk t

dt
s k t k ti
i

j

j
j

i i   
ˆ

ˆ ˆ . 	 (5.30)

System of differential equations (5.30) has the same mathematical struc-
ture as system of equations (3.56) and that system (as we demonstrated in 
Chapter 3) is characterized by Lyapunov stability. Hence, also system of 
differential equations (5.30) has a non-trivial steady state that is Lyapunov 
asymptotically stable. Consequently, the steady state of system of differen-
tial equations (5.20), derived from system (equation 5.30), is also Lyapunov 
asymptotically stable.

Moreover, the steady state κ ( )= …k k kN
ˆ , ˆ , , ˆ
1 2  is determined similarly to the 

steady state of system of equations (3.56). Hence:
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and it follows from this relation and equation (5.28) that the artificial varia-
ble ŷ in the steady-state κ satisfies the relation:
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It follows from equations (5.27) and (5.31) that the variable ĉ* in point κ sat-
isfies the relation:
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The golden rule of capital accumulation in the analyzed model can be de-
rived by maximizing ĉ* given by formula (5.32) with respect to the combina-

tion of investment rates ( ) ( )… ∈s s sN
N, , , 0,11 2  at ∑ ( )∈s

i

i 0,1 . The problem 

is (mathematically) identical with maximizing function (3.71) with respect to 
that combination. Hence (like in the case of golden rules in the Nonneman- 
Vanhoudt equilibrium), the golden combination of investment rates is 
α α α( )… N, , ,1 2 , corresponding to the combination of elasticities of produc-

tion function with respect to various capital inputs.

5.6  Conclusions

The discussion contained in this chapter can be summarized as follows:

	 I	 The original neoclassical economic growth models (proposed by Solow, 
Mankiw, Romer, Weil and Nonneman, Vanhoudt) assume e.g. that the 
production process is described by a production function characterized 
by constant returns to scale. It follows from this assumption that basic 
macroeconomic variables (output and various stocks of capital) rise in 
the long-run equilibrium at a growth rate defined as the sum of Harro-
dian rate of technological progress and the growth rate of the number 
of workers. Those variables per worker rise at a growth rate that equals 
the Harrodian rate of technological progress.

	II	 In the models with returns to scale, the long-run growth rates (of prod-
uct stream and capital stocks) equal (in the most general multiple- 

capital model) 
∑

∑
α

α

( )Θ −








 +

−

g n
j

j

j
j1

. In conclusion, if increasing/decreasing 

returns to scale take place in the economy, the rates are greater/less 
than the growth rates of those variables at constant returns to scale 
(equal +g n).

	III	 Also golden rules of capital accumulation determined in the models 
with returns to scale are consistent with the rules found in the Solow, 
Mankiw-Romer-Weil and Nonneman-Vanhoudt models.

Note
	 1	 The model described here was proposed by Dykas, Sulima and Tokarski (2008).
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6	 Bipolar growth models with 
investment flows

6.1  Introduction

In the previous sections, we analyzed processes in a closed economy, under-
stood as an economy unrelated to other economies. In that type of econ-
omy, investments may only be financed using domestic savings. We cancel 
that assumption in this chapter. It is aimed to analyze bipolar models of eco-
nomic growth that are developed to study two economies, conventionally 
termed a rich economy and a poor economy. It is also assumed that those 
economies can invest their savings internally or abroad.

Section 6.2 describes a model with exogenous investment rates. The 
model was developed in a study published by Filipowicz and Tokarski 
(2015). In Section 6.3, we question the assumption about an exogenous na-
ture of investment rates and flows. We modify this assumption in that model 
by the statement that the volumes of investment flows between the econo-
mies covered by our analysis depend on the ratio of capital productivities 
in those economies. According to our assumption, if capital productivity 
in one of the economies grows faster than in the other economy, investment 
inflow rises in the economy that is characterized by a faster growth of cap-
ital productivity and drops in the other analyzed economy. The model was 
proposed in a study published by Filipowicz, Wisła and Tokarski (2016).

In the theoretical growth models discussed in this chapter, neither trajec-
tories of analyzed macroeconomic variables nor points of long-run equi-
librium can be explicitly determined. Hence, Section 6.4 contains results 
of numerical simulations of values of major macroeconomic variables at 
calibrated parameters of the analyzed growth models.

Alternative approaches to the modelling of investment flow impact on 
the processes of long-run economic growth (both theoretical and empiri-
cal) can be found e.g. in the studies by Lucas (1990), Barro, Mankiw and 
Sala-i-Martin (1995), Borensztein, De Georgio and Lee (1995), Witkowska 
(1997), Markusen and Venables (1999), Welfe (2000, 2009), Carkovic and 
Levine (2002), Alfaro (2003), Alfaro, Chanda, Kalemli-Ozcan, and Sayek 
(2003), Moudatsou (2003), Latocha (2005), Aizenman, Jinjarak and Park 
(2011), Roman and Padureanu (2012), Ptaszyńska (2015) or Dinh, Vo, Vo 
and Nguyen (2019).

This chapter has been made available under a CC-BY-NC-ND license.
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6.2  A model with exogenous investment flows

The following assumptions about processes taking place in the two types of 
economy underlie the analyzes done in Section 6.2:

	 1	 The production process both in a rich economy (designated by the 
letter R) and in a poor economy (designated by P) is described by the 
Cobb-Douglas production function with external effects. Due to those 
effects, labour productivity yR (yP) in a rich (poor) economy is affected 
not only by the rate of capital per worker kR (kP) in that rich (poor) 
economy, but also by the value of that macroeconomic variable in the 
other analyzed economy. Hence, the labour productivity function in a 
rich economy can be expressed by the formula:

,y t k t k tR R P( ) ( )( ) ( ) ( )= α β
 	 (6.1a)

and in a poor economy by:

,y t k t k tP P R( ) ( )( ) ( ) ( )= α β
 	 (6.1b)

where it is assumed about parameters α and β that , , 0,1α β α β ( )+ ∈ . α 
represents the elasticity of labour productivity in a rich (poor) economy 
with respect to capital per worker in that economy, β denotes the elas-
ticity of that labour productivity in a rich (poor) economy with respect 
to capital per worker in a poor (rich) economy. We also assume that 
α β> , which means that the level of labour productivity in a rich (poor) 
economy is more affected by capital per worker in that economy than by 
the value of that variable in a poor (rich) economy. The influence of cap-
ital per worker in a P-type (an R-type) economy on labour productivity 
in an R- type (a P- type) economy can be explained using three meth-
ods. First, it can result from gravity effects, like in the gravity growth 
model (see Chapter 7, Mroczek, Tokarski and Trojak (2014) or Filipow-
icz (2019)). Second, that influence can result from a process whereby a 
poor economy absorbs by imitation new technological developments, 
thus benefiting from a higher value of capital per worker in a rich econ-
omy. Third, the efficiency of processes in poor economies is favourably 
affected by well-developed infrastructure (e.g. transport) in rich econ-
omies while the efficiency of processes in rich economies is adversely 
affected by underdeveloped infrastructure in poor economies.1

	 2	 An increase in capital in a rich economy is described by a differential 
equation:

,K t s Y t s Y t K tR RD R PF P K R
 δ( ) ( ) ( ) ( )= + −  	 (6.2a)

where KR denotes the stock of capital in a rich economy YR (YP) repre-
sents the volume of production, i.e. output in a rich (poor) economy, sRD 
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is the percentage of output produced in an R-type economy that is in-
vested in that economy, sPF is the percentage of output produced in a P 
economy and invested in an R-type economy, and 0,1Rδ ( )∈  represents 
capital depreciation rate in an R-type economy. Similarly, it is assumed 
that:

,K t s Y t s Y t K tP PD P RF R P P
 δ( ) ( ) ( ) ( )= + −  	 (6.2b)

where the variables and parameters are understood like in 
equation (6.2a). It is assumed about investment proportions that 

,  ,  ,  0,1s s s sRD RF PD PF ( )∈  and 0,1s sRD RF( ) ( )+ ∈  and 0,1s sRD RF( ) ( )+ ∈ .  
We also assume that s sRD RF≥  s sPD PF( )≥ , hence that domestic 
investments made by a rich (poor) economy are not less than invest-
ments made abroad by those economies.

	 3	 The trajectory of the total number of workers (in both economies) is 
described by an exponential function given by the formula:

,L t ent( ) =  	 (6.3)

where n > 0 is the growth rate of the number of workers (so that we 
implicitly assume that the total number of workers at moment t = 0 
equals 1).

	 4	 A rich (poor) economy absorbs a portion of total worker resources 
equal ω  1 ω( )− , where 0,1ω ( )∈ . It follows from the above relation and 
from assumption 3 that the growth paths of the number of workers in 
a rich economy (LR) and in a poor economy (LP) are described by the 
equations:

,L t eR
ntω( ) =  	 (6.4a)

and

1 .L t eP
ntω( ) ( )= −  	 (6.4b)

Capital per worker in either of the economies can be expressed using the 
equation: kR = KR/LR and kP = KP/LP. Differentiating kR and kP with respect 
to time, we get:

2k t
K t L t K t L t

L t
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and (by analogy):
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Substituting relations (6.2a,b) and (6.4a,b) into the above equations and con-
sidering that:

    
L t
L t

n
L t
L t

L t
L t

nR

R

P

P

  ( )
( )

( )
( )

( )
( )

= ⇒ = =

as per (6.3), we obtain the equation:

1
,k t

s y t L t s y t L t k t L t
L t

nk tR
RD R FP P R R

R


ω ω δ
ω

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )= + − − −

hence:

1
k t s y t s y t k tR RD R PF P R R


ω
ω

µ( ) ( ) ( ) ( )= + − −  	 (6.5a)

and (similarly):

1
.k t s y t s y t k tP PD P RF R P P



ω
ω

µ( ) ( ) ( ) ( )= +
−

−  	 (6.5b)

where 0ni iµ δ= + >  (for i = R, P) denote the rates of decline in capital per 
worker in the analyzed economies. Substituting labour productivity func-
tions (6.1a,b) into relations (6.5a,b), we obtain the following system of differ-
ential equations:

1

1

.
k t s k t k t s k t k t k t

k t s k t k t s k t k t k t

R RD R P PF P R R R

P PD P R RF R P P P





ω
ω

µ

ω
ω

µ

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

= + − −

= +
−

−










α β α β

α β α β
  

	 (6.6)

System of differential equations (6.6) makes increases in stocks of capital 
per worker in a rich and poor economy depending on their values, on the 
combination of proportions of (domestic and foreign) investments in out-
put, on the ratio by which labour resources are divided and on the rates of 
decline in capital per worker. The system is considered (ignoring a trivial 
solution) in phase space 0, 2P ( )= +∞ .

A non-trivial steady state of system of differential equations (6.6) repre-
sents the solution of the following system of equations:

1

1

.

1 1

1 1

s k k s k k

s k k s k k

RD R P PF R P R

PD R P RF R P P

ω
ω

µ

ω
ω

µ

+ − =

+
−

=










α β β α

β α α β

− −

− −
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Let us substitute: kR = ukP, where u > 0 denotes the value of capital per 
worker in a rich economy relative to the value of that variable in a poor 
economy (at any time 0,t )[∈ +∞ ). The above system of equations can be then 
expressed as follows:

1

1

.

1 1 1

1

k s u s u

k s u s u

P RD PF R

P PD RF P

ω
ω

µ

ω
ω

µ

+ −





 =

+
−







 =











α β α β

α β β α

+ − − −

+ −
 	 (6.7)

Dividing the first equation by the second equation in system (6.7), we get the 
relation:

1

1

,

1 1s u s u

s u s u

RD PF

PD RF

R

P

ω
ω
ω

ω

µ
µ

+ −

+
−

=
α β

β α

− −

that implies the equation:

0,uφ ( ) =  	 (6.8)

where:

, 0,
1

0, 0, and
1

0

1
1

2
1

1 2 1

2 1 2

u a u a u b u b u a s

a s b s b s

P RD

P PF R PD R RF

φ µ

µ ω
ω

µ µ ω
ω

( ) = + − − = >

= − > = > =
−

>

α β β α− −

Note that:

lim ,
0

u
u

φ ( ) = +∞
→ +

lim u
u

φ ( ) = −∞
→+∞

and

0    1 1 0.1
2

2
2

1
1

2
1u u a u a u b u b uφ α β β α( ) ( ) ( )∀ > ′ = − − − − − − <α β β α− − − −

It follows from the above relations and from the Darboux property of a con-
tinuous function that equation (6.8) has exactly one solution u* > 0 (because 
at u increasing from 0 to +∞, the values of function ϕ(u) decrease from +∞ to 
−∞). Additionally, we get from the first equation in system (6.7):

1

,*

* 1 * 1 1/ 1

k
s u s u

P

RD PF

R

ω
ω

µ
( ) ( )

=
+ −















α β α β( )− − − −

 	 (6.9a)
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and this together with substitution kR = ukP leads to:

1

.* *

* 1 * 1 1/ 1

k u
s u s u

R

RD PF

R

ω
ω

µ
( ) ( )

=
+ −















α β α β( )− − − −

 	 (6.9b)

Equations (6.9a,b) describe the combination of capitals per worker in a 
non-trivial steady state ,* *k k PR Pκ ( )= ∈  of system of differential equations 
(6.7).

A Jacobian matrix of system of differential equations (6.6) is expressed 
by the equation:

1 1

1 1

.

1 1 1 1

1 1 1 1
J

s k k s k k s k k s k k

s k k s k k s k k s k k

RD R P PF P R R RD R P PF P R

PD P R RF P R PD P R RF P R P

α β ω
ω

µ β α ω
ω

β α ω
ω

α β ω
ω

µ
=

+ − − + −

+
−

+
−

−



















α β α β α β α β

α β β α α β β α

− − − −

− − − −
 

	  
 

	  (6.10)

In the steady state, we get:

11 1s k k s k kR RD R P PF R Pµ ω
ω

= + −α β β α− −

and

1
.1 1s k k s k kP PD R P RF R Pµ ω

ω
= +

−
β α α β− −

Hence, Jacobian matrix (6.10) can be written as:

=





,* 11 12

21 22
J

j j
j j

 	 (6.11)

where:

1 1
1

0,11j
s k k s k k

k

RD R P PF P R

R

α β ω
ω

( ) ( )
= −

− + − −

<
α β α β

1

0,12j
s k k s k k

k

RD R P PF P R

P

β α ω
ω=

+ −

>
α β α β

1 0,21j
s k k s k k

k

PD P R RF P R

R

β α ω
ω=

+
− >

α β β α
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and

1 1
1 0.22j

s k k s k k

k

PD P R RF P R

P

α β ω
ω

( ) ( )
= −

− + −
− <

α β β α

The eigenvalues of Jacobian matrix J* are given by the roots of the equation:

det 0.2 * *trJ Jλ λ− + =  	 (6.12)

The discriminant Δ of equation (6.12) is described by the formula:

4det 4 0,2 * *
11 22

2
12 21tr J J j j j j( )∆ = − = − + >

hence, both eigenvalues represent real numbers.
From Vieta’s formulas, we conclude that the eigenvalues λ1 and λ2 are de-

scribed by the formulas:

1 2
*trJλ λ+ =

and

det .1 2
*Jλ λ =

We conclude that 0*
11 22trJ j j= + < . Additionally, the relations are true:

1 1
1

1 1
1

1 1

1 1
1

1

11 22

2 2

2 2 2 2

j j
s k k s k k

k

s k k s k k

k

s s s s
k k

k k

s s k k s s k k

k k

RD R P PF P R

R

PD P R RF P R

P

RD PD PF RF

R P
R P

RD RF R P PD PF R P

R P

α β ω
ω

α β ω
ω

α β

α β ω
ω

ω
ω

( ) ( ) ( ) ( )

( ) ( ) ( )

( )( )

=
− + − −

⋅
− + −

−

= − + −

+
− −

−
+ −








α β α β α β β α

α β

α β β α

+

and

1
1

1
1

12 21

2 2 2 2

j j
s k k s k k

k

s k k s k k

k

s s s s k k s s s s k k

k k

RD R P PF P R

P

PD P R RF P R

R

PF RF RD PD R P PF PD RD RF P R

R P

β α ω
ω

β α ω
ω

α β αβ ω
ω

ω
ω( )( )

=
+ −

⋅
+

−

=
+ + − +

−








α β α β α β β α

α β α β+
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Since det *
11 22 12 21J j j j j= − , then:

det
1 1

1 1
1

1

1
1

*
2 2

2 2 2 2

2 2 2 2

J
s s s s

k k
k k

s s k k s s k k

k k

s s s s k k s s s s k k

k k

RD PD PF RF

R P
R P

RD RF R P PD PF R P

R P

PF RF RD PD R P RD RF PF PD P R

R P

α β

α β ω
ω

ω
ω

α β αβ ω
ω

ω
ω( )

( ) ( ) ( )

( )( )

( )

= − + −

+
− −

−
+ −








−
+ +

−
+ −








α β

α β β α

α β α β

+

+

results in:

det
1 1

1
1

1

0.

*

2 2 2 2

J
s s s s k k
k k

s s k k s s k k

k k

RD PD PF RF R P

P R

RD RF R P PD PF P R

P R

α β α β

α β ω
ω

ω
ω

( )( )( )( )

( )

= − − − + +

+
− −

−
+ −








>

α β

α β α β

+

As the total of eigenvalues is negative, and their product is positive, both 
eigenvalues represent negative real numbers. As per the Grobman-Hartman 
theorem, system of differential equations (6.7) is asymptotically stable in a 
sufficiently close neighbourhood of steady state ,* *k kR P( ).

/* * *u k kR P=  solving equation (6.8) describes the value of capital per worker 
in a rich economy relative to capital per worker in a poor economy in the 
long-run equilibrium in the growth model analyzed here. If 1*u = , then con-
vergence in capital per worker occurs between a poor economy and a rich 
economy. If 0*u = , capital per worker in a poor economy kP (at certain mo-
ment 0t > ) reaches the value of capital per worker kR in a rich economy, to 

eventually exceed that value continually while lim 0
k t
k tt

R

P

( )
( )

=
→+∞

. However, at 

*u → +∞ and t → +∞, the ratio kR/kP approaches +∞. Hence, at 1*u =  there 
is convergence in capital per worker while at *u → +∞ 0*u( )=  a divergence 
process takes place in which a poor economy catches up and then overtakes 
a rich economy.

It follows from equation (6.8) that the long-run ratio of capitals per worker 
u* can be written as:

, , , , , , , , , , , , , .* *
1 2 1 2u u a s n a s n b s n b s nRD P PF P PD R RF Rδ ω δ δ ω δ( )( ) ( ) ( ) ( )=  	 (6.13)

Equation (6.13) leads to the following conclusions:

•	 The long-run ratio of stocks of capital per worker in rich and poor econ-
omies depends e.g. on the rates of their internal, domestic investment 
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(sRD and sPD), rates of investment abroad (sRF and sPF) rates of capital 
depreciation in a rich economy and in a poor economy (δR and δP), the 
percentage ω of total worker resources that is absorbed by a rich econ-
omy and the growth rate of the number of workers (n) in both types of 
economy.

•	 Since2:

0,
*

1

1
1u

s
s

u

a
a

s

u

u

u
RD

RD RD P

φ

φ

φ

φ
µ

φ
∂

∂
= −

∂
∂

∂
∂

= −

∂
∂

⋅ ∂
∂

∂
∂

= − ∂
∂

>
α−

so that the greater fraction of output produced in a rich economy is in-
vested in that economy, the greater is the long-run ratio /* *k kR P.

•	 It follows from:

φ

φ

φ

φ
µ
φ

∂
∂

= −

∂
∂
∂
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= −

∂
∂

⋅ ∂
∂

∂
∂

= ∂
∂

<
β

0
*

1

1

u
s

s

u

b
b

s

u

u

u
PD

PD PD R

that a high rate of domestic investment in a poor economy corresponds 
to a low long-run ratio /* *k kR P.

•	 The inequality:

1
0,

*
2

2

2

2
1

2 2
u a

a
b
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u

u s u s

u

P PF R RF

ω

φ
ω

φ
ω

φ

µ
ω

µ
ω

φ
( )∂

∂
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∂
∂
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∂

+ ∂
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∂
∂

=
+

−
∂
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<

β α−

implies that a high percentage ω of people working in a rich economy 
(considering people working in both types of economy) corresponds to 
a low ratio of long-run stocks of capital per worker *kR and *kP .

•	 A high rate of capital depreciation in a rich economy reduces the long-
run ratio /* *k kR P. The reason is that:

1 0.
*

1

1

2

2

u b
b

b
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u
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δ

φ
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•	 The effect of δP on the ratio of u* is opposite. This is because:

1

0.
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u s u s

u
P

P P
RD PF

δ

φ
δ

φ
δ

φ

ω
ω

φ
∂
∂

= −

∂
∂
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•	 Since:

1
1 ,
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1

2

2
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u
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a
a
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a
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b
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− ∂
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α β β α− −

the direction of effect of the growth rate of the number of workers n on 

the ratio of u* is not obvious (because the partial derivative 
*u

n
∂
∂

 can be 

both positive, negative and equal 0).

Let us use v = yR/yP to denote (at any time 0t ≥ ) the ratio of labour produc-
tivities in rich economies and in poor economies at subsequent moments t. 
Then, it follows from equations (6.1a,b) that:

,v t
y t
y t

k t k t

k t k t

k t
k t

R

P

R P

P R

R

P

( ) ( )
( ) ( )

( ) ( )
( )

( ) ( )
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( )
( )

= = =










α β

α β

α β−

hence v t u t( )( ) ( )= α β−
, or:

,* *v u( )=
α β−

where /* * *v y yR P=  denotes the ratio of labour productivities in an R economy 

and a P economy in a long run. Since α > β, then sgn sgn
* *u

x
v
x

∂
∂

= ∂
∂

 (where x 

denotes any independent variable that determines u*). This means that the 
direction of effect exerted by the several exogenous variables on the v* ratio 
of labour productivities in a long-run equilibrium in the economic growth 
model analyzed here is identical to the direction of effect exerted by those 
variables on the u* ratio of capitals per worker.
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6.3 � A model with investment flows conditional on capital 
productivity

In the model analyzed in Section 6.2, we assumed that investment flows (be-
tween an R-type economy and a P-type economy) are exogenous. Hence, 
investment flows were independent of capital productivity in both types of 
economy. We cancel this assumption in the model described in Section 6.3 
and propose that those flows from one type of economy to the other type of 
economy (i.e. from economy i to economy j) are directly proportional to the 
ratio of capital productivity in economy j to capital productivity in economy i.  
Hence, the following assumptions are adopted in the model analyzed here:

	 1	 Production processes in both types of economy are described by equa-
tions (6.1a,b).

	 2	 Increases in the stocks of capital per worker (in rich and poor econo-
mies) are described by differential equations in the form3:

1
k t s t y t s t y t k tR RD R PF P R R


ω
ω

µ( ) ( ) ( ) ( ) ( ) ( )= + − −  	 (6.14a)

and

1
,k t s t y t s t y t k tP PD P RF R P P



ω
ω

µ( ) ( ) ( ) ( ) ( ) ( )= +
−

−  	 (6.14b)

where the variables kR, kP, yR, yP > 0, parameters4 0nR Rµ δ= + > , 
0nP Pµ δ= + >  and 0,1ω ( )∈  are read like in the model from Section 6.2. 

The trajectories of investment rates (sRD, sRF, sPD and sPF) are described 
by equations derived from assumptions 3–4.

	 3	 Total savings rates in rich (poor) economies equal 0,1sR ( )∈  0,1sP( )( )∈ .  
Savings achieved in those economies are invested both internally and 
abroad. Domestic investments of rich (poor) economies equal a 1 R−  
1 P( )−  fraction of their savings and their investments abroad equal a  
R  P( ) fraction.

	 4	 The proportion of national savings invested abroad R  (in rich econo-
mies) depends on domestic capital productivity (pR = yR/kR), and capital 
productivity abroad (pP = yP/kP). Moreover, we assume that the higher 
the ratio of capital productivity in a poor economy (pP) to capital pro-
ductivity in a rich economy (pR), the larger fraction of domestic sav-
ings achieved in the rich economy will be invested in a poor economy. 
Hence, we assume that:

t
p t

p t

R
R

p

R



γ( )
( )
( )

=
+ −









1 exp

, 	 (6.15a)
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where 0,1Kγ ( )∈ . It follows from equation (6.15a) that:

	 i	 lim
20

pp
pR

R
R



γ=
→ +

, and if capital productivity in a poor economy was 

extremely low (compared to capital productivity in a rich economy), 
the rich economy would be ready to invest in the poor economy a R  
fraction of its savings equal γR/2.

	ii	 lim
pp
pR

R R γ=
→+∞

, i.e. if the ratio pP/pR was very high, the R-type econ-

omy would invest in the P-type economy a fraction of its savings 
equal γR.

	iii	 Since: 
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>  (for any 0
p

p
p

R
> ), the 

greater the ratio of capital productivity in a P-type economy to the 
value of that variable in an R-type economy, the greater fraction 
of national savings achieved in the rich economy is invested in the 
poor economy.

It is assumed that the trajectory P  is described by an equation simi-
lar to (6.15a), i.e.:

1 exp
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 	 (6.15b)

where the parameter 0,1Pγ ( )∈  is interpreted in terms of economics 
like the parameter γR in equation (6.15a). Obviously, function (6.15b) 
is characterized by similar (economic and mathematical) properties as 
function (6.15a).

	 5	 The trajectories of numbers of workers in rich and poor economies are 
described by equations (6.3) and (6.4a,b).

The quotients of capital productivities can be written as:

/
/

/
/
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and it follows from the above relation and from equation (6.1a,b) that:
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α β− −

 	 (6.16)
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Equation (6.16) makes the ratio of capital productivity in a rich economy to 
capital productivity in a poor economy (pR/pP) conditional on the relation-
ship between capital-labour ratios (kR/kP).

Substituting relation (6.16) into equations (6.15a,b), we obtain:

1 exp
1 exp1 1
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and
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 	 (6.17b)

where the quotient u = kR/kP > 0 represents the relationship between 
capital-labour ratios in a rich economy and in a poor economy.

The following system of differential equations is obtained from relations 
(6.1a,b), (6.17a,b) and (6.14a,b):
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 	 (6.18)

Let us demonstrate now that system of differential equations (6.18) has 
exactly one non-trivial steady state in the phase space 0, 2P ( )= +∞ . In the 
non-trivial steady state, the following holds: 0k kR P

 = =  and kP > 0. It fol-
lows from the above relations and from formula (6.18) that the following 
system of equations is satisfied in that state:

1
1

1
1

,
s u k k s u k k k

s u k k s u k k k

R R R P P P P R R R

P P P R R R R P P P

 

 

ω
ω

µ

ω
ω

µ

( )

( )

( ) ( )

( ) ( )

− + − =

− +
−

=










α β α β

α β α β



Bipolar growth models with investment flows  139

that, substituting u = kR/kP, can also be written as:
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Dividing the first by the second of the above equations, we get:
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and performing some elementary transformation, we arrive at the equation:
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that (considering our search for u > 0) gives:

0,uϕ ( ) = � (6.19)

where:
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 	 (6.20)

The function uϕ ( ) is described by equation (6.20) and characterized by the 
following properties:

	 i	 Equations (6.17a,b) lead to the conclusion that 0
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Then 0 0.u uϕ ( )∀ > ′ >

It follows that if the ratio u = kR/kP increases from 0 to +∞, the values of 
function uϕ ( ) increase from −∞ to +∞. It follows from the above relations 
and from the Darboux property that exactly one u* > 0 exists such that 
solves equation (6.19).

A Jacobian matrix of system of differential equations (6.18) is expressed 
by the equation:
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and
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In the steady state, we get:
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Hence, a Jacobian matrix in a steady state of the analyzed system of differ-
ential equations can be written as:
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Eigenvalues of matrix J* solve the equation:

det 02 * *trJ Jλ λ− + =  	 (6.23)

The discriminant Δ of equation (6.23) is expressed by the formula:

tr J J j j j j( )∆ = − = − + >4det 4 0,2 * *
11 22

2
12 21

and this leads to the conclusion that both eigenvalues of the analyzed matrix 
represent real numbers.

We will demonstrate now that the total of eigenvalues (λ1 and λ2) is nega-
tive, and their product is positive. From Vieta’s formulas, we get:
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It can be demonstrated, following a series of complex transformations that 
will not be included here, that:
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From the statement that for each i = 1, 2, 3 qi > ri and from equations 
(6.24a,b), it follows that det 0*J > . Hence, both eigenvalues of the analyzed 
Jacobian matrix represent negative real numbers. Consequently (as per the 
Grobman-Hartman theorem), system of differential equations (6.18) is as-
ymptotically stable in its steady state.
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6.4  Numerical simulations of economy growth trajectories

6.4.1  Exogenous investment flows

To perform simulations of growth paths in the model from Section 6.2, we 
assume e.g. that the ratio of elasticities of labour productivity functions 
(6.1a,b), i.e. α and β, can be expressed as 10:1 (i.e. the stock of domestic cap-
ital per worker has an effect on domestic flow of labour productivity that is 
ten times stronger than the effect of stock of foreign capital per worker). 6 
Then, the functions (in a discrete time t = 0, 1, …) can be written as:

,10y k kRt Rt Pt= β β  	 (6.25a)

and

,10y k kPt Pt Rt= β β  	 (6.25b)

Parameter β is calibrated so that at a ratio of capital per worker in a rich 
economy to capital per worker in a poor economy equal 5:1, the ratio of 
labour productivities equals 3:1. This leads to the conclusion that as per 
equations (6.25a,b):

,
9

y
y

k
k

Rt

Pt

Rt

Pt
=











β

which gives:

3 5 ,9= β

thus:

ln3
9ln5

0.07585        10 0.7585.β α β= ≈ ⇒ = ≈

Given the adopted assumptions (about the elasticities α and β), the labour 
productivity functions can be written as:

0.7585 0.07585y k kRt Rt Pt=  	 (6.26a)

and

,0.7585 0.07585y k kPt Pt Rt=  	 (6.26b)

The capital depreciation rate, both in a rich economy and in a poor econ-
omy, is calibrated at the level of 7% (hence, R Pδ δ= = 0.07, and the growth 
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rate of the number of workers at n = 0.005. Then, 0.075R Pµ µ= =  and an 
approximation of system of differential equations (6.6) is given by the fol-
lowing system of differential equations:
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 	(6.27)

In all simulations described below, we assume that in the year t = 0 capital 
per worker in a rich economy equals 5, and in a poor economy it equals 1. 
This implies, as per equations (6.26a,b), that in the year t = 0 labour pro-
ductivity in a rich economy equals about 3.3895, and in a poor economy it 
equals 1.1298.

Let us also use lim*k kR
t

Rt=
→∞

, lim*k kP
t

Pt=
→∞

 to denote long-run capital per 

worker in both analyzed types of economy, lim*y yR
t

Rt=
→∞

, lim*y yP
t

Pt=
→∞

 to de-

note long-term labour productivities, and /* * *u k kR P=  and /* * *v y yR P=  to de-
note long-run ratios of capital per worker (u*) and labour productivities (v*) 
in an R-type economy to those in a P-type economy.7 Let also t  represent 
the year in which the poor economy overtakes the rich economy in terms of 
labour productivity and capital per worker.

The numerical simulations of growth paths of capital per worker and la-
bour productivity were performed for the following variants:

	 I	 there are no investment flows between the economies (this is a base 
version used as a reference for results obtained in other variants);

	 II	 a rich economy absorbs 20% of the total of workers;
	 III	 40% of workers work in a rich economy;
	 IV	 the percentage of workers in either economy equals 50%;
	 V	 a poor economy absorbs 40% of workers;
	 VI	 20% of the total of workers work in a poor economy;
	 VII	 the savings rate equals 25% in a rich economy, and 15% in a poor 

economy, and ω equals (subsequently) 20%, 40%, 50%, 60% and 80%;
	VIII	 the savings rate reaches the level of 15% in a rich economy, and 15% 

in a poor economy, at ω developing like in the preceding variant.
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We assume in variants I–VI that the savings rates in either analyzed econ-
omy equal (in nine various combinations) 17%, 20% or 23%. We also assume 
in all variants (i.e. in cases I–VIII) that savings achieved in a rich econ-
omy are invested in 10% in a poor economy, and savings achieved in a poor 
economy are allocated in 5% to investment in a rich economy.

Let us begin with the scenario of no investment flows. Complete na-
tional savings are allocated to domestic investment. Thus, we have a Solow 
model extended by the effect of external factors originating from a poor 
(rich) economy on a rich (poor) economy. Selected results of those numer-
ical simulations are contained in Table 6.1. It follows from those simula-
tions that:

•	 At the same savings rates achieved in both analyzed types of economy, 
complete convergence occurs both in labour productivity and in invest-
ment rates. The reason is if savings rates in both analyzed economies 
reach a level of 0,1s ( )∈ , the rates of decline in capital per worker equal 

0µ > , and the elasticities in labour productivity functions (6.1ab) equal 
α and β (where , , 0,1α β α β( ) ( )+ ∈  and α > β), then system of differential 
equations (6.27) can be written as:
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Performing some simple transformations, it can be demonstrated that 
the non-trivial steady state of the above system of differential equations 
represents a solution of the following system of equations:
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 	 (6.28)

Table 6.1  Selected simulation results in Variant I (no investment flows)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 139.5 139.5 61.6 61.6 100.0 100.0 +∞
20 176.4 294.4 77.8 110.4 59.9 70.5 35
23 215.8 559.3 95.2 182.4 38.6 52.2 22

20 17 294.4 176.4 110.4 77.8 166.9 141.8 Never
20 372.1 372.1 139.5 139.5 100.0 100.0 +∞
23 455.2 707.0 170.7 230.6 64.4 74.0 34

23 17 559.3 215.8 182.4 95.2 259.2 191.6 Never
20 707.0 455.2 230.6 170.7 155.3 135.1 Never
23 864.9 864.9 282.0 282.0 100.0 100.0 +∞

Source: Own calculations.
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The solution of system of equations (6.28) is given by stocks *kR and *kP  

that satisfy the relation: ln ln
1

1
ln* *

2 2
k k

s
R P

α β
α β µ( )

= = − −
− −

, which leads to 

* *k kR P= .
•	 If the savings rate in a rich economy is less by 3% points than in a poor 

economy, then the P-type economy will overtake the R-type economy 
after 34–35 years in terms of capital per worker and labour productiv-
ity. In a long run, capital per worker in an initially richer economy will 
amount to about 60%–65% of capital per worker in an initially poorer 
economy. Regarding output per worker, the proportion will drop to 
about 70%–75%.

•	 If the rich economy had a savings rate equal 17% and the poor economy 
by a savings rate greater by 6% points, capital per worker and labour 
productivity in the latter economy would be greater than in the former 
economy as soon as after 22 years. In a long-run, capital per worker  
in the initially richer economy would be by more than 60% less than in 
the initially poorer economy and consequently labour productivity 
in the latter economy would be almost twice as great as in the former 
economy.

•	 At savings rates greater by three points in an R economy, partial 
convergence8 of the poor economy with the rich economy takes place. 
The ratio of capitals per worker drops then from 5:1 (in the year t = 0) to 
1.669:1 or 1.553:1 (at t → ∞), and the ratio of labour productivities drops 
from 3:1 to 1.418:1 or 1.351:1.

•	 Also a difference in savings rates amounting to 6% points (in favour 
of the rich economy) leads to partial convergence of the poor economy 
with the rich economy. The reason is that under those circumstances (as 
per the quantities stated in Table 6.1) at t → ∞: 2.592u →  and 1.916v → .  
Partial convergence of a poorer economy with a richer economy at 
higher savings rates in the rich economy results from two reasons indi-
cated below. First, due to the Cobb-Douglas production function used 
in the Solow model, there are diminishing marginal productivities of 
both physical capital and capital per worker, and this naturally leads to 
convergence of major macroeconomic variables analyzed in the Solow 
model. Second, due to an extension of the labour productivity function 
(6.1a,b) by external effects, an increase in labour productivity in a poor 
economy is also driven by an increase in capital per worker in a rich 
economy (this correlation is ignored in the original Solow model).

•	 The simulation exercises summarized in Table 6.1 also confirm the hy-
pothesis theoretically confirmed in Section 6.2 and predicting that the 
higher savings rate is characteristic of one of the analyzed economies 
the higher values are assumed by capital per worker and labour pro-
ductivity in both economies in a long-run equilibrium of the economic 
growth model proposed here.
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Table 6.2 contains numerical simulation results of capital per worker and la-
bour productivity (in both types of economy) in Variant II described above. 
The quantities given in that table lead to the following conclusions:

•	 Assuming the same savings rates in a rich economy and in a poor econ-
omy, capital per worker and labour productivity partly converge in the 
poor economy with those variables in the rich economy. The reason is 
that under the analyzed circumstances the relationship between capital- 
labour ratios drops from 5:1 (in the year t = 0) to 1.306:1 (at t → +∞) 
while the ratio of labour productivities drops from 3:1 to 1.2:1.

•	 At a savings rate equal 17% in a rich economy and equal 20% in a poor 
economy, the P-type economy will overtake (considering capital per 
worker and output per worker) the R-type economy after 91 years. Un-
der conditions of long-run equilibrium, capital per worker will be by 
about 1.4% less, and the labour productivity will be less by 0.9% in an 
R-type economy than in a P-type economy. Hence, capital per worker 
and labour productivity partly converge in this scenario.

•	 A similar process will also take place if the savings rate equals 20% in a 
rich economy and 23% in a poor economy it equals. The only difference 
lies in the fact that under these conditions 1.024*u ≈  and 1.016*v ≈ .

•	 If the savings rate in a poor economy was by 6% points greater than in a 
rich economy, the poor economy would overtake the rich economy after 
31 years. Under conditions of long-run equilibrium, capital per worker 
will be by about 20.3% greater and labour productivity will be by 14.3% 
greater in a P-type economy than in an R-type economy.

•	 Considering the scenarios wherein the savings rate in a rich economy is 
by 3% points greater than in a poor economy, we conclude that capital 
per worker will be greater by about 70%–80% and labour productivity 
will be greater by about 44%–49% in the rich economy than in the poor 
economy in a long-run equilibrium.

Table 6.2  Selected simulation results in Variant II (ω = 20%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 182.3 139.6 75.4 62.8 130.6 120.0 Never
20 305.5 309.7 118.5 119.6 98.6 99.1 91
23 503.7 632.0 182.8 213.4 79.7 85.7 31

20 17 311.7 174.9 115.2 77.7 178.2 148.4 Never
20 486.1 372.2 170.9 142.4 130.6 120.0 Never
23 754.6 737.0 251.3 247.2 102.4 101.6 Never

23 17 522.9 221.0 173.6 96.4 236.6 180.0 Never
20 767.8 450.6 245.2 170.5 170.4 143.9 Never
23 1129.9 865.1 345.4 287.9 130.6 120.0 Never

Source: Own calculations.
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Numerical simulation results in Variant III (assuming that the proportion of 
people working in a rich economy equals 40% of the total number of work-
ers) are given in Table 6.3. The simulations lead to the following conclusions:

•	 At the same savings rates in both types of economies, the initially poor 
economy will overtake the rich economy after about 49–60 years. In a long-
run equilibrium, the ratios of u* and v* will reach about 0.904 and 0.933.

•	 However, if a poor economy is characterized by a savings rate greater by 
3% points than a rich economy, the poor economy will catch up the rich 
economy in terms of capital per worker and labour productivity after 
27–28 years. In a long run, capital per worker in an R-type economy will 
amount to about 65%–68% of capital per worker in the other economy 
while the ratio of labour productivities will approach about 75%–77%.

•	 If the savings rate equals 23% in a poor economy and 17% in a rich econ-
omy, the poor economy will overtake the rich economy after 20 years. 
In a long-run equilibrium, capital per worker in an R-type economy 
will equal <50% and labour productivity about 62% of the respective 
variables in the other analyzed economy.

•	 If the savings rate in a rich economy was greater than in a poor econ-
omy by 3% points, partial convergence would occur, because in a long 
run the ratio of u would approach about 1.2–1.3, while the ratio of v 
would approach about 1.14–1.17.

•	 However, a savings rate greater by 6% points in a rich economy than in 
a poor economy will lead to 1.676u →  and 1.423v → .

Table 6.4 contains numerical simulation results for Variant IV (wherein each 
of the analyzed economies absorbs 50% of the total of workers). The numeri-
cal simulation results contained in the table lead to the following conclusions:

•	 At the same savings rates in both types of economy, the P-type econ-
omy will be characterized by greater values of capital per worker and 

Table 6.3  Selected simulation results in Variant III (ω = 40%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 129.6 143.4 58.3 62.5 90.4 93.3 60
20 189.6 291.6 82.2 110.2 65.0 74.6 28
23 278.1 558.5 115.4 185.7 49.8 62.1 20

20 17 252.0 199.3 99.0 84.4 1.265 117.4 Never
20 345.7 382.4 132.2 141.7 90.4 93.3 54
23 477.5 701.7 176.9 230.1 68.0 76.9 27

23 17 466.9 278.6 162.2 114.0 167.6 142.3 Never
20 610.1 505.5 207.8 182.8 120.7 113.7 Never
23 803.5 888.8 267.3 286.3 90.4 93.3 49

Source: Own calculations.
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labour productivity after 32–40 years. In a long run, the ratio of capital 
per worker in an R-type economy to that variable in a P-type economy 
will reach about 0.786 and the ratio of respective labour productivities 
should equal about 0.849.

•	 If the savings rates in a poor economy are greater by 3% points than 
in a rich economy, the poor economy should catch up the rich econ-
omy in 22–24 years. Then, also 0.562u →  (at sR = 17% and sP = 20%) or 

0.589u →  (in the case where sR = 20% and sP = 23%), and 0.675v →  or 
0.697v → .

•	 If the savings rate in a poor economy equals 23% while in a rich econ-
omy it is less by 6% points, the P-type economy will be characterized 
by greater values of capital per worker and labour productivity than 
the rich economy as soon as after 17 years. In a long run, the ratio of 
capitals per worker will approach about 0.424, and the ratio of labour 
productivities will approach about 0.557.

•	 If the savings rates are greater by 3% points in a rich economy, long-run 
capital per worker in that rich economy will be greater by about 4.5%–
9.3% than in a poor economy, and the ratio of labour productivities will 
approach about 1.03–1.063.

•	 If a rich economy is characterized by a savings rate greater by 6% points 
than the savings rate in a poor economy, long-run capital per worker in 
the rich economy will be greater by almost 43% and labour productivity 
in the rich economy will be greater by more than 27%.

Considering a scenario wherein a rich economy absorbs 60% of workers 
(Table 6.5), we can conclude that:

•	 At the same savings rates, a poor economy is characterized by greater 
values of the macroeconomic variables analyzed here than a rich econ-
omy after 23–29 years. In a long run, the ratio of capitals per worker 
will amount to about 0.681, and the ratio of labour productivities will 
amount to about 0.77.

Table 6.4  Selected simulation results in Variant IV (ω = 50%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 120.9 153.8 55.6 65.5 78.6 84.9 40
20 168.0 298.8 75.1 111.2 56.2 67.5 24
23 234.9 553.7 101.4 182.2 42.4 55.7 17

20 17 245.9 224.9 98.1 92.3 109.3 106.3 Never
20 322.4 410.0 126.1 148.6 78.6 84.9 35
23 426.2 723.4 162.7 233.4 58.9 69.7 22

23 17 471.1 329.9 165.4 129.7 142.8 127.5 Never
20 591.8 566.3 204.8 198.8 104.5 103.0 Never
23 749.5 952.9 254.9 300.3 78.6 84.9 32

Source: Own calculations.
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•	 If savings rates in a poor economy were greater by 3% points than in a 
rich economy, the P-type economy would be characterized by greater 
capital per worker and output per worker than the R-type economy 
after 18–20 years. In the long-run equilibrium, capital per worker 
in the initially rich economy should amount to about 48.9%–51.2% 
of capital per worker in the initially poor economy, and this results 
in a ratio of labour productivities in those economies equal about 
0.614–0.634.

•	 If a poor economy is characterized by a savings rate greater by 6% 
points (than a rich economy), the poor economy will overtake the 
R-type economy after 15 years. In the long-run equilibrium, 0.366u → ,  
and 0.504v → .

•	 If the savings rate equalled 20% in a rich economy and 17% in a poor 
economy, the poor economy would overtake the rich economy in terms 
of capital per worker and labour productivity after 56 years. In a long 
run, capital per worker in an R-type economy will amount to about 
93.3% of capital per worker in the other analyzed economy while the 
ratio of long-run labour productivities will equal about 0.954.

•	 However, at savings rates equal 23% in a rich economy and 20% in a 
poor economy 1.045u → , and 1.030v → .

•	 If a rich economy is characterized by a savings rate greater by 6% points 
than a poor economy, the rich economy will be characterized in the 
long-run equilibrium by capital per worker greater by about 19.4% and 
labour productivity greater by about 12.8% than the poor economy.

Analyzing a scenario wherein a rich economy absorbs 80% of workers  
(Table 6.6), we can conclude that:

•	 At the same savings rates, the initially poor economy reaches greater 
values of the analyzed macroeconomic variables after 11–14 years.9 
The quotients kR/kP and yR/yP approach then values of about 0.454 and 
about 0.584.

Table 6.5  Selected simulation results in Variant V (ω = 60%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 117.0 171.6 54.7 71.1 68.1 77.0 29
20 155.1 317.2 71.0 115.7 48.9 61.4 20
23 207.3 565.9 92.4 183.4 36.6 50.4 15

20 17 247.5 265.3 99.8 104.7 93.3 95.4 56
20 311.9 457.7 124.0 161.1 68.1 77.0 26
23 396.2 773.2 154.7 244.1 51.2 63.4 18

23 17 488.0 408.8 172.6 153.0 119.4 112.8 Never
20 592.5 662.8 207.5 224.0 89.4 92.6 43
23 724.9 1063.8 250.6 325.6 68.1 77.0 23

Source: Own calculations.
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•	 If the savings rate in a poor economy is greater by 3% points, the poor 
economy will overtake the rich economy after 10–11 years. The long-
run ratio of capitals per worker approaches about 0.341–0.356, and the 
long-run ratio of labour productivities approaches about 0.480–0.496.

•	 If the savings rate in a poor economy is greater by 6% points, that econ-
omy will be characterised by higher values of capital per worker and 
labour productivity than an R-type economy after 10 years. In a long 
run, capital per worker will be almost four times greater and labour 
productivity will be more than 2.5 times greater in the poor economy 
than in the rich economy.

•	 If the savings rate is greater by 3% points in a rich economy than in a 
poor economy, the poor economy will catch up the rich economy after 
13–15 years. In a long run, the ratio of capitals per worker will equal 
about 0.566–0.585, and the ratio of labour productivities will equal 
about 0.678–0.694.

•	 However, if a rich economy is characterized by a savings rate greater 
by 6% points than a poor economy, the poor economy will overtake the 
rich economy (in terms of capital per worker and labour productivity) 
after 17 years. The ratio of capitals per worker approaches (in a long 
run) about 0.707, and the ratio of labour productivities about 0.789.

Let us consider a scenario wherein a rich economy is characterized by a con-
siderably greater savings rate than a poor economy. Let us then assume that 
the value of that macroeconomic variable equals 25% in a rich economy and 
15% in a poor economy. We analyze long-run processes with a rich econ-
omy absorbing (subsequently) 20%, 40%, 50%, 60%, and 80% of the total of 
workers (Table 6.7). Then, it is concluded that:

•	 In each of the analyzed scenarios, capitals per worker and labour 
productivities partly converge, but a poor economy overtakes a rich 
economy (after 27 years), considering the analyzed macroeconomic var-
iables, only at ω = 0.8.

Table 6.6  Selected simulation results in Variant VI (ω = 80%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 122.2 268.8 58.5 100.2 45.4 58.4 14
20 148.0 434.1 70.2 146.2 34.1 48.0 11
23 180.7 694.4 84.6 212.0 26.0 39.9 10

20 17 278.8 476.4 114.2 164.6 58.5 69.4 15
20 325.8 716.8 132.6 227.1 45.4 58.4 12
23 383.3 1077.7 154.7 313.3 35.6 49.4 10

23 17 580.3 821.0 207.6 263.0 70.7 78.9 17
20 661.0 1167.7 235.3 347.0 56.6 67.8 13
23 757.2 1666.2 268.0 459.1 45.4 58.4 11

Source: Own calculations.
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•	 The higher the proportion of people working in a rich economy, the lower 
the long-run ratios of capitals per worker and labour productivities.

•	 Moreover, a high proportion of people working in a rich economy also 
corresponds to high long-run values of capital per worker and labour 
productivity both in the rich economy and in the poor economy.

Let us also consider a scenario wherein the savings rate in a rich economy 
(15%) is considerably less than in a poor economy (25%). Numerical simula-
tion results for that scenario are stated in Table 6.8. The simulation results 
given in that table lead to the following conclusions:

•	 In each of the scenarios analyzed here, a poor economy will overtake a 
rich economy (after 9–19 years). Moreover, the greater (considering the 
number of workers) the rich economy, the sooner it will be overtaken by 
the poor economy.

•	 The greater the resource of workers absorbed by an R-type economy, 
the lower the long-run capital per worker and labour productivity in 
that economy and the greater the values of those macroeconomic vari-
ables in the other analyzed economy.

Table 6.9 contains ratios of average estimated *kR, *kP , *yR and *yP  in the several 
variants described above, compared to the base Variant I (a scenario wherein 
there are no investment flows between the analyzed economies). Analyzing 
the quantities from Table 6.9, we must remember that the figures resulting 
from Variants II–VI and those resulting from Variants VII–VIII are not 

Table 6.7  Selected simulation results in Variant VII (sR = 25% and sP = 15%)

ω (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

20 580.2 159.5 183.3 75.9 363.8 241.4 Never
40 587.9 237.9 190.8 102.9 247.1 185.4 Never
50 618.0 303.1 201.8 124.1 203.9 162.6 Never
60 663.1 403.2 217.6 154.9 164.5 140.4 Never
80 841.3 940.3 277.9 299.9 89.5 92.7 27

Source: Own calculations.

Table 6.8  Selected simulation results in Variant VIII (sR = 15% and sP = 25%)

ω (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

20 544.7 894.8 199.1 279.4 60.9 71.3 19
40 255.5 732.6 110.4 226.7 34.9 48.7 15
50 200.6 697.0 91.6 214.3 28.8 42.7 13
60 164.7 679.3 78.7 207.1 24.2 38.0 12
80 122.7 722.7 63.3 212.2 17.0 29.8 9

Source: Own calculations.
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comparable, due to significantly different assumptions about developments 
of exogenous variables. It follows from the summary in Table 6.9 that:

•	 A rich economy benefits from openness to investment flows between it 
and a poor economy only if the rich economy is small, considering the 
number of workers. At ω = 0.2, average estimated values of capital per 
worker and labour productivity in that economy rise by more than 30%, 
and estimated labour productivity rises by almost 25% (compared to 
average estimated values without investment flows).

•	 A poor economy benefits from openness to investment flows from a rich 
economy in each of the analyzed scenarios. Moreover, the greater (con-
sidering the number of workers) the rich economy, the greater the bene-
fits derived by the poor economy.

•	 If a rich economy is characterized by considerably greater (less) savings 
rates than a poor economy, the rich (poor) economy benefits while the 
poor (rich) economy loses from openness to investment flows (Variants 
VII–VIII relative to the variant with no investment flows).

However, remember that we adopted a fundamental assumption in each 
analyzed scenario that a rich economy invests in a poor economy a fraction 
of its savings that is twice as large as the fraction invested by the poor econ-
omy in the rich economy. Let us consider what will happen, if either of the 
analyzed economies invests in the other economy 10% of its savings. Table 
6.10 contains similar indices as those given in Table 6.9.

The simulations summarized in Table 6.10 lead to the following 
conclusions:

•	 At 20% and 40% proportions of people working in a rich economy, that 
economy benefits while a poor economy loses from openness to invest-
ment flows. If ω = 0.5, both economies benefit to the same extent. How-
ever, if the proportion equals 0.6 or 0.8, a rich economy loses while a 
poor economy benefits from openness to investments.

Table 6.9 � Ratios of average estimated kR
* , kP

* , yR
*  and yP

*  in the several variants 
relative to Variant I (Variant I = 100)

Variant
Variable

kR
* kP

* yR
* yP

*

II 131.2 103.1 124.3 105.0
III 93.9 104.4 96.4 103.5
IV 88.0 111.3 92.1 108.3
V 85.6 123.8 90.9 117.2
VI 90.8 193.5 98.2 165.3
VII 156.5 97.2 142.8 101.0
VIII 61.3 177.2 72.4 151.9

Source: Own calculations.
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•	 If the savings rate equals 25% (15%) in a rich economy, and is less 
(greater) by 10% points in a poor economy, investment flows between 
those economies will lead to benefits derived by the rich (poor) economy 
combined with losses suffered by the poor (rich) economy.

6.4.2  Investment flows depending on capital productivity

Numerical simulations of the trajectories of capital per worker and labour 
productivity in a bipolar economic growth model can be conducted follow-
ing an approximation of system of differential equations (6.18) using the 
following system of differential equations10:
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Table 6.10 � Ratios of average estimated kR
* , kP

* , yR
*  and yP

*  in the several variants 
relative to Variant I, assuming that either economy invests 10% of its 
savings in the other economy (Variant I = 100)

Variant
Variable

kR
* kP

* yR
* yP

*

II 178.7 95.6 156.3 101.5
III 112.8 95.2 110.2 98.0
IV 101.3 101.3 102.0 102.0
V 95.2 112.8 98.0 110.2
VI 95.6 178.7 101.5 156.3
VII 165.0 91.1 147.8 96.3
VIII 91.1 165.0 96.3 147.8

Source: Own calculations.
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where 1p
y
k

k kRt
Rt

Rt
Rt Pt= = α β−  and 1p

y
k

k kpt
Pt

Pt
Pt Rt= = α β−  denote capital productivity 

(respectively) in a rich economy and in a poor economy in the year t. The 
above system of equations can also be written as:
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 	 (6.29)

The parameters α, β, μR, μR in system of differential equations (6.29), were 

calibrated, like previously, at the levels: 
ln3

9 ln5
β = , α = 10β and µR=µR = 0.075. 

It is assumed about parameters γR and γP that they equal 0.1. This implies 

that either of the analyzed economies is ready to invest in the other economy 
not more (not less) than 10% (5%) of its savings.

Additionally, nine various combinations of savings rates are considered 
(per each of Variants A-E described below) wherein the rates sR and sP can 
assume the values 17%, 20% or 23%.

The numerical simulation results given below start from the following ad-
ditional assumptions:

A	 a rich economy absorbs 20% of the total of workers;
B	 ω = 0.4;
C	 50% of the total of workers work in either of the analyzed economies;
D	 ω = 0.6;
E	 80% of the total of workers work in a rich economy;
F	 the savings rate equals 25% in a rich economy, 15% in a poor economy, 

and ω assumes the subsequent values of 0.2, 0.4, 0.5, 0.6 or 0.8;
G	 sR = 0.15, sP = 0.25 at ω, like in the preceding variant.
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Selected numerical simulation results for Variant A are summarized in Ta-
ble 6.11. It follows from the table that:

•	 No combination of the analyzed savings rates gives a poor economy the 
chance to catch up a rich economy, in terms of capital per worker and 
output per worker (although the process of partial convergence takes 
place in each scenario considered).

•	 At the same savings rates, long-run capital per worker will be greater 
by about 65.4% in a rich economy than in a poor economy, and labour 
productivity will be greater by about 41.0% in a rich economy than in a 
poor economy.

•	 If a poor economy is characterized by a savings rate greater by three 
percentage points than a rich economy, the rich economy will be char-
acterized in a long run by capital per worker greater by about 29%.0–
33.3% and by labour productivity greater by about 19.0%–21.7% than 
the poor economy. At a savings rate in a poor economy greater by 6% 
points 1.071*u ≈  and 1.048*v ≈ .

•	 If the savings rate in a rich economy is greater by 3% points, the rich econ-
omy will enjoy in a long run capital per worker greater by about 110.2%–
119.0% and labour productivity greater by about 66.0%–70.8%. At a savings 
rate in a rich economy greater by 6% points 2.841u → , and 2.040v → .

Table 6.12 contains numerical simulation results for a proportion of workers 
ω equal 40%. The table leads to the following conclusions.

•	 At the same savings rates in the analyzed economies, the ratio of long-
run capitals per worker reaches a value of about 1.145, the ratio of la-
bour productivities equals about 1.097.

•	 If the savings rate in a poor economy is greater by 3% points, that econ-
omy will be characterized by greater capital per worker and greater 

Table 6.11  Selected numerical simulation results in Variant A (ω = 20%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 222.6 134.6 87.5 62.1 165.4 141.0 Never
20 389.1 301.6 142.1 119.4 129.0 119.0 Never
23 664.4 620.5 225.2 214.9 107.1 104.8 Never

20 17 365.7 167.0 129.6 75.9 219.0 170.8 Never
20 593.7 358.9 198.3 140.7 165.4 141.0 Never
23 955.3 716.8 299.8 246.4 133.3 121.7 Never

23 17 594.8 209.3 190.7 93.5 284.1 204.0 Never
20 905.7 430.9 277.0 166.8 210.2 166.0 Never
23 1379.9 834.2 400.9 284.3 165.4 141.0 Never

Source: Own calculations.
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output per worker than a rich economy after 41–42 years. In a long run, 
capital per worker will amount to about 84.8%–88.3% and labour pro-
ductivity to about 89.3%–91.9% in an R-type economy of the respective 
values in a P-type economy. However, if a poor economy is character-
ized by a savings rate of 23% and a rich economy by a savings rate of 
17%, the poor economy will overtake the rich economy after 25 years. 
In this case, 0.668*u ≈ , and 0.795*v ≈ .

•	 Considering the scenario wherein the savings rate in a rich economy is by 
3% points greater than in a poor economy, capital per worker in the rich 
economy will be greater by about 50%–57% and labour productivity will 
be greater by about 32%–36% than in the poor economy in a long-run. A 
six-point difference in savings rates (in favour of a rich economy) leads to 
the ratio /* *k kR P exceeding 2, and /* *y yR P greater than 1.6.

Results of numerical simulation in a variant wherein either economy ab-
sorbs 50% of the resource of workers are given in Table 6.13. That summary 
leads to the following conclusions:

•	 At the same savings rates, complete convergence of capitals per worker 
and labour productivities will take place.

•	 If savings rates in a poor economy are greater by 3% points, the poor 
economy will overtake a rich economy in terms of capital per worker 
and labour productivity after about three decades. In a long run, capital 
per worker in an R-type economy will be less by about 23.5%–26.7%, 
and labour productivity will be less by about 16.7%–19.1% than in a 
P-type economy. If a poor economy is characterized by a savings rate 
greater by 6% points, the poor economy will overtake the R-type econ-
omy after 21 years. In a long run, 0.568u → , and 0.679v → .

•	 At a savings rate in a rich economy greater by 3% points, long-run cap-
ital per worker in that rich economy will be greater by about 30%–37% 
than in a poor economy. Long-run labour productivity will be greater 

Table 6.12  Selected numerical simulation results in Variant B (ω = 40%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 152.1 132.9 65.5 59.7 114.5 109.7 Never
20 232.0 273.7 95.3 106.6 84.8 89.3 41
23 354.1 530.1 138.0 181.8 66.8 75.9 25

20 17 285.5 182.4 108.1 79.7 156.5 135.8 Never
20 405.7 354.3 148.4 135.3 114.5 109.7 Never
23 580.6 657.5 204.2 222.3 88.3 91.9 42

23 17 516.3 252.8 173.7 106.7 204.2 162.8 Never
20 694.3 463.6 227.7 172.8 149.8 131.8 Never
23 943.0 823.6 300.0 273.6 114.5 109.7 Never

Source: Own calculations.
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by about 20%–24%. At a savings rate of 23% in a rich economy, and 
a savings rate in a poor economy less by 6% points, 1.762*u ≈ , and 

1.472*v ≈ .

Table 6.14 contains results of numerical simulations of long-term levels of 
capital per worker and labour productivity and their ratios in a scenario 
wherein a rich economy absorbs 60% of the total number of workers. The 
results lead to the following conclusions:

•	 At a savings rate of 17% in an R-type economy, a P-type economy (char-
acterized by a savings rate of 17%–23%) should overtake the former 
within 18–47 years. Long-run ratios of capitals per worker u* should 
then be contained in the interval from about 0.490 to 0.873, and ratios 
of labour productivities in the interval from 0.614 to 0.912.

•	 If the savings rate equals 20% in a rich economy, and 17% in a poor 
economy, long-run capital per worker will be by about 18.0% greater 
and labour productivity will be by about 11.9% greater in the rich econ-
omy than in the poor economy. If the savings rate equals 20% in an 

Table 6.13  Selected numerical simulation results in Variant C (ω = 50%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 139.5 139.5 61.6 61.6 100.0 100.0 +∞
20 201.5 275.1 85.7 105.9 73.3 80.9 31
23 292.9 515.9 119.3 175.6 56.8 67.9 21

20 17 275.1 201.5 105.9 85.7 136.5 123.7 Never
20 372.1 372.1 139.5 139.5 100.0 100.0 +∞
23 508.3 664.6 184.7 221.8 76.5 83.3 30

23 17 515.9 292.9 175.6 119.3 176.2 147.2 Never
20 664.6 508.3 221.8 184.7 130.7 120.1 Never
23 864.9 864.9 282.0 282.0 100.0 100.0 +∞

Source: Own calculations.

Table 6.14  Selected simulation results in Variant D (ω = 60%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 132.9 152.1 59.7 65.5 87.3 91.2 47
20 182.4 285.5 79.7 108.1 63.9 73.7 25
23 252.8 516.3 106.7 173.7 49.0 61.4 18

20 17 273.7 232.0 106.6 95.3 118.0 111.9 Never
20 354.3 405.7 135.3 148.4 87.3 91.2 42
23 463.6 694.3 172.8 227.7 66.8 75.9 24

23 17 530.1 354.1 181.8 138.0 149.7 131.7 Never
20 657.5 580.6 222.3 204.2 113.2 108.9 Never
23 823.6 943.0 273.6 300.0 87.3 91.2 38

Source: Own calculations.
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R-type economy and 20% or 23% in a P-type economy, then the P-type 
economy will overtake the other analyzed economy after 24–42 years. 
In a long run, the quotient kR/kP will approach the value of about 
0.668–0.873, and the quotient yR/yP will approach the value of about 
0.759-0.912.

•	 However, if the savings rate equals 23% in a rich economy and 17% 
or 20% in a poor economy, 1.497u →  or 1.132u → , and 1.317v →  or 

1.089v → . If the savings rates equal 23% in both analyzed types of econ-
omy, a poor economy will overtake a rich economy after 38 years, and 
long-run ratios of capitals per worker and labour productivities will 
reach the levels of 0.873*u ≈  and 0.912*v ≈ .

Table 6.15 contains selected numerical simulation results in the variant, 
wherein a poor economy absorbs 20% of the total of workers. The summary 
demonstrates that:

•	 In each of the analyzed scenarios, a P-type economy will be character-
ized by greater values of capital per worker and output per worker than 
an R-type economy.

•	 At the same savings rates in both types of economy, a poor economy 
will overtake a rich economy after 15–19 years. In a long run, capital 
per worker in an R-type economy will amount to about 60.5%, and la-
bour productivity to about 70.9% of the respective values in a P-type 
economy.

•	 If a P-type economy is characterized by a savings rate greater by 3% 
points than an R-type economy, the former economy will reach greater 
values of capital per worker and labour productivity after 13–14 years. 
The long-run ratio of capitals per worker will approach then about 
0.457–0.476, and the ratio of labour productivities will approach about 
0.586–0.602. If the savings rate in a P-type economy is greater by 6% 
points, that economy will overtake an R-type economy after 12 years. 

Table 6.15  Selected simulation results in Variant E (ω = 80%)

sR (%) sP (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

17 17 134.6 222.6 62.1 87.5 60.5 70.9 19
20 167.0 365.7 75.9 129.6 45.7 58.6 14
23 209.3 594.8 93.5 190.7 35.2 49.0 12

20 17 301.6 389.1 119.4 142.1 77.5 84.1 23
20 358.9 593.7 140.7 198.3 60.5 70.9 16
23 430.9 905.7 166.8 277.0 47.6 60.2 13

23 17 620.5 664.4 214.9 225.2 93.4 95.4 36
20 716.8 955.3 246.4 299.8 75.0 82.2 20
23 834.3 1379.9 284.3 400.9 60.5 70.9 15

Source: Own calculations.
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In this scenario, long-run capital per worker in an R-type economy will 
equal about 35.2% and labour productivity about 49.0% of the respec-
tive variables in the other analyzed type of economy.

•	 If a rich economy is characterized by a savings rate greater by 3% points 
than the other economy, the P economy will be characterized by greater 
values of capital per worker and output per worker after 16–20 years. 
In a long run, capital per worker in an R-type economy will amount to 
about 75.0%–77.5%, and labour productivity to about 82.2%–84.1% of 
the respective values in a P-type economy. At a six-point difference in 
savings rates (in favour of an initially rich economy), it takes 36 years for 
a poor economy needs to catch up an R-type economy, and 0.934u →  
and 0.954v →  in a long run.

Let now us consider a scenario, wherein a rich economy is characterized by 
a considerably greater savings rate (equal 25%) than a poor economy (that is 
characterized by a value of that macroeconomic variable equal 15%). This 
variant is analyzed in cases with the proportion ω equal 20%, 40%, 50%, 
60% or 80% (Table 6.16). Then, numerical simulations lead to the following 
conclusions:

•	 Complete convergence is not possible in any of the analyzed cases, but 
partial convergence takes place in each case.

•	 At a proportion of people working in a rich economy equal 20%, partial 
convergence is very limited, because the ratio of capitals per worker 
drops from 5:1 (in the year t = 0) to about 4.245:1 (at t → ∞). The ratio of 
labour productivities will drop then from 3:1 to about 2.683:1.

•	 At a 40% proportion of people working in a rich economy, long-run 
capital per worker in that economy will be almost three times greater 
than in a poor economy, and labour productivity will be more than 
twice as great as in a poor economy.

•	 If the analyzed economies share the number of workers at a 1:1 propor-
tion, then in a long run 2.482u →  and 1.860v → .

•	 In a scenario with a rich economy absorbing 60% of the total of work-
ers, long-run capital per worker in that economy will be more than twice 

Table 6.16. � Selected results of numerical simulations in Variant F (sR =25% and  
sP =15%)

ω (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

20 635.3 149.6 195.4 72.8 424.5 268.3 Never
40 632.4 213.8 200.0 95.4 295.8 209.7 Never
50 661.1 266.4 210.4 113.1 248.2 186.0 Never
60 706.2 345.8 225.6 138.6 204.2 162.8 Never
80 887.9 754.1 284.7 254.7 117.7 111.8 Never

Source: Own calculations.
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as great as in a poor economy, and its labour productivity will be by 
more than 60% greater in a long run.

•	 However, if a rich economy is considerably bigger considering the num-
ber of workers (i.e. when ω = 0.8), its capital per worker and labour 
productivity will be greater by about 12%–18% than in a poor economy 
in a long run.

Table 6.17 contains selected numerical simulation results in Variant F, op-
posite to Variant E (in that the savings rate in a poor economy is greater by 
10% points than in a rich economy). The results of numerical simulations 
contained in the table lead to the following conclusions:

•	 A P-type economy will overtake an R-type economy considering capital 
per worker and labour productivity in all analyzed scenarios. The poor 
economy needs from 10 to 28 years to catch up the rich economy.

•	 The higher proportion of the total of workers is absorbed by an R-type 
economy, (first) the faster it will be overtaken by a P-type economy and 
(second) the lower are long-run ratios of u* and v*.

The table contains ratios of average estimated *kR, *kP , *yR and *yP  in the sev-
eral variants, relative to Variant I (a scenario wherein there are no invest-
ment flows). Table 6.18 leads to similar economic conclusions as Table 6.10.

Table 6.17 � Selected results of numerical simulations in Variant F (sR = 15% and  
sP = 25%)

ω (%) kR
* kP

* yR
* yP

* u* (%) v* (%) t

20 754.1 887.9 254.7 284.7 84.9 89.4 28
40 345.8 706.2 138.6 225.6 49.0 61.4 17
50 266.4 661.1 113.1 210.4 40.3 53.8 15
60 213.8 632.4 95.4 200.0 33.8 47.7 14
80 149.6 635.3 72.8 195.4 23.6 37.3 10

Source: Own calculations.

Table 6.18 � Ratios of average estimated kR
* , kP

* , yR
*  and yP

*  in the several variants 
relative to Variant I (Variant I = 100)

Variant
Variable

kR
* kP

* yR
* yP

*

A 160.4 99.7 144.5 104.0
B 110.0 97.0 108.2 99.1
C 101.3 101.3 101.9 101.9
D 97.0 110.0 99.1 108.2
E 99.7 160.4 104.0 144.5
F 167.6 82.3 148.8 89.9
G 82.3 167.6 89.9 148.8

Source: Own calculations.
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6.5  Conclusions

The analyzes contained in this chapter can be summarized as follows11:

	     I	 The described bipolar economic growth models are based on the 
Solow growth model (1956) with elements of the gravity model of eco-
nomic growth (Mroczek, Tokarski and Trojak, 2014).

	    II	 It is assumed in those models that investments can be financed in 
an economy using both domestic savings and foreign savings. The 
first growth model discussed in this chapter bases on the assumption 
about an exogenous structure of (domestic and foreign) investments. 
In the second discussed model, investment flows are made condi-
tional on capital productivity in the analyzed economies (savings 
flow principally from an economy characterized by a lower capital 
productivity to an economy characterized by a higher value of that 
macroeconomic variable).

	  III	 Additionally, it is assumed in those models that the level of labour 
productivity in either economy (i.e. in a rich and in a poor economy) 
depends not only on capital per worker in that economy but also in 
the other analyzed economy.

	  IV	 The systems of differential equations derived from the assumptions 
adopted in the models have exactly one non-trivial steady state each. 
Those states are characterized by asymptotic stability. As such, they 
determine conditions for a long-run equilibrium of the analyzed 
economies.

	    V	 The ratios of long-run capitals per worker * *k kR P  and long-run labour 
productivities * *y yR P  in the model characterized by exogenous invest-
ment flows (the model from Section 6.2) depend on investment rates, 
rates of capital decline and on the proportions of workers absorbed 
by the analyzed economies. The higher the investment rates in a rich 
economy and the higher the decline rate of capital per worker in a 
poor economy and the lower the decline rate of capital per worker in 
a rich economy or investment rates in a rich economy and percentage 
of people working in a rich economy, the greater are the ratios * *k kR P  
and * *y yR P .

	  VI	 The trajectories of analyzed macroeconomic variables and long-run 
equilibrium states can be determined in neither of the two considered 
models. To illustrate the trajectories of analyzed variables, the au-
thors calibrated model parameters and performed numerical simula-
tions of those trajectories.

	VII	 When calibrating model parameters, the authors sought such elas-
ticities α and β of labour productivity functions that lead (first) to 
an impact of external factors (measured by the elasticity of domestic 
labour productivity with respect to capital per worker abroad) that 
is ten times lower than the elasticity of domestic output per worker 
with respect to domestic capital per worker and (second) to a ratio of 
labour productivities of 3:1 at a relationship between capital-labour 
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ratios of 5:1. It was also arbitrarily assumed that e.g. the rate of de-
cline in capital per worker in either economy equals 7.5%, savings 
rates fluctuate between 17% and 23% and the economies are ready 
to invest abroad 5%–10% of their savings. The performed numerical 
simulations are also based on the assumption that initial capital per 
worker equals five in a rich economy, and one in a poor economy.

	VIII	 The results of numerical simulations given above indicate complete 
or partial convergence between the analyzed economies (although 
combinations of model parameters are also possible that lead to di-
vergence).12 The reason is that the analyzed growth models are char-
acterized by diminishing marginal productivities of capital (resulting 
from the Cobb-Douglas production function) and that accelerated 
capital accumulation in one of the economies stimulates production 
in the other economy.

	  IX	 Moreover, the greater proportion of workers is absorbed by a rich 
economy, the sooner it is caught up by a poor economy. The greater 
the savings rate in a poor economy relative to the savings rate in a rich 
economy, the greater the speed of the convergence process.

	   X	 The numerical simulations described in this chapter also lead to the 
following, more general conclusions. First, if a rich economy is smaller 
(considering the number of workers) than a poor economy, and both 
have similar savings rates, openness to investment flows between the 
economies is beneficial to the rich economy, and disadvantageous 
to the poor economy. Second, if a greater number of workers is ab-
sorbed by a poor economy, openness to investment flows is beneficial 
to that economy and disadvantageous to a rich economy. Third, if a 
rich (poor) economy is characterized by an investment rate greater 
by 10% points, investment flows are beneficial to that economy and 
disadvantageous to the other economy.

Notes
	 1	 Poland could use e.g. German autobahns connecting us with France or Italy, 

the Germans could not (until recently) use Polish motorways on their way to 
Ukraine, because Polish motorways (simply) did not exist.

	 2	 The following relation holds: u
u

a u a u b u
φ α β β( )( ) ( )∀ > ∂

∂
= − − + − +α β β− − −0  1 11

2
2

2
1

1  

b uα( )+ <α− 02
1 , so that an analysis of signs of partial derivatives u*, given by for-

mula (6.13), with respect to subsequent independent variables x, leads to: 
	 3	 Differential equations (6.14a,b) are interpreted in economic terms like equations 

(6.5a,b).
	 4	 Certainly, the parameters R Pδ δ ( )∈,  0,1  represent capital depreciation rates in 

rich economies and poor economies, while n > 0 denotes the growth rate of the 
number of workers in both types of countries.

	 5	 While estimating the signs of the quantity jij (for i, j = 1, 2), we use the relations: 

d
d k k

R

R P



( )
>

/
0 and d

d k k
P

R P



( )
<

/
0.
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	 6	 See also simulations in the study by Filipowicz and Tokarski (2015).
	 7	 In the simulations described below, we adopt an approximated long-run value of 

any variable x given by the formula: x x x
t

t= ≈
→∞
lim*

1,000.

	 8	 The concept of convergence (or complete convergence) is understood below as a 
process wherein (using the symbols introduced in this study) u t v t

t t
( ) ( )→ ∧ →

→+∞ →+∞
1    1.  

Partial convergence is understood by the authors as a process wherein the ratios 

of u and v drop (in time), approaching a value other than 1.
	 9	 The statement is apparently illogical. However, remember that (first) the rich 

economy invests in the poor economy a fraction of its savings that is twice as 
large as the fraction invested by the poor economy in the rich economy, and (sec-
ond) the rich economy is four times bigger (considering the number of workers) 
than the poor economy.

	10	 See also numerical simulations in the study by Filipowicz, Wisła and Tokarski 
(2015).

	11	 See also Filipowicz and Tokarski (2015) or Filipowicz, Wisła and Tokarski 
(2015).

	12	 If we assume in a model with exogenous investment rates that 10% of the total of 
workers work in a rich economy, either economy invests abroad 10% of its sav-
ings, the savings rate equals 40% in a rich economy, and 10% in a poor economy, 
then at t → ∞, we get: u → 26.135 and v → 9.277. In a model with investment flows 
conditional on capital productivity, considering the same assumptions and γR = 
γP = 10%, we obtain u ≈ 25.277*   and v ≈ 9.068*  (quantities strikingly similar to 
those implied by a model with exogenous investment rates).
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7	 The gravity model of 
economic growth

7.1  Introduction

The gravity model of economic growth described in this chapter bases on the 
Solow growth model. We assume in the gravity model that variation across 
total productivities of production factors in economies is affected by spatial 
interactions between them that can be described by what is known as gravita-
tional effects. How those gravitational effects work in the discussed economic 
growth model can be explained by analogy to Newton’s law of universal 
gravitation. It is assumed that economies attract each other with a specific 
force that is directly proportional to the product of their economic potentials 
and inversely proportional to the square of the distance between them. We 
will also propose golden rules of capital accumulation for the gravity model 
of economic growth, and those rules will be defined in two ways. We assume 
that the golden rule of capital accumulation can be defined as either such 
combination of investment rates in economies covered by the gravitational 
effects that maximizes the geometric mean of consumption per worker in all 
economies, or such combination of investment rates that maximizes long-
run consumption per worker in each of the economies. The growth models 
described in this chapter were proposed by Mroczek, Tokarski and Trojak 
(2014), Filipowicz, Tokarski and Trojak (2015) and Filipowicz (2019).

7.2  Assumptions of the model

The gravity model of economic growth is based on the following assump-
tions about a finite N number of economies (see e.g. Mroczek, Tokarski, and 
Trojak, 2014 or Filipowicz, 2019):

	 1	 Labour productivity in each of the economies is described by a 
Cobb-Douglas function given by the formula:

( ) ( )∀ = ⋅ ⋅β αm y t a g t k tm m m    ( ) ( ) ( ) ,	 (7.1)

where ym denotes labour productivity in economy m (for m = 1, 2, …, N),  
a > 0 is a constant,1 gm represents gravitational effects that connect 
economy m with other economies,2 ki represents capital per worker in 

This chapter has been made available under a CC-BY-NC-ND license.
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economy m, and a and b denote the elasticities of labour productivity 
with respect to capital per worker and to gravitational effects. It is as-
sumed about the elasticities a and b that α β α β+ ∈, ,( ) (0,1), a > b and 

β α< −1
2

. The assumptions about elasticities lead to the conclusion that 

the labour productivity function: (first) is characterized by diminish-
ing marginal productivities of gravitational effects and of capital per 
worker and (second) that gravitational effects are less important as a 
determinant of labour productivity than capital per worker.

	 2	 Total gravitational effects gm influencing economy m represent an arith-
metic means of individual gravitational effects gmn (for m, n = 1, 2, …, 
N at ≠n m) connecting that economy with each of the remaining econo-
mies. Hence:

∏∀ =
≠

−m g t g tm

n m

mnN( ) ( ).1 	 (7.2)

	 3	 Individual gravitational effects connecting any pair of economies (like 
in Newton’s law of universal gravitation) are directly proportional to 
the product of their economic potentials and inversely proportional to 
the distance between them. The economic potential of each economy is 
measured by capital per worker. Hence, individual gravitational effects 
are defined by the relation:

∀ ∧ ≠ = ⋅
m n n m g t

k t k t
d

mn
m n

mn
,   ( )

( ) ( )
,2 	 (7.3)

where dmn > 0 represents the distance (in geographic space) between 
economy m and economy n.

	 4	 An increase in capital per worker in economy m is defined by Solow 
equation (2.15), hence:

µ∀ = −m k t s y t k tm m m m m( ) ( ) ( ),	 (7.4)

where for subsequent m, ∈sm (0,1) denotes the savings/investment rate in 
economy m, and µ δ= + >nm m m 0 is the rate of decline in capital per worker  
in economy m, being the total of capital deprecation rate δ ( )∈m 0,1  and 
the growth rate of the number of workers nm > 0 in that economy.

7.3  A solution of the model

Substituting individual gravitational effects from equation (7.2) into (7.5), 
we get:

∏
∏

∀ =
⋅

≠
−

≠
−

m g t
k t k t

d
m

m
n m

nN

n m
mnN

( )
( ) ( )1

21
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or:

∏
∀ =

⋅
≠

−

m g t
k t k t

d
m

m
n m

nN

m
( )

( ) ( )
,

1

2 	 (7.5)

where dm denotes the geometric mean of the distance between economy m 
and the remaining economies. Equation (7.5) leads to the conclusion that 
the total of gravitational effects affecting economy m is directly propor-
tional to the value of capital per worker in that economy and to capitals per 
worker in the remaining economies and the greater the closer to the centre is 
the location of economy m (i.e. the lower is the value of dm).

Substituting the equation of total gravitational effects (7.5) into labour 
productivity function (7.1), we get:

∏
∏

( )∀ =
⋅















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k t k t

d
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m
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m( )
( ) ( )
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1

21

which results in:

∏ ( )
∀ =







 ⋅

β
α β

β
≠

−
+

m y t a
k t k t

d
m

n m
n

N

m

m
( )

( ) ( )
.

/( 1)

2 	 (7.6)

Equation (7.6) makes labour productivity ym in economy m conditional on 
capital per worker km in that economy, capitals per worker kn in the remain-
ing economies and on the geographic location of economy m, described by 
the distance dm.

Substituting labour productivity function (7.6) into equations (7.4), we ob-
tain the following system of differential equations:

∏
µ

( )
∀ =







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−

β
α β

β
≠

− +

m k t as
k t k t

d
k tm m

n m
n

N
m

m
m m( )

( ) ( )
( ).

( 1)

2 	 (7.7)

System of differential equations (7.7) is analyzed in the phase space 
)[= +∞P N0, .

System of equations (7.7) has in the phase space P a trivial steady state 
(that is ignored as uninteresting for economic and mathematical analyzes) 
and (as will be demonstrated soon) exactly one non-trivial steady state 
κ ( )∈ +∞ N0, .

In the non-trivial steady state k, ∀ = ∧ >m k km m0  0. It follows from equa-
tions (7.7) that the following hold in than point:
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The above system of equations (considering that κ ( )+∞ N0, ) can be written:
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where: θ
µ

∀ = ∈βm
as

d
Rm

m

m m
ln .2

Adding up the subsequent equations of system (7.8), we obtain:
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Each equation in system (7.8) can be written:
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and this together with equation (7.9) gives:
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hence, the following holds in the steady state κ ( )= … ∈ +∞k k kN
N, , , (0, )1

*
2
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Equations (7.10) describe the non-trivial steady state of system of differen-
tial equations (7.7).

Jacobian matrix J of system of equations (7.7) is described by the formula:
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In the non-trivial steady state k, the following holds: µ∀ =j s
y

k
j j

j

j
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Jacobi matrix (7.11) can be written in that point as:
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Eigenvalues of matrix (7.12) solve the equation:
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that can also be written as:

α β λ β β

β α β λ β

β β α β λ

− − − −
−

…
−

−
− − − − …

−

− −
… − − − −

=

� � � �

k
s y N N

N
k

s y N

N N
k

s y
N

N N

(1 )
1 1

1
(1 )

1

1 1
(1 )

0,

1
*

1 1
*

2
*

2 2
*

*

*

which results in:

α β
β

λ
β

α β
β

λ
β

α β
β

λ
β

− − − − − − …

− − − − − − …

… − − − − − −

=

� � � �

N N k
s y

N N k
s y

N N k
s y

N

N

(1 )( 1) ( 1)
1 1

1
(1 )( 1) ( 1)

1

1 1
(1 )( 1) ( 1)

0

1
*

1 1
*

2
*

1 2
*

*

1
*

or:

� � � �

ω λ
ω λ

ω λ

=

Ω …
Ω …

… Ω

=Q

N

– – 1 1

1 – – 1

1 1 – –

0,

1

1

where 
α β

β
Ω = >N(1– – )( – 1)

0 and ω
β

∀ = >j
N k

s y
j

j

j j

( – 1)
0

*

* . Determinant Q, 

following few elementary transformations, can be written as:

∏ ∑ω λ
ω λ

= Ω+ +
Ω+ +















Q N

j

j

j
j

(–1) ( 1 ) 1–
1

1
,

hence, eigenvalues of matrix J* solve the equation:

∏ ∑ω λ
ω λ( )Ω+ +

Ω+ +















=N

j

j

j
j

(–1) 1 1–
1

1
0

or:

∑ ω λΩ+ +
=

j
j

1–
1

1
0.	 (7.13)
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Let us write eigenvalues λ as:
λ = +a bi, where ∈a b R, , and =i –1. Then, equation (7.13) can be re-

duced to the equation:

∑ ω λΩ+ +
=

j
j

1
1

1.	 (7.14)

Since every complex number z satisfies the relation:

=
z

z

z

1
2

Where z  is a complex conjugate of z, we get as per quotation (7.14):

∑ ω ω

ω ω( )
Ω+ +

Ω+ + +
=

a bi

a b
j

j j

j j

1 –

1
12 2 2

or:

∑ ∑ω

ω ω

ω

ω ω( ) ( )
Ω+ +

Ω+ + + Ω+ + +
=

a

a b
bi

a b
j

j

j j j

j

j j

1

1
–

1
1,2 2 2 2 2 2

	 (7.15)

which leads to the conclusion that b = 0. Hence, the eigenvalues of the Jacobi 
matrix (7.12) are real numbers. And equation (7.14) can be written as:

∑ ωΩ+ +
=

a
j

j

1
1

1.	 (7.16)

We will now demonstrate that a in equation (7.16) is a negative number. For 
this purpose, an indirect proof will be given. Let us assume (despite our 
hypothesis) that ≥a  0. Then:

∑ ∑ω α β β
β
β βΩ+ +

≤
Ω+

=
Ω+

=
+

<
+

=
a

N N
N

N
N

j
j

j

1
1

1
1 1 (1– – )( – 1) ( – 1)

1,

which is inconsistent with equation (7.16). Hence, all eigenvalues λ of Jacobi 
matrix J* are negative real numbers. It follows from the Grobman-Hartman 
theorem that the Lyapunov asymptotically stable point κ defined by equa-
tions (7.10) is the point of long-run equilibrium in the analyzed gravity model 
of economic growth. It follows from equations (7.10) that:

•	 Long-run capital per worker km
*  in economy m depends e.g. on the sav-

ings/investment rate sm in that economy, savings/investment rates sn (for 
≠n m) in the remaining economies, the rate of decline in capital per 

worker μm in economy m, rates of decline in capital per worker μn in 
the remaining economies and on the geographic location of economy m 
(described by geometric means of distances d d dN, ,...,1 2 ).
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•	 Since 

β
α β

α β
∀ ∂

∂
=

+









>m
k

s
N

N
N

s

m

m
m

ln
1

( – 1)(1– – 2 )

1– –
– 2
– 1

0,
*

 then the higher the sav-

ings/investment rate sm in economy m, the higher the level of capital per 
worker km

*  characteristic of that economy in a long run.
•	 A high rate of decline in capital per worker μm in economy m corre-

sponds to a low value of km
* . This is because: 

µ

β
α β

α β µ
∀ ∂

∂
=

+
− −

− −








<   
ln

–
1

( – 1)(1 2 )

1
– 2
– 1

0.
*

m
k N

N
N

m

m
m

•	 The effect of dm on km
*  is similar which results from: 

β β
α β

α β
∀ ∂

∂
=

+


















<m
k

d
N

N
N

d

m

m
m

ln
–

2 1
( – 1)(1– – 2 )

1– –
– 2
– 1

0.
*

•	 While 
β

α β α β
∀ ∧ ≠ ∂

∂
= 








>m n n m
k

s N
N
N

s

m

n
n

,    
ln

( – 1)(1– – 2 ) 1– –
– 2
– 1

0
*

 

implies that (due to gravitational effects) the higher the savings/invest-
ment rate sn in economy n, the higher is capital per worker km

*  in econ-
omy m in a long run.

•	 Also due to gravitational effects, the higher the values of decline μn 
and geometric means dn, the lower the values of capital per worker km

* , 
because:

µ
β

α β α β µ
∀ ∧ ≠ ∂

∂
= 








<m n n m
k

N
N
N

m

n
n

,    
ln

–
( – 1)(1– – 2 ) 1– –

– 2
– 1

0
*

and:

β

α β α β
∀ ∧ ≠ ∂

∂
= 








<m n n m
k

d N
N
N

d

m

n
n

,    
ln

–
2

( – 1)(1– – 2 ) 1– –
– 2
– 1

0.
* 2

It follows from equation (7.6) that:

∑β α β∀ = + + +β
≠

m y t
a

d N
k t k tm

m
n m

n mln ( ) ln
– 1

ln ( ) ( ) ln ( ),2

or, in the state of long-run equilibrium:

∑β α β∀ = + + +β
≠

m y
a

d N
k km

m
n m

n mln ln
– 1

ln ( ) ln .*
2

* * 	 (7.17)
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Equation (7.17) can also be written as:

∑β α β∀ = + + +






βm y

a
d N

k
N
N

km
m

n

n mln ln
– 1

ln
– 2
– 1

ln ,*
2

* *

that, considering (7.9) and (7.10), gives:

∑
∑

β
α β µ

α β µ
β

α β µ

α β

∀ = +

+ +








+

β β
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a

d N
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d

N
N
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d N

as
d

N
N

m
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n

n
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m

m m n

n

n n

ln ln
( – 1)(1– – 2 )

ln

– 2
– 1

ln
( – 1)(1– – 2 )

ln
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– 2
– 1

.

*
2 2

2 2

The above equation can also be written as:

∑

∑

β
α β µ

α β

α β µ

β
α β

α β
α β µ

∀ = + +
+

+ ⋅ +

β β β

β

m y
a

d N
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d

N
N

N
N

as
d

N
N N

N N
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d

m
m

n

n

n n

m

m m

n

n

n n

ln ln
( – 1)(1– – 2 )

ln

– 2
– 1

1– –
– 2
– 1

ln

( – 1)(1– – 2 )
( – 1) ( – 2)

( – 1)(1– ) – ( – 2)
ln ,

*
2 2 2

2

hence:

∑

α β

α β µ

β

α β α β µ

∀ = +
+

+ 







β β

β

m y
a

d

N
N

N
N
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d

N
N
N
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d

m
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m
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n
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ln ln
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– 1

1– –
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ln
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ln .

*
2 2

2

	 (7.18)

Since it follows from equations (7.10) and (7.18) that ∀ ∂
∂

= ∂
∂

m
k
x

y
x

m msgn
ln

sgn
ln* *

 

(where x denotes any independent variable determining long-run capital per 
worker or long-term labour productivity), the higher the savings/investment 
rates s1, s2, …, sN or the lower the rates of decline in subsequent capitals 
per worker μ1, μ2, …, μN or the lower the average distances d d dN, , ,1 2 , the 
higher is long-term labour productivity ym

*  in any economy m = 1, 2, …, N.

7.4  Golden rules of capital accumulation

The golden rule of capital accumulation3in the gravity model of economic 
growth will be defined using two approaches in the below theoretical ana-
lyzes. The golden rule of capital accumulation will be understood either as 
such combination of savings/investment rates that maximizes the geometric 
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mean of long-run consumption per worker in all economies (the analyzes 
in Section 7.4.1) or such combination of those rates that in a long run maxi-
mizes consumption per worker in each of the economies (Section 7.4.2).

7.4.1 � Maximization of the geometric mean of long-run  
consumption per worker

Let us introduce ( ) ( )= ∈s s s sN
N, , , 0,11 2  to denote any combination of sav-

ings/investment rates in the analyzed economies. Let us also write equation 
(7.18) as follows:

∑

α β

α β

β

α β α β

∀ = Θ+
+

+ 







m y s

N
N

N
N

s

N
N
N

s

m m

n

n

ln ( )

– 2
– 1

1– – 
– 2
– 1

ln

( – 1)(1– – 2 ) 1– – 
– 2
– 1

ln ,

*

	 (7.19)

where:

∑

α β

α β µ

β

α β α β µ

Θ = +
+

+ 







∈

β β

β

a
d

N
N

N
N

a
d

N
N
N

a
d

R

m m m

n
n n

ln

– 2
– 1

1– – 
– 2
– 1

ln

( – 1)(1– – 2 ) 1– – 
– 2
– 1

ln .

2 2

2

Since at each moment t consumption per worker in economy m can be writ-
ten as:

( )∀ =m c t s y tm m m( ) 1– ( ),

we get in a long run:

( )∀ =m c s s y sm m m( ) 1– ( ),* * 	 (7.20)

or:

( )∀ = = +m v v c s s y sm m m m( ) ln ( ) ln 1– ln ( ),* * 	 (7.21)

Equations (7.20 and 7.21) make long-run consumption per worker (or its nat-
ural logarithm) conditional on savings/investment rates s.

Since at positive values of any property x the natural logarithm of the ge-
ometric mean of that property is the arithmetic mean of natural logarithms 
of the values of that property ( =x xGln ln ), we obtain the function v s( ) in 
the form:

∑
=v s

v s

N
m

m
( )

( )
,	 (7.22)
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that represents the natural logarithm of the geometric mean of long-run 
consumptions per worker. Consequently, the combination ( )∈s N0,1 , which 
maximizes function (7.22), describes the golden rule of capital accumulation 
in the analyzed case.

It follows from equations (7.21 and 7.22) that the function ( )v s  can be 
written as:

∑ ∑( )
=

+
v s

s y s

N
m

m
m

m
( )

ln 1– ln ( )
.

*

	 (7.23)

From relation (7.17), we obtain:

∑ ∑ ∑ ∑
∑ ∑

β α β

α β

= + + +

= + +
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d
k s k s
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m
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m

m

m

m
m

m
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ln ( ) ln ln ( ) ( ) ln ( )

ln ( 2 ) ln ( ),

*
2

* *

2
*

 and it follows 

from the above relation and from equation (7.9) that:

∑ ∑ ∑
∑ ∑ ∑

α β
α β µ

α β
α β µ

α β
α β

= + +

= + + + +

β β
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a
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a
d

s
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m

m
m

m

m

m m

m
m

m
m m

m

m

ln ( ) ln
2

1– – 2
ln

ln
2

1– – 2
ln

2
1– – 2

ln

*
2 2

2 2

that can also be written as:

∑ ∑α β
α β

= Φ+ +
y s s

m

m

m

mln ( )
2

1– – 2
ln ,* 	 (7.24)

where: ∑ ∑α β
α β µ

Φ = + + ∈β β
a

d
a
d

R

m
m

m
m m

ln
2

1– – 2
ln2 2 . Substituting relation 

(7.24) into (7.23), we obtain:

∑ ∑α β
α β

( )
=

+ + + Φ
v s

s s

N
m

m
m

m

( )
ln 1–

2
1– – 2

ln
.	 (7.25)

First-order conditions for the maximization of function (7.25) can be writ-
ten as:

∀ ∂
∂

=m
v
sm

0,	 (7.26)

and second-order conditions are reduced to the requirement that the Hes-
sian matrix:

=

∂ ∂ ∂ ∂ ∂ … ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ … ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ … ∂ ∂
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N
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N N N
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/ ( ) / / ( )

/ ( ) / ( ) /

2
1
2 2

1 2
2

1

2
2 1

2
2
2 2

2

2
1

2
2

2 2

	 (7.27)
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be negative-definite. The first- and second-order partial derivatives of the 
function v s( ) are given by the formulas:

α β
α β∀ ∂

∂
=

+ +

m
v
s

s s
Nm

m m
–

1
1–

2
(1– – 2 ) ,	 (7.28)

( )∀ ∂
∂

=
+ α + β

α β
<m

v
s

s s

Nm

m m
  –

1

1–

2
(1– – 2 )

0
2

2

2 2

	 (7.29a)

and:

∀ ∧ ≠ ∂
∂ ∂

=m n m n
v

s sm n
, 0.

2
	 (7.29b)

It follows from equations (7.29a,b) that Hessian matrix (equation 7.27) can 
be written as:

=

∂ ∂ …

∂ ∂ …

… ∂ ∂











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v sN
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2
1
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2
2
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This leads to the conclusion that its principal minors are described by the 
formulas:

∏∀ =

∂ ∂ …

∂ ∂ …

… ∂ ∂

= ∂
∂� � � �

m m

v s

v s

v s

v
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2
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2

Since, as per equation (7.29a), all second-order partial derivatives 
∂
∂

v
sm

2

2  are 

negative, the odd principal minors of Hessian matrix H are negative, and 
its even principal minors are positive. It follows that Hessian matrix H is 
negative-definite (i.e. the second-order condition for the maximization of 
function v s( ) is met).

It follows from equations (7.26) and (7.28) that the first-order condition for 
the maximization of function v s( ) can be reduced to the following equations:

α β
α β

∀ + =m
s sm m(1– – 2 )

1
1–

,

which results in:

α β= = = = +s s sN... 2 .1 2 	 (7.30)
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Since equation (7.30) describes the combination of savings/investment rates 
s that maximizes the geometric mean of long-run consumptions per worker, 
that combination defines the golden rule of capital accumulation in the ana-
lyzed case. It follows from relation (7.30) that the rule represents a simple 
generalization of the Phelps golden rule in the Solow model.

7.4.2 � Maximization of long-run consumption per worker  
in each of the economies

The process of determining the golden rule of capital accumulation in the 
second analyzed case can be reduced to the maximization of function (7.21) 
with respect to combination s.

Substituting equation (7.19) into (7.21), we obtain:

∑

α β

α β

β

α β α β
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+ 
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( – 1)(1– – 2 ) 1– – 
– 2
– 1

2
ln .

	 (7.31)

It follows from equation (7.31) that savings/investment rate in economy n 
(for ≠n m) affects long-run labour productivity in economy m, but it has no 
effect on the proportion 1 − sm of consumption in output in that economy. 
Therefore, the maximization of functions vm with respect to combination s 
can be reduced to the maximization of those functions with respect to rates 
sm (hence, it is actually the problem of maximization of a function of one 
variable).

Functions (7.31) can also be written as:

∑λ β
α β

( )∀ = + + + Θ
≠

m v s s s
N

sm m N m

n m

n( ) ln 1– ln
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where:

λ
α β

α β

β

α β α β
=

+
+ 








N
N

N
N

N
N
N

N

– 2
– 1

1– –
– 2
– 1

( – 1)(1– – 2 ) 1– –
– 2
– 1

,

or:

λ
α β β

α β

α β
=

+






+









N
N
N

N
N
N

N

( – 1)
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.	 (7.33)
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It follows from equation (7.32) that:

λ∀ = +m
dv
ds s s

m

m m

N

m
    –

1
1–

	 (7.34a)

and:

λ
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Since it follows from equation (7.34b) that for each m < 0
2

2
d v
ds

m

m
 holds, the 

second-order conditions are met for the maximization of function vm. Set-
ting the derivatives dv dsm m  to 0 (in line with the first-order conditions for 
the maximization of those functions), we get:

λ∀ =m
s sm

N

m
   

1
1–

,

which results in:

λ
λ

= = = =
+

s s sN
N

N
...

1
.1 2 	 (7.35)

Equation (7.35) describes the golden rule of capital accumulation in the ana-
lyzed case.

Equations (7.33) and (7.35) lead to the following conclusions:

•	 Golden-rule savings/investment rates sm depend on the elasticities a 
and b of labour productivity function (7.1) and on the number of econo-
mies that are exposed to gravitational effects (i.e. N).

•	 Since 
λ λ( )

∀ =
+

>m
ds
d

m

N N

1

1
02 , then 

λ∂
∂

= ∂
∂

s
x x
m Nsgn sgn , where x de-

notes any independent variable affecting sm and lN.
•	 If the force of gravitational effects drops to 0 (i.e. β → +0 ), then 

λ α
α

→N 1–
, and thus for each m α→sm , i.e. we get back to the original 

golden rule of Phelps.

•	 However, if β α→


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

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2

–

, or if the gravitational effects are extremely 

strong, then λ → +∞N , and thus ∀ →m sm 1–.
•	 Since:
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hence, 
β

λ
β

∂
∂

∂
∂

>sm N,
ln

0 which implies that the stronger are gravitational 

effects, the higher are golden-rule savings/investment rates sm.
•	 Similarly, it follows from:

λ
β

β
α β

α β β
α β

α β

( )∂
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+
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1– –
– 2
– 1

0
2

that a high elasticity a corresponds to high savings/investment rates sm.
•	 For any N > 2 the following holds:

λ λ
α β β

α β

α β

α β β
α β

α β
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
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
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– 1

–
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( – 1) 1– – 
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and this (following a series of complex transformations) leads to:

λ λ β

α β α β α β
= 
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
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

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0.1
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It follows that the greater number of economies benefit from gravita-
tional effects (i.e. the greater is N), the lower value is assumed by lN and 
the lower are the savings/investment rates sm that maximize long-run 
consumption per worker in each of the analyzed economies.

•	
λ

α β β
α β

α β

α β
α β

=
+ −

−
+

− − −

− − −
−

= +
− −→∞ →∞

N
N N

N
N

N
N

N
lim lim

1
2 ( 1)(1 2 )

1
2
1

1  and thus if 

→ ∞N , then α β∀ → +m sm , so that at a very large number of econo-
mies benefiting from gravitational effects, the optimum savings/invest-
ment rate in each of the analyzed economies is greater than the Phelps 
rate (equal a), and less than the rate α β+ 2  that maximizes the geomet-
ric mean of long-run consumptions per worker.

7.5  Conclusions

The discussion contained in this chapter can be summarized as follows:

	 I	 The gravity model of economic growth represents an extension of the 
Solow growth model (1956) by incorporating spatial interactions caused 
by gravitational effects. Gravitational effects draw upon Newton’s law 
of universal gravitation. It is assumed that economies attract each other 
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with a specific force that is directly proportional to the product of their 
capitals per worker and inversely proportional to the square of the 
distance between them. In addition to capital per worker, the total of 
gravitational effects, understood as the geometric mean of gravitational 
effects per unit, influences production processes.

	II	 The discussed theoretical model has an asymptotically stable steady 
state that in terms of macroeconomics is equivalent to the point of long-
run equilibrium of the model. Under conditions of long-run equilibrium 
in the analyzed growth model, capital per worker and labour produc-
tivity in an economy depend on the savings/investment rate, the rate of 
decline in capital per worker, the mean distance of an economy from 
other economies and on investment rates and capital depreciation rates 
in the remaining economies.

	III	 The authors give two definitions of the golden rule of capital accumu-
lation in the gravity model of economic growth. The rule is defined as 
such combination of investment rates in economies subject to the grav-
itational effect that maximizes the geometric mean of consumptions 
per worker in all economies. Alternatively, the golden rule of capital 
accumulation is defined as such combination of investment rates that 
maximizes long-run consumption per worker in each of the economies.

	IV	 If the golden rule of capital accumulation is identical with the maxi-
mization of the geometric mean of long-run consumptions per worker, 
the savings/investment rates are equal (in each of the economies) to the 
total of elasticity of output with respect to inputs of physical capital and 
a double force of the gravitational effect.

	 V	 If the golden rule of capital accumulation is defined as such combina-
tion of savings/investment rates that maximizes long-run consumption 
per worker in each of the economies, the optimum investment rates de-
pend on the elasticity of output with respect to capital, on the action 
force of the gravitational effect and on the number of economies subject 
to the action of gravitational effect. Additionally, in this case both an 
increase in the elasticity of output with respect to capital and an in-
crease in the action force of gravitational effects leads to an increase 
in optimum investment rates. If the number of economies subject to 
the gravitational effect grows, the investment rates drop that maximize 
long-run consumption per worker in each of the economies.

Notes
	 1	 The constant a in equation (7.1) can be understood (like total productivity of 

production factors in the Cobb-Douglas production function) as labour produc-
tivity that could be achieved at per-unit gravitational effects and a per-unit level 
of capital.

	 2	 Those phenomena are referred to below as total gravitational effects.
	 3	 The discussion contained in this section is based on the study by Filipowicz, 

Tokarski and Trojak (2015).
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8	 Solow equilibrium at 
alternative trajectories of the 
number of workers

8.1  Introduction

It is assumed in the original Solow growth model that the number of work-
ers1 rises at a constant growth rate, so that the value of that macroeconomic 
variable increases exponentially to infinity. We modify that assumption in 
our analyzes contained in this chapter, proposing two alternative versions. 
We assume in version 1 that an increase in the number of workers forms a 
logistic curve that approaches an asymptote. On the other hand, it is as-
sumed in version 2 that if labour productivity rises, the growth rate of the 
number of workers drops from infinity to zero.

Given these modified assumptions about the growth rate of the number 
of workers, we seek temporal paths of capital per worker and labour pro-
ductivity, to eventually compare those paths to the curves representing solu-
tions of the original Solow model (described in Chapter 2).

Similar analyzes were made in the study by Guerrini (2006; see also 
Zawadzki 2007). As demonstrated by Guerrini (2006), if the Solow model 
assumes a growth rate of the number of workers /L t L t t λ( ) ( ) ( )=  such that 
at any moment 0,t )[∈ +∞  the following holds:

0 lim 0, ,* *t t
t

λ λ λ λ λ( ) ( )≤ ≤ ∧ = ∈  →+∞
∞

then the Solow equation –k t sf k t t k t δ λ( ) ( )( ) ( ) ( ) ( )= +  has an asymptoti-
cally stable non-trivial steady state.

Additionally, the study by Guerrini (2010a) contains analyzes of the 
Ramsay growth model with a logistic growth path of the population size. It 
is demonstrated there that the analyzed model has exactly one non-trivial 
steady state. Similar analyzes were made using Mankiw-Romer-Weil models 
(Guerrini, 2010c).

The structure of this chapter: Section 8.2 describes the economic and 
mathematical properties of alternative trajectories of the number of work-
ers. Section 8.3 contains analytical solutions of the Solow model at a logis-
tic curve of the number of workers (Section 8.3.1) and at a growth rate of  
the number of workers falling as labour productivity rises (Section 8.3.2). 

This chapter has been made available under a CC-BY-NC-ND license.

https://doi.org/10.4324/9781003323792-9
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The model parameters are calibrated in Section 8.4 to propose numerical 
simulations of labour productivity growth paths at varying investment 
rates. The chapter is finalized by Section 8.5, summarizing conclusions 
drawn from the preceding analyzes.

8.2 � Assumptions about alternative trajectories  
of the number of workers

It is assumed in the analyzes contained in the following sections that the 
trajectory of the number of workers in a Solow economy is described by a 
logistic function that can be written as:

1 2 –
L t

m

e n T t( ) =
+ ( )  	 (8.1)

or that the trajectory represents a solution of the following differential 
equation:

,
L t
L t

n
y t

 ( )
( ) ( )

=  	 (8.2)

where: n > 0, m ≥ 2, T ≥ 0, and y = Y/L denotes labour productivity.
It follows from relation (8.1) that: ( ) = ⇔ =L e mnT0 1    – 12  which  

leads to:

ln – 1
2

.T
m

n
( )=  	 (8.3)

If condition (8.3) is met, it is certain that the number of workers on the logis-
tic trajectory (8.1) at moment t = 0 equals 1. Therefore, we assume further 
that T is described by formula (8.3) on growth path (8.1).2

Equation (8.1) also implies that:

	 I	
2

L T
m( ) = ;

	II	 lim L t m
t

( ) =
→+∞

;

	III	 0 2
1

0
2 –

2 – 2t L t nm
e

e

n T t

n T t


( )
( )∀ ≥ =

+
>

( )

( )
;

	IV	 0 4
– 1

1

2
2 –

2 – 3t L t n m
e

e

n T t

n T t


( )
( )∀ ≥ =

+

( )

( )
, and consequently 0L >  0L( )<  if and 

only if t < T (T >t).
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It follows from the above properties of logistic function (8.1) that the num-
ber of workers L rises at subsequent moments 0,t )[∈ +∞  from 1 (at moment 

t = 0) to m (at t → +∞), so that until the moment 
ln – 1

2
T

m
n

( )=  we observe 

an accelerating growth rate of the number of workers, and a decelerating 
growth rate of the number of workers thereafter. Additionally, at moment 

ln – 1
2

T
m

n
( )= , the number of workers equals m/2.

Equation (8.2) describes a growth path of the number of workers known as 
post-Malthusian.3 If the number of workers L forms a trajectory described 
by that equation, then at labour productivity y rising from 0 through 1 to 
+∞, the growth rate of the number of workers /L L  drops at an increasing 
rate from +∞ through n (at y = 1) to 0.

Using /L Lλ =  to denote the growth rate of the number of workers, we 
obtain:

2
1

2 –

2 –
t n

e

e

n T t

n T t
λ ( ) =

+

( )
( )  	 (8.4a)

on a logistic trajectory of the number or workers or:

t
n

y t
λ ( ) ( )

=  	 (8.4b)

on a post-Malthusian trajectory.

8.3  Analytical solutions

We assume in the analyzes made below in this chapter that the production 
process is described by the Cobb-Douglas production function given by 
(symbols like in the original Solow model from Chapter 2):

,
1–

Y t K t L t( ) ( )( ) ( ) ( )= α α
 	 (8.5)

where 0,1α ( )∈ . To simplify notations, we implicitly assume in the produc-
tion function (8.5) that total productivity of production factors A equals 1 
at each moment t. This certainly does not limit the scope of applicability of 
the below discussion.

Let us also assume that at moment t = 0, the capital K, output Y and the 
number of workers equal 1. This implies that also labour productivity y and 
capital per worker equal 1.

We also assume that the equation of capital accumulation is given by:

– , at , 0,1K t sY t K t s δ δ( ) ( ) ( ) ( )= ∈ 	  (8.6)
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Then, the Solow equation resulting from equations (8.5 and 8.6) can be 
written as:

– – .k t s k t k t t k t δ λ( )( ) ( ) ( ) ( ) ( )= α
 	 (8.7)

If we assume, like in the original Solow model, that at each moment 0,t )[∈ +∞ ,  
the growth rate of the number of workers equals n > 0, then it follows from 

equation (8.7) and from the labour productivity function y t k t( )( ) ( )= α
 (cor-

responding to function (8.5)) that the trajectories of capital per worker k and 
of labour productivity y can be written as:

1– .– 1–
1/ 1–

k t
s

n
s

n
e n t

δ δ
( ) =

+
+

+














α δ

α
( )

( )
( )+

and:

1– ,– 1–
/ 1–

y t
s

n
s

n
e n t

δ δ
( ) =

+
+

+














α δ
α α

( )
( )

( )+

and consequently, in a long run:

  .*
1/ 1–

*
/ 1–

t k t k
s

n
y t y

s
nδ δ

( ) ( )→ +∞ ⇒ → =
+







 ∧ → =

+


















α α α( ) ( )

8.3.1  Growth paths at a logistic trajectory of the number of workers

It follows from equation (8.7) that the following holds4:

– ,
– 1–

k t k t s t k t θ( ) ( )( ) ( ) ( ) ( )=α α
 	 (8.8)

where t tθ δ λ( ) ( )= + . Let us now make the Bernoulli substitution in the form:

1–
,

1– –
q t k t

q t
k t k t





α( ) ( )( ) ( ) ( ) ( ) ( )= ⇒ =α α
 	 (8.9)

so that non-linear differential equation (8.8) is reduced to a linear non-
homogeneous equation given by:

1– – 1– .q t s t q t α α θ( ) ( ) ( ) ( ) ( )=  	 (8.10)

Let us write the integral q(t) of equation (8.10) as:

exp – 1– ,q t t dt q td∫α θ( ) ( ) ( ) ( )=






⋅  	 (8.11)
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where qd(t) is an unknown complementary integral. Then:

– 1– exp – 1– exp – 1– .q t t t dt q t t dt q td d ∫ ∫α θ α θ α θ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )=






⋅ +







⋅  

	  (8.12)

Substituting equations (8.11) and (8.12) into differential equation (8.10), we 
obtain:

1– exp 1– ,q t s t dtd ∫α α θ( ) ( ) ( ) ( )= ⋅








hence:

1– exp 1– .q t s t dt dtd ∫ ∫α α θ( ) ( ) ( ) ( )=






  	 (8.13)

Calculating the integrals of equations (8.13) and (8.11), given the function 
(t), we can find the integral k(t) of the Solow equation (8.7). That integral 
determines the path of capital per worker. From the above conclusion and 

from the labour productivity function y t k t( )( ) ( )= α
 (corresponding to the 

Cobb-Douglas production function (8.5)), we can obtain the temporal path 
of labour productivity y(t).

The integrals of equations (8.13) and (8.11) will be sought on a logistic 
growth path of the number of workers. Then, as per equation (8.4a), the 
trajectory (t) is given by:

2
1

.
2 –

2 –
t n

e

e

n T t

n T t
θ δ( ) = +

+

( )
( )

One of the integrals of the above equation can be written as:

2
1

ln 1 .
2

2
2t dt t n

e

e
dt t e

n T t

n T t
n T t∫ ∫θ δ δ ( )( ) = +

+
= − +

( )
( )

( )
−

−
−  	 (8.14)

Substituting the integral of equation (8.14) into equation (8.13):

1– exp 1– – ln 1

1–
1

2 –

2 – 1–

q t s t e dt

s
e

e
dt

d
n T t

t

n T t
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 	 (8.15)

Substituting: u e du e dtt t= ⇒ = , the integral 
1 2 – 1–

e

e
dt

t

n T t
∫ ( )+

δ

α( )
 can be 

written as:
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1 1
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(where , , ,2 1F a b c z( ) represents the Gaussian hypergeometric function,5 and 
C R∈  – a constant of integration), then:
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	  (8.16)

Substituting the integral of equation (8.16) into equation (8.15), we get a 
complementary integral qd given by:
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where ˆ 1–C sC Rα( )= ∈ . It follows from the above relations and from equa-
tions (8.11) and (8.14) that the integral q of differential equation (8.10) is 
given by:
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Solow equilibrium at alternative trajectories  189

We get from the Bernoulli substitution (8.9): 
1/ 1–

k t q t( )( ) ( )= α( ), and this 

combined with equation (8.17) gives6:
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Since y t k t( )( ) ( )= α
, then:
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Equations (8.18) and (8.19) describe growth paths of capital per worker and 
labour productivity in the Solow model with a logistic trajectory of the num-
ber of workers. Those paths are described by non-elementary functions. 
Therefore, their graph will be analyzed in the section describing results of 
numerical simulations (8.4).

However, note that at t → +∞, the hypergeometric function: 
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and (as per equations (8.18) and (8.19)) the following holds:
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 describe (respectively) capital per 

worker and output per worker in the long-run equilibrium of the economic 

growth model analyzed in this section. Since 
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, the quantities are greater than in the similar origi-

nal Solow model (with the Cobb-Douglas production function).
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8.3.2 � Growth paths at a growth rate that drops with rising labour 
productivity

Analysing the effect of a post-Malthusian trajectory of the number of work-
ers on the long-run equilibrium in a Solow economy, the equation describ-
ing the growth rate of the number of workers (equation 8.4b) together with 
the labour productivity function y k= α can be substituted into the Solow 
equation (8.7). The following differential equation is then obtained:

– – ,k t s k t k t
n

k t
k t δ( )

( )
( ) ( ) ( )

( )
( )= α

α

that can also be written as:

– – .
1– 1–2

k t s k t n k t k t δ( )( ) ( ) ( )( ) ( ) ( ) ( )= α α α
 	 (8.20)

Differential equation (8.20) will be analyzed in the phase space 0,P ( )= +∞ .

Note that  sgn sgn
˙

k P k kφ ( )∀ ∈ = , where the function ϕ(k) is defined as 
follows:

– – .1– 1–2k s k nkφ δ( ) = α α  	 (8.21)

The properties of function (8.21) should be considered at 0,1/ 2α ( )∈ , 1 / 2α =  
and 1/ 2,1α ( )∈ . The reason is that the signs of expressions 1– α  and 1– 2α  
differ in each of the described cases and (consequently) the derivatives kφ ( )′  
for subsequent k P∈  exhibit different behaviours.

In the case of 0,1/ 2α ( )∈ , we obtain:

	 i	 ϕ(0) = s > 0;
	ii	 lim –k

k
φ ( ) = ∞

→+∞
;

	iii	   ' 2 – 1 – 1– 0,–2 –k P k nk kφ α α δ( )( ) ( ) ( )∀ ∈ = <α α

and hence (as per the Darboux property of a continuous function), there 
exists exactly one k P∈  such that:

•	 first, for any 0, 0k k kφ( ) ( )∈ > , 
•	 second, 0kφ ( ) =

and 
•	 third, for each , 0k k kφ( ) ( )∈ +∞ < . 

Consequently, that k  represents a non-trivial, stable steady-state point of 
differential equation (8.20). Moreover, if s > δ + n (s < δ + n), then ϕ(1) > 
0 (ϕ(1) < 0), and at each moment 0,t ( )∈ +∞  0k >  0k( )<  which leads to the 
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conclusion that the growth path of capital per worker k(t) approaches k  

from the left (right).7 However, at s = δ + n, the following holds:

0,   0t k t( ) ( )∈ +∞ =  

which implies that at each moment t 1k t k( ) = = .
In the case of 1/ 2α = , the function ϕ(k) can be written as:

– – .k s n kφ δ( ) =

Then:

	 i	 0 –s nφ ( ) = ;
	ii	 lim –k

k
φ ( ) = ∞

→+∞
;

	iii	   –
2

0k P k
k

φ δ( )∀ ∈ ′ = < .

Therefore:

	 i	 If s n≤ , the value of function ϕ(k) at k rising from 0 to +∞ will fall from 
– 0s n ≤  to –∞, and differential equation (8.20) has no steady state. 

Moreover, in this case 0k P k∀ ∈ < , i.e. the values of capital per worker 
will fall from 1 to 0.8

	ii	 However, at s > n, there exists exactly one non-trivial stable steady-state 
point k P∈  and the growth paths of capital per worker and labour pro-
ductivity behave like at 0,1/ 2α ( )= .

At 1/ 2,1α ( )= , we get:

	 i	 lim –
0

k
k

φ ( ) = ∞
→ +

;

	ii	 lim k
k

φ ( ) = +∞
→+∞

;

and:
	iii	 2 – 1 – 1– 0– –k nk kφ α α δ( )( ) ( ) ( )′ = <α α , and consequently (first) at 

0,k k∈








=
, where: 

2 – 1
1–

,
1/

k
nα

α δ
( )
( )

=










α
=

 	 (8.22)

the derivative kφ ( )′  is positive, (second) at k k=
=
 – it equals 0 and (third) 

for ,k k∈ +∞








=
, the derivative is negative. Therefore, in the interval 
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0,k








=
, the function ϕ(k) is increasing and in the interval ,k +∞









=
, it is 

decreasing.

	iv	 If 0kφ






 <

=
, for each 0k P k k k φ ( )∈ = <α  and then capital per worker 

and labour productivity will fall (in time) from 1 to 0.

	v	 In the case of 0kφ






 =

=
, the point k

=
 represents a non-trivial steady state 

of differential equation (8.20). Moreover, (first) if 1k <
=

, then k(t) will fall 

from 1 to k
=

 while y(t) will fall from 1 to k
α=

, (second) for 1k =
=

 at each 
non-negative moment t 0k t y t

( ) ( )= =  and 1k t y t( ) ( )= = , and (third) for 

1k >
=

, the following holds: ,  0k t y t

( ) ( ) > , so that the values of capital per 
worker and labour productivity will fall from 1 to 0.

	vi	 However, at 0kφ






 >

=
, differential equation (8.20) has two non-trivial steady 

states: 0,1k k∈








=
 and ,2k k∈ +∞









=
. Then, for any 0, ,1 2k t k k∪( ) ( )( ) ∈ +∞  

we have ,  0k t y t

( ) ( ) < , and for each ,1 2k t k k( )( ) ∈  ,  0k t y t

( ) ( ) > . Conse-
quently, the point 1k  is a non-stable steady state of differential equation 
(8.20), and the point 2k  is a stable steady state. Therefore, (first) if 01k > , 
capital per worker and labour productivity will fall from 1 to 0, (second) 
at 01k = , the values of those macroeconomic variables at each moment 

0,t )[∈ +∞  equal 1, (third) if 11 2k k< < , capital per worker and labour 
productivity will rise from 1 to (respectively) 2k  and 2kα , (fourth) in the 
case of 12k =  at each moment t k(t) = y(t) = 1 and (fifth) at 12k < , capital 
per worker and labour productivity will fall from 1 to 2k  and 2kα .

It follows from equations (8.21) and (8.22) that:

–
2 – 1
1–

–
1–
2 – 1

,
1– / 2 –1 /

k s
n

n
n

φ δ α
α δ

α δ
α

( )
( )

( )
( )







 =





















α α α α( ) ( )=

and consequently, (first) if

2 – 1
1–

1–
2 – 1

,
1– / 2 –1 /

s
n

n
n

δ α
α δ

α δ
α

( )
( )

( )
( )

>








 +











α α α α( ) ( )
 

differential equation (8.20) has two non-trivial steady states, (second) at

2 – 1
1–

1–
2 – 1

.
1– / 2 –1 /

s
n

n
n

δ α
α δ

α δ
α

( )
( )

( )
( )

=








 +











α α α α( ) ( )
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 the equation has one non-trivial steady state, and (third) for 

2 – 1
1–

1–
2 – 1

,
1– / 2 –1 /

s
n

n
n

δ α
α δ

α δ
α

( )
( )

( )
( )

<








 +











α α α α( ) ( )

it has no non-trivial steady state.

8.4  Numerical simulations

Like in the studies by Filipowicz and Tokarski (2015), Filipowicz, Wisła and 
Tokarski (2016) or Filipowicz, Syrek and Tokarski (2017), the elasticity of 
output with respect to capital (that is α) is calibrated so that the ratio of 
labour productivities equals 3 at the ratio of capitals per worker in two econ-
omies that equals 5. Then, given the labour productivity function y k= α, we 
obtain9:

ln /
ln /

ln3
ln5

0.68261.1 2

1 2

y y
k k

α ( )
( )

= = ≈

It is also arbitrarily assumed that δ = 0.07, n = 0.01 and m = e, where e is the 

Euler number. Then, the moment T equals 
( )= ≈T
eln – 1

0.02
27.066 on a logis-

tic growth path. The investment rate s is increased in steps of 10-percentage 
points from 10% to 40%.

The model is numerically solved in a discrete time, replacing differential 
equations with equivalent difference equations.

Figure 8.1 shows the trajectories of the number of workers on a logistic 
growth path and post-Malthusian growth paths, and savings/investment 
rates equal 10%, 20%, 30% and 40%. The figure demonstrates that:

•	 On the logistic growth path of the number of workers, that value will 
rise from 1 to about 2.718.

•	 On the post-Malthusian growth path, at a savings/investment rate of 
10% at infinity (like in the original Solow model), the number or workers 
will approach infinity.

•	 A savings/investment rate of 20% leads to a long-run number of workers 
about 3.489 times greater, of 30% – about 1.757 times greater, and of 
40% – about 1.391 times greater than its input value.

Table 8.1 shows results of numerical simulations of labour productiv-
ity at standard, logistic and post-Malthusian trajectories of the number 
of workers. Figures 8.2–8.5 illustrate the trajectories of labour produc-
tivity corresponding to standard, logistic and post-Malthusian curves 
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of the number of workers. The table and figures lead to the following 
conclusions:

•	 A savings/investment rate of 10% leads to the fastest growth of labour 
productivity at a post-Malthusian trajectory of the number of workers 
and the slowest growth of labour productivity at a logistic trajectory 
of the number of workers over the first 50 years. That macroeconomic 
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Figure 8.1 � Trajectories of the number of workers on a logistic growth path and 
post-Malthusian growth paths, and investment rates of 10% (L(10)), 20% 
(L(20)), 30% (L(30)) and 40% (L(40)).

Source: Own calculations.

Table 8.1 � Simulations of labour productivity at standard (S), logistic (L) and post-Malthusian 
(PM) trajectories of the number of workers and at δ = 0.07, n = 0.01, α ≈ 0.68261  and 
m = e

Year 
t

Investment rate s (%)

10 20 30 40

S L PM S L PM S L PM S L PM

10 1.124 1.109 1.128 1.841 1.819 1.868 2.714 2.683 2.772 3.740 3.700 3.836
20 1.226 1.205 1.240 2.700 2.660 2.815 4.752 4.688 5.014 7.387 7.292 7.839
50 1.427 1.435 1.491 4.789 4.826 5.385 10.293 10.380 11.764 18.039 18.198 20.732
75 1.514 1.587 1.622 5.845 6.125 6.876 13.283 13.918 15.893 24.000 25.146 28.870
100 1.562 1.716 1.703 6.452 7.078 7.833 15.040 16.489 18.581 27.545 30.192 34.215
150 1.601 1.913 1.785 6.968 8.311 8.765 16.551 19.726 21.207 30.617 36.477 39.456
200 1.612 2.034 1.815 7.117 8.972 9.089 16.989 21.408 22.112 31.509 39.695 41.259
+∞ 1.616 2.153 1.832 7.175 9.562 9.252 17.161 22.870 22.562 31.860 42.459 42.151

Source: Own calculations.
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variable will reach its highest value also on the post-Malthusian path, 
and its lowest value on the standard rather than the logistic path after 
100 years. In the long-run equilibrium (at t → +∞), labour productivity 
will rise by about 61.6% (compared to its input value) on a standard 
path, and by about 83.2% on the post-Malthusian path while it will be 
more than doubled at a logistic trajectory.
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Figure 8.2 � Growth paths of labour productivity at standard (S), logistic (L) and 
post-Malthusian (PM) trajectories of the number of workers and s = 10%.

Source: Own calculations.
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Figure 8.3 � Growth paths of labour productivity at standard (S), logistic (L) and 
post-Malthusian (PM) trajectories of the number of workers and s = 20%.

Source: Own calculations.
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•	 If the savings/investment rate equals 20%, labour productivity initially 
achieves its fastest growth at a post-Malthusian trajectory of the number 
of workers, and its slowest growth at a logistic trajectory of the number of 
workers. However, in the long-run equilibrium, labour productivity will be 
about 9.5 times greater on the post-Malthusian and logistic growth paths, 
and slightly more than 7 times greater on the standard growth path.

•	 At a savings/investment rate of 30%, the fastest growth of output per 
worker is achieved on a post-Malthusian growth path, and the slowest –  
on a standard growth path. In the long-run equilibrium, the value of 
that variable (compared to year t = 0) will be slightly more than 17 times 
greater at a standard trajectory of the number of workers and about 
22.5–23 times greater on the other analyzed growth paths of the number 
of workers.

•	 Similar graphs of the labour productivity function are generated at sav-
ings/investment rates of 40%. Long-run labour productivity values will 
then be about 31.9 times greater on a standard growth path, 42.4 times 
greater on a post-Malthusian growth path and 42.5 times greater on a 
logistic growth path compared to year t = 0 (Figure 8.6).

8.5  Conclusions

The analyzes contained in this chapter can be summarized as follows:

	 I	 The assumption underlying the original Solow model about a constant 
growth rate of the number of workers is modified in this chapter. That 
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Figure 8.4 � Growth paths of labour productivity at standard (S), logistic (L) and 
post-Malthusian (PM) trajectories of the number of workers and s = 30%.

Source: Own calculations.
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assumption is modified in two ways. First, it is assumed that the number 
of workers changes forming a trajectory defined by a logistic function; 
second, it is assumed that the growth rate of the number of workers 
represents a decreasing function of labour productivity.
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Figure 8.5 � Growth paths of labour productivity at standard (S), logistic (L) and 
post-Malthusian (PM) trajectories of the number of workers and s = 
40%.

Source: Own calculations.
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Figure 8.6 � Growth paths of labour productivity at a post-Malthusian trajectory of 
the number of workers and s = 10% (y(10)), s = 20% (y(20)), s = 30% 
(y(30)) and s = 40% (y(40)).

Source: Own calculations.
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	II	 On a logistic growth path of the number of workers, the trajectories 
of capital per worker and labour productivity represent certain com-
posed functions with the Gaussian hypergeometric function. On a 
post-Malthusian temporal path of the number of workers, the solution 
of Solow equation depends on the elasticity of output with respect to 
capital inputs. The equation may have no steady state and have one 
non-trivial steady state or two non-trivial steady states.

	III	 In the numerical simulations described in this chapter, the elasticity of 
output with respect to capital inputs was calibrated at 0.68216, and in-
vestment rates were modified in steps of 10 percentage points from 10% 
to 40%.

	IV	 At all simulated values of saving/investment rates and standard, logistic 
or post-Malthusian trajectories of the number of workers, labour pro-
ductivity rises up to an asymptote. The dynamics of labour productivity 
at a standard and a logistic trajectory of the number of workers are 
very similar over the first 50 years. Then, the growth rate of labour pro-
ductivity dramatically drops in the model with a standard trajectory of 
the number of workers (due to the convergence effect). Finally, labour 
productivity stabilizes in the original Solow model on a distinctly lower 
level than in the two other models. Long-run labour productivities are 
very similar in the logistic and post-Malthusian models (except at a sav-
ings/investment rate of 10%).

	 V	 In addition to the analyzed trajectory of the number of workers, the 
described numerical simulations led to the conclusion that an increase 
in savings/investment rates causes an increase in long-run labour pro-
ductivity and capital per worker. That conclusion is consistent with the 
corresponding output of analysing the original Solow model.

Notes
	 1	 This chapter bases on the study by Filipowicz, Grodzicki and Tokarski (2016). 

See also Filipowicz, Syrek and Tokarski (2017).
	 2	 T = 0 in the case of m = 2.
	 3	 That path is hereinafter referred to as a post-Malthusian path, because Thomas 

Malthus proposed the hypothesis that populations had a natural tendency to 
multiply geometrically. However, the population size cannot actually grow to 
infinity, because it is limited by changing economic conditions, principally the 
wage level and foodstuff supply. More on the subject e.g. in Filipowicz, Grod-
zicki and Tokarski (2016).

	 4	 We ignore a trivial solution of that differential equation.
	 5	 The Gaussian hypergeometric function , , ,2 1F a b c z( ) is a non-elementary function 

that represents a solution of the following second-order differential equation:

1– – 1 ,
2

2z z
d w
dz

c a b z
dw
dz

abw z( )( ) ( ) ( )+ + + =
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where ,a b R∈ , and 0c ≠ . The function can be written as:

, , , 1 ,2 1

1

F a b c z z

n

n n∑γ( ) = +
=

∞

where:

– 1 – 1

! – 1
.

1 1

1

a j b j

n c j
n

j

n

j

n

j

n

∏ ∏
∏

γ
( ) ( )

( )
=

+








 +










+










= =

=

		  The mathematical properties of those functions are characterized e.g. in the 
studies by Korn and Korn (1983, p. 269 ff.) or Cattani (2006). Applications of 
Gaussian hypergeometric functions in the modelling of economic growth pro-
cesses are discussed in the studies by Boucekkine and Ruiz-Tamarit (2004, 2008) 
or Zawadzki (2015) for the Uzawa-Lucas model, by Guerrini (2006) for the 
Solow model and by Krawiec and Szydłowski (2002) for the Mankiw-Romer-
Weil model.

	 6	 The constant of integration Ĉ in equations (8.18) and (8.19) should be purpose-
fully selected to meet the condition k (0) = k0 > 0, where k0 denotes capital per 
worker at moment t = 0. That constant is selected in the numerical simulations 
described in Section 8.4 so that the equality holds k (0) = y (0) = 1.

	 7	 It follows from the labour productivity function analyzed in this chapter that 

sgn sgnk y

= , and thus the growth path of labour productivity y (t) exhibits 
similar behaviour as the path of capital per worker, provided that at t → +∞ 

y t k( ) → α.
	 8	 Analogous values are assumed then by labour productivity y (t).
	 9	 If we assumed, in line with the Solow’s 1957 decomposition, that 1/ 3α = , then 

at / 51 2k k = , we would get: 5 1.709981

2

1

2
3 3y

y
k
k

= = ≈ , a value that seems to be 

strongly underestimated.
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9	 The Solow equilibrium at  
sine-wave investment rates

9.1  Introduction

Investment belongs to key factors of long-term economic growth and is 
highly sensitive to business cycles.1 In the original Solow model, invest-
ments represent a constant fraction of output. In this chapter, we question 
that assumption and introduce fluctuations on the investment side, with an 
investment rate changing along a sine wave in time. The sine function is 
adopted to describe changes in the investment rate because investment de-
pends to a great extent on business cycles that are characterized by periodic 
fluctuations.

Similar analyzes are contained in the studies by Bolińska, Dykas, Mentel 
and Misiak (2019), where the authors, in addition to fluctuations on the in-
vestment side, consider a growth rate of the number of workers that changes 
in time and in a long run determine the exponential growth path of the num-
ber of workers approaching a constant asymptote.

The structure of this chapter is as follows. Section 9.2 describes assump-
tions of the model, including that about the investment rate. Section 9.3 pro-
poses a solution of the model based on cyclical growth paths of capital per 
worker and labour productivity. Section 9.4 proposes calibrations of growth 
paths of labour productivity and summarizes numerical simulations of 
those paths for various cycle lengths of fluctuations in investment rates and 
various levels of average investment rate. Section 9.5 contains conclusions 
drawn from the discussed model and closes this chapter.

9.2  Assumptions of the model

The assumptions listed below underlie the growth model described in this 
chapter.
	 I	 The production process is described by the Cobb-Douglas production 

function given by the formula:

( ) ( )( ) ( ) ( )= α α
Y t K t L t ,

1–
	 (9.1)

This chapter has been made available under a CC-BY-NC-ND license.
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where the symbols have the same meanings as in Chapter 2, and Y, K, L 
> 0 and 0,1α ( )∈ .

	II	 The capital accumulation process is described by the differential 
equation:

– ,K t s t Y t K t δ( ) ( ) ( ) ( )= 	 (9.2)

where ( ) ( )∈s t 0,1  is the investment rate at moment t, and 0,1δ ( )∈  de-
notes the capital depreciation rate (that is constant in time).

	III	 The investment rate at each moment t is described by the sine wave:

θ
ω

( ) = + π





s t s tsin

2
,	 (9.3)

where ,  0,1s s θ ( )± ∈ , and w > 0. s  denotes the average investment rate 
in a business cycle, q is the amplitude of cyclical fluctuations in invest-
ment, and w  denotes the period of those fluctuations.

	IV	 The trajectory of the number of workers is described by the exponential 
function:

( ) =L t ent .	 (9.4)

It follows from equation (9.4) that at moment t = 0, the number of work-
ers amounted to 1 and rose at the growth rate n > 0.

9.3  Equilibrium in the model

Equations (9.1–9.4), like in the original Solow model, lead to the differential 
equation:

sin
2

– ,k t s t k t k t θ
ω

µ( )( ) ( ) ( )= + π















α
	 (9.5)

where k = K/L denotes capital per worker, and m = d + n > 0 is the rate of cap-
ital decline per worker. Equation (9.5), naturally, describes rises in capital 
per worker. That equation (ignoring its trivial solution k(t) = 0) is written as:

sin
2

–
– 1–

k t k t s t k t θ
ω

µ( ) ( )( ) ( ) ( )= + π







α α

and after the Bernoulli substitution:
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is reduced to the following linear non-homogeneous differential equation:
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Let us write the integral of equation (9.7) as:
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where zd denotes an unknown complementary integral. Substituting equa-
tions (9.8) into (9.7) and making a few elementary transformations, we get:
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 α α θ( ) ( ) ( ) ( )= + Φα µ( ) 	 (9.9)
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It follows from equation (9.9) that:
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where ∈F R is the constant of integration, hence we obtain from  
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Substituting the complementary integral equation (9.11) into equation (9.8):
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From the Cobb-Douglas production function (9.1), we obtain the labour 
productivity function = αy k  that together with equation (9.12a) gives:

( ) (1– )
(1– ) sin

2
– 

2
cos

2

(1– )
4

.
2 2

2

2

–(1– ) –(1– )

/(1– )

y t
s

t t
e Fet t

µ
α θ

α µ π
ω

π
ω

π
ω

α µ π
ω

= +

















+
+

















α µ α µ

α α

 

	 (9.12b)



The Solow equilibrium at sine-wave investment rates  203

Equations (9.12a,b) describe the growth paths of capital per worker and out-
put per worker in the ninth growth model analyzed in this chapter.

9.4  Calibration of parameters and numerical simulations

Like in Chapter 8, the elasticity of the Cobb-Douglas production function 
is calibrated in the following numerical simulation results at the level of 

ln3
ln5

0.68261α = ≈ , the capital depreciation rate at d = 0.07, and the growth 

rate of working population at n = 0.01.
It is also assumed that the amplitude of sine-wave fluctuations in the in-

vestment rate reaches 10% of its average value, i.e.: 0.1sθ =  which leads to 
the form of investment rate equation:

( ) 1 0.1sin
2

.s t s t
π

ω
= ⋅ +

















Numerical simulations were run for investment cycles characterized (con-
secutively) by periods of 3, 5, 10, 25 and 50 years. In those simulations, like 
in Chapter 8, the investment rate was modified between 10% and 40%, in 
steps of ten percentage points.

The model is numerically solved in a discrete time, by replacing differ-
ential equations with equivalent difference equation. The initial values of 
capital and labour inputs equal 1.

Table 9.1 and Figure 9.1 summarize numerical simulation results of labour 
productivity3 in investment cycles characterized by a period of three years. 
The following tables and figures summarize simulation results for sine-wave 
fluctuation periods of (respectively) 5, 10, 25 and 50 years. The last value w  
can be identified with the Kondratiev wave (see Korotayev and Tsirel, 2010).

The simulation results contained in Tables 9.1–9.4 and Figures 9.1–9.5 
lead to the following conclusions:

•	 Labour productivity, regardless of the period of cyclical fluctuations 
in the investment rate, will oscillate in a long run (at → +∞t ) about the 

Table 9.1  Simulation of labour productivity at w = 3

Year t Investment rate (%)

10 20 30 40

10 1.123 1.839 2.710 3.734
20 1.231 2.715 4.782 7.437
50 1.430 4.804 10.327 18.099
75 1.510 5.828 13.244 23.929
100 1.557 6.433 14.995 27.463
150 1.596 6.946 16.499 30.519
200 1.614 7.128 17.016 31.558
Oscillations at → +∞t a 1.611 7.152 17.106 31.758
In the original Solow model at → +∞t 1.616 7.175 17.161 31.860

a Tables 9.1–9.4 give the level of labour productivity in the year t = 1,000.
Source: Own calculations.
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Figure 9.1 � Trajectories of labour productivity at w = 3 and varying investment 
rates s.

Source: Own calculations.

Table 9.2  Simulation of labour productivity at w = 5

Year t Investment rate (%)

10 20 30 40

10 1.123 1.837 2.707 3.729
20 1.223 2.692 4.735 7.358
50 1.421 4.767 10.245 17.951
75 1.507 5.816 13.216 23.878
100 1.554 6.419 14.961 27.401
150 1.592 6.931 16.462 30.452
200 1.603 7.078 16.897 31.338
Oscillations at → +∞t 1.607 7.136 17.067 31.686
In the original Solow model at → +∞t 1.616 7.175 17.161 31.860

Source: Own calculations.

Table 9.3  Simulation of labour productivity at w = 10

Year t Investment rate (%)

10 20 30 40

10 1.121 1.833 2.700 3.718
20 1.220 2.684 4.719 7.330
50 1.416 4.748 10.201 17.872
75 1.527 5.900 13.410 24.231
100 1.547 6.390 14.892 27.274
150 1.585 6.899 16.385 30.309
200 1.595 7.045 16.818 31.191
Oscillations at → +∞t 1.600 7.102 16.987 31.537
In the original Solow model at → +∞t 1.616 7.175 17.161 31.860

Source: Own calculations.
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value that emerges in the long-run equilibrium of the original Solow 
model (without technological progress). Therefore, an increase in the 
average investment rate s  leads to a situation wherein capital per worker 
and labour productivity reach, like in the original Solow model, growth 
paths placed higher (see also Figures 9.1–9.5).

•	 The absolute amplitudes of fluctuations in labour productivity increase 
as economies approach the state of oscillation around the long-run 
equilibrium in the original Solow model. Moreover, the longer the pe-
riods of cyclical fluctuations in investment rates, the greater are those 
long-term absolute amplitudes of fluctuations in labour productivity.

•	 Additionally, whatever periods of cyclical fluctuations in investment 
rates are adopted, it is demonstrated in a long run that an average in-
vestment rate reaching 40% in the investment cycle will result in labour 
productivity that is almost 20 times greater than at average investment 
rates of 10%.

Table 9.5  Simulation of labour productivity at w = 50

Year t Investment rate (%)

10 20 30 40

10 1.157 1.924 2.865 3.974
20 1.314 2.964 5.282 8.275
50 1.380 4.610 9.890 17.312
75 1.589 6.152 13.995 25.301
100 1.498 6.182 14.402 26.371
150 1.532 6.669 15.837 29.294
200 1.542 6.809 16.253 30.143
Oscillations at → +∞t 1.546 6.863 16.416 30.476
In the original Solow model at → +∞t 1.616 7.175 17.161 31.860

Source: Own calculations.

Table 9.4  Simulation of labour productivity at w = 25

Year t Investment rate (%)

10 20 30 40

10 1.169 1.954 2.918 4.057
20 1.235 2.726 4.802 7.468
50 1.402 4.694 10.079 17.651
75 1.483 5.719 12.990 23.464
100 1.528 6.308 14.700 26.919
150 1.564 6.808 16.170 29.910
200 1.574 6.952 16.596 30.779
Oscillations at → +∞t 1.578 7.009 16.763 31.120
In the original Solow model at → +∞t 1.616 7.175 17.161 31.860

Source: Own calculations.
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Figure 9.2 � Trajectories of labour productivity at ω = 5 and varying investment 
rates s.

Source: Own calculations.

1

6

11

16

21

26

31

36

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

s=0.1 s=0.2 s=0.3 s=0.4

Figure 9.3 � Trajectories of labour productivity at ω = 10 and varying investment 
rates s.

Source: Own calculations.

•	 Comparing long-run labour productivity for periods of fluctuations in 
investment rates of varying lengths, we obtain greater values of that 
variable for shorter periods of cyclical fluctuations in investment rates.

•	 At average investment rates of 10% in the investment cycle, cyclical peri-
ods of three and five years will result in an increase in labour productivity 
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Figure 9.4 � Trajectories of labour productivity at ω = 25 and varying investment 
rates s.

Source: Own calculations.

1

6

11

16

21

26

31

36

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

16
1

16
8

17
5

18
2

18
9

19
6

s=0.1 s=0.2 s=0.3 s=0.4

Figure 9.5 � Trajectories of labour productivity at ω = 50 and varying investment 
rates s.

Source: Own calculations.

by about 61% in a long run. A period of fluctuations in investment rates 
lasting ten years will lead to an increase in long-run labour productivity 
by about 60%, and periods of fluctuations in investment rates lasting 25 
and 50 years will lead to an increase in long-run labour productivity by 
(respectively) 58% and 55%.

•	 The trajectories of labour productivity at average investment rates of 
20% are situated higher than at investment rates of 10%, regardless of 
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fluctuation period lengths. An average investment rate at the level of 
20% results in an increase in long-run labour productivity by more than 
7 times for each period of fluctuations in investment rates, except the 
period of 50 years corresponding to an increase by 6.86 times.

•	 The fluctuation periods lasting three and five years, at an average in-
vestment rate of 30%, result in an increase in long-run labour produc-
tivity by more than 17 times. An average investment rate at the level of 
30%, for other periods of fluctuations in investment rates, results in an 
increase in long-run labour productivity by 16.42–16.99 times compared 
to its initial value.

•	 If the economy is characterized by average investment rates of 40%, 
then for fluctuation periods lasting three to ten years, labour produc-
tivity will increase by about 32 times compared to the initial period. 
For periods of fluctuations in investment rates lasting 25 and 50 years, 
investment rates of 40% will lead to an increase in long-run labour pro-
ductivity by (respectively) 31.12 and 30.48 times.

9.5  Conclusions

The analyzes made in this chapter can be summarized as follows:
	 I	 In this chapter, we modified the fairly restrictive assumption adopted 

in the original Solow model saying that investment in physical cap-
ital is constant in time. The authors assume an investment rate that 
changes in time and deviates from its average level, undergoing cyclical 
fluctuations.

	II	 In the theoretical part of the study, the adopted assumptions about fluc-
tuations in investment rates led to the determination of growth paths 
of capital per worker and of labour productivity. The periods of fluc-
tuations in investment rates of 3, 5, 10, 25 and 50 years were assumed 
in the numerical simulations, and the average value of investment was 
modified in steps of ten percentage points from 10% to 40%.

	III	 In a long term of growth, labour productivity, at cyclical growth 
paths, will oscillate around long-run labour productivity calculated 
in the original growth model. This leads to the conclusion that labour 
productivity will reach growth paths situated higher when average 
investment rates are greater. Additionally, the amplitudes of cyclical 
fluctuations in labour productivity increase as economies approach 
the state of oscillation around the long-run equilibrium in the original 
Solow model.

	IV	 Whatever periods of cyclical fluctuations in investment rates are 
adopted, it is demonstrated in a long run that an average investment 
rate reaching 40% in the investment cycle will result in labour produc-
tivity that is almost 20 times greater than at average investment rates of 
10%. In addition, long-run labour productivity assumes greater values 
at shorter cycles of investment rate fluctuations.
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Notes
	 1	 This chapter bases on the studies by Dykas and Misiak (2016ab).
	 2	 The constant of integration F in equations (9.12a) should be purposefully se-

lected to meet the condition k(0) = k0 > 0, where k0 denotes capital per worker 
at moment t = 0.

	 3	 The trajectories of capital per worker are similar to the trajectories of labour 
productivity.
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10	 SIR-Solow model

10.1  Introduction

The epidemiological-economic model described in this chapter represents a 
compilation of the SIR (Susceptible –Infectious/Infected – Removed/Recov-
ered) epidemiological model proposed by Kermack and McKendrick (1927) 
and the neoclassical model of economic growth proposed by Solow (1956).

The methods of analytical description of the spread of contagious dis-
eases has been widely discussed in the scientific literature (see Murray, 2003; 
Ruan, 2007; Xiao and Ruan, 2007; Fei-Ying, Wan-Tong and Zhi-Cheng, 
2015; Jardón-Kojakhmetov, Kuehn, Pugliese and Sensi, 2021) that adopts 
the epidemiological model known as SIR, proposed by Kermack and McK-
endrick (1927). The original SIR model ignores restrictions imposed on so-
cial and economic life to contain the spread of an epidemic, and economic 
consequences of the epidemic and of those restrictions imposed to contain 
its spread. Bärwolff (2020) expanded the SIR model to include analyzes of 
epidemic spread and subsidence. Bärwolff assumes in his study that the gov-
ernment imposes severe restrictions on social and economic life when the 
proportion of infected people reaches a threshold defined by the govern-
ment. Bärwolff also assumes that the more restrictive lockdown is intro-
duced, the slower is the pace of epidemic spread. However, he argues that a 
lockdown leads only to a displacement of the climax of the pandemic, but 
not really to an efficient flattening of the curve representing the number of 
infected people.

The effects of a rapid spread of a pandemic on economic growth were 
not analyzed in mainstream economic research in the past. The economic 
effects of HIV/AIDS in Asia (Bloom and Lyons, 1993) and in selected coun-
tries of Europe, Africa, North America and South America (Bloom and 
Mahal, 1995; Kambou, Devarajan and Over, 1992) were analyzed in the 
last two decades of the 20th century. For example, Bloom, Mahal in their 
studies published in 1995 and 1997 argue that the HIV/AIDS epidemic had 
no material effect on the rate of growth of income per capita in 51 devel-
oped and industrialized countries of the world in the years 1980–1992. After 
two decades, Cuesta (2010) came to a similar conclusion about Honduras, 

This chapter has been made available under a CC-BY-NC-ND license.
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the country most severely affected by the HIV/AIDS epidemic in South 
America. 

The current scale and rate of spread of the COVID-19 pandemic caused by 
a coronavirus entails serious disturbances in social and economic life. The 
pandemic of 2020 represents the worst global health crisis since the times of 
Spanish flu that struck in 1918. In response to the chain of events observed, 
several measures are being presently considered. Alvarez, Argente and Lippi 
(2020) and Atkeson (2020) address the problem of optimization of the sever-
ity level of a lockdown. They use the SIR model under conditions of chang-
ing economic activity of the population and enterprises. The importance of 
social distance is emphasized by Lik Ng (2020) who indicates adverse effects 
of a lockdown policy treated as the principal method preventing the spread 
of pandemic. Research into trade-off in public choices was also initiated 
in 2020. Aum, Lee and Shin (2020) analyze a trade-off between GDP and 
public health under pandemic conditions. They argue that a lockdown not 
only limits the spread of pandemic but also mitigates the accumulated GDP 
loss in the long run. If no lockdown measures are taken during a pandemic, 
mass quarantining is necessary, leading to adverse economic effects. The 
self-employed who achieve relatively low income form the group exposed 
to the most severe consequences of a lockdown. Brock and Xepapadeas 
(2020) adopt an even wider perspective. They argue that continuous growth 
of consumption activities, capital accumulation and climate change could 
increase the exposure of society to the risk of infection. In their opinion, a 
policy preventing the spread of epidemic should consist of two components. 
The first component includes short-term measures. The second component 
includes economic policies aimed at changing consumption patterns and 
addressing climate change.

Research projects described in the scientific literature also include studies 
into the effects of an epidemic on economic growth, employing neoclassi-
cal growth models. Cuddington (1993) used the Solow model to analyze the 
growth path of per-capita GDP in the context of HIV/AIDS epidemics and 
its demographic consequences. The model used by him indicated a material 
risk of reduction in the GDP growth rate in Tanzania by the year 2010. Cud-
dington and Hancock (1994) adopted the same methodological approach to 
assess the effect of HIV/AIDS on the economy of Malawi. Delfino and Sim-
mons (2005) identify significant empirical links between the health structure 
of the population and the productive system of an economy that is subject to 
infectious disease, in particular tuberculosis. Another neoclassical model of 
economic growth used in research into the effects of spread of the HIV virus 
on economic growth was proposed by Mankiw, Romer and Weil (1992). Lo-
vasz and Schipp (2009) used that model to assess the effects of educational 
and health capital, and of the pace of epidemic spread on aggregate macro-
economic indicators. The effect of the HIV virus is not the same in all coun-
tries, and even within individual countries. The economies characterized by 
developed healthcare infrastructures are capable of providing means aimed 
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to prevent a rapid spread of an epidemic in its early phase. Additionally, 
Lovasz and Schipp, when analyzing the problem of accumulation of human 
capital under epidemic conditions, argue that a loss of human capital due to 
an epidemic does not always entail the same consequences. The education 
level and number of skilled workers and their outflow from production pro-
cesses due to an epidemic affects the GDP growth rate to a varying extent. 
Similarly, the social capital stock is interrelated with economic growth un-
der epidemic conditions.

The above outline of main topics of research into the impact of an epidemic 
on economic growth provides foundations to the epidemiological-economic 
model proposed in this chapter. The proposed model incorporates restric-
tions imposed by the government on social and economic life in two alterna-
tive versions: in a gradual, continual manner as a function of the proportion 
of infected people in the population and as a strict lockdown adopted 
abruptly by the government. The value of aggregate production is affected 
by: the capital stocks, the rising percentage of infectious people that reduces 
investment and the rate of capital accumulation, and the scale of lockdown 
restrictions. The model proposed in this chapter is not strictly related or 
limited to the COVID-19 pandemic, as it is useful in analyzing the effects 
of any epidemic that leads to material social damage (a high percentage of 
infected and dead people, limited interpersonal contacts due to lockdown 
measures implemented) and economic losses (a drop in production caused 
by a collapse of aggregate demand and a reduction in supply capacity of the 
economy, and consequently in the rate of capital accumulation).

10.2  An epidemiological-economic model

The original SIR model does not include restrictions imposed on social 
and economic activity in response to the spread of an epidemic.1 For this 
reason, an analysis of the process of spread and subsidence of an epidemic 
was made using the SIR model as modified by Bärwolff (2020). Bärwolff 
assumes that governments impose restrictions on social and economic life 
when an epidemic begins to spread out of control (the percentage of infected 
people exceeds certain critical level defined in an arbitrary manner by the 
government). Bärwolff also assumes that the more restrictive lockdown is 
introduced, the slower is the pace of epidemic spread.

Bärwolff’s study is based on the assumption that the state introduces 
lockdown measures rapidly in an arbitrary manner (within a period or at 
certain time intervals). In our epidemiological-economic model, we as-
sume that the level of lockdown severity is defined using a specific func-
tional rule. Namely, we assume that the severity index of a lockdown is 
an analytical function of the percentage of the infected. If the percentage 
grows, the government does not use arbitrary criteria but follows the rule 
described by the function when imposing restrictions on social and eco-
nomic life. 
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10.2.1  The epidemiological module

We consider two scenarios when analyzing the spread and subsidence of an 
epidemic. Like in the original SIR model, we consider a scenario wherein 
the government has no access to a vaccine (preventing the disease spread) 
and a scenario wherein the government has a vaccine.

In the scenario with the government having no access to a vaccine, we 
assume that the spread of epidemic is described by the following differential 
equations:
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where St 0,1( )∈  represents the percentage of susceptible people on day t 
(for t = 1, 2, …), It 0,1( )∈  – the percentage of the infected, Ht 0,1( )∈  – the 
percentage of the recovered (the recovered are not eventually included in 
the group of the susceptible), Dt 0,1( )∈  – the percentage of the dead.2 We 
also assume that h, 0,1β ( )∈ , 0,γ β( )∈  and t 0,1κ [ ]∈  in consecutive days  
t = 1, 2, …. The parameter β in the system of equations (10.1) describes the 
pace of epidemic spread, γ represents the percentage of infected people 
who either recover or die, and h represents the mortality rate among the 
infected. The parameter κt that can vary in its value in time (like in the 
original study of Bärwolff from 2020) represents an indicator of restrictions 
imposed on social and economic life on consecutive days of epidemic dura-
tion. If the parameter equals 1, the government does not impose any restric-
tion on social and economic life in response to the epidemic. If κt = 0, a full 
lockdown is imposed. The lower is the value of the κt indicator, the stricter 
lockdown is imposed. Additionally, the lower is the value of that indicator, 
the slower is the spread of epidemic.

It follows from the first equation in the system (equation 10.1) that a re-
duction in the percentage of the susceptible (that is St–∆ ) is directly pro-
portional to the indicator of restrictions imposed on social and economic 
life (κt), the percentage of the susceptible (St–1) and the percentage of the 
infected (It–1). The second equation in the system (10.1) is interpreted so that 
an increase in the percentage of the infected (that is It∆ ) equals the differ-
ence between a reduction in the percentage of the susceptible (that is St∆– ) 
and the percentage of the infected who recover or die ( Itγ –1). Equations 
three and four in the system of differential equations (10.1) imply that h part 
of the infected recover and h−1  part of them die.

Additionally, it follows from the second equation in the above system 
of differential equations that the percentage of the infected It rises as long 

as the percentage of the susceptible St is greater than the expression tβκ
γ

. 



214  SIR-Solow model

Hence, restrictions imposed on social and economic life by the government 
(and described by a dropping value of the parameter κt) lead to a postpone-
ment of the initial day of a fall in the percentage of the infected.

In the vaccination scenario, the SIR model is reduced to the following 
system of differential equations that represents an extension of the system 
of equations (10.1):

βκ τ
βκ ερπ τ

βκ γ
γ

γ

τ
ερ τ

( )

∆ =
< +
≥ +







∆ =
∆ =

∆ =

∆ =
< +

π ≥ +




























S
S I t

S I S t

I S I I

H hI

D h I

P
t

S t

t
t t t

t t t t t

t t t t t

t t

t t

t
t t

– for 21

– – for 21

–

1–

0 for 21 

for 21

.

–1 –1

–1 –1 –21 –21

–1 –1 –1

–1

–1

–21 –21

 	 (10.2)

Pt ( )∈ 0,1  in the system of equations (10.2) represents the percentage of ef-
fectively vaccinated people (that is people who are no longer susceptible to 
infection after their vaccination), τ – the first day of vaccination, ε ( )∈ 0,1  –  
an indicator of vaccine effectiveness (that is the percentage of vaccinated 
population that will not contract the disease), ρ ( )∈ 0,1  – the percentage of 
those who wish to receive the vaccine, and t ( )π ∈ 0,1  (for consecutive days 
t = τ, τ + 1…) – the percentage of those who wish to receive the vaccine and 
are vaccinated until day t. We also assume that people effectively vaccinated 
develop immunity to the disease in 21 days after vaccination.

A modification in the system of differential equations (10.2) compared to 
the system of equations (10.1) can be reduced to the conclusion that begin-
ning on day 21 after the first day of vaccination, the percentage of the sus-
ceptible is reduced by the percentage of effectively vaccinated people (that 
is by St tερπ –21 –21).

When analyzing models without vaccination and with vaccination, we 
adopt two alternative scenarios of changes in the severity indicator of re-
strictions imposed on social and economic life κt. We assume that:

It tκ = σ1– –1	 (10.3)

or:

I

I
t

Gt

Gt

κ
ι

θ ι
=

<

≥







1 for

for
,	 (10.4)
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where I IGt

i

t i∏=
=1

14

–  represents a geometric moving average of the percentage 

of the infected in the most recent two weeks. Regarding the parameters θ, σ 
and ι in the equations (10.3 and 10.4), we assume that: θ ι ( )∈,  0,1 , and σ > 0.

We assume in equation (10.3) that if the percentage of the infected It rises 
from 0 to 1, the restriction severity indicator κt drops from 1 to 0, and if 
σ ( )∈ 0,1  σ( )>1 , subsequent falls in the indicator κt, corresponding to 
identical rises in the percentage of the infected It, are increasingly bigger 
(smaller).3 Equation (10.4) implies that we consider a scenario wherein the 
government does not impose any restriction on social and economic life, 
if the geometric moving average of the percentage of the infected over the 
most recent two weeks does not exceed the percentage ι. When that percent-
age is exceeded, the government imposes a lockdown and the indicator κt 
drops abruptly from 1 to θ.

The indicator of immunization coverage πt is described by the following 
equation:

at
b t

tπ =
+

,

where a b >, 0, and t represents consecutive days of vaccination. That indi-
cator of vaccination coverage (at t increasing from 0 to +∞) rises with a 
decreasing pace from 0 to a.4

10.2.2  The economic module

We adopt the following assumptions about developments of basic macroe-
conomic variables in our economic module5:

	 1	 The value of production on day t (that is Yt) is described by a modified 
Cobb-Douglas production function (1928) expressed by the formula:

Y K Lt t t tκ= α α− ,1 	 (10.5)

where α ( )∈ 0;1  represents output elasticity Yt of capital input Kt. In 
function (10.5), we take into account both supply and demand factors 
affecting the value of production. The supply component (like in the 
original Cobb-Douglas production function) is described by the ex-
pression K Lt t

α α−1 , hence if the epidemic did not strike, the value of pro-
duction (like in the Solow model) would amount to6 K Lt t

α α−1 . We also 
assume that if the government imposes a lockdown and reduces the in-
dicator of social and economic activity from 1 to tκ ( )∈ 0;1 , the value 
of aggregate demand falls and (due to Keynesian multiplier effects) the 
volume of production also falls from a level of K Lt t

α α−1  to K Lt t tκ α α−1 . 
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Hence, a relative reduction in the volume of production caused by a fall 
in δ  like in the original model proposed by Solow, capital accumulation 
(daily, in a discrete time) is described by a differential equation in the 
following form:

K s
Y K

t
t tδ∆ = −− −

365 365
,1 1 	 (10.6)

Where s ( )∈ 0;1  represents the savings-investment rate, and δ ( )∈ 0;1  – 
capital depreciation rate.

	 2	 The value of demand for labour (and the number of currently employed 
people) is described by:

L I D
Y
Y

t t t
tω ( )= − − 






1 ,* 	  (10.7)

Where ω φ ( )∈, 0;1 , and Y >  0*  represents the value of production in the 
Solow long-run equilibrium (that is at ΔKt = 0). The parameter ϕ repre-
sents elasticity of demand for labour relative to the volume of produc-
tion. It and Dt in equation (10.7) represent (like in the epidemiological 
module of the proposed model) percentages of the infected and those 
who died of the epidemic.

It follows from equation (10.7) that in our model, if the epidemic did 
not strike, at production rising from Yt < Y* to Y*, the percentage of 

the employed would rise from a level of 
Y
Y

tω 






φ

  *  to ω. In the time of 

epidemic, the percentage of the employed represents I Dt t( )− −1  part of 
the demand for labour, because the infected and dead (certainly) do not 
work.

	 3	 The unemployment rate ut is (by definition) described by the formula:

u
L
wt

t= −1 ,	  (10.8)

where w ( )∈ 0;1  represents the percentage of the professionally active. 
We assume implicitly that on day t = 1 the population amounted to 1, 
and on consecutive days equalled Dt−1  while the number of profession-
ally active people amounted to w Dt( )−1 .

It follows from equations (10.5–10.8) that in the Solow long-run 

equilibrium (i.e. at ΔKt = 0): L ω=* , K
sω
δ

= 





 α−*

1
1 , Y

sω
δ

= 







α
α−* 1 , and 

u
w

w
ω= −* , where asterisks next to consecutive variables indicate their 

values in the long-run equilibrium of the economic growth model ana-
lyzed here.
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The following system of differential equations is obtained from equa-
tion (10.5–10.8):

Y K L

K s
Y K

L I D
Y
Y

u
L
w

U I
u
u

Y
Y

t t t t

t
t t

t t t
t

t
t

t t t
Nt

t

t

Nt

κ

δ

ω

κ

( )

( )

=

∆ = −

= − − 







= −

= −


















α α−

− −
365 365

1

1

1

,

1

1 1

*

4

	  (10.9)

where uNt  and YNt represent (respectively) an unemployment rate and a pro-
duction value that would be recorded if the epidemic did not strike (that is in 
a scenario wherein on each day t = 1, 2, … the percentage of the susceptible 
St would equal 1).

The last equation in system (10.9) describes the social utility function Ut. 
The function represents a geometric average of the indicator of social and 
economic activity κ, the percentage of the susceptible It−1 , the ratio of the 
unemployment rate under non-epidemic to that rate under epidemic con-
ditions (uNt/ut) and the ratio of production under non-epidemic conditions 
to production under epidemic conditions (Yt/YNt). The function of social 
utility:

U I
u
u

Y
Yt t t

Nt

t

t

Nt
κ( )= −1 .4

takes into account both social (described by the indicator κt) and health 
It( )−1 , and economic (uNt/ut and Yt/YNt) consequences of the epidemic.

Additionally, the social utility function Ut assumes values from the in-

terval [0;1]. If the epidemic did not strike, I
u
u

Y
Y

t t
Nt

t

t

Nt
κ = − = =1 , and hence  

Ut = 1. The lower values are assumed by function Ut, the higher are aggre-

gate social, health and economic costs of the epidemic. During a full lock-
down (that is at κt = 0), the value of social utility function falls to 0.

10.3  Calibrated model parameters

10.3.1  Parameters of the epidemiological module

We assume that the infection lasts for 14 days on average. Hence, the 
parameter γ in the epidemiological module is selected at the level of 
γ = ≈1/ 14 0.071429.
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The parameter β is calibrated so that peak incidence, if the government 
does not impose any lockdown, falls on day 365 of the epidemic. Hence the 
parameter equals 0.1066 in consecutive versions of numerical simulations.

We also assume that the mortality rate among the infected amounts to 
2%, hence h = 0.98. We assume than 1 person per million was infected on 
day one of the epidemic, that is I = −101

6.
When analyzing the equation of social and economic activity indicator 

It tκ = − σ1 , we assume σ equal 0.5 (if the government imposes severe restric-
tions to contain the epidemic) or 1 (if a liberal approach is adopted). When 

we use the function 
I

I
t

Gt

Gt

κ
ι

θ ι
=

<

≥







1 for

1 for
 to describe restrictions imposed 

by the government to contain the epidemics, we assume that the government 
adopts a lockdown when the geometric moving average of the percentage 
of the infected IGt   exceeds ι = 0.5% and then social and economic activity 
will be reduced by 15% (that is θ = 0.85). If the government adopts a liberal 
approach to the epidemic, we assume ι = 1% and θ = 0.95.

When analyzing the models with vaccination, we assume that vaccines 
are administered as of day 300 of the pandemic. We also assume that a per-
centage ρ = 48% of the population wish to receive the vaccine and the effec-
tiveness of vaccination ε equals 95%.

We make two alternative assumptions about the dynamics of daily immu-
nization coverage in the population πt:

•	 First, we assume that the parameters a and b in the indicator of im-
munization coverage are such that the indicator equals 1% on day 7 

of vaccination and 2% on day 100. Hence, we obtain: 
a

b +
=7

7
0.001 and 

+
=a

b
100

100
0.002 which gives (in line with the Cramer’s rule): a ≈ 0.00216 

and b ≈ 8.140. The scenarios are referred to below as scenarios with slow 
progress in immunization coverage of the population.

•	 Second, we assume that π7 = 0.001 and π100 = 0.006. In this case, the 
Cramer’s formula produces: a ≈ 0.00962 and b ≈ 60.345. The scenarios 
are referred to below as scenarios with rapid progress in immunization 
coverage.

10.3.2  Parameters of the economic module

The elasticity α of Cobb-Douglas production function (10.5) is calibrated at 
the level of 0.5. We also assume a 20% savings-investment rate s and a 5% 
capital depreciation rate δ. The long-run capital output ratio K*/Y* at the 
values of those parameters set as above equals 4.

We assume the indicator of economic activity of the population w = 46%, 
that is similar to the value recorded in the EU states.
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The parameter ω in the function of demand for labour (10.7) is calibrated 
at the level of 0.44, and consequently the long-run unemployment rate 
equals about 4.35% at w = 0.46. The parameter ϕ is selected so that under 
non-epidemic conditions, in an economy with an initial capital input K1 
representing 40% of capital in the Solow long-run equilibrium (that is K*), 
the unemployment rate equals 10%. Then, the elasticity of demand for la-
bour Lt relative to production Yt equals about 0.106.

10.4  Scenarios and numerical simulation results

The numerical simulations discussed below include 12 scenarios of epidemic 
development. The first four of those scenarios give the government no access 
to a vaccine, and a vaccine is available in the remaining 8 scenarios (see the 
statement in Table 10.1).

Table 10.1  Scenarios of epidemic development

Scenario κt Vaccine Notes

I It−1 None -
II It−1
III

I

I
t

Gt

Gt

κ =
<

≥







1 for 0.0005

0.85 for 0.0005

IV
I

I
t

Gt

Gt

κ =
<

≥







1 for 0.001

0.95 for 0.001

V It−1 First vaccinations 
on day 300 of 
the epidemic 
following the 
formula:

t
t

tπ =
+

0.00216
8.14

 where t is the 
consecutive day 
of vaccination

Slow progress in 
immunization 
coverage. 
About 17.2% of 
those wishing 
to receive the 
vaccine are 
immunized 
within 100 days

VI It−1
VII

I

I
t

Gt

Gt

κ =
<

≥







1 for 0.0005

0.85 for 0.0005

VIII
for I

for I
t

Gt

Gt

κ =
<

≥







1    0.001

0.95    0.001

IX It−1 First vaccinations 
on day 300 of 
the epidemic 
following the 
formula:

t
t

tπ =
+

0.00962
60.345

Rapid progress in 
immunization 
coverage. 
About 39.8% of 
those wishing 
to receive the 
vaccine are 
immunized 
within 100 days

X It−1
XI

I

I
t

Gt

Gt

κ =
<

≥







1 for 0.0005

0.85 for 0.0005

XII
I

I
t

Gt

Gt

κ =
<

≥







1 for 0.001

0.95 for 0.001

Source: Own assumptions.
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In the scenarios wherein the government has no access to a vaccine (sce-
narios I–IV), we assume that the government reduces the intensity of social 
and economic activity gradually, in line with a functional formula (10.3) 
(scenarios I and II) or that activity is restricted abruptly (scenarios III and 
IV). In scenarios I and III, the government imposes severe restrictions to 
contain the spread of epidemic; in scenarios II and IV, the government 
adopts a liberal approach.

The scenarios with vaccination (V–XII) can be divided into those with 
slow progress (scenarios V–VIII) and those with rapid progress (IX–XII) in 
immunization coverage of the population. Scenarios V and IX assume that 
the government adopts a lockdown like in scenario I; scenarios VI and X 
assume a lockdown as in scenario II, etc.

The results of numerical simulations of epidemiological indicators in the 
extended SIR model (systems of equations (10.1 and 10.2)) in consecutive 
scenarios are contained in Table 10.2. Figures 10.1–10.4 represent curves of 
analyzed epidemiological variables.7

The simulation results contained in Table 10.2, and Figures 10.1–10.4 lead 
to the following conclusions:

•	 If the government did not adopt any lockdown measures and had no 
access to a vaccine, the greatest percentage of the infected would be 
recorded (as already indicated) on day 365 of the epidemic. If the gov-
ernment has no access to a vaccine and imposes a severe lockdown, the 
peak will be postponed to day 391 (scenario I) or 456 (scenario II) of 
the epidemic. If a mild lockdown is imposed, the greatest number of the 
infected will be recorded on day 365 (scenario II) or 383 (scenario IV).

Table 10.2  Epidemiological indicators in consecutive scenarios

Scenario Variable

κm Sm IM HM DM PM T

I 0.8347 0.5762 0.0273 0.4153 0.0085 - 391
II 0.9475 0.4566 0.0525 0.5326 0.0109 - 365
III 0.85 0.6043 0.0246 0.3878 0.0079 - 456
IV 0.95 0.4728 0.0490 0.5167 0.0105 - 383
V 0.8380 0.1485 0.0263 0.3374 0.0069 0.5072 381
VI 0.9480 0.1122 0.0520 0.4927 0.0101 0.3850 363
VII 0.85 0.1650 0.0189 0.2650 0.0054 0.5646 428
VIII 0.95 0.1181 0.0473 0.4649 0.0095 0.4075 378
IX 0.8389 0.0014 0.0260 0.2885 0.0059 0.7042 377
X 0.9481 0.0010 0.0519 0.4632 0.0095 0.5264 363
XI 0.85 0.0016 0.0167 0.1939 0.0040 0.8006 408
XII 0.95 0.0011 0.0468 0.4259 0.0087 0.5643 376

Note: The subscript m indicates the minimum value of a variable, M indicates its maximum 
value. T indicates the day of the greatest percentage of the infected.

Source: Own calculations.
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Figure 10.1 � Curves of S, I, H and P in scenarios I, V and IX (at It tκ = −1 ). (a) Sce-
nario I, (b) scenario V, and (c) scenario IX.

Source: Own calculations
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Figure 10.2 � Curves of S, I, H and P in scenarios II, VI and X (at It tκ = −1 ). (a) Sce-
nario II, (b) scenario VI, and (c) scenario X.

Source: Own calculations.
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Figure 10.3 � Curves of S, I, H and P in scenarios III, VII and XI, at 

κ =
<

≥







I

I
t

Gt

Gt

1 for 0.0005

0.85 for 0.0005
. (a) Scenario III, (b) scenario VII, and 

(c) scenario XI.
Source: Own calculations.
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Figure 10.4 � Curves of S, I, H and P in scenarios IV, VIII and XII, at 

κ =
<

≥







I

I
t

Gt

Gt

1 for 0.001

0.95 for 0.001
. (a) Scenario IV, (b) scenario VIII, and (c) 

scenario XII.
Source: Own calculations.
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•	 At slow progress in immunization coverage of the population (scenar-
ios V–VIII), the greatest number of the infected is recorded between 
days 381 and 428 of the epidemic (if severe restrictions are imposed in 
response to the epidemic) or between days 363 and 378 (if a liberal ap-
proach to the epidemic is adopted). On the other hand, rapid progress in 
immunization coverage results in a postponement of epidemic peak to a 
date between days 377 and 408 of the epidemic (if severe restrictions are 
imposed in response to the epidemic), or between days 363 and 376 (if a 
liberal approach to the epidemic is adopted).

•	 In the scenarios wherein the government has no access to a vaccine, a 
maximum limitation of social and economic activity (at the peak of ep-
idemic) can reach 15%–16.5% under conditions of a severe lockdown or 
5%–6.5% under conditions of a mild lockdown. The scenarios wherein 
the government uses vaccination (i.e. scenarios V–XII) have no signifi-
cant effect on that parameter.

•	 If no vaccine is administered, the maximum percentage of infected peo-
ple will reach 2.5%–2.7% (severe restrictions in scenarios I and III) or 
4.9%–5.3% (liberal scenarios II and IV). In the case of slow progress in 
immunization coverage, that percentage will drop to about 1.9%–2.6% 
under conditions of a severe lockdown or to 4.7%–5.2% if a liberal ap-
proach is adopted. In the case of rapid progress in immunization cover-
age, that percentage will slightly fall.

•	 In the scenarios without vaccination, the percentage of the suscepti-
ble (uninfected) will reach after the epidemic about 57.6%–60.4% under 
conditions of a severe lockdown or 45.7%–47.3% under conditions of a 
mild lockdown.

•	 If the government has access to a vaccine but progress in immunization 
coverage is slow, the percentage of uninfected population (understood 
then as Sm + PM) will reach 65.6%–73.0% under conditions of a severe 
lockdown or 49.7%–52.6% if a liberal approach is adopted.

•	 Rapid progress in immunization coverage leads to an increase in those 
indicators to 70.6%–80.2% (a severe lockdown) or 52.7%–56.5% (a mild 
lockdown).

•	 If no vaccine is administered, 7.9%–8.5% of the population will die of 
the epidemic under conditions of a severe lockdown imposed by the 
government or 10.5%–10.9‰%under conditions of a mild lockdown. 
Slow progress in immunization coverage will reduce those indicators 
to 5.4%–6.9% (a severe lockdown) or 9.5%–10.1% (a liberal approach). 
Rapid progress in immunization coverage will reduce the rate of mor-
tality caused by the epidemic to 4.0%–5.9% of the population (a severe 
lockdown) or 8.7%–9.5% (a mild lockdown).

An analysis of the epidemic effect on the values of principal macroeconomic 
indicators (in the real economy sector) includes the scenarios described 
above in 2 versions. We consider values of those indicators in an economy 
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conventionally termed “poorly developed” (with capital input K1 represent-
ing 40% of the value of that variable in the Solow long-run equilibrium) and 
in a strongly developed economy (with K1 = 0.9K*).8

Selected results of numerical simulations are contained in Table 10.3 (a 
poorly developed economy) and Table 10.4 (a strongly developed economy). 
Figures 10.5–10.7 depict curves of the social utility function Ut in consecutive 
scenarios both in a poorly developed and in a strongly developed economy.

The simulation results contained in Tables 10.3 and 10.4 lead to the fol-
lowing conclusions:

•	 In a poorly developed economy that has no access to a vaccine, falls 

in production at peak incidence (measured by the indicator 
Y

Yt

t

Nt
min , 

where YNt represents the value of production that could be achieved if 
the epidemic did not strike) will reach 18.6%–19.9% under conditions of 
a severe lockdown or 10.7%–10.9% if a liberal approach is adopted. In 
a strongly developed economy, the falls are slightly smaller and reach 
(respectively) 18.3%–19.7% or 10.4%–10.6%.

•	 Slow progress in immunization coverage of the population combined 
with severe restrictions imposed in response to the epidemic will reduce 
falls in production to 17.9%–19.5% in a poor economy or 17.7%–19.3% in 

Table 10.3 � Economic indicators in consecutive scenarios at K1/K* = 0.4  (a poorly 
developed economy)

Scenario Variable

Y
Yt

t

Nt
min Y

Y
t

t

t
Nt

∑
∑

K
Kt

t

Nt
min K

K
t

t

t
Nt

∑
∑

u
ut

t

Nt
max

u
u

G

GN

U
t

tmin UG

From monthly data From daily data

I 0.801 0.932 0.987 0.993 1.212 1.068 0.855 0.951
II 0.891 0.977 0.996 0.998 1.112 1.023 0.901 0.974
III 0.814 0.902 0.982 0.990 1.197 1.100 0.866 0.936
IV 0.893 0.965 0.994 0.996 1.109 1.034 0.903 0.969
V 0.805 0.945 0.990 0.994 1.208 1.055 0.858 0.961
VI 0.894 0.979 0.996 0.998 1.108 1.021 0.902 0.978
VII 0.821 0.919 0.985 0.991 1.190 1.082 0.869 0.947
VIII 0.895 0.968 0.994 0.996 1.107 1.031 0.905 0.973
IX 0.806 0.953 0.991 0.994 1.206 1.046 0.859 0.967
X 0.895 0.980 0.996 0.998 1.107 1.020 0.902 0.981
XI 0.824 0.934 0.988 0.992 1.186 1.066 0.870 0.956
XII 0.896 0.971 0.995 0.997 1.106 1.029 0.905 0.976

Note: The subscript N indicates non-epidemic conditions, and G indicates the geometric 
average.

Source: Own calculations.
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a wealthy economy. If a liberal approach to the epidemic is adopted, falls 
in production will reach (respectively) 10.5%–10.6% or 10.2%–10.3%.

•	 Rapid progress in immunization coverage has no material effect on falls 
in production at peak incidence.

•	 If severe restrictions are imposed in response to the epidemic, without 
vaccination, accumulated falls in the value of production will reach 
over three years about 6.8%–9.8% in a poorly developed economy or 
6.7%–9.6% in a strongly developed economy. If a liberal approach to the 
epidemic is adopted, the falls will reach 2.3%–3.5% in a poor economy 
and 2.2%–3.3% in a wealthy economy.

•	 Slow progress in immunization coverage of the population combined 
with severe restrictions imposed in response to the epidemic will lead 
to accumulated falls in production by 5.5%–8.1% in a poorly developed 
economy or by 5.4%–7.9% in a strongly developed economy. A liberal 
approach to the epidemic will lead to accumulated falls in production 
by 2.1%–3.2% in a poor economy or 2.0%–3.1% in a wealthy economy.

•	 A rapid pace of progress in immunization coverage of the population 
will reduce falls in production in a poor economy to 4.7%–6.6% (se-
vere restrictions imposed) or 2.0%–2.9% (a liberal approach), and in a 
wealthy economy to 4.6%–6.5% or 1.9%–2.8%.

•	 A more general conclusion can be reached: the introduction and rapid 
administration of a vaccine will have a stronger effect on accumulated 

Table 10.4 � Economic indicators in consecutive scenarios at K1/K* = 0.9  (a 
strongly developed economy)

Scenario Variable

Y
Yt

t

Nt
min Y

Y
t

t

t
Nt

∑
∑

K
Kt

t

Nt
min K

K
t

t

t
Nt

∑
∑

u
ut

t

Nt
max

u
u

G

GN

U
t

tmin UG

From monthly data From daily data

I 0.803 0.933 0.990 0.995 1.436 1.135 0.819 0.938
II 0.894 0.978 0.997 0.998 1.225 1.044 0.865 0.960
III 0.817 0.904 0.986 0.992 1.404 1.198 0.831 0.922
IV 0.896 0.967 0.995 0.997 1.219 1.067 0.866 0.954
V 0.807 0.946 0.992 0.995 1.428 1.108 0.823 0.950
VI 0.897 0.980 0.997 0.998 1.218 1.041 0.866 0.967
VII 0.823 0.921 0.989 0.993 1.389 1.160 0.834 0.936
VIII 0.898 0.969 0.996 0.997 1.215 1.061 0.868 0.962
IX 0.808 0.954 0.994 0.996 1.425 1.091 0.824 0.957
X 0.898 0.981 0.997 0.998 1.215 1.038 0.867 0.971
XI 0.826 0.935 0.991 0.994 1.382 1.129 0.835 0.947
XII 0.899 0.972 0.996 0.998 1.213 1.056 0.869 0.966

Note: The subscript N indicates non-epidemic conditions, and G indicates the geometric 
average.

Source: Own calculations.



228  SIR-Solow model

falls in production than on the depth of recession. In addition, both ac-
cumulated falls in production and the depth of recession will be slightly 
greater in a poorly developed economy than in a strongly developed 
economy.

•	 Both one-off (at the epidemic peak) and accumulated falls in capital 
stock are significantly smaller than falls in production. Whether the 
government has access to a vaccine or not, whether severe restrictions 
are imposed or a liberal approach to the epidemic is adopted, accumu-
lated falls in capital stock in both analyzed types of economy, that is 

K

K
t

t

t
Nt

∑
∑

, will not exceed 1%.

•	 Relative increases in the unemployment rate (understood as 
u

ut

t

Nt
max ) at 

peak incidence in a poor economy without vaccination will reach about 
20%, if severe restrictions are imposed in response to the epidemic or 
about 10%–11%, if a liberal approach is adopted. In a wealthy economy 
the indicators will reach 40%–44% or 22%–23%.9

•	 The indicators only slightly fall with slow or rapid progress in immuni-
zation coverage.

•	 The average unemployment rates over a three-year period (and more 

precisely the products 
u

u
G

GN
) will be higher in the scenarios of severe 

restrictions imposed by the government in response to the epidemic and 

will decrease with an increase in the pace of immunization coverage of 
the population. Those products will also be higher in a wealthy econ-
omy. However, it must be emphasized that the geometric average of the 
unemployment rate uGN  is significantly lower in a wealthy economy than 
in a poor economy due to the model design.

•	 Figures 10.5–10.7 (depicting curves of the social utility function in 
consecutive scenarios in a poor and in a wealthy economy) lead to the 
following conclusions. First, falls in social utility U in both types of 
economy, in scenarios of severe restrictions imposed in response to the 
epidemic (the scenarios marked with odd Roman numerals), are signif-
icantly greater than in scenarios of a liberal approach (the scenarios 
marked with even numbers). Second, the sooner a vaccine is adminis-
tered, the smaller are falls in social utility. Third, falls in social utility 

are slightly smaller in a poor economy, because expressions 
u
u

Y
Y

Nt

t

t

Nt
⋅  

are higher in that type of economy.
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10.5  Conclusions

This chapter discusses the effect of an epidemic on economic growth. The 
analysis is conducted using a model of economic growth under epidemic 
conditions. The epidemiological module introduces an indicator that shows 
restrictions imposed on social and economic life during the epidemic. The 
indicator is defined in two versions; in the first version, it changes continu-
ally on consecutive days of the epidemic as a function of the percentage of 
infections, and in the second version, it changes discretely when the gov-
ernment abruptly imposes a lockdown. The epidemiological section also 
includes a scenario wherein a vaccine (against the spreading disease) is 
available to the government and a population vaccination programme is 
implemented. In the section of the model discussion that is dedicated to 
economy, it is assumed that the production process is described by a neo-
classical Cobb-Douglas production function; accumulation of fixed capital, 
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Figure 10.5 � Curves representing social utility in scenarios I–IV. (a) A poorly devel-
oped economy and (b) a strongly developed economy.

Source: Own calculations.
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like in the original Solow model of 1956, is defined as the difference between 
investment and the depreciated value of that capital. Also a social utility 
function is introduced, defined as a geometrical average of the indicator 
of social and economic activity, the percentage of the uninfected, the ratio 
of unemployment rate under non-epidemic conditions to that rate under 
epidemic conditions and the ratio of production during the epidemic to pro-
duction under non-epidemic conditions.

The chapter also discusses scenarios of epidemic development depending 
on the availability of a vaccine to the government. In the scenarios wherein 
the government has no access to a vaccine, it was assumed that the govern-
ment imposes restrictions on social and economic activity following certain 
functional relation or abruptly. The scenarios with vaccination are divided 
into those with slow and those with rapid progress in immunization cover-
age of the population. Those scenarios also include a lockdown imposed by 
the government, like in the scenarios without vaccination.
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Figure 10.6 � Curves representing social utility in scenarios V–VIII. (a) A poorly de-
veloped economy and (b) a strongly developed economy.

Source: Own calculations.
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Falls in production in an economy without access to a vaccine reach at 
peak incidence 18.3%–19.9%, if severe restrictions are imposed in response 
to the epidemic or 10.4%–10.9%, if a liberal approach is adopted. Slow pro-
gress in immunization coverage of the population combined with severe 
restrictions imposed in response to the epidemic will reduce falls in produc-
tion by 17.7%–19.5%. If a liberal approach to the epidemic is adopted, falls in 
production will reach (respectively) 10.2%–10.6%. Additionally, rapid pro-
gress in immunization coverage has no material effect on falls in production 
at peak incidence. 

If the government imposes severe restrictions in response to the pandemic 
and has no access to a vaccine, accumulated falls in the value of production 
will reach over three years about 6.7%–9.8%, and if a liberal approach to 
the epidemic is adopted, the falls will reach 2.2%–3.5%. Slow progress in 
immunization coverage of the population combined with severe restrictions 
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Figure 10.7 � Curves representing social utility in scenarios IX–XII. (a) A poorly de-
veloped economy and (b) a strongly developed economy.

Source: Own calculations.
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imposed in response to the pandemic will lead to accumulated falls in pro-
duction by 5.4%–8.1% while a liberal approach to the pandemic will lead 
to accumulated falls in production by 2.0%–3.2%. A rapid pace of progress 
in immunization coverage of the population reduces accumulated drops 
in production to about 4.6%–6.6%, if severe restrictions are imposed or to 
1.9%–2.9%. Consequently, the introduction of vaccination and rapid pro-
gress in immunization coverage will have a stronger effect on accumulated 
falls in production than on the depth of recession. Additionally, whether the 
government has access to a vaccine or not, falls in the capital stock will be 
significantly smaller than falls in production and will not exceed 1%.

Relative increases in the unemployment rate at peak incidence in a poor 
economy without vaccination will reach about 20%–44%, if severe restric-
tions are imposed in response to the epidemic or about 10%–23%, if a lib-
eral approach is adopted. The introduction and acceleration of vaccination 
entails a minor reduction in relative rises in the unemployment rate at peak 
incidence. Additionally, average unemployment rates over a three-year pe-
riod will be higher in the scenarios of severe restrictions imposed by the 
government in response to the epidemic and will decrease with an increase 
in the pace of immunization coverage of the population.

Falls in social utility will be significantly greater in scenarios of severe 
restrictions imposed in response to the epidemic than in scenarios of a lib-
eral approach. Implementation of a vaccination programme will result in a 
reduced depth of fall in social utility, and the faster is progress in immuni-
zation coverage of the population, the relatively smaller are falls in social 
utility.

Notes
	 1	 This model is based on the model proposed in Dykas and Wisła (2022).
	 2	 Certainly, on each day t the equation is true: St + It + Ht + Dt = 1.

	 3	 This is because we obtain from a continuous function f x x( ) = σ1– : f x xσ( )′ = σ– –1 

and f x xσ σ( ) ( )′′ = σ1– –2, and consequently for σ > 0: x f x( ) ( )∀ ∈ ′ <0,1   0, 
f x f xσ σ( ) ( ) ( )∈ ⇒ ′′ > ∧ > ⇒ ′′ <0,1 0 1 0.

	 4	 This is because we obtain from a continuous function f t
at

b t
( ) =

+
:

f ( ) =0 0,

f t a
t

( ) =
→+∞
lim ,

f t
ab

b t
t b f t

ab

b t
( )

( )
( )

( )
′ =

+
> ∧∀ > ′′ =

+
<0 – –

2
0.2 3

	 5	 Assumptions 1) and 2) refer directly to the Solow model, and assumptions 3) and 
4) extend that model to include basic variables describing the functions of the 
labour market.
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	 6	 To simplify notation, we assume that the total factor productivity on each day 

t, described by the formula Y
K L

t

t t
α α−1

, equals 1. This has no effect on the scope of 

applicability of the below discussion.
	 7	 All epidemiological simulations are carried out for a five-year period while mac-

roeconomic simulations for a three-year period. This is because curves of mac-
roeconomic variables stabilize after three years.

	 8	 Those economies are also termed below “poor” and “wealthy”.
	 9	 The parameters of the macroeconomic module of the proposed model are cal-

ibrated so that the initial unemployment rate in a poorly developed economy 
amounts to about 5%, and in a strongly developed economy to about 10%. 

Hence, the value of indicator u
ut

t

Nt
max   amounting e.g. to 1.1 means that the un-

employment rate rises from 5% to 5.5% in a wealthy economy of from 10% to 11% 
in a poor economy. The indicator u uG GN  is to be similarly interpreted.
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