Skip to main content

Advertisement

Log in

Geochronology and petrogenesis of orthogneisses from the Pacov body: implications for the subdivision of the Cambro-Ordovician peraluminous magmatism and related mineralizations in the Monotonous and Varied units of the Moldanubian Zone (Bohemian Massif)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Peraluminous orthogneisses represent a typical rock type of the Monotonous and Varied units of the Moldanubian Zone. The most probable setting for the generation of these rocks is the Cambro-Ordovician magmatic event linked to crustal anataxis, which is related to the thermal relaxation of thickened continental crust. According to their geological position, the mineralogy and geochemistry can be traced to the Blaník and Deštná type orthogneisses. The Blaník type is represented by muscovite-biotite to muscovite-tourmaline orthogneisses whose granitic protolith can be generated by muscovite-dominant dehydration melting of metapelites. The chemical heterogeneity of this type suggests magma differentiation, which is manifested by the presence of P-Li-Sn-Nb mineralization. Muscovite-biotite to biotite Deštná type orthogneisses were likely generated by the fluid-present melting of immature crustal sources (e.g. metagreywackes and metaigneous rocks) and spatially related to small occurrences of W-bearing mineralization. We applied whole-rock geochemistry combined with mineralogy and zircon U-Pb geochronology to the evolutionary interpretation of one of the most fractionated bodies of Deštná type orthogneisses situated near the village of Pacov. The Pacov orthogneiss is accompanied by pre-Variscan greisens and related tungsten mineralization (ferberite, scheelite, pyrite, and native bismuth). The mineral assemblages of these rock types are modified by the Variscan metamorphic overprint (720 ± 75 °C at 0.65 ± 0.29 GPa). Two petrographically distinct samples of orthogneisses give U–Pb zircon ages of 494 ± 2 Ma (garnet-muscovite orthogneiss) and 485 ± 4 Ma (muscovite-biotite orthogneiss). The abundance of inherited pre-magmatic zircon cores (∼614–578 Ma) most likely documents detrital protoliths derived from erosion of the Ediacaran volcanic arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Altherr R, Holl A, Hegner E (2000) High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50:51–73

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of mount-Mazama, crater Lake, Oregon. Contrib Miner Petrol 98:224–256

    Google Scholar 

  • Ballèvre M, Fourcade S, Capdevila R, Peucat JJ, Cocherie A, Fanning CM (2012) Geochronology and geochemistry of Ordovician felsic volcanism in the southern Armorican Massif (Variscan belt, France): implications for the breakup of Gondwana. Gondwana Res 21:1019–1036

    Google Scholar 

  • Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartese R, Vigneresse JL (2016) Nb-ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition. Geology 44:231–234

    Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petrol 123:323–333

    Google Scholar 

  • Bea F, Montero P, González-Lodeiro F, Talavera C (2007) Zircon inheritance reveals exceptionally fast crustal magma generation processes in Central Iberia during the Cambro-Ordovician. J Petrol 48:2327–2339

    Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henserson, P., (ed) Developments in geochemistry, vol 2. Elsevier, pp 63–114

  • Breiter K, Čopjaková R, Gabašová A, Škoda R (2005a) Chemistry and mineralogy of orthogneisses at the northeastern part of the Moldanubicum. J Geosci 50:81–94

    Google Scholar 

  • Breiter K, Novák M, Koller F, Cempírek J (2005b) Phosphorus – an omnipresent minor element in garnet of diverse textural types from leucocratic granitic rocks. Miner Petrol 85:205–221

    Google Scholar 

  • Breiter K, Škoda R, Starý J (2006) Tin, niobium and tantalum mineralization at Přibyslavice near Čáslav. Zpr geol Výzk 102–107 (In Czech)

  • Briqueu L, Bougault H, Joron JL (1984) Quantification of Nb, ta, Ti and V anomalies in magmas associated with subduction zones: petrogenetic implications. Earth Planet Sci Lett 68:297–308

    Google Scholar 

  • Buriánek D, Verner K, Hanžl P, Müllerová H (2009) Ordovician metagranites and migmatites of the Svratka and Orlice–Sněžník units, northeastern Bohemian Massif. J Geosci 54:181–200 ISSN 1802–6222

    Google Scholar 

  • Castro A (2014) The off-crust origin of granite batholiths. Geosci Front 5:63–75

    Google Scholar 

  • Castro A, García-Casco A, Fernández C, Corretgé LG, Moreno-Ventas I, Gerya T, Löw I (2009) Ordovician ferrosilicic magmas: experimental evidence for ultrahigh temperatures affecting a metagreywacke source. Gondwana Res 16:622–632

    Google Scholar 

  • Čech F, Rieder M, Novák F, Novotný J (1978) Accessory nigerite in a granite from Central Bohemia, Czechoslovakia. N Jb Mineral Mh 1978:337–345

    Google Scholar 

  • Černý P (1992) Geochemical and petrogenetic features of mineralization in rare element granitic pegmatites in the light of current research. Appl Geochem 7:393–416

    Google Scholar 

  • Cháb J, Stráník Z, Eliáš M (2007) Geological map of Czech Republic 1: 50 000. Czech Geological Survey, Prague

    Google Scholar 

  • Chapman T, Clarke GL, Piazolo S, Daczko NR (2019) Inefficient high-temperature metamorphism in orthogneiss. Am Mineral 104:17–30

    Google Scholar 

  • Chappell BW (1999) Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46:535–551

    Google Scholar 

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I-type and S-type granites in the Lachlan fold belt. Trans Roy Soc Edinb Earth Sci 83:1–26

    Google Scholar 

  • Chen B, Gu H, Chen Y, Sun K, Chen W (2018) Lithium isotope behaviour during partial melting of metapelites from the Jiangnan Orogen, South China: implications for the origin of REE tetrad effect of F-rich granite and associated rare-metal mineralization. Chem Geol 483:372–384

    Google Scholar 

  • Chopin F, Schulmann K, Štípská P, Martelat JE, Pitra P, Lexa O, Petri B (2012) Microstructural and metamorphic evolution of a high-pressure granitic orthogneiss during continental subduction (Orlica–Śnieżnik dome, Bohemian Massif). J Metamorph Geol 30:347–376

    Google Scholar 

  • Clark C, Fitzsimmons ICW, Healy D (2011) How does the continental crust get really hot? Elements 7:235–240

    Google Scholar 

  • Clemens JD, Stevens G, Farina F (2011) The enigmatic sources of I-type granites: the peritectic connexion. Lithos 126:174–181

    Google Scholar 

  • Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and-undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. J Petrol 29:765–803

    Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane assemblage. Terra Nov 12:171–180

    Google Scholar 

  • Da Silva ÍD, Fernández RD, Díez-Montes A, Clavijo EG, Foster DA (2016) Magmatic evolution in the N-Gondwana margin related to the opening of the Rheic Ocean-evidence from the upper Parautochthon of the Galicia-Trás-Os-Montes zone and from the central Iberian zone (NW Iberian Massif). Inter J Earth Sci 105:1127–1151

    Google Scholar 

  • Debon F, Le Fort P (1983) A chemical – mineralogical classification of common plutonic rocks and associations. Trans Roy Soc Edinburgh Earth Environ Sc 73:135–149

    Google Scholar 

  • Del Greco K, Johnston ST, Shaw J (2016) Tectonic setting of the North Gondwana margin during the early Ordovician: a comparison of the Ollo de Sapo and Famatina magmatic events. Tectonophys 681:73–84

    Google Scholar 

  • Dolejš D, Bendl J, Štemprok M (2016) Rb-Sr isotopic composition of granites in the Western Krušné hory/Erzgebirge pluton, Central Europe: record of variations in source lithologies, mafic magma input and postmagmatic hydrothermal events. Miner Petrol 110:601–622

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z, (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352(1-2):65–85

    Google Scholar 

  • Douce AEP (1996) Effects of pressure and H2O content on the compositions of primary crustal melts. Trans Roy Soc Edinb Earth Sci 87:11–21

    Google Scholar 

  • Douce AEP (1999) What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? Geol Soc London Spec Publ 168:55–75

    Google Scholar 

  • Douce AEP, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738

    Google Scholar 

  • Douce AEP, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39:689–710

    Google Scholar 

  • Dudek A, Matějovská O, Suk M (1974) Gföhl orthogneiss in the Moldanubicum of Bohemia and Moravia. Krystalinikum 10:67–78

    Google Scholar 

  • Dudíková Schulmannová B, Buriánek D, Holub FV, Hroch T, Janderková J, Martínek K, Metelka V, Paclíková J, Poňavič M, Poul I, Přechová E, Racek M, Rukavičková L, Skácelová D, Smyčková L, Šrámek J, Trubač J, Verner K (2011) Explanatory notes to the Geological Base map of the Czech Republic at 1:25 000 scale 23–314 Deštná. Czech Geological Survey

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Google Scholar 

  • Faryad SW, Jedlicka R, Collett S (2013) Eclogite facies rocks of the monotonous unit, clue to Variscan suture in the Moldanubian zone (Bohemian Massif). Lithos 179:353–363

    Google Scholar 

  • Faryad SW, Kachlík V, Sláma J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian zone (Bohemian Massif). J Metamorph Geol 33:295–310

    Google Scholar 

  • Fernández C, Becchio R, Castro A, Viramonte JM, Moreno-Ventas I, Corretgé LG (2008) Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation. Gondwana Res 14:451–473

    Google Scholar 

  • Fiala J, Matějovská O, Suk M (1987) Moldanubian granulites: source material and petrogenetic considerations. Neues Jb Mineral Abh 157:133–165

    Google Scholar 

  • Fiala J, Fuchs G, Wendt JI (1995) Stratigraphy. In: Dallmayer (ed) pre-Permian geology of central and Eastern Europe. Springer, Berlin Heidelberg, pp 417–428

    Google Scholar 

  • Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. J Geosci 52:9–28

    Google Scholar 

  • Forster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645

    Google Scholar 

  • Franěk J, Schulmann K, Lexa O (2006) Kinematic and rheological model of exhumation of high pressure granulites in the Variscan orogenic root: example of the Blanský les granulite, Bohemian Massif, Czech Republic. Miner Petrol 86:253–276

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides; tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Spec Publ 179:35–61

  • Friedl G, McNaughton N, Fletcher IR, Finger F (1998) New SHRIMP-zircon ages for orthogneisses fro the south-eastern part of the Bohemian Massif (Lower Austria). Acta Univ Carol Geol 42:251–252

    Google Scholar 

  • Friedl G, Finger F, Paquette JL, Von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Inter J Earth Sci 93:802–823

    Google Scholar 

  • Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jb Geol BA 129:41–49

    Google Scholar 

  • Fuchs G, Matura A (1976) Zur Geologie des Kristallins der südlichen Böhmischen Masse. Jb Geol BA 119:1–43

    Google Scholar 

  • Gao P, Zhao ZF, Zheng YF (2014) Petrogenesis of Triassic granites from the Nanling range in South China: implications for geochemical diversity in granites. Lithos 210:40–56

    Google Scholar 

  • Gao LE, Zeng L, Asimow PD (2017) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites. Geology 45:39–42

    Google Scholar 

  • García-Arias M, Díez-Montes A, Villaseca C, Blanco-Quintero IF (2018) The Cambro-Ordovician Ollo de Sapo magmatism in the Iberian Massif and its Variscan evolution: a review. Earth Sci Rev 176:345–372

    Google Scholar 

  • Grauert B, Hänny R, Soptrajanova G (1973) Age and origin of detrital zircons from the pre-Permian basements of the Bohemian Massif and the Alps. Contrib Mineral Petrol 40:105–130

    Google Scholar 

  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M (2018) 40 ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif central revealed by U-Pb dating of wolframite. Miner Depos 53:21–51

    Google Scholar 

  • Hasalová P, Janoušek V, Schulmann K, Štípská P, Erban V (2008) From orthogneiss to migmatite: geochemical assessment of the melt infiltration model in the Gföhl unit (Moldanubian zone, Bohemian Massif). Lithos 102:508–537

    Google Scholar 

  • Holland TJB, Powell RTJB (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Google Scholar 

  • Hranáč P, Páša J, Procházka J, Karban L, Anft A, Novosad I (1987) final report: tungsten –Moldanubicum, 01 79 2102. Part Cetoraz. Resource tungsten. Manuscript, deposited in the Czech geological survey – Geofond, P 57675, Geoindustria Jihlava (In Czech)

  • Huang C, Zhao Z, Li G, Zhu DC, Liu D, Shi Q (2017) Leucogranites in Lhozag, southern Tibet: implications for the tectonic evolution of the eastern Himalaya. Lithos 294:246–262

    Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu, Sr/Eu, Y/ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Google Scholar 

  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem Geol 211:47–69

    Google Scholar 

  • Janoušek V, Finger F, Roberts M, Frýda J, Pin C, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian zone of the Bohemian Massif. Trans Roy Soc Edinburgh Earth Environ Sc 95:141–159

    Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47:1255–1259

    Google Scholar 

  • Klečka M, Machart J, Melín M, Lang M, Pivec E (1993) geochemical and petrological studies of the Blaník orthogneiss body. Geoscience Research Reports for 1991 25:76–78 (In Czech)

  • Klomínský J, Jarchovský T, Rajpoot GS (2016) Atlas of plutonic rocks and Orthogneisses in the Bohemian Massif, part Moldanubicum. Czech Geological Survey, Prague, pp 1–163

    Google Scholar 

  • Košler J, Aftalion M, Vokurka K, Klečka M, Svojtka M (1996) Early Cambrian granitoid magmatism in the Moldanubian zone: U-Pb zircon isotopic evidence from the Stráž orthogneiss. Zpr Geol Výzk 1995:109–110 (In Czech)

    Google Scholar 

  • Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian sediments in the Bohemian Massif. J Geol Soc 171:83–95

    Google Scholar 

  • Kusbach V, Janoušek V, Hasalová P, Schulmann K, Fanning CM, Erban V, Ulrich S (2015) Importance of crustal relamination in origin of the orogenic mantle peridotite – high-pressure granulite association: example from the Náměšť granulite Massif (Bohemian Massif, Czech Republic). J Geol Soc 172:479–490

    Google Scholar 

  • Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Štípská P (2014) The Moldanubian zone in the French Massif central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. Geol Soc Lond Spec Publ 405(1):7–44

    Google Scholar 

  • Lehmann B (1990) Lecture notes in earth sciences 32: Metallogeny of tin. Springer-Verlag, Berlin

  • Lhotský P (1982) Tungsten mineralization in surroundings Deštná near Jindřichův Hradec. Charles University, Master thesis

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: Constraints from LA-ICP-MS U-Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). Geol Soc Am Spec Pap 423: The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision 423: 61–96

  • Linnemann U, Drost K, Gerdes A, Jeffries T, Romer RL (2008) The Bohemian Massif (chapter 3: “the Cadomian orogeny”). In: McCann T (ed) The geology of Central Europe. The Geological Society of London, London, pp 121–147

    Google Scholar 

  • Linner M (1996) Metamorphism and partial melting of paragneisses of the Monotonous Group, SE Moldanubicum (Austria). Miner Petrol 58:215–234

    Google Scholar 

  • Losertová L (2015) A review of wolframite mineralisation related to the central Moldanubian pluton and orthogneiss bodies in Moldanubicum. Acta Mus Morav, Sci geol 100(2):45–67 (In Czech)

    Google Scholar 

  • Losertová L, Buřival Z, Losos Z (2014) Waylandite and petitjeanite, two new phosphates for locality Cetoraz near Pacov (Czech Republic). Bull miner-petrol odd Nár muz v Praze 22:269–274 (In Czech)

    Google Scholar 

  • Ludwig KR (2008) Manual for Isoplot 3.7: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, rev 26

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophys 196:309–337

    Google Scholar 

  • Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophys 177:151–170

    Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, part II. Compositions of minerals and melts. Contrib Miner Petrol 128:176–196

    Google Scholar 

  • Murphy JB, Pisarevsky S, Nance RD, Keppie JD (2004) Neoproterozoic–early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Inter J Earth Sci 93:659–682

    Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D’Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Google Scholar 

  • Němec D, Páša J (1986) Regionally metamorphosed greisens of the Moldanubicum. Miner Depos 21:12–21

    Google Scholar 

  • Němec D, Tenčík I (1976) Regionally metamorphosed greisens at Cetoraz, the Bohemian-Moravian Heights (Českomoravská vrchovina), Czechoslovakia. Miner Depos 11:210–217

    Google Scholar 

  • Pan Y, Breaks FW (1997) Rare-earth elements in fluoapatite, Saperation Lake area, Antario: evidence for S-type granite-rare-element pegmatite linkage. Can Mineral 35:659–671

    Google Scholar 

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys 11:1–36

    Google Scholar 

  • Pattison DRM (2001) Instability of Al2SiO5 triple point assemblages in muscovite + biotite + quartz-bearing metapelites, with implications. Am Mineral 86:1414–1422

    Google Scholar 

  • Pertold Z (1986) Prevariscan W, Sn mineralization of the Bohemian Massif. Inter. Conf. On the metallogeny of the Precambian (IGCP project 91), Prague, pp 55–63

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrova J (2007) The diversity and geodynamic significance of late Cambrian (ca. 500 ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) the evolution of the Rheic Ocean: from Avalonian-Cadomian active margin to Alleghenian-Variscan collision. Geol Soc America Spec Paper 423:209–229

    Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Geological Survey of Western Australia

    Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Miner Depos 22:315–321

    Google Scholar 

  • Pouchou JL, Pichoir F (1985) PAP’ ɸ(pZ) procedure for improved quantitative microanalysis. In: Armstrong JT (ed) Microbeam analysis. California, San Francisco, pp 104–106

    Google Scholar 

  • Povondra P, Vrána S (1996) Tourmaline and associated minerals in alkali-feldspar orthogneiss near Hluboká nad Vltavou, southern Bohemia. J Czech Geol Soc 41:91–200

    Google Scholar 

  • Povondra P, Pivec E, Čech F, Lang M, Novák F, Prachař I, Ulrych J (1987) Přibyslavice peraluminous granite. Acta Univ Carol Geol 3:183–283

    Google Scholar 

  • Povondra P, Lang M, Pivec E, Ulrych J (1998) Tourmaline from the Přibyslavice peraluminous alkali-feldspar granite, Czech Republic. J Czech Geol Soc 43:3–8

  • Powell R, Holland TJB (1988) An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J Metamorph Geol 6:173–204

    Google Scholar 

  • Powell R, Holland T (1994) Optimal geothermometry and geobarometry. Am Mineral 79:120–133

    Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179

    Google Scholar 

  • Racek M, Štípská P, Pitra P, Schulmann K, Lexa O (2006) Metamorphic record of burial and exhumation of orogenic lower and middle crust: a new tectonothermal model for the Drosendorf window (Bohemian Massif, Austria). Miner Petrol 86:221–251

    Google Scholar 

  • Rajlich P, Peucat JJ, Kantor J, Rychtár J (1992) Variscan shearing in the Moldanubian of the Bohemian Massif: deformation, gravity, K-Ar and Rb-Sr data from the Choustník Prevariscan orthogneiss. Jb Geol BA 135:579–595

    Google Scholar 

  • René M, Finger F (2016) The Blaník gneiss in the southern Bohemian Massif (Czech Republic): a rare rock composition among the early palaeozoic granites of Variscan Central Europe. Miner Petrol 110:503–514

    Google Scholar 

  • Romer RL, Kroner U (2015) Sediment and weathering control on the distribution of Paleozoic magmatic tin–tungsten mineralization. Mineral Depos 50:327–338

    Google Scholar 

  • Schandl ES, Gorton MP (2002) Application of high field strength elements. Econ Geol 97:629–642

    Google Scholar 

  • Schnetzler CC, Philpotts JA (1970) Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts–II. Geochim Cosmochim Acta 34:331–340

    Google Scholar 

  • Schuiling RD (1967) Tin belts on the continents around the Atlantic Ocean. Econ Geol 62:540–550

    Google Scholar 

  • Schulmann K, Kröner A, Hegner E, Wendt I, Konopásek J, Lexa O, Štípská P (2005) Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen – Bohemian Massif, Czech Republic. Am J Sci 305:407–448

    Google Scholar 

  • Schulmann K, Lexa O, Štípská P et al (2008) Vertical extrusion and horizontal channel flow of orogenic lower crust: key exhumation mechanisms in large hot orogens? J Metamorph Geol 26:273–297

    Google Scholar 

  • Schulmann K, Lexa O, Janoušek V, Lardeaux JM, Edel JB (2014) Anatomy of a diffuse cryptic suture zone: An example from the Bohemian Massif, European Variscides. Geology 42(4):275–278

    Google Scholar 

  • Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux J-M, Edel J-B, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. Compt Rendus Geosci 341(2):266–286

    Google Scholar 

  • Simons B, Shail RK, Andersen JCØ (2016) The petrogenesis of the early Permian Variscan granites of the Cornubian batholith – lower plate post-collisional peraluminous magmatism in the Rhenohercynian zone of SW England. Lithos 260:76–94

    Google Scholar 

  • Singh J, Johannes W (1996a) Dehydration melting of tonalites. Part I. beginning of melting. Contrib Mineral Petrol 125:16–25

    Google Scholar 

  • Singh J, Johannes W (1996b) Dehydration melting of tonalites. Part II. Composition of melts and solids. Contrib Mineral Petrol 125:26–44

    Google Scholar 

  • Slabý J (1991) Petrology and geochemistry of orthogneiss in the Moldanubian zone of southern Bohemia (in Czech). MS, Czech Geological Survey, Prague

    Google Scholar 

  • Sláma J, Košler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Schaltegger U (2008a) Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem Geol 249:1–35

    Google Scholar 

  • Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008b) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian unit, Bohemian Massif. Tectonophys 461:44–59

    Google Scholar 

  • Soejono I, Machek M, Sláma J, Janoušek V, Kohút M (2019) Cambro–Ordovician anatexis and magmatic recycling at the thinned Gondwana margin: new constraints from the Kouřim unit. Bohemian Massif J Geol Soc London. https://doi.org/10.1144/jgs2019-037

    Google Scholar 

  • Štemprok M (1995) A comparison of the Krušné hory-Erzgebirge (Czech Republic–Germany) and Cornish (UK) granites and their related mineralization. Proc Ussher Soc 8:347–356

    Google Scholar 

  • Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Google Scholar 

  • Teipel U (2003) Obervendischer und unterordovizischer Magmatismus im Bayerischen Wald–Geochronologische (SHRIMP), geochemische und isotopengeochemische Untersuchungen an Metamagmatiten aus dem Westteil des Böhmischen Massivs. Münchner Geol Hefte A 33:1–98

    Google Scholar 

  • Teipel U, Eichhorn R, Loth G, Rohrmüller J, Höll R, Kennedy A (2004) U-Pb SHRIMP and Nd isotopic data from the western Bohemian Massif (Bayerischer Wald, Germany): implications for upper Vendian and lower Ordovician magmatism. Inter J Earth Sci 93:782–801

    Google Scholar 

  • Valverde-Vaquero P, Dunning CR (2000) New U–Pb ages for the early Ordovician magmatism in Central Spain. J Geol Soc Lond 157:15–26

    Google Scholar 

  • Vermeesch P (2012) On the visualisation of detrital age distributions. Chem Geol 312:190–194

    Google Scholar 

  • Villaseca C, Barbero L, Herreros V (1998) A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans Roy Soc Edinburgh Earth Environ Sc 89:113–119

    Google Scholar 

  • Villaseca C, Merino E, Oyarzun R, Orejana D, Pérez-Soba C, Chicharro E (2014) Contrasting chemical and isotopic signatures from Neoproterozoic metasedimentary rocks in the central Iberian zone (Spain) of pre-Variscan Europe: implications for terrane analysis and early Ordovician magmatic belts. Precambrian Res 245:131–145

    Google Scholar 

  • Villaseca C, Merino Martínez E, Orejana D, Andersen T, Belousova E (2016) Zircon Hf signatures from granitic orthogneisses of the Spanish central system: significance and sources of the Cambro-Ordovician magmatism in the Iberian Variscan Belt. Gondwana Res 34:60–83

    Google Scholar 

  • von Raumer JF, Stampfli G, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Inter J Earth Sci 91:35–52

    Google Scholar 

  • Von Raumer JF, Bussy F, Schaltegger U, Schulz B, Stampfli GM (2013) Pre-Mesozoic alpine basements - their place in the European Paleozoic framework. Geol Soc Amer Bull 125:89–108

    Google Scholar 

  • Vrána S, Kröner A (1995) Pb-Pb zircon age for tourmaline alkali-feldspar orthogneiss from Hluboká nad Vltavou in southern Bohemia. J Czech Geol Soc 40:127–131

    Google Scholar 

  • Watkins JM, Clemens JD, Treloar PJ (2007) Archaean TTGs as sources of younger granitic magmas: melting of sodic metatonalites at 0.6–1.2 GPa. Contrib Mineral Petrol 154:91–110

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212:158–188

    Google Scholar 

  • Wendt JI, Kröner A, Fiala J, Todt W (1993) Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol Rundsch 82:42–50

    Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Google Scholar 

  • Wiedenbeck MAPC, Alle P, Corfu F, Griffin WL, Meier M, Oberli FV, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newslett 19:1–23

    Google Scholar 

  • Wu FY, Liu X, Ji W, Wang J, Yang L (2017) Highly fractionated granites: recognition and research. Sci China Earth Sci 60:1201–1219

    Google Scholar 

  • Žák J, Verner K, Finger F, Faryad SW, Chlupáčová M, Veselovský F (2011) The generation of voluminous S-type granites in the Moldanubian unit, Bohemian Massif, by rapid isothermal exhumation of the metapelitic middle crust. Lithos 121:25–40

    Google Scholar 

  • Žák J, Sláma J, Burjak M (2017) Rapid extensional unroofing of a granitemigmatite dome with relics of high-pressure rocks, the Podolsko complex, Bohemian Massif. Geol Mag 154:354–380

    Google Scholar 

  • Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV, Chevychelov VY (2009) The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology 17:28–50

    Google Scholar 

  • Zhao ZF, Zheng YF, Chen YX, Sun GC (2017) Partial melting of subducted continental crust: geochemical evidence from syn-exhumation granite in the Sulu orogen. Geol Soc Amer Bull 129:1692–1707

    Google Scholar 

  • Zikmund J (1983) Relict granites and the genesis of the Blaník type orthogneisses (Bohemian Massif). Čas Mineral Geol 28:81–87 (In Czech)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Research Plan of the Czech Geological Survey (DKRVO/ČGS 2018-2022), research project No. 321180 to DB and financial funds to the Moravian Museum by the Ministry of Culture of the Czech Republic as part of its long-term conceptual development program for research institutions (ref. MK000094862) to SH. The research has been partly supported by the institutional research fund of the Faculty of Science, Masaryk University, to ZL. They are also grateful to A. Zavřelova (ČGS) for zircon separation and for their help with diagrams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenka Buřivalová.

Additional information

Editorial handling: S. W. Faryad

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 94 kb)

ESM 2

(DOC 585 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buriánek, D., Buřivalová, L., Houzar, S. et al. Geochronology and petrogenesis of orthogneisses from the Pacov body: implications for the subdivision of the Cambro-Ordovician peraluminous magmatism and related mineralizations in the Monotonous and Varied units of the Moldanubian Zone (Bohemian Massif). Miner Petrol 114, 175–197 (2020). https://doi.org/10.1007/s00710-020-00699-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-020-00699-8

Keywords

Navigation