Skip to main content
Log in

Removal of Methylene Blue from an Aqueous Medium Using Atemoya Peel as a Low-cost Adsorbent

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study prepared a biosorbent from the agricultural waste of atemoya peels, which was then used to remove the methylene blue dye. The atemoya peels were used in natura, and some were subjected to an alkaline treatment. The pH values obtained for the points of zero charge were 6.0 and 8.0 for the untreated and alkaline-treated materials, respectively. For neutral and/or alkaline pH values, the untreated and treated materials achieved average removals of approximately 80% and 90%, respectively. A kinetic study of the model dye removal profile showed a higher removal ratio over a shorter period for the alkaline-treated material. This profile is described by the pseudo-second-order model, which was the best fit for the D-R isotherm in both biosorbents. The maximum biosorption capacities were 190.18 mg g−1 (untreated) and 264.50 mg g−1 (treated) at 45 °C, and the alkaline-treated materials were shown to be reusable for at least 5 cycles. The results show that these biosorbents are efficient and cost-effective to remove the studied model molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Araújo, C. S. T., Almeida, I. L. S., Rezende, H. C., Marcionilio, S. M. L. O., Léon, J. J. L., & de Matos, T. N. (2018). Elucidation of mechanism involved in adsorption of Pb (II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, 137, 348–354.

    Google Scholar 

  • Aryee, A. A., Mpatani, F. M., Kani, A. N., Dovi, E., Han, R., Li, Z., & Qu, L. (2020). Iminodiacetic acid functionalized magnetic peanut husk for the removal of methylene blue from solution: Characterization and equilibrium studies. Environmental Science and Pollution Research, 1–15

  • Bafana, A., Devi, S. S., & Chakrabarti, T. (2011). Azo dyes: Past, present and the future. Environmental Reviews, 19(NA), 350–371.

    CAS  Google Scholar 

  • Balarak, D., Mostafapour, F. K., Azarpira, H., & Joghataei, A. (2017). Langmuir, Freundlich, Temkin and Dubinin–radushkevich isotherms studies of equilibrium sorption of ampicilin unto montmorillonite nanoparticles. Journal of Pharmaceutical Research International, 1–9

  • Baron, D., Amaro, A. C. E., Macedo, A. C., Boaro, C. S. F., & Ferreira, G. (2018). Physiological changes modulated by rootstocks in atemoya (Annona x atemoya Mabb.): Gas exchange, growth and ion concentration. Brazilian Journal of Botany, 41(1), 219–225.

    Google Scholar 

  • Biehl, P., von der Lühe, M., & Schacher, F. H. (2018). Reversible adsorption of methylene blue as cationic model cargo onto polyzwitterionic magnetic nanoparticles. Macromolecular Rapid Communications, 39(14), 1800017.

    Google Scholar 

  • Carneiro, P. A., Umbuzeiro, G. A., Oliveira, D. P., & Zanoni, M. V. B. (2010). Assessment of water contamination caused by a mutagenic textile effluent/dyehouse effluent bearing disperse dyes. Journal of Hazardous Materials, 174(1–3), 694–699.

    CAS  Google Scholar 

  • Carvalho, L. B., Chagas, P. M. B., Marques, T. R., Razafitianamaharavo, A., Pelletier, M., Nolis, P., ... Pinto, L. d. M. A. (2019). Removal of the synthetic hormone methyltestosterone from aqueous solution using a β-cyclodextrin/silica composite. Journal of Environmental Chemical Engineering, 7(6), 103492. https://doi.org/10.1016/j.jece.2019.103492

  • Carvalho, L. B., Chagas, P. M. B., & Pinto, L. M. A. (2018). Caesalpinia ferrea fruits as a biosorbent for the removal of methylene blue dye from an aqueous medium. Water, Air, & Soil Pollution, 229(9), 297.

    Google Scholar 

  • Chen, S. G., & Yang, R. T. (1994). Theoretical basis for the potential theory adsorption isotherms The Dubinin-Radushkevich and Dubinin-Astakhov Equations. Langmuir, 10(11), 4244–4249.

    CAS  Google Scholar 

  • Chieng, H. I., Lim, L. B. L., & Priyantha, N. (2017). Enhancement of crystal violet dye adsorption on Artocarpus camansi peel through sodium hydroxide treatment. Desalination and Water Treatment, 58, 320–331.

    CAS  Google Scholar 

  • Cooksey, C. J. (2017). Quirks of dye nomenclature. 8. Methylene blue, azure and violet. Biotechnic & Histochemistry, 92(5), 347–356.

    CAS  Google Scholar 

  • Costa, E. V., Pinheiro, M. L. B., Xavier, C. M., Silva, J. R. A., Amaral, A. C. F., Souza, A. D. L., ... Machado, G. M. C. (2006). A pyrimidine-β-carboline and other alkaloids from Annona f oetida with antileishmanial activity. Journal of natural products, 69(2), 292-294

  • Cruz, L. S. D., Lima, R. Z., Abreu, C. M. P. D., Corrêa, A. D., & Pinto, L. D. M. A. (2013). Physical and chemical characterization of fractions of fruit atemoya Gefner. Ciência Rural, 43(12), 2280–2284.

    Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38–45.

    Google Scholar 

  • de Souza, P. A., da Silva Freitas, R. V., Batista, E. M., da Costa, F. B., & Maracajá, P. B. (2015). Armazenamento de atemoias, Annona squamosa x Annona cherimola, recobertas com filme PVC. Revista Verde De Agroecologia e Desenvolvimento Sustentável, 10(5), 39.

    Google Scholar 

  • Dutta, M., Islam, N., Rabha, S., Narzary, B., Bordoloi, M., Saikia, D., ... Saikia, B. K. (2020). Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study. Journal of Hazardous Materials, 389, 121851. https://doi.org/10.1016/j.jhazmat.2019.121851

  • El-Naggar, N.E.-A., & Rabei, N. H. (2020). Bioprocessing optimization for efficient simultaneous removal of methylene blue and nickel by Gracilaria seaweed biomass. Scientific Reports, 10(1), 1–21.

    Google Scholar 

  • Enniya, I., & Jourani, A. (2017). Study of Methylene Blue Removal by a biosorbent prepared with Apple peels. J. Mater. Environ. Sci., 8(12), 4573–4581.

    CAS  Google Scholar 

  • Ferrari, V., Taffarel, S. R., Espinosa-Fuentes, E., Oliveira, M. L. S., Saikia, B. K., & Oliveira, L. F. S. (2019). Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers. Journal of Cleaner Production, 208, 297–306.

    CAS  Google Scholar 

  • Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.

    CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2009). An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials, 171(1–3), 54–60.

    CAS  Google Scholar 

  • Franco, D. S. P., Georgin, J., Drumm, F. C., Netto, M. S., Allasia, D., Oliveira, M. L. S., & Dotto, G. L. (2020). Araticum (Annona crassiflora) seed powder (ASP) for the treatment of colored effluents by biosorption. Environmental Science and Pollution Research, 27(10), 11184–11194.

    CAS  Google Scholar 

  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift Für Physikalische Chemie, 57(1), 385–470.

    CAS  Google Scholar 

  • Georgin, J., Franco, D. S. P., Netto, M. S., Allasia, D., Oliveira, M. L. S., & Dotto, G. L. (2020). Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environmental Science and Pollution Research, 1–13.

  • Georgin, J., Marques, B. S., Peres, E. C., Allasia, D., & Dotto, G. L. (2018). Biosorption of cationic dyes by Pará chestnut husk (Bertholletia excelsa). Water Science and Technology, 77(6), 1612–1621.

    CAS  Google Scholar 

  • Gerola, G. P., Boas, N. V., Caetano, J., Tarley, C. R. T., Gonçalves, A. C., & Dragunski, D. C. (2013). Utilization of passion fruit skin by-product as lead (II) ion biosorbent. Water, Air, & Soil Pollution, 224(2), 1446.

    Google Scholar 

  • Ho, Y.-S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    CAS  Google Scholar 

  • Jawad, A. H., Kadhum, A. M., & Ngoh, Y. S. (2018). Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: Kinetics, equilibrium and thermodynamics studies. Desalination and Water Treatment, 109, 231–240.

    CAS  Google Scholar 

  • Juchen, P. T., Piffer, H. H., Veit, M. T., da Cunha Gonçalves, G., Palácio, S. M., & Zanette, J. C. (2018). Biosorption of reactive blue BF-5G dye by malt bagasse: Kinetic and equilibrium studies. Journal of Environmental Chemical Engineering, 6(6), 7111–7118. https://doi.org/10.1016/j.jece.2018.11.009

    Article  CAS  Google Scholar 

  • Kariuki, Z., Kiptoo, J., & Onyancha, D. (2017). Biosorption studies of lead and copper using rogers mushroom biomass ‘Lepiota hystrix.’ South African Journal of Chemical Engineering, 23, 62–70.

    Google Scholar 

  • Khadir, A., Negarestani, M., & Ghiasinejad, H. (2020). Low-cost sisal fibers/polypyrrole/polyaniline biosorbent for sequestration of reactive orange 5 from aqueous solutions. Journal of Environmental Chemical Engineering, 8(4), 103956. https://doi.org/10.1016/j.jece.2020.103956

  • Kilic, M., Apaydin-Varol, E., & Pütün, A. E. (2011). Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 189(1–2), 397–403.

    CAS  Google Scholar 

  • Kumara, P. S., Joshibaa, G. J., Feminaa, C. C., Varshinia, P., Priyadharshinia, S., Karthicka, M. A., & Jothiranib, R. (2019). A critical review on recent developments in the low-cost adsorption of dyes from wastewater. Desalination and Water Treatment, 172, 395–416.

    Google Scholar 

  • Kwak, J.-H., Islam, M. S., Wang, S., Messele, S. A., Naeth, M. A., El-Din, M. G., & Chang, S. X. (2019). Biochar properties and lead (II) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 231, 393–404.

    CAS  Google Scholar 

  • Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven Vetenskapsakad Handingarl, 24, 1–39.

    Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids Part I. Solids. Journal of the American chemical society, 38(11), 2221–2295.

    CAS  Google Scholar 

  • Lin, S.-H., & Juang, R.-S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), 315–326.

    CAS  Google Scholar 

  • Mateo-Sagasta, J., Zadeh, S. M., Turral, H., & Burke, J. (2017). Water pollution from agriculture: A global review. Executive summary. Rome, Italy: FAO Colombo, Sri Lanka: International Water Management ….

  • Meili, L., Lins, P. V. S., Costa, M. T., Almeida, R. L., Abud, A. K. S., Soletti, J. I., ... Carvalho, S. H. V. (2019). Adsorption of methylene blue on agroindustrial wastes: Experimental investigation and phenomenological modelling. Progress in biophysics and molecular biology, 141, 60-71

  • Mohamed, M. A., Salleh, W. N. W., Jaafar, J., Ismail, A. F., Abd Mutalib, M., Mohamad, A. B., ... Hir, Z. A. M. (2017). Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra. Carbohydrate Polymers, 157, 1892-1902

  • Mohtar, S. S., Busu, T. N. Z. T. M., Noor, A. M. M., Shaari, N., Yusoff, N. A., Bustam, M. A., ... Mat, H. B. (2015). Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresource Technology, 192, 212-218

  • Mokhtar, N., Aziz, E. A., Aris, A., Ishak, W. F. W., & Mohd Ali, N. S. (2017). Biosorption of azo-dye using marine macro-alga of Euchema Spinosum. Journal of Environmental Chemical Engineering, 5(6), 5721–5731. https://doi.org/10.1016/j.jece.2017.10.043

    Article  CAS  Google Scholar 

  • Morton, J. F. (1987). Fruits of warm climates. JF Morton.

  • Novais, R. M., Ascensao, G., Tobaldi, D. M., Seabra, M. P., & Labrincha, J. A. (2018). Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters. Journal of Cleaner Production, 171, 783–794.

    CAS  Google Scholar 

  • Pérez-Morales, J. M., Sánchez-Galván, G., & Olguín, E. J. (2019). Continuous dye adsorption and desorption on an invasive macrophyte (Salvinia minima). Environmental Science and Pollution Research, 26(6), 5955–5970.

    Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: A review. Journal of Hazardous Materials, 177(1–3), 70–80.

    CAS  Google Scholar 

  • Ramrakhiani, L., Ghosh, S., & Majumdar, S. (2016). Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: A review. Applied Biochemistry and Biotechnology, 180(1), 41–78.

    CAS  Google Scholar 

  • Rangabhashiyam, S., Lata, S., & Balasubramanian, P. (2018). Biosorption characteristics of methylene blue and malachite green from simulated wastewater onto Carica papaya wood biosorbent. Surfaces and Interfaces, 10, 197–215.

    CAS  Google Scholar 

  • Regalbuto, J. R., & Robles, J. (2004). The engineering of Pt/carbon catalyst preparation. University of Illinois, Chicago, 1, 1–14.

    Google Scholar 

  • Richardson, S. D., & Ternes, T. A. (2018). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 90(1), 398–428. https://doi.org/10.1021/acs.analchem.7b04577

    Article  CAS  Google Scholar 

  • Rojo, E., Alonso, M. V., Domínguez, J. C., Saz‐Orozco, B. D., Oliet, M., & Rodriguez, F. (2013). Alkali treatment of viscose cellulosic fibers from eucalyptus wood: structural, morphological, and thermal analysis. Journal of Applied Polymer Science, 130(3), 2198–2204.

  • Rudzinski, W., & Plazinski, W. (2007). Studies of the kinetics of solute adsorption at solid/solution interfaces: On the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics. The Journal of Physical Chemistry C, 111(41), 15100–15110.

    CAS  Google Scholar 

  • Sadaf, S., & Bhatti, H. N. (2014). Batch and fixed bed column studies for the removal of Indosol Yellow BG dye by peanut husk. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 541–553.

    CAS  Google Scholar 

  • Schwanninger, M., Rodrigues, J. C., & Fackler, K. (2011). A review of band assignments in near infrared spectra of wood and wood components. Journal of near Infrared Spectroscopy, 19(5), 287–308.

    CAS  Google Scholar 

  • Sellaoui, L., Hessou, E. P., Badawi, M., Netto, M. S., Dotto, G. L., Silva, L. F. O., ... Chen, Z. (2021a). Trapping of Ag+, Cu2+, and Co2+ by faujasite zeolite Y: New interpretations of the adsorption mechanism via DFT and statistical modeling investigation. Chemical Engineering Journal, 420, 127712.

  • Sellaoui, L., Yazidi, A., Ali, J., Dotto, G. L., Bonilla-Petriciolet, A., Oliveira, L. F. S., & Chen, Z. (2021b). Theoretical study and analysis of o-nitrophenol adsorption using layered double hydroxides containing Ca-Al, Ni-Al and Zn-Al. Environmental Science and Pollution Research, 28(32), 44547–44556. https://doi.org/10.1007/s11356-021-13882-x

  • Shanmugarajah, B., Chew, I. M., Mubarak, N. M., Choong, T. S., Yoo, C., & Tan, K. (2019). Valorization of palm oil agro-waste into cellulose biosorbents for highly effective textile effluent remediation. Journal of Cleaner Production, 210, 697–709.

    CAS  Google Scholar 

  • Sharma, S., Hasan, A., Kumar, N., & Pandey, L. M. (2018). Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environmental Science and Pollution Research, 25(22), 21605–21615.

    CAS  Google Scholar 

  • Silva, G. M. C., da Silva, M. P. S., Biazatti, M. A., dos Santos, P. C., da Silva, N. M., & Mizobutsi, G. P. (2016). Uso do 1-MCP e atmosfera modificada na pós-colheita de atemoia ‘Gefner.’ Revista Brasileira De Ciências Agrárias, 11(2), 67–72.

    Google Scholar 

  • Silva, N. F., Netto, M. S., Silva, L. F. O., Mallmann, E. S., Lima, E. C., Ferrari, V., & Dotto, G. L. (2021). Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol. Journal of Environmental Chemical Engineering, 9(4), 105421. https://doi.org/10.1016/j.jece.2021.105421

  • Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes–A review. International Biodeterioration & Biodegradation, 104, 21–31.

    CAS  Google Scholar 

  • Sivakumar, R., Renganathan, P. S., Helan, H. M., & Rajachandrasekar, T. (2019). Removal of copper ion from aqueous solution using seeds of sugar apple (Annona squamosa L.).

  • Smoczyński, L., Pierożyński, B., & Mikołajczyk, T. (2020). The effect of temperature on the biosorption of dyes from aqueous solutions. Processes, 8(6), 636.

    Google Scholar 

  • Temkin, M., & Pyzhev, V. (1940). Kinetics of the synthesis of ammonia on promoted iron catalysts. Jour Phys Chem (USSR), 13, 851–867.

    Google Scholar 

  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of The Total Environment, 717, 137222

  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116.

    CAS  Google Scholar 

  • Tsai, W.-T., Hsu, C.-H., & Lin, Y.-Q. (2019). Highly porous and nutrients-rich biochar derived from dairy cattle manure and its potential for removal of cationic compound from water. Agriculture, 9(6), 114.

    Google Scholar 

  • Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., & Mohan, D. (2016). Kinetics, thermodynamics and mechanistic studies of carbofuran removal using biochars from tea waste and rice husks. Chemosphere, 150, 781–789.

    CAS  Google Scholar 

  • Venceslau, A.F.A.; Mendonça, A.C.; Benedick, L.A.Z.; Thomasi, S.S.; Nunes, C.A.; Pinto, L.M.A. (2021). Analysis of the chemical constituents of Thompson atemoya seed oil. Revista Brasileira de Fruticultura, 43(6)

  • Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.

    Google Scholar 

  • Xia, S., Zhang, L., Pan, G., Qian, P., & Ni, Z. (2015). Photocatalytic degradation of methylene blue with a nanocomposite system: synthesis, photocatalysis and degradation pathways. Physical Chemistry Chemical Physics, 17(7), 5345–5351.

  • Yanishpolskii, V. V., Skubiszewska-Zieba, J., Leboda, R., Tertykh, V. A., & Klischar, I. V. (2000). Methylene Blue Sorption Equilibria on Hydroxylated Silica Surfaces as Well as on Carbon–Silica Adsorbents (Carbosils). Adsorption Science & Technology, 18(2), 83–95.

  • Yamil, L. d. O., Georgin, J., Franco, D. S. P., Netto, M. S., Foletto, E. L., Piccilli, D. G. A., ... Dotto, G. L. (2020). Transforming pods of the species Capparis flexuosa into effective biosorbent to remove blue methylene and bright blue in discontinuous and continuous systems. Environmental Science and Pollution Research, 1–14.

Download references

Acknowledgements

The authors would like to thank the Laboratory of Electronic Microscopy and Ultrastructural Analysis of the Federal University of Lavras and Finep, Fapemig, CNPq, and Capes for supplying the equipment and technical support for the experiments involving electron microscopy, as well as the Chemical Analysis and Prospection Center (CAPQ/UFLA).

Funding

This study was supported in part by the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Finance Code 001 and Institutional Scientific Initiation Scholarship Program – PIBIC/UFLA.

Author information

Authors and Affiliations

Authors

Contributions

Adneia de Fátima Abreu Venceslau: conceptualization, methodology, validation, investigation, writing—original draft, writing—review and editing.

Andressa Campos Mendonça: methodology, validation, investigation, formal analysis, writing—review and editing.

Lucas Bragança Carvalho: conceptualization, validation, formal analysis, writing—review and editing.

Guilherme Max Dias Ferreira: formal analysis, writing—review and editing.

Sergio Scherrer Thomasi: conceptualization, resources.

Luciana Matos Alves Pinto: conceptualization, resources, writing—review and editing, supervision.

Corresponding author

Correspondence to Luciana Matos Alves Pinto.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1.27 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venceslau, A.d.A., Mendonça, A.C., Carvalho, L.B. et al. Removal of Methylene Blue from an Aqueous Medium Using Atemoya Peel as a Low-cost Adsorbent. Water Air Soil Pollut 232, 455 (2021). https://doi.org/10.1007/s11270-021-05414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05414-7

Keywords

Navigation