Skip to main content
Log in

Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The softwood degrading white-rot fungus, Phanerochaete carnosa, was investigated for its ability to degrade two coniferous woods: balsam fir and lodgepole pine. P. carnosa grew similarly on these wood species, and like the hardwood-degrading white-rot fungus Ceriporiopsis subvermispora, P. carnosa demonstrated selective degradation of lignin, as observed by Fourier transform infrared spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Lignin degradation across cell walls of decayed pine samples was also evaluated by ToF-SIMS and was shown to be uniform. This study illustrates softwood lignin utilization by a white-rot fungus and reveals the industrial potential of the lignocellulolytic activity elicited by this fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ASTM D1105–96 (2007) Standard test method for preparation of extractive-free wood. American Society for Testing and Materials, West Conshoshocken

    Google Scholar 

  • Blanchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48(3):647–653

    CAS  Google Scholar 

  • Blanchette RA (1991) Delignification by wood-decay fungi. Ann Rev Phytopath 29:381–398

    Article  CAS  Google Scholar 

  • Blanchette RA, Otjen L, Effland MJ, Eslyn WE (1985) Changes in structural and chemical components of wood delignified by fungi. Wood Sci Technol 19:35–46

    Article  CAS  Google Scholar 

  • Blanchette RA, Krueger EW, Haight JE, Akhtar M, Akin DE (1997) Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. J Biotechnol 53(2–3):203–213

    Article  CAS  Google Scholar 

  • Bodas C, Khan-Malek C (2006) Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments. Microelectron Eng 83:1277–1279

    Article  CAS  Google Scholar 

  • Boyle DC, Kropp BR (1992) Development and comparison of methods for measuring growth of filamentous fungi on wood. Can J Microbiol 38:1053–1060

    Article  Google Scholar 

  • Burdsall HH (1985) A contribution to the taxonomy of the genus Phanerochaete (Corticiaceae, Aphyllophorales). Mycologia memoir no. 10. Cramer, Braunschweig

  • Davis MF, Schroeder HA, Maciel GE (1994) Solid state 13 C nuclear magnetic resonance studies of wood decay. II White rot decay of paper birch. Holzforschung 48:186–192

    Article  CAS  Google Scholar 

  • Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006) Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzyme Microb Tech 39(7):1476–1483

    Article  CAS  Google Scholar 

  • Fackler K, Gradinger C, Schmutzer C, Tavzes C, Burgert I, Schwanninger M, Hinterstoisser B, Watanabe T, Messner K (2007) Biotechnological wood modification with selective white-rot fungi and its molecular mechanisms. Food Technol Biotech 45(3):269–276

    CAS  Google Scholar 

  • Fackler K, Stevanic JS, Ters T, Hinterstoisser B, Schwanninger M, Salmen L (2011) FT-IR imaging microscopy to localise and characterise simultaneous and selective white-rot decay within spruce wood cells. Holzforschung 65:411–420

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45(Suppl):21–27

    Article  CAS  Google Scholar 

  • Faix O (1992) Fourier transform infrared spectroscopy. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 83–109

    Chapter  Google Scholar 

  • Faix O, Beinhoff O (1988) FTIR spectra of milled wood lignins and lignin polymer models (DHP’s) with enhanced resolution obtained by deconvolution. J Wood Chem Technol 8(4):505–522

    Article  CAS  Google Scholar 

  • Faix O, Mozuch MD, Kirk TK (1985) Degradation of gymnosperm (guaiacyl) vs. angiosperm (syringyl/guaiacyl) lignins by Phanerochaete chrysosporium. Holzforschung 39(4):203–208

    Article  CAS  Google Scholar 

  • Faix O, Bremer J, Schmidt O, Stevanovic T (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier transform infrared spectroscopy. J Anal Appl Pyrolysis 21:147–162

    Article  CAS  Google Scholar 

  • Gierlinger N, Goswami L, Schmidt M, Burgert I, Coutand C, Rogge T, Schwanninger M (2008) In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections. Biomacromol 9:2194–2201

    Article  CAS  Google Scholar 

  • Goacher R, Jeremic D, Master ER (2011) Expanding the library of secondary ions that distinguish lignin and polysaccharides in ToF-SIMS analysis of wood. Anal Chem 83:804–812

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355

    Article  CAS  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS Microbiol Rev 13(2–3):125–135

    Article  CAS  Google Scholar 

  • Hibbett DS, Donoghue MJ (2001) Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Sys Biol 50:215–242

    Article  CAS  Google Scholar 

  • Högberg N, Svegården IB, Kauserud H (2006) Isolation and characterization of 15 polymorphic microsatellite markers for the devastating dry rot fungus, Serpula lacrymans. Mol Eco Notes 6(4):1022–1024

    Article  Google Scholar 

  • Hon DNS, Shiraishi N (2001) Wood and cellulose chemistry. Marcel Dekker, New York

    Google Scholar 

  • Irbe I, Andersons B, Chirkova J, Kallavus U, Andersone I, Faix O (2006) On the changes of pinewood (Pinus sylvestris L.). Chemical composition and ultrastructure during the attack by brown-rot fungi Postia placenta and Coniophora puteana. Int Biodeter Biodeg 57(2):99-106

    Google Scholar 

  • Jensen KA Jr, Houtman CJ, Ryan ZC, Hammel KE (2001) Pathways for extracellular Fenton chemistry in the brown rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 67:2705–2711

    Article  CAS  Google Scholar 

  • Jung S, Foston M, Sullards CM, Ragauskas AJ (2010) Surface characterization of dilute acid pretreated Populus deltoides by ToF-SIMS. Energy Fuel 24:1347–1357

    Article  CAS  Google Scholar 

  • Kelley SS, Jellison J, Goodell B (2002) Use of NIR and pyrolysis-MSMS coupled with multivariate analysis for detecting the chemical changes associated with brown-rot biodegradation of spruce wood. FEMS Microbiol Lett 209(1):107–111

    Article  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44(2):77–87

    Article  CAS  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–308

    Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch Microbiol 117:277–285

    Article  CAS  Google Scholar 

  • MacDonald J, Doering M, Canam T, Gong Y, Guttman D, Campbell M, Master ER (2011) Transcriptomic analysis of the softwood-degrading white-rot fungus Phanerochaete carnosa reveals concerted gene expression responses to growth on coniferous and deciduous wood. Appl Environ Microbiol 77(10):3211–3218

    Article  CAS  Google Scholar 

  • Mahajan S, Master ER (2010) Proteomic characterization of lignocellulose-degrading enzymes secreted by Phanerochaete carnosa grown on spruce and microcrystalline cellulose. Appl Microbiol Biotechnol 86(6):1903–1914

    Article  CAS  Google Scholar 

  • Marin S, Ramos AJ, Sanchis V (2005) Comparison of methods for the assessment of growth of food spoilage moulds in solid substrates. Int J Food Microbiol 99:329–341

    Article  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  Google Scholar 

  • Martinez D, Challacombe J, Morgenstern I, Hibbett D, Schmoll M, Kubicek CP, Ferreira P, Ruiz-Duenas FJ, Martinez AT, Kersten P, Hammel KE, Vanden Wymelenberg A, Gaskell J, Lindquist E, Sabat G, Splinter BonDurant S, Larrondo LF, Canessa P, Vicuna R, Yadav J, Doddapaneni H, Subramanian V, Pisabarro AG, Lavin JL, Oguiza JA, Master E, Henrissat B, Coutinho PM, Harris P, Magnuson JK, Baker SE, Bruno K, Kenealy W, Hoegger PJ, Kües U, Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D, James T, Mokrejs M, Pospisek M, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci USA 106(6):1954–1959

    Article  CAS  Google Scholar 

  • Nygren H, Eriksson C, Malmberg P, Sahlin H, Carlsson L, Lausmaa J, Sjovall P (2003) A cell preparation method allowing subcellular localization of cholesterol and phosphocholine with imaging ToF-SIMS. Colloid Surface B 30:87–92

    Article  CAS  Google Scholar 

  • Otjen L, Blanchette RA (1986) A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes. Can J Bot 64:905–911

    Article  Google Scholar 

  • Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegrad 52:151–160

    Article  CAS  Google Scholar 

  • Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC, Boca Raton

    Google Scholar 

  • Saito K, Kato T, Tsuji Y, Fukushima K (2005) Identifying the characteristic secondary ions of lignin polymer using ToF-SIMS. Biomacromol 6:678–683

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spec 36:23–40

    Article  CAS  Google Scholar 

  • Scott GM, Akhtar M, Swaney RE, Houtman CJ (2002) Recent developments in biopulping technology at Madison, WI. Prog Biotechnol 21:61–71

    Article  Google Scholar 

  • Sodhi R (2004) Time-of-flight secondary ion mass spectrometry (ToF-SIMS): versatility in chemical and imaging surface analysis. Analyst 129:483–487

    Article  CAS  Google Scholar 

  • Yelle DJ, Ralph J, Lu F, Hammel KE (2008) Evidence of cleavage of lignin by a brown rot basidiomycete. Env Microbiol 10(7):1844–1849

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RE (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87:847–857

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma R. Master.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 373 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, S., Jeremic, D., Goacher, R.E. et al. Mode of coniferous wood decay by the white rot fungus Phanerochaete carnosa as elucidated by FTIR and ToF-SIMS. Appl Microbiol Biotechnol 94, 1303–1311 (2012). https://doi.org/10.1007/s00253-011-3830-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3830-1

Keywords

Navigation