Skip to main content
Log in

Uneven rate of plant turnover along elevation in grasslands

  • Original Article
  • Published:
Alpine Botany Aims and scope Submit manuscript

Abstract

Plant taxonomic and phylogenetic composition of assemblages are known to shift along environmental gradients, but whether the rate of species turnover is regular or not (e.g., accelerations in particular sections of the gradient) remains poorly documented. Understanding how rates of assemblage turnover vary along gradients is crucial to forecast where climate change could promote the fastest changes within extant communities. Here we analysed turnover rates of plant assemblages along a 2500 m elevation gradient in the Swiss Western Alps. We found a peak of turnover rate between 1800 and 2200 m indicating an acceleration of grassland compositional changes at the transition between subalpine and alpine belts. In parallel, we found a peak in phylogenetic turnover rate in Poales between 1700 m and 1900 and Super-Rosids between 1900 and 2300 m. Our results suggest that changes in abiotic or biotic conditions near the human-modified treeline constitute a strong barrier for many grassland plant species, which share analogous elevation range limits. We propose that this vegetation zone of high ecological transitions over short geographical distances should show the fastest community responses to climate change from the breakdown of barrier across ecotones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518. doi:10.1038/nature14952

    Article  CAS  PubMed  Google Scholar 

  • Bach K, Kessler M, Gradstein SR (2007) A simulation approach to determine statistical significance of species turnover peaks in a species-rich tropical cloud forest. Divers Distrib 13:863–870. doi:10.1111/j.1472-4642.2007.00357.x

    Article  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Glob Ecol Biogeogr 19:134–143. doi:10.1111/j.1466-8238.2009.00490.x

    Article  Google Scholar 

  • Baselga A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Glob Ecol Biogeogr 21:1223–1232

    Article  Google Scholar 

  • Baselga A, Leprieur F (2015) Comparing methods to separate components of beta diversity. Methods Ecol Evol 6:1069–1079

    Article  Google Scholar 

  • Baselga A, Orme CDL (2012) betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812. doi:10.1111/j.2041-210X.2012.00224.x

    Article  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N Y) 57:717–745. doi:10.1111/j.0014-3820.2003.tb00285.x

    Google Scholar 

  • Bouët M (1985) Climat et météorologie de la Suisse romande. Payot, Lausanne

    Google Scholar 

  • Bruelheide H, Scheidel U (1999) Slug herbivory as a limiting factor for the geographical range of Arnica montana. J Ecol 87:839–848. doi:10.1046/j.1365-2745.1999.00403.x

    Article  Google Scholar 

  • Bryant JA, Lamanna C, Morlon H et al (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci USA 105:11505–11511. doi:10.1073/pnas.0801920105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cahill JF, Kembel SW, Lamb EG, Keddy PA (2008) Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspect Plant Ecol Evol Syst 10:41–50. doi:10.1016/j.ppees.2007.10.001

    Article  Google Scholar 

  • Chalmandrier L, Münkemüller T, Lavergne S, Thuiller W (2015) Effects of species’ similarity and dominance on the functional and phylogenetic structure of a plant meta-community. Ecology 96:143–153. doi:10.1890/13-2153.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choler P, Michalet R, Callaway RM (2001) Facilitation and competition on gradients in alpine plant communities. Ecology 82:3295–3308. doi:10.1890/0012-9658(2001)082[3295:FACOGI]2.0.CO;2

  • Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution, Washington

    Book  Google Scholar 

  • Cooper N, Jetz W, Freckleton RP (2010) Phylogenetic comparative approaches for studying niche conservatism. J Evol Biol 23:2529–2539

    Article  CAS  PubMed  Google Scholar 

  • Culmsee H, Leuschner C (2013) Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J Biogeogr 40:1997–2010. doi:10.1111/jbi.12138

    Google Scholar 

  • de Bello F, Lavorel S, Lavergne S et al (2013) Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography (Cop) 36:393–402. doi:10.1111/j.1600-0587.2012.07438.x

    Article  Google Scholar 

  • Delarze R, Gonseth Y (2008) Guide des milieux naturels de Suisse. Ecologie—Menaces—Espèces caractéristiques. Rossolis, Bussigny

  • Diaz S, Cabido M (1997) Plant functional types and ecosystem function in relation to global change. J Veg Sci 8:463–474. doi:10.2307/3237198

    Article  Google Scholar 

  • Dubuis A, Pottier J, Rion V et al (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17:1122–1131

    Article  Google Scholar 

  • Eriksson Å, Eriksson O, Berglund H (1995) Species abundance patterns of plants in Swedish semi-natural pastures. Ecography (Cop) 18:310–317

    Article  Google Scholar 

  • Fischer M, Rudmann-Maurer K, Weyand A, Stöcklin J (2008) Agricultural land use and biodiversity in the Alps—how cultural tradition and socioeconomically motivated changes are shaping grassland biodiversity in the Swiss Alps. Mt Res Dev 28:148–155

    Article  Google Scholar 

  • Foster BL, Gross KL (1998) Species richness in a successional grassland: effects of nitrogen enrichment and plant litter. Ecology 79:2593–2602

    Article  Google Scholar 

  • Galen C (1990) Limits to the distributions of alpine tundra plants: herbivores and the alpine skypilot, Polemonium viscosum. Oikos 59:355–358

    Article  Google Scholar 

  • Garibaldi LA, Kitzberger T, Chaneton EJ (2011) Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 167:117–129. doi:10.1007/s00442-011-1978-0

    Article  PubMed  Google Scholar 

  • Gaston KJ, Blackburn TIMM, Greenwoodx JD et al (2000) Abundance–occupancy relationships. J Appl Ecol 37:39–59. doi:10.1046/j.1365-2664.2000.00485.x

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18:571–582. doi:10.1111/j.1654-1103.2007.tb02571.x

    Article  Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Missouri Bot Gard 75:1–34

    Article  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7–26

    Article  Google Scholar 

  • Godoy O, Kraft NJ, Levine JM (2014) Phylogenetic relatedness and the determinants of competitive outcomes. Ecol Lett 17:836–844

    Article  PubMed  Google Scholar 

  • Grabherr G (1989) On community structure in high alpine grasslands. Vegetatio 83:223–227. doi:10.1007/BF00031694

    Article  Google Scholar 

  • Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277. doi:10.1111/j.1461-0248.2008.01256.x

    Article  PubMed  Google Scholar 

  • Graham JH, Krzysik AJ, Kovacic DA et al (2009) Species richness, equitability, and abundance of ants in disturbed landscapes. Ecol Indic 9:866–877. doi:10.1016/j.ecolind.2008.10.003

    Article  Google Scholar 

  • Grøndahl E, Ehlers BK (2008) Local adaptation to biotic factors: reciprocal transplants of four species associated with aromatic Thymus pulegioides and T. serpyllum. J Ecol 96:981–992

    Article  Google Scholar 

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341

    Article  Google Scholar 

  • Holmgren M, Scheffer M (2010) Strong facilitation in mild environments: the stress gradient hypothesis revisited. J Ecol 98:1269–1275. doi:10.1111/j.1365-2745.2010.01709.x

    Article  Google Scholar 

  • Hutchinson EG (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Jankowski JE, Ciecka AL, Meyer NY, Rabenold KN (2009) Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J Anim Ecol 78:315–327. doi:10.1111/j.1365-2656.2008.01487.x

    Article  PubMed  Google Scholar 

  • Jankowski JE, Merkord CL, Rios WF et al (2013) The relationship of tropical bird communities to tree species composition and vegetation structure along an Andean elevational gradient. J Biogeogr 40:950–962. doi:10.1111/jbi.12041

    Article  Google Scholar 

  • Kembel SW, Hubbell SP (2006) The phylogenetic structure of a neotropical forest tree community. Ecology 87:S86–S99

    Article  PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464. doi:10.1093/bioinformatics/btq166

    Article  CAS  PubMed  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514. doi:10.1016/S0169-5347(00)02004-8

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574. doi:10.1016/j.tree.2007.09.006

    Article  PubMed  Google Scholar 

  • Lachat T, Pauli D, Gonseth Y et al (2010) Wandel der Biodiversität in der Schweiz seit 1900. Ist die Talsohle erreicht ?. Haupt Verl, Berne

    Google Scholar 

  • Leibold MA, Mikkelson GM (2002) Coherence, species turnover, and boundary clumping: elements of meta-community structure. Oikos 97:237–250. doi:10.1034/j.1600-0706.2002.970210.x

    Article  Google Scholar 

  • Longino JT, Colwell RK (2011) Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere 2:art29. doi:10.1890/ES10-00200.1

    Article  Google Scholar 

  • Mena JL, Vázquez-Domínguez E (2005) Species turnover on elevational gradients in small rodents. Glob Ecol Biogeogr 14:539–547. doi:10.1111/j.1466-822X.2005.00189.x

    Article  Google Scholar 

  • Michalet R, Brooker RW, Cavieres LA et al (2006) Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol Lett 9:767–773. doi:10.1111/j.1461-0248.2006.00935.x

    Article  PubMed  Google Scholar 

  • Michalet R, Maalouf JP, Choler P et al (2015) Competition, facilitation and environmental severity shape the relationship between local and regional species richness in plant communities. Ecography (Cop) 38:335–345. doi:10.1111/ecog.01106

    Article  Google Scholar 

  • Ndiribe C, Pellissier L, Antonelli S et al (2013a) Phylogenetic plant community structure along elevation is lineage specific. Ecol Evol 3:4925–4939. doi:10.1002/ece3.868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ndiribe C, Pellissier L, Dubuis A et al (2013b) Plant functional and phylogenetic turnover correlate with climate and land use in the Western Swiss Alps. J Plant Ecol. doi:10.1093/jpe/rtt064

    Google Scholar 

  • Niedrist G, Tasser E, Luth C et al (2009) Plant diversity declines with recent land use changes in European Alps. Plant Ecol 202:195–210

    Article  Google Scholar 

  • Odland A, Birks HJB (1999) The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography (Cop) 22:548–566

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S, et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science (80–) 336:353–355. doi: 10.1126/science.1219033

  • Pellissier L, Fournier B, Guisan A, Vittoz P (2010) Plant traits co-vary with altitude in grasslands and forests in the European Alps. Plant Ecol 211:351–365. doi:10.1007/s11258-010-9794-x

    Article  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C et al (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825. doi:10.1002/ece3.296

    Article  PubMed  PubMed Central  Google Scholar 

  • Pellissier L, Alvarez N, Espindola A et al (2013a) Phylogenetic alpha and beta diversities of butterfly communities correlate with climate in the western Swiss Alps. Ecography (Cop) 36:541–550. doi:10.1111/j.1600-0587.2012.07716.x

    Article  Google Scholar 

  • Pellissier L, Ndiribe C, Dubuis A et al (2013b) Turnover of plant lineages shapes herbivore phylogenetic beta diversity along ecological gradients. Ecol Lett 16:600–608. doi:10.1111/ele.12083

    Article  PubMed  Google Scholar 

  • Pellissier L, Niculita-Hirzel H, Dubuis A et al (2014a) Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Mol Ecol 23:4274–4290. doi:10.1111/mec.12854

    Article  CAS  PubMed  Google Scholar 

  • Pellissier L, Roger A, Bilat J, Rasmann S (2014b) High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation conspecifics: is it just temperature? Ecography (Cop) 37:950–959. doi:10.1111/ecog.00833

    Article  Google Scholar 

  • Pottier J, Dubuis A, Pellissier L et al (2013) The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Glob Ecol Biogeogr 22:52–63. doi:10.1111/j.1466-8238.2012.00790.x

    Article  Google Scholar 

  • Qian H, Ricklefs RE, White PS (2005) Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol Lett 8:15–22. doi:10.1111/j.1461-0248.2004.00682.x

    Article  Google Scholar 

  • Reynolds BC, Crossley DAJ (1997) Spatial variation in herbivory by forest canopy arthropods along an elevation gradient. Environ Entomol 26:1232–1239

    Article  Google Scholar 

  • Salinas N, Malhi Y, Meir P et al (2011) The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol 189:967–977. doi:10.1111/j.1469-8137.2010.03521.x

    Article  CAS  PubMed  Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography (Cop) 25:25–32. doi:10.1034/j.1600-0587.2002.250104.x

    Article  Google Scholar 

  • Silvertown J, Dodd M, Gowing D (2001) Phylogeny and the niche structure of meadow plant communities. J Ecol 89:428–435. doi:10.1046/j.1365-2745.2001.00553.x

    Article  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  PubMed  Google Scholar 

  • Theurillat J, Schlüssel A, Geissler P, et al (2003) Vascular plant and bryophyte diversity along elevation gradients in the Alps. In: Alpine biodiversity in Europe. Springer, Berlin, pp 185–193

  • Tinner W, Theurillat JP (2003) Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss central Alps during the past 11,500 years. Arct Antarct Alp Res 35:158–169. doi:10.1657/1523-0430(2003)035{[}0158:ULEAFO]2.0.CO;2

  • Tuomisto H (2010) A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography (Cop) 33:2–22. doi:10.1111/j.1600-0587.2009.05880.x

    Article  Google Scholar 

  • Ulrich W, Gotelli NJ (2007) Null model analysis of species nestedness patterns. Ecology 88:1824–1831. doi:10.1890/06-1208.1

    Article  PubMed  Google Scholar 

  • Verwijmeren M, Rietkerk M, Wassen MJ, Smit C (2013) Interspecific facilitation and critical transitions in arid ecosystems. Oikos 122:341–347. doi:10.1111/j.1600-0706.2012.00111.x

    Article  Google Scholar 

  • Vittoz P, Randin C, Dutoit A et al (2009) Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob Chang Biol 15:209–220. doi:10.1111/j.1365-2486.2008.01707.x

    Article  Google Scholar 

  • Vittoz P, Camenisch M, Mayor R et al (2010) Subalpine-nival gradient of species richness for vascular plants, bryophytes and lichens in the Swiss Inner Alps. Bot Helv 120:139–149. doi:10.1007/s00035-010-0079-8

    Article  Google Scholar 

  • Whittaker RH (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26:1–80

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324. doi:10.1111/j.1461-0248.2010.01515.x

    Article  PubMed  Google Scholar 

  • Williams PH (1996) Mapping variations in the strength and breadth of biogeographic transition zones using species turnover. Proc R Soc London B Biol Sci 263:579–588

    Article  Google Scholar 

  • Wright DH, Reeves JH (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia 92:416–428. doi:10.1007/BF00317469

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the people involved in collecting the vegetation data over the years and two anonymous reviewers for their constructive comments on the manuscript. This project was supported by the Swiss National Science Foundation (SNSF) Grant Nos. 31003A-162604 and 31003A-1528661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Descombes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Descombes, P., Vittoz, P., Guisan, A. et al. Uneven rate of plant turnover along elevation in grasslands. Alp Botany 127, 53–63 (2017). https://doi.org/10.1007/s00035-016-0173-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-016-0173-7

Keywords

Navigation