Skip to main content
Log in

Dictionary Learning-Based Image Reconstruction for Terahertz Computed Tomography

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Terahertz computed tomography (THz CT) demonstrates its advantages in aspects of nonmetallic and nonpolar materials penetration, 3D internal structure visualization, etc. To perform satisfied reconstruction results, it is necessary to obtain complete measurements from many different views. However, this process is time-consuming and we usually obtain incomplete projections for THz CT in practice, which generates artifacts in the final reconstructed images. To address this issue, dictionary learning-based THz CT reconstruction (DLTR) model is proposed in this study. Especially, the image patches are extracted from other state-of-the-art reconstructed images to train the initial dictionary by using the K-SVD algorithm. Then, the dictionary can be adaptively updated during THz CT reconstruction. Finally, the updated dictionary is used for further updating reconstructed images. In order to verify the accuracy and quality of DLTR method, the filtered back-projection (FBP), simultaneous algebraic reconstruction technique (SART), and total variation (TV) reconstruction are chosen as comparisons. The experiment results show that the DLTR method has a good capability for noise suppression and structures preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Joseph, C.S., et al., Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging. J Biophotonics, 2014. 7(5): p. 295-303.

    Article  Google Scholar 

  2. Ji, Y.B., et al., Terahertz reflectometry imaging for low and high grade gliomas. Sci Rep, 2016. 6: p. 36040.

    Article  Google Scholar 

  3. Chernomyrdin, N.V., et al., Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues. Applied Physics Letters, 2018. 113(11): p. 111102.

  4. Chernomyrdin, N.V., et al., Reflection-mode continuous-wave 0.15λ-resolution terahertz solid immersion microscopy of soft biological tissues. Applied Physics Letters, 2018. 113(11): p. 111102.

  5. Zhang, Y., et al., Continuous-Wave THz Imaging for Biomedical Samples. Applied Sciences, 2020. 11(1): p. 71.

  6. Niu, L., et al., Terahertz tomography. Terahertz Science and Technology, 2019. 12(3): p. 77-92.

    Google Scholar 

  7. Yakovlev, E.V., et al., Non-Destructive Evaluation of Polymer Composite Materials at the Manufacturing Stage Using Terahertz Pulsed Spectroscopy. IEEE Transactions on Terahertz Science and Technology, 2015. 5(5): p. 810-816.

    Article  Google Scholar 

  8. Lopato, P. and T. Chady, Terahertz detection and identification of defects in layered polymer composites and composite coatings. Nondestructive Testing and Evaluation, 2013. 28(1): p. 28-43.

    Article  Google Scholar 

  9. Amenabar, I., F. Lopez, and A. Mendikute, In Introductory Review to THz Non-Destructive Testing of Composite Mater. Journal of Infrared, Millimeter, and Terahertz Waves, 2012. 34(2): p. 152-169.

    Article  Google Scholar 

  10. Roth, D.J., et al., Terahertz computed tomography of NASA thermal protection system materials. AIP Conference Proceedings, 2012. 1430(1) p. 566-572.

  11. Genina, E.A., et al., Nondestructive monitoring of aircraft composites using terahertz radiation, in Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI; Laser Physics and Photonics XVI; and Computational Biophysics. 2015. 9448: p. 94482D.

  12. Ahi, K., S. Shahbazmohamadi, and N. Asadizanjani, Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging. Optics and Lasers in Engineering, 2018. 104: p. 274-284.

  13. Kato, M., et al., Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection. Opt Express, 2016. 24(6): p. 6425-32.

    Article  Google Scholar 

  14. Odani, N., et al., Determining the effect of photodegradation on film coated nifedipine tablets with terahertz based coating thickness measurements. Eur J Pharm Biopharm, 2019. 145: p. 35-41.

  15. Guillet, J.-P., et al., Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves. Journal of Infrared, Millimeter, and Terahertz Waves, 2017. 38(4): p. 369-379.

    Article  Google Scholar 

  16. Mikerov, M., et al., Analysis of ancient ceramics using terahertz imaging and photogrammetry. Opt Express, 2020. 28(15): p. 22255-22263.

    Article  Google Scholar 

  17. Wikner, D.A., et al., Concealed object detection using the passive THz image without its viewing, Passive and Active Millimeter-Wave Imaging XIX. International Society for Optics and Photonics, 2016, 9830: p. 98300E.

  18. Ferguson, B., et al., T-ray computed tomography. Opt Lett, 2002. 27(15): p. 1312-4.

    Article  Google Scholar 

  19. Brahm, A., et al., Volumetric spectral analysis of materials using terahertz-tomography techniques. Applied Physics B, 2010. 100(1): p. 151-158.

    Article  Google Scholar 

  20. Kato, E., et al., 3D Spectroscopic Computed Tomography Imaging Using Terahertz Waves. 35th International Conference on Infrared, Millimeter, and Terahertz Waves, 2010.

  21. Khalid, A., et al., A Planar Gunn Diode Operating Above 100 GHz. IEEE Electron Device Letters, 2007. 28(10): p. 849-851.

  22. Sun, W., X. Wang, and Y. Zhang, Continuous wave terahertz phase imaging with three-step phase-shifting. Optik, 2013. 124(22): p. 5533-5536.

    Article  Google Scholar 

  23. Suga, M., et al., THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept. Opt Express, 2013. 21(21): p. 25389-402.

    Article  Google Scholar 

  24. Rothbart, N., et al., Fast 2-D and 3-D Terahertz Imaging With a Quantum-Cascade Laser and a Scanning Mirror. IEEE Transactions on Terahertz Science and Technology, 2013. 3(5): p. 617-624.

  25. Mohr, T., A. Herdt, and W. Elsasser, 2D tomographic terahertz imaging using a single pixel detector. Opt Express, 2018. 26(3): p. 3353-3367.

    Article  Google Scholar 

  26. Abraham, E., et al., Refraction losses in terahertz computed tomography. Optics Communications, 2010. 283(10): p. 2050-2055.

    Article  Google Scholar 

  27. Brahm, A., et al., Optical Effects at projection measurements for Terahertz tomography. Optics & Laser Technology, 2014. 62: p. 49-57.

    Article  Google Scholar 

  28. Recur, B., et al., Investigation on reconstruction methods applied to 3D terahertz computed tomography. Opt Express, 2011. 19(6): p. 5105-17.

    Article  Google Scholar 

  29. Recur, B., et al., Propagation beam consideration for 3D THz computed tomography. Opt Express, 2012. 20(6): p. 5817-29.

    Article  Google Scholar 

  30. Recur, B., et al., Ordered subsets convex algorithm for 3D terahertz transmission tomography. Opt Express, 2014. 22(19): p. 23299-309.

    Article  Google Scholar 

  31. Tepe, J., T. Schuster, and B. Littau, A modified algebraic reconstruction technique taking refraction into account with an application in terahertz tomography. Inverse Problems in Science and Engineering, 2017. 25(10): p. 1448-1473.

    Article  MathSciNet  Google Scholar 

  32. Wang, S., et al., Low-dose spectral CT reconstruction based on image-gradient L0-norm and adaptive spectral PICCS. Phys Med Biol, 2020. 65(24): p. 245005.

    Article  Google Scholar 

  33. Wu, W., et al., Stabilizing Deep Tomographic Reconstruction Networks. arXiv preprint arXiv:2008.01846, 2020.

  34. Wu, W., et al., Deep Learning based Spectral CT Imaging. arXiv preprint arXiv:2008.13570, 2020.

  35. Wu, W., et al., DRONE: Dual-domain residual-based optimization NEtwork for sparse-view CT reconstruction. IEEE Transactions on Medical Imaging, 2021.

  36. Sidky, E.Y. and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys Med Biol, 2008. 53(17): p. 4777-807.

  37. Zhang, Y., et al., Few-view image reconstruction with fractional-order total variation. J Opt Soc Am A Opt Image Sci Vis, 2014. 31(5): p. 981-95.

  38. Liu, Y., et al., Total variation-stokes strategy for sparse-view X-ray CT image reconstruction. IEEE Trans Med Imaging, 2014. 33(3): p. 749-63.

    Article  Google Scholar 

  39. Elad, M. and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process, 2006. 15(12): p. 3736-45.

    Article  MathSciNet  Google Scholar 

  40. Chen, Y., X. Ye, and F. Huang, A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010. 4(2): p. 223-240.

    Article  MathSciNet  Google Scholar 

  41. Ravishankar, S. and Y. Bresler, MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging, 2011. 30(5): p. 1028-41.

    Article  Google Scholar 

  42. Xu, Q., et al., Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging, 2012. 31(9): p. 1682-97.

    Article  Google Scholar 

  43. Chen, Y., et al., Artifact suppressed dictionary learning for low-dose CT image processing. IEEE Trans Med Imaging, 2014. 33(12): p. 2271-92.

    Article  Google Scholar 

  44. Xu, M., et al., Limited angle X ray CT Reconstruction using Image Gradient ℓ0 norm with Dictionary Learning. IEEE Transactions on Radiation and Plasma Medical Sciences, 2020, 5(1): p. 78-87.

  45. Wu, W., et al., Image-domain Material Decomposition for Spectral CT using a Generalized Dictionary Learning. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021. 5(4): p. 537-547.

  46. Wu, W.W., et al., Low-dose spectral CT reconstruction using image gradient l(0)-norm and tensor dictionary. Applied Mathematical Modelling, 2018. 63: p. 538-557.

  47. Wang, S., et al., Spectral-Image Decomposition With Energy-Fusion Sensing for Spectral CT Reconstruction. IEEE Transactions on Instrumentation and Measurement, 2021. 70: p. 1-11.

    Google Scholar 

  48. Wu, W., et al., Spatial-spectral cube matching frame for spectral CT reconstruction. inverse problems, 2018. 34(10): p. 104003.

  49. Mallat, S.G. and Z. Zhifeng, Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993. 41(12): p. 3397-3415.

    Article  Google Scholar 

  50. Chen, S., S.A. Billings, and W. Luo, Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 1989. 50(5): p. 1873-1896.

    Article  MathSciNet  Google Scholar 

  51. Aharon, M., M. Elad, and A. Bruckstein, K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Transactions on Signal Processing, 2006. 54(11): p. 4311-4322.

    Article  Google Scholar 

  52. Lu, C., J. Shi, and J. Jia, Online Robust Dictionary Learning, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013. p. 415-422.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwen Wu or Fenglin Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Niu, L., Wu, W. et al. Dictionary Learning-Based Image Reconstruction for Terahertz Computed Tomography. J Infrared Milli Terahz Waves 42, 829–842 (2021). https://doi.org/10.1007/s10762-021-00806-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00806-6

Keywords

Navigation