Skip to main content
Log in

On a Class of Quasilinear Equations Involving Critical Exponential Growth and Concave Terms in \({\mathbb {R}}^N\)

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this work, we establish the existence and multiplicity of nonzero and non-negative solutions for a class of quasilinear elliptic equations, whose nonlinearity is allowed to enjoy the critical exponential growth with respect to a version of the Trudinger–Moser inequality, and it can also contain concave terms in \({\mathbb {R}}^N (N\ge 2)\). When \(N=2\) or \(N=3\), this equation is motivated for a physics application in fluid mechanics. In order to obtain our results, we combine variational arguments in a suitable subspace of a Orlicz–Sobolev space with a version of the Trudinger–Moser inequality and Ekeland variational principle. In a particular case, we show that the solution is a positive ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A version for bounded domains can be found for instance in [15, 25].

References

  1. Alves, C.O., da Silva, A.R.: Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz–Sobolev space. J. Math. Phys. 57, 111502 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M., Santos, J.A.: Strauss and Lions type results for a class of Orlicz–Sobolev spaces and applications. Topol. Methods Nonlinear Anal. 44, 435–456 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)

    Article  MathSciNet  Google Scholar 

  4. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and apllications. J. Funct. Anal. 14, 349–381 (1973)

    Article  Google Scholar 

  5. Adams, R.A., Fournier, J.F.F.: Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  6. Badiale, M., Dobarro, F.: Some existence results for sublinear elliptic problems in \({\mathbb{R}}^{N}\). Funkcial. Ekvac. 39, 183–202 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Bennett, C., Rudnick, K.: On Lorentz–Zygmund spaces. Dissert. Math 175, 1–72 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Breit, D., Cianchi, A.: Negative Orlicz–Sobolev norms and strongly nonlinear systems in fluid mechanics. J. Differ. Equ. 259, 48–83 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. Brezis, H., Kamin, S.: Sublinear elliptic equations in \({\mathbb{R}}^{n}\). Manuscr. Math. 74, 87–106 (1992)

    Article  Google Scholar 

  10. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  Google Scholar 

  11. Cerný, R.: Generalized n-Laplacian: quasilinear nonhomogenous problem with critical growth. Nonlinear Anal. 74, 3419–3439 (2011)

    Article  MathSciNet  Google Scholar 

  12. Cerný, R.: Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces. Comment. Math. Univ. Carolin. 53, 557–571 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Cerný, R.: Generalized Moser–Trudinger inequality for unbounded domains and its application. NoDEA Nonlinear Differ. Equ. Appl. 19, 575–608 (2012)

    Article  MathSciNet  Google Scholar 

  14. Chabrowski, J.: On semilinear elliptic equations involving concave and convex nonlinearities. Math. Nachr 233(234), 55–76 (2002)

    Article  MathSciNet  Google Scholar 

  15. Edmunds, D.E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz–Zygmund spaces. Indiana Univ. Math. J. 44, 19–43 (1995)

    Article  MathSciNet  Google Scholar 

  16. de Freitas, L.R.: Multiplicity of solutions for a class of quasilinear equations with exponential critical growth. Nonlinear Anal. 95, 607–624 (2014)

    Article  MathSciNet  Google Scholar 

  17. de Souza, M., do Ó, J., M., Silva, T.: Quasilinear nonhomogeneous Schrödinger equation with critical exponential growth in \(\mathbb{R}^{N}\). Topol. Methods Nonlinear Anal. 45, 615–639 (2015)

  18. do Ó, J.M.: \(N\)-Laplacian equations in \(\mathbb{R}^{N}\) with critical growth. Abstr. Appl. Anal. 2, 301–315 (1997)

  19. do Ó, J.M., de Medeiros, E., Severo, U.: On a quasilinear nonhomogeneos elliptic with critical growth in \(\mathbb{R}^{N}\). J. Differ. Equ. 246, 1363–1386 (2009)

  20. do Ó, J.M., de Sousa, M., de Medeiros, E.E., Severo, U.U.: An improvement for the Trudinger–Moser inequality and applications. J. Differ. Equ. 256, 1317–1349 (2014)

  21. do Ó, J.M., Ruf, B.: On a Schrödinger equation with periodic potential and critical growth in \(\mathbb{R}^{2}\). NoDEA 13, 167–192 (2006)

  22. Fuchs, M., Seregin, G.: Varitional methods for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening. Math. Methods Appl. Sci. 22, 317–351 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fuchs, M., Osmolovski, V.: Variational integrals on Orlicz–Sobolev spaces. Z. Anal. Anwendungen 17, 393–415 (1998)

    Article  MathSciNet  Google Scholar 

  24. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \({\mathbb{R}}^{N}\). Funkcial. Ekvac. 49, 235–267 (2006)

    Article  MathSciNet  Google Scholar 

  25. Hencl, S.: A sharp form of an embedding into exponential and double exponential spaces. J. Funct. Anal. 204, 196–227 (2003)

    Article  MathSciNet  Google Scholar 

  26. Lam, N., Lu, G.: Existence and multiplicity of solutions to equations of N-Laplacian type with critical exponential growth in \({\mathbb{R}}^{N}\). J. Funct. Anal. 262, 1132–1165 (2012)

    Article  MathSciNet  Google Scholar 

  27. Liu, Z., Wang, Z.-Q.: Schrödinger equations with concave and convex nonlinearities. Z. Angew. Math. Phys. 56, 609–629 (2005)

    Article  MathSciNet  Google Scholar 

  28. Masmoudi, N., Sani, F.: Trudinger–Moser inequalities with the exact growth condition in \({\mathbb{R}}^{N}\) and applications. Comm. Partial Differ. Equ. 40, 1408–1440 (2015)

    Article  Google Scholar 

  29. Opic, B., Pick, L.: On generalized Lorentz–Zygmund spaces. Math. Ineq. Appl. 2, 391–467 (1999)

    MathSciNet  MATH  Google Scholar 

  30. Panda, R.: Nontrivial solution of a quasilinear elliptic equation with critical growth in \({\mathbb{R}}^{N}\). Proc. Indian Acad. Sci. Math. Sci. 105, 425–444 (1995)

    Article  MathSciNet  Google Scholar 

  31. Pucci, P., Serrin, J., Zou, H.: A strong maximum principle and a compact support principle for singular elliptic inequalities. J. Math. Pures Appl. 78, 769–789 (1999)

    Article  MathSciNet  Google Scholar 

  32. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  33. Santos, J.A., Soares, S.H.M.: Radial solutions of quasilinear equations in Orlicz–Sobolev type spaces. J. Math. Anal. Appl. 428, 1035–1053 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yang, Y.: Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space. J. Funct. Anal. 262, 1679–1704 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jefferson Abrantes Santos.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by CNPq-Brazil Grant Casadinho/Procad 552.464/2011-2.

Research partially supported by CNPq Grant 310747/2019-8 and Grant 2019/0014 Paraíba State Research Foundation (Fapesq), Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, J.A., Severo, U.B. On a Class of Quasilinear Equations Involving Critical Exponential Growth and Concave Terms in \({\mathbb {R}}^N\). Ann. Henri Poincaré 23, 1–24 (2022). https://doi.org/10.1007/s00023-021-01054-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01054-z

Mathematics Subject Classification

Navigation