The 2023 MDPI Annual Report has
been released!
 
29 pages, 4161 KiB  
Article
Adaptive Low-Rank Tensor Estimation Model Based Multichannel Weak Fault Detection for Bearings
by Huiming Jiang, Yue Wu, Jing Yuan, Qian Zhao and Jin Chen
Sensors 2024, 24(12), 3762; https://doi.org/10.3390/s24123762 (registering DOI) - 9 Jun 2024
Abstract
Abstract: Multichannel signals contain an abundance of fault characteristic information on equipment and show greater potential for weak fault characteristics extraction and early fault detection. However, how to effectively utilize the advantages of multichannel signals with their information richness while eliminating interference components [...] Read more.
Abstract: Multichannel signals contain an abundance of fault characteristic information on equipment and show greater potential for weak fault characteristics extraction and early fault detection. However, how to effectively utilize the advantages of multichannel signals with their information richness while eliminating interference components caused by strong background noise and information redundancy to achieve accurate extraction of fault characteristics is still challenging for mechanical fault diagnosis based on multichannel signals. To address this issue, an effective weak fault detection framework for multichannel signals is proposed in this paper. Firstly, the advantages of a tensor on characterizing fault information were displayed, and the low-rank property of multichannel fault signals in a tensor domain is revealed through tensor singular value decomposition. Secondly, to tackle weak fault characteristics extraction from multichannel signals under strong background noise, an adaptive threshold function is introduced, and an adaptive low-rank tensor estimation model is constructed. Thirdly, to further improve the accurate estimation of weak fault characteristics from multichannel signals, a new sparsity metric-oriented parameter optimization strategy is provided for the adaptive low-rank tensor estimation model. Finally, an effective multichannel weak fault detection framework is formed for rolling bearings. Multichannel data from the repeatable simulation, the publicly available XJTU-SY whole lifetime datasets and an accelerated fatigue test of rolling bearings are used to validate the effectiveness and practicality of the proposed method. Excellent results are obtained in multichannel weak fault detection with strong background noise, especially for early fault detection. Full article
(This article belongs to the Special Issue Sensors in Civil Structural Health Monitoring)
20 pages, 692 KiB  
Review
circRNAs in Endometrial Cancer—A Promising Biomarker: State of the Art
by Karolina Włodarczyk, Weronika Kuryło, Anna Pawłowska-Łachut, Wiktoria Skiba, Dorota Suszczyk, Paulina Pieniądz, Małgorzata Majewska, Ewa Boniewska-Bernacka and Iwona Wertel
Int. J. Mol. Sci. 2024, 25(12), 6387; https://doi.org/10.3390/ijms25126387 (registering DOI) - 9 Jun 2024
Abstract
Endometrial cancer (EC) is one of the most common malignant tumors among women in the 21st century, whose mortality rate is increasing every year. Currently, the diagnosis of EC is possible only after a biopsy. However, it is necessary to find a new [...] Read more.
Endometrial cancer (EC) is one of the most common malignant tumors among women in the 21st century, whose mortality rate is increasing every year. Currently, the diagnosis of EC is possible only after a biopsy. However, it is necessary to find a new biomarker that will help in both the diagnosis and treatment of EC in a non-invasive way. Circular RNAs (circRNAs) are small, covalently closed spherical and stable long non-coding RNAs (lncRNAs) molecules, which are abundant in both body fluids and human tissues and are expressed in various ways. Considering the new molecular classification of EC, many studies have appeared, describing new insights into the functions and mechanisms of circRNAs in EC. In this review article, we focused on the problem of EC and the molecular aspects of its division, as well as the biogenesis, functions, and diagnostic and clinical significance of circRNAs in EC. Full article
(This article belongs to the Special Issue Epigenetic Genes, Biomarkers and Immunotherapy in Cancers)
Show Figures

Figure 1

20 pages, 20632 KiB  
Article
An Iterative 3D Correction plus 2D Inversion Procedure to Remove 3D Effects from 2D ERT Data along Embankments
by Azadeh Hojat
Sensors 2024, 24(12), 3759; https://doi.org/10.3390/s24123759 (registering DOI) - 9 Jun 2024
Abstract
This paper addresses the problem of removing 3D effects as one of the most challenging problems related to 2D electrical resistivity tomography (ERT) monitoring of embankment structures. When processing 2D ERT monitoring data measured along linear profiles, it is fundamental to estimate and [...] Read more.
This paper addresses the problem of removing 3D effects as one of the most challenging problems related to 2D electrical resistivity tomography (ERT) monitoring of embankment structures. When processing 2D ERT monitoring data measured along linear profiles, it is fundamental to estimate and correct the distortions introduced by the non-uniform 3D geometry of the embankment. Here, I adopt an iterative 3D correction plus 2D inversion procedure to correct the 3D effects and I test the validity of the proposed algorithm using both synthetic and real data. The modelled embankment is inspired by a critical section of the Parma River levee in Colorno (PR), Italy, where a permanent ERT monitoring system has been in operation since November 2018. For each model of the embankment, reference synthetic data were produced in Res2dmod and Res3dmod for the corresponding 2D and 3D models. Using the reference synthetic data, reference 3D effects were calculated to be compared with 3D effects estimated by the proposed algorithm at each iteration. The results of the synthetic tests showed that even in the absence of a priori information, the proposed algorithm for correcting 3D effects converges rapidly to ideal corrections. Having validated the proposed algorithm through synthetic tests, the method was applied to the ERT monitoring data in the study site to remove 3D effects. Two real datasets from the study site, taken after dry and rainy periods, are discussed here. The results showed that 3D effects cause about ±50% changes in the inverted resistivity images for both periods. This is a critical artifact considering that the final objective of ERT monitoring data for such studies is to produce water content maps to be integrated in alarm systems for hydrogeological risk mitigation. The proposed algorithm to remove 3D effects is thus a rapid and validated solution to satisfy near-real-time data processing and to produce reliable results. Full article
(This article belongs to the Special Issue Novel Sensing Technologies for Environmental Monitoring and Detection)
Show Figures

Figure 1

15 pages, 1365 KiB  
Review
Alternative Access for TAVR: Choosing the Right Pathway
by Katherine Lutz, Karla M. Asturias, Jasmine Garg, Abhushan Poudyal, Gurion Lantz, Harsh Golwala, Julie Doberne, Amani Politano, Howard K. Song and Firas Zahr
J. Clin. Med. 2024, 13(12), 3386; https://doi.org/10.3390/jcm13123386 (registering DOI) - 9 Jun 2024
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as an alternative treatment option for patients with severe aortic stenosis regardless of surgical risk, particularly in those with a high and prohibitive risk. Since the advent of TAVR, transfemoral access has been the standard of [...] Read more.
Transcatheter aortic valve replacement (TAVR) has emerged as an alternative treatment option for patients with severe aortic stenosis regardless of surgical risk, particularly in those with a high and prohibitive risk. Since the advent of TAVR, transfemoral access has been the standard of care. However, given comorbidities and anatomical limitations, a proportion of patients are not good candidates for a transfemoral approach. Alternative access, including transapical, transaortic, transaxillary, transsubclavian, transcarotid, and transcaval, can be considered. Each alternative access has advantages and disadvantages, so the vascular route should be tailored to the patient’s characteristics. However, there is no standardized algorithm when choosing the optimal alternative vascular access. In this review, we analyzed the evolution and current evidence for the most common alternative access for TAVR and proposed an algorithm for choosing the optimal vascular access in this patient population. Full article
Show Figures

Figure 1

32 pages, 1718 KiB  
Article
Analytical Investigation of Thermal Radiation Effects on Electroosmotic Propulsion of Electrically Conducting Ionic Nanofluid with Single-Walled Carbon Nanotube Interaction in Ciliated Channels
by Junaid Mehboob, Rahmat Ellahi and Sadiq Mohammad Sait
Symmetry 2024, 16(6), 717; https://doi.org/10.3390/sym16060717 (registering DOI) - 9 Jun 2024
Abstract
This study examines the behavior of single-walled carbon nanotubes (SWCNTs) suspended in a water-based ionic solution, driven by the combined mechanisms of electroosmosis and peristalsis through ciliated media. The inclusion of nanoparticles in ionic fluid expands the range of potential applications and allows [...] Read more.
This study examines the behavior of single-walled carbon nanotubes (SWCNTs) suspended in a water-based ionic solution, driven by the combined mechanisms of electroosmosis and peristalsis through ciliated media. The inclusion of nanoparticles in ionic fluid expands the range of potential applications and allows for the tailoring of properties to suit specific needs. This interaction between ionic fluids and nanomaterials results in advancements in various fields, including energy storage, electronics, biomedical engineering, and environmental remediation. The analysis investigates the influence of a transverse magnetic field, thermal radiation, and mixed convection acting on the channel walls. The novel physical outcomes include enhanced propulsion efficiency due to SWCNTs, understanding the influence of thermal radiation on fluid behavior and heat exchange, elucidation of the interactions between SWCNTs and the nanofluid, and recognizing implications for microfluidics and biomedical engineering. The Poisson–Boltzmann ionic distribution is linearized using the modified Debye–Hückel approximation. By employing real-world approximations, the governing equations are simplified using long-wavelength and low-Reynolds-number approximation. Conducting sensitivity analyses or exploring the impact of higher-order corrections on the model’s predictions in recent literature might alter the results significantly. This acknowledges the complexities of the modeling process and sets the groundwork for further enhancement and investigation. The resulting nonlinear system of equations is solved through regular perturbation techniques, and graphical representations showcase the variation in significant physical parameters. This study also discusses pumping and trapping phenomena in the context of relevant parameters. Full article
(This article belongs to the Section Mathematics)
19 pages, 2074 KiB  
Article
A Multi-Scale Natural Scene Text Detection Method Based on Attention Feature Extraction and Cascade Feature Fusion
by Nianfeng Li, Zhenyan Wang, Yongyuan Huang, Jia Tian, Xinyuan Li and Zhiguo Xiao
Sensors 2024, 24(12), 3758; https://doi.org/10.3390/s24123758 (registering DOI) - 9 Jun 2024
Abstract
Scene text detection is an important research field in computer vision, playing a crucial role in various application scenarios. However, existing scene text detection methods often fail to achieve satisfactory results when faced with text instances of different sizes, shapes, and complex backgrounds. [...] Read more.
Scene text detection is an important research field in computer vision, playing a crucial role in various application scenarios. However, existing scene text detection methods often fail to achieve satisfactory results when faced with text instances of different sizes, shapes, and complex backgrounds. To address the challenge of detecting diverse texts in natural scenes, this paper proposes a multi-scale natural scene text detection method based on attention feature extraction and cascaded feature fusion. This method combines global and local attention through an improved attention feature fusion module (DSAF) to capture text features of different scales, enhancing the network’s perception of text regions and improving its feature extraction capabilities. Simultaneously, an improved cascaded feature fusion module (PFFM) is used to fully integrate the extracted feature maps, expanding the receptive field of features and enriching the expressive ability of the feature maps. Finally, to address the cascaded feature maps, a lightweight subspace attention module (SAM) is introduced to partition the concatenated feature maps into several sub-space feature maps, facilitating spatial information interaction among features of different scales. In this paper, comparative experiments are conducted on the ICDAR2015, Total-Text, and MSRA-TD500 datasets, and comparisons are made with some existing scene text detection methods. The results show that the proposed method achieves good performance in terms of accuracy, recall, and F-score, thus verifying its effectiveness and practicality. Full article
(This article belongs to the Special Issue Computer Vision and Virtual Reality: Technologies and Applications)
13 pages, 1121 KiB  
Article
Biodegradation Mechanism of Polystyrene by Mealworms (Tenebrio molitor) and Nutrients Influencing Their Growth
by Hisayuki Nakatani, Yuto Yamaura, Yuma Mizuno, Suguru Motokucho, Anh Thi Ngoc Dao and Hiroyuki Nakahara
Polymers 2024, 16(12), 1632; https://doi.org/10.3390/polym16121632 (registering DOI) - 9 Jun 2024
Abstract
A degradation mechanism of polystyrene (PS) in mealworms reared on expanded PS (EPS) was investigated by its decrease in molecular weight and change in chemical structure. A 33% decrease in molecular weight was observed for the digested PS in the frass after 1 [...] Read more.
A degradation mechanism of polystyrene (PS) in mealworms reared on expanded PS (EPS) was investigated by its decrease in molecular weight and change in chemical structure. A 33% decrease in molecular weight was observed for the digested PS in the frass after 1 week of feeding to mealworms. The FT-IR and py-GC/MS spectra of the digested PS showed radical oxidative reactions taking place in the mealworm body. The presence of hydroperoxide, alcohol and phenol groups was confirmed, and dimer fragments of styrene with quinone and phenol groups were obtained. The decrease in molecular weight and the alternation of benzene rings indicated that autoxidation and quinonization via phenolic intermediates occurred simultaneously in the mealworm body. The survival rate of mealworms reared on EPS was higher than that of starved worms, indicating that EPS was a nutrient source. However, no weight gain was observed in mealworms fed EPS alone. Comparison with the mixed diets with bran or urethane foams (PU) indicated that protein, phosphorus and magnesium components absent from EPS were required for mealworm growth. Full article
13 pages, 2449 KiB  
Article
Incidence of Carotid Blowout Syndrome in Patients with Head and Neck Cancer after Radiation Therapy: A Cohort Study
by Jian-Lin Jiang, Joseph Tung-Chieh Chang, Chih-Hua Yeh, Ting-Yu Chang, Bing-Shen Huang, Pi-Shan Sung, Chien-Yu Lin, Kang-Hsing Fan, Yi-Chia Wei and Chi-Hung Liu
Diagnostics 2024, 14(12), 1222; https://doi.org/10.3390/diagnostics14121222 (registering DOI) - 9 Jun 2024
Abstract
Carotid blowout syndrome (CBS) is a rare yet life-threatening complication that occurs after radiation therapy (RT). This study aimed to determine the incidence of CBS in patients with head and neck cancer (HNC) undergoing contemporary RT and to explore potential discrepancies in the [...] Read more.
Carotid blowout syndrome (CBS) is a rare yet life-threatening complication that occurs after radiation therapy (RT). This study aimed to determine the incidence of CBS in patients with head and neck cancer (HNC) undergoing contemporary RT and to explore potential discrepancies in the risk of CBS between nasopharyngeal cancer (NPC) and non-NPC patients. A total of 1084 patients with HNC who underwent RT between 2013 and 2023 were included in the study. All patients were under regular follow-ups at the radio-oncology department, and underwent annual contrast-enhanced computed tomography and/or magnetic resonance imaging for cancer recurrence surveillance. Experienced neuroradiologists and vascular neurologists reviewed the recruited patients’ images. Patients were further referred to the neurology department for radiation vasculopathy evaluation. The primary outcome of this study was CBS. Patients were categorized into NPC and non-NPC groups and survival analysis was employed to compare the CBS risk between the two groups. A review of the literature on CBS incidence was also conducted. Among the enrolled patients, the incidence of CBS in the HNC, NPC, and non-NPC groups was 0.8%, 0.9%, and 0.7%, respectively. Kaplan–Meier analysis revealed no significant difference between the NPC and non-NPC groups (p = 0.34). Combining the findings for our cohort with those of previous studies revealed that the cumulative incidence of CBS in patients with HNC is 5% (95% CI = 3–7%) after both surgery and RT, 4% (95% CI = 2–6%) after surgery alone, and 5% (95% CI = 3–7%) after RT alone. Our findings indicate a low incidence of CBS in patients with HNC undergoing contemporary RT. Patients with NPC may have a CBS risk close to that of non-NPC patients. However, the low incidence of CBS could be a potentially cause of selection bias and underestimation bias. Full article
(This article belongs to the Special Issue Clinical Diagnosis of Otorhinolaryngology)
Show Figures

Figure 1

13 pages, 2983 KiB  
Article
Structure and Dynamics of Drk-SH2 Domain and Its Site-Specific Interaction with Sev Receptor Tyrosine Kinase
by Pooppadi Maxin Sayeesh, Mayumi Iguchi, Kohsuke Inomata, Teppei Ikeya and Yutaka Ito
Int. J. Mol. Sci. 2024, 25(12), 6386; https://doi.org/10.3390/ijms25126386 (registering DOI) - 9 Jun 2024
Abstract
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the [...] Read more.
The Drosophila downstream receptor kinase (Drk), a homologue of human GRB2, participates in the signal transduction from the extracellular to the intracellular environment. Drk receives signals through the interaction of its Src homology 2 (SH2) domain with the phosphorylated tyrosine residue in the receptor tyrosine kinases (RTKs). Here, we present the solution NMR structure of the SH2 domain of Drk (Drk-SH2), which was determined in the presence of a phosphotyrosine (pY)-containing peptide derived from a receptor tyrosine kinase, Sevenless (Sev). The solution structure of Drk-SH2 possess a common SH2 domain architecture, consisting of three β strands imposed between two α helices. Additionally, we interpret the site-specific interactions of the Drk-SH2 domain with the pY-containing peptide through NMR titration experiments. The dynamics of Drk-SH2 were also analysed through NMR-relaxation experiments as well as the molecular dynamic simulation. The docking simulations of the pY-containing peptide onto the protein surface of Drk-SH2 provided the orientation of the peptide, which showed a good agreement with the analysis of the SH2 domain of GRB2. Full article
(This article belongs to the Special Issue Application of NMR Spectroscopy in Biomolecules)
Show Figures

Figure 1

17 pages, 1894 KiB  
Article
Improving the Antimicrobial Potency of Berberine for Endodontic Canal Irrigation Using Polymeric Nanoparticles
by Célia Marques, Liliana Grenho, Maria Helena Fernandes and Sofia A. Costa Lima
Pharmaceutics 2024, 16(6), 786; https://doi.org/10.3390/pharmaceutics16060786 (registering DOI) - 9 Jun 2024
Abstract
To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications [...] Read more.
To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, −6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 μg/mL. Upon incorporation into PLGA nanoparticles, 20 μg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 μg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections. Full article
Show Figures

Figure 1

22 pages, 5939 KiB  
Review
Static and Dynamic Hand Gestures: A Review of Techniques of Virtual Reality Manipulation
by Oswaldo Mendoza Herbert, David Pérez-Granados, Mauricio Alberto Ortega Ruiz, Rodrigo Cadena Martínez, Carlos Alberto González Gutiérrez and Marco Antonio Zamora Antuñano
Sensors 2024, 24(12), 3760; https://doi.org/10.3390/s24123760 (registering DOI) - 9 Jun 2024
Abstract
This review explores the historical and current significance of gestures as a universal form of communication with a focus on hand gestures in virtual reality applications. It highlights the evolution of gesture detection systems from the 1990s, which used computer algorithms to find [...] Read more.
This review explores the historical and current significance of gestures as a universal form of communication with a focus on hand gestures in virtual reality applications. It highlights the evolution of gesture detection systems from the 1990s, which used computer algorithms to find patterns in static images, to the present day where advances in sensor technology, artificial intelligence, and computing power have enabled real-time gesture recognition. The paper emphasizes the role of hand gestures in virtual reality (VR), a field that creates immersive digital experiences through the Ma blending of 3D modeling, sound effects, and sensing technology. This review presents state-of-the-art hardware and software techniques used in hand gesture detection, primarily for VR applications. It discusses the challenges in hand gesture detection, classifies gestures as static and dynamic, and grades their detection difficulty. This paper also reviews the haptic devices used in VR and their advantages and challenges. It provides an overview of the process used in hand gesture acquisition, from inputs and pre-processing to pose detection, for both static and dynamic gestures. Full article
(This article belongs to the Special Issue Robotics and Haptics: Haptic Feedback for Medical Robots)
22 pages, 7164 KiB  
Article
Physical Simulation-Based Calibration for Quantitative Real-Time PCR
by Tianyu Zhu, Xin Liu and Xinqing Xiao
Appl. Sci. 2024, 14(12), 5031; https://doi.org/10.3390/app14125031 (registering DOI) - 9 Jun 2024
Abstract
The fluorescence quantitative polymerase chain reaction (qPCR) instrument has been widely used in molecular biology applications, where the reliability of the qPCR performance directly affects the accuracy of its detection results. In this paper, an integrated, physics-based calibration device was developed to improve [...] Read more.
The fluorescence quantitative polymerase chain reaction (qPCR) instrument has been widely used in molecular biology applications, where the reliability of the qPCR performance directly affects the accuracy of its detection results. In this paper, an integrated, physics-based calibration device was developed to improve the accuracy and reliability of qPCR, realizing the calibration of qPCR instruments’ standard curve through physical simulations. With this calibration device, the collected temperature was used as the control signal to alter the fluorescence output, which allowed different probes to simulate the Ct values corresponding to samples with varying initial concentrations. The temperature and optical performance of this calibration device were tested, followed by a comparative analysis comparing the on-machine test results with standard substances to assess the linearity and uniformity of the Ct values of the measured qPCR instrument. It has been proven that this physical calibration device can effectively replace the biochemical standard substance to carry out comprehensive calibration of the temperature and optical parameters of the qPCR instrument and provide a more reliable method for the periodic calibration and quality control of the qPCR instrument. This contributes to the accuracy and reliability of fluorescence qPCR instruments in the field of molecular biology. Full article
Show Figures

Figure 1

23 pages, 12307 KiB  
Article
A Spectral and Spatial Comparison of Satellite-Based Hyperspectral Data for Geological Mapping
by Rupsa Chakraborty, Imane Rachdi, Samuel Thiele, René Booysen, Moritz Kirsch, Sandra Lorenz, Richard Gloaguen and Imane Sebari
Remote Sens. 2024, 16(12), 2089; https://doi.org/10.3390/rs16122089 (registering DOI) - 9 Jun 2024
Abstract
The new generation of satellite hyperspectral (HS) sensors provides remarkable potential for regional-scale mineralogical mapping. However, as with any satellite sensor, mapping results are dependent on a typically complex correction procedure needed to remove atmospheric, topographic and geometric distortions before accurate reflectance spectra [...] Read more.
The new generation of satellite hyperspectral (HS) sensors provides remarkable potential for regional-scale mineralogical mapping. However, as with any satellite sensor, mapping results are dependent on a typically complex correction procedure needed to remove atmospheric, topographic and geometric distortions before accurate reflectance spectra can be retrieved. These are typically applied by the satellite operators but use different approaches that can yield different results. In this study, we conduct a comparative analysis of PRISMA, EnMAP, and EMIT hyperspectral satellite data, alongside airborne data acquired by the HyMap sensor, to investigate the consistency between these datasets and their suitability for geological mapping. Two sites in Namibia were selected for this comparison, the Marinkas-Quellen and Epembe carbonatite complexes, based on their geological significance, relatively good exposure, arid climate and data availability. We conducted qualitative and three different quantitative comparisons of the hyperspectral data from these sites. These included correlative comparisons of (1) the reflectance values across the visible-near infrared (VNIR) to shortwave infrared (SWIR) spectral ranges, (2) established spectral indices sensitive to minerals we expect in each of the scenes, and (3) spectral abundances estimated using linear unmixing. The results highlighted a notable shift in inter-sensor consistency between the VNIR and SWIR spectral ranges, with the VNIR range being more similar between the compared sensors than the SWIR. Our qualitative comparisons suggest that the SWIR spectra from the EnMAP and EMIT sensors are the most interpretable (show the most distinct absorption features) but that latent features (i.e., endmember abundances) from the HyMap and PRISMA sensors are consistent with geological variations. We conclude that our results reinforce the need for accurate radiometric and topographic corrections, especially for the SWIR range most commonly used for geological mapping. Full article
(This article belongs to the Topic Advances in Earth Observation and Geosciences)
14 pages, 957 KiB  
Article
Optimization Production of an Endo-β-1,4-Xylanase from Streptomyces thermocarboxydus Using Wheat Bran as Sole Carbon Source
by Thi Ngoc Tran, Chien Thang Doan, Thi Kieu Loan Dinh, Thi Hai Ninh Duong, Thi Thuc Uyen Phan, Thi Thuy Loan Le, Trung Dung Tran, Pham Hung Quang Hoang, Anh Dzung Nguyen and San-Lang Wang
Recycling 2024, 9(3), 50; https://doi.org/10.3390/recycling9030050 (registering DOI) - 9 Jun 2024
Abstract
Xylanases, key enzymes for hydrolyzing xylan, have diverse industrial applications. The bioprocessing of agricultural byproducts to produce xylanase through fermentation approaches is gaining importance due to its significant potential to reduce enzyme production costs. In this work, the productivity of Streptomyces thermocarboxydus TKU045 [...] Read more.
Xylanases, key enzymes for hydrolyzing xylan, have diverse industrial applications. The bioprocessing of agricultural byproducts to produce xylanase through fermentation approaches is gaining importance due to its significant potential to reduce enzyme production costs. In this work, the productivity of Streptomyces thermocarboxydus TKU045 xylanase was enhanced through liquid fermentation employing wheat bran as the sole carbon source. The maximum xylanase activity (25.314 ± 1.635 U/mL) was obtained using the following optima factors: 2% (w/v) wheat bran, 1.4% (w/v) KNO3, an initial pH of 9.8, an incubation temperature of 37.3 °C, and an incubation time of 2.2 days. Xylanase (Xyn_TKU045) of 43 kDa molecular weight was isolated from the culture supernatant and was biochemically characterized. Analysis through liquid chromatography with tandem mass spectrometry revealed a maximum amino acid identity of 19% with an endo-1,4-β-xylanase produced by Streptomyces lividans. Xyn_TKU045 exhibited optimal activity at pH 6, with remarkable stability within the pH range of 6.0 to 8.0. The enzyme demonstrated maximum efficiency at 60 °C and considerable stability at ≤70 °C. Mg2+, Mn2+, Ba2+, Ca2+, 2-mercaptoethanol, Tween 20, Tween 40, and Triton X-100 positively influenced Xyn_TKU045, while Zn2+, Fe2+, Fe3+, Cu2+, and sodium dodecyl sulfate exhibited adverse impact. The kinetic properties of Xyn_TKU045 were a Km of 0.628 mg/mL, a kcat of 75.075 s−1 and a kcat/Km of 119.617 mL mg−1s−1. Finally, Xyn_TKU045 could effectively catalyze birchwood xylan into xylotriose and xylobiose as the major products. Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
Show Figures

Figure 1

12 pages, 330 KiB  
Article
Medical Causes of Hospitalisation among Patients with Bronchiectasis: A Nationwide Study in Japan
by Akihiko Hagiwara, Hisayuki Shuto, Ryohei Kudoh, Shota Omori, Kazufumi Hiramatsu, Jun-ichi Kadota, Kiyohide Fushimi and Kosaku Komiya
Pathogens 2024, 13(6), 492; https://doi.org/10.3390/pathogens13060492 (registering DOI) - 9 Jun 2024
Abstract
Abstract: Purpose: Although the international guidelines for managing bronchiectasis are centred on preventing the exacerbation of bronchiectasis, the medical causes of admissions to hospital among patients with bronchiectasis have not been fully investigated. Methods: This study targeted patients with bronchiectasis who were [...] Read more.
Abstract: Purpose: Although the international guidelines for managing bronchiectasis are centred on preventing the exacerbation of bronchiectasis, the medical causes of admissions to hospital among patients with bronchiectasis have not been fully investigated. Methods: This study targeted patients with bronchiectasis who were admitted to hospitals between April 2018 and March 2020 using the national inpatient database in Japan. The causes of hospitalisation and types of antibiotics used for hospitalised patients were recorded. Results: In total, 21,300 hospitalisations of 16,723 patients with bronchiectasis were analysed. The most common cause was respiratory diseases in 15,145 (71.1%) admissions, including bacterial pneumonia and the exacerbation of bronchiectasis in 6238 (41.2%) and 3151 (20.8%), respectively. Antipseudomonal antibiotics were used in approximately 60% of patients with bacterial pneumonia who were administered antibiotic treatments and in approximately 50% of patients with the exacerbation of bronchiectasis. Conclusions: Bacterial pneumonia was the most frequent cause of hospitalisation, followed by the exacerbation of bronchiectasis, among patients with bronchiectasis. Physicians need to focus on the prevention of bacterial pneumonia in addition to the exacerbation of bronchiectasis in patients with bronchiectasis. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
33 pages, 9219 KiB  
Article
Research on Path Optimization for Collaborative UAVs and Mothership Monitoring of Air Pollution from Port Vessels
by Lixin Shen, Jie Sun and Dong Yang
Sustainability 2024, 16(12), 4948; https://doi.org/10.3390/su16124948 (registering DOI) - 9 Jun 2024
Abstract
The seriousness of vessel air pollution has forced the International Maritime Organization (IMO) to introduce a series of relevant laws and regulations. This paper proposes a monitoring scheme based on the synergistic operation of motherships and UAVs. This scheme innovatively adopts a harbor [...] Read more.
The seriousness of vessel air pollution has forced the International Maritime Organization (IMO) to introduce a series of relevant laws and regulations. This paper proposes a monitoring scheme based on the synergistic operation of motherships and UAVs. This scheme innovatively adopts a harbor sea patrol vessel or the other official vessel (mothership) as the mobile power supply base for UAVs and realizes efficient and accurate monitoring of vessel air pollution in the pre-monitored area at sea by carrying multiple UAVs. The focus of this paper is on the path optimization problem for multi-UAV collaboration with mothership (MUCWM) monitoring, where the objective is to minimize the total monitoring time for MUCWM. The following three main aspects are studied in this paper: (1) multi-UAV monitoring path optimization; (2) the collaboration mechanism between the mothership and multiple UAVs; and (3) mothership traveling path optimization. In order to effectively solve the above problems, this thesis constructs a path optimization model for multi-UAV collaborative mothership monitoring of air pollution from vessels in port waters; solves the model using the improved adaptive differential evolution (IADE) algorithm; and verifies the effectiveness of the model and the algorithm by using the position data in the Automatic Identification System (AIS) of vessels in Ningbo Zhoushan Port. Through the performance comparison and sensitivity analysis of the algorithm, it is confirmed that the algorithm can effectively solve the path planning problem of the collaborative operation between the mothership and multiple UAVs. The research results in this paper not only help to reduce the air pollution level of harbor vessels and improve the efficiency of sea cruising but also play an important supporting role in the enforcement of relevant emission regulations. Full article
Show Figures

Figure 1

16 pages, 23455 KiB  
Article
The Nucleolar Protein C1orf131 Is a Novel Gene Involved in the Progression of Lung Adenocarcinoma Cells through the AKT Signalling Pathway
by Zhili Wei, Yiming Zhao, Jing Cai and Yajun Xie
Int. J. Mol. Sci. 2024, 25(12), 6381; https://doi.org/10.3390/ijms25126381 (registering DOI) - 9 Jun 2024
Abstract
Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue [...] Read more.
Lung adenocarcinoma (LUAD) is the most widespread cancer in the world, and its development is associated with complex biological mechanisms that are poorly understood. Here, we revealed a marked upregulation in the mRNA level of C1orf131 in LUAD samples compared to non-tumor tissue samples in The Cancer Genome Atlas (TCGA). Depletion of C1orf131 suppressed cell proliferation and growth, whereas it stimulated apoptosis in LUAD cells. Mechanistic investigations revealed that C1orf131 knockdown induced cell cycle dysregulation via the AKT and p53/p21 signalling pathways. Additionally, C1orf131 knockdown blocked cell migration through the modulation of epithelial–mesenchymal transition (EMT) in lung adenocarcinoma. Notably, we identified the C1orf131 protein nucleolar localization sequence, which included amino acid residues 137–142 (KKRKLT) and 240–245 (KKKRKG). Collectively, C1orf131 has potential as a novel therapeutic marker for patients in the future, as it plays a vital role in the progression of lung adenocarcinoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

14 pages, 5355 KiB  
Article
SnO2 Nanowire/MoS2 Nanosheet Composite Gas Sensor in Self-Heating Mode for Selective and ppb-Level Detection of NO2 Gas
by Jin-Young Kim, Ali Mirzaei and Jae-Hun Kim
Chemosensors 2024, 12(6), 107; https://doi.org/10.3390/chemosensors12060107 (registering DOI) - 9 Jun 2024
Abstract
The development of low-cost and low-power gas sensors for reliable NO2 gas detection is important due to the highly toxic nature of NO2 gas. Herein, initially, SnO2 nanowires (NWs) were synthesized through a simple vapor–liquid–solid growth mechanism. Subsequently, different amounts [...] Read more.
The development of low-cost and low-power gas sensors for reliable NO2 gas detection is important due to the highly toxic nature of NO2 gas. Herein, initially, SnO2 nanowires (NWs) were synthesized through a simple vapor–liquid–solid growth mechanism. Subsequently, different amounts of SnO2 NWs were composited with MoS2 nanosheets (NSs) to fabricate SnO2 NWs/MoS2 NS nanocomposite gas sensors for NO2 gas sensing. The operation of the sensors in self-heating mode at 1–3.5 V showed that the sensor with 20 wt.% SnO2 (SM-20 nanocomposite) had the highest response of 13 to 1000 ppb NO2 under 3.2 V applied voltage. Furthermore, the SM-20 nanocomposite gas sensor exhibited high selectivity and excellent long-term stability. The enhanced NO2 gas response was ascribed to the formation of n-n heterojunctions between SnO2 NWs and MoS2, high surface area, and the presence of some voids in the SM-20 composite gas sensor due to having different morphologies of SnO2 NWs and MoS2 NSs. It is believed that the present strategy combining MoS2 and SnO2 with different morphologies and different sensing properties is a good approach to realize high-performance NO2 gas sensors with merits such as simple synthesis and fabrication procedures, low cost, and low power consumption, which are currently in demand in the gas sensor market. Full article
Show Figures

Figure 1

15 pages, 4102 KiB  
Article
Cytotoxic Effects of Doxorubicin on Cancer Cells and Macrophages Depend Differently on the Microcarrier Structure
by Daria Kalenichenko, Irina Kriukova, Alexander Karaulov, Igor Nabiev and Alyona Sukhanova
Pharmaceutics 2024, 16(6), 785; https://doi.org/10.3390/pharmaceutics16060785 (registering DOI) - 9 Jun 2024
Abstract
Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of [...] Read more.
Microparticles are versatile carriers for controlled drug delivery in personalized, targeted therapy of various diseases, including cancer. The tumor microenvironment contains different infiltrating cells, including immune cells, which can affect the efficacy of antitumor drugs. Here, prototype microparticle-based systems for the delivery of the antitumor drug doxorubicin (DOX) were developed, and their cytotoxic effects on human epidermoid carcinoma cells and macrophages derived from human leukemia monocytic cells were compared in vitro. DOX-containing calcium carbonate microparticles with or without a protective polyelectrolyte shell and polyelectrolyte microcapsules of about 2.4–2.5 μm in size were obtained through coprecipitation and spontaneous loading. All the microstructures exhibited a prolonged release of DOX. An estimation of the cytotoxicity of the DOX-containing microstructures showed that the encapsulation of DOX decreased its toxicity to macrophages and delayed the cytotoxic effect against tumor cells. The DOX-containing calcium carbonate microparticles with a protective polyelectrolyte shell were more toxic to the cancer cells than DOX-containing polyelectrolyte microcapsules, whereas, for the macrophages, the microcapsules were most toxic. It is concluded that DOX-containing core/shell microparticles with an eight-layer polyelectrolyte shell are optimal drug microcarriers due to their low toxicity to immune cells, even upon prolonged incubation, and strong delayed cytotoxicity against tumor cells. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

18 pages, 1142 KiB  
Article
Dexmedetomidine as a Short-Use Analgesia for the Immature Nervous System
by Anatoliy Logashkin, Valentina Silaeva, Arsen Mamleev, Viktoria Shumkova, Violetta Sitdikova, Yaroslavna Popova, Dmitri Suchkov and Marat Minlebaev
Int. J. Mol. Sci. 2024, 25(12), 6385; https://doi.org/10.3390/ijms25126385 (registering DOI) - 9 Jun 2024
Abstract
Pain management in neonates continues to be a challenge. Diverse therapies are available that cause loss of pain sensitivity. However, because of side effects, the search for better options remains open. Dexmedetomidine is a promising drug; it has shown high efficacy with a [...] Read more.
Pain management in neonates continues to be a challenge. Diverse therapies are available that cause loss of pain sensitivity. However, because of side effects, the search for better options remains open. Dexmedetomidine is a promising drug; it has shown high efficacy with a good safety profile in sedation and analgesia in the immature nervous system. Though dexmedetomidine is already in use for pain control in neonates (including premature neonates) and infants as an adjunct to other anesthetics, the question remains whether it affects the neuronal activity patterning that is critical for development of the immature nervous system. In this study, using the neonatal rat as a model, the pharmacodynamic effects of dexmedetomidine on the nervous and cardiorespiratory systems were studied. Our results showed that dexmedetomidine has pronounced analgesic effects in the neonatal rat pups, and also weakly modified both the immature network patterns of cortical and hippocampal activity and the physiology of sleep cycles. Though the respiration and heart rates were slightly reduced after dexmedetomidine administration, it might be considered as the preferential independent short-term therapy for pain management in the immature and developing brain. Full article
(This article belongs to the Special Issue Molecular Links between Sensory Nerves, Inflammation, and Pain 3.0)
15 pages, 13353 KiB  
Article
Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications
by Lilian Nunes Pereira, Julio Cesar Agreira Pastoril, Gustavo Sanguino Dias, Ivair Aparecido dos Santos, Ruyan Guo, Amar S. Bhalla and Luiz Fernando Cotica
Electronics 2024, 13(12), 2266; https://doi.org/10.3390/electronics13122266 (registering DOI) - 9 Jun 2024
Abstract
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a [...] Read more.
This paper presents a novel approach for the fabrication of magnetoelectric composites aimed at enhancing cross-coupling between electrical and magnetic phases for potential applications in intelligent sensors and electronic components. Unlike previous methodologies known for their complexity and expense, our method offers a simple and cost-effective assembly process conducted at room temperature, preserving the original properties of the components and avoiding undesired phases. The composites, composed of PZT fibers, cobalt (CoFe2O4), and a polymeric resin, demonstrate the uniform distribution of PZT-5A fibers within the cobalt matrix, as demonstrated by scanning electron microscopy. Detailed morphological analyses reveal the interface characteristics crucial for determining overall performance. Dielectric measurements indicate stable behaviors, particularly when PZT-5A fibers are properly poled, showcasing potential applications in sensors or medical devices. Furthermore, H-dependence studies illustrate strong magnetoelectric interactions, suggesting promising avenues for enhancing coupling efficiency. Overall, this study lays the basic work for future optimization of composite composition and exploration of its long-term stability, offering valuable insights into the potential applications of magnetoelectric composites in various technological domains. Full article
(This article belongs to the Special Issue Advanced Materials for Intelligent Electronics)
11 pages, 282 KiB  
Article
Derivation of Bose’s Entropy Spectral Density from the Multiplicity of Energy Eigenvalues
by Arnaldo Spalvieri
Entropy 2024, 26(6), 504; https://doi.org/10.3390/e26060504 (registering DOI) - 9 Jun 2024
Abstract
The modern textbook analysis of the thermal state of photons inside a three-dimensional reflective cavity is based on the three quantum numbers that characterize photon’s energy eigenvalues coming out when the boundary conditions are imposed. The crucial passage from the quantum numbers to [...] Read more.
The modern textbook analysis of the thermal state of photons inside a three-dimensional reflective cavity is based on the three quantum numbers that characterize photon’s energy eigenvalues coming out when the boundary conditions are imposed. The crucial passage from the quantum numbers to the continuous frequency is operated by introducing a three-dimensional continuous version of the three discrete quantum numbers, which leads to the energy spectral density and to the entropy spectral density. This standard analysis obscures the role of the multiplicity of energy eigenvalues associated to the same eigenfrequency. In this paper we review the past derivations of Bose’s entropy spectral density and present a new analysis of energy spectral density and entropy spectral density based on the multiplicity of energy eigenvalues. Our analysis explicitly defines the eigenfrequency distribution of energy and entropy and uses it as a starting point for the passage from the discrete eigenfrequencies to the continuous frequency. Full article
(This article belongs to the Section Thermodynamics)
16 pages, 1073 KiB  
Article
Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae
by Pannita Anek, Sutita Kumpangcum, Sittiruk Roytrakul, Chartchai Khanongnuch, Chalermpong Saenjum and Kulwadee Phannachet
Antibiotics 2024, 13(6), 536; https://doi.org/10.3390/antibiotics13060536 (registering DOI) - 9 Jun 2024
Abstract
The rising incidence of extensively drug-resistant (XDR) Klebsiella pneumoniae, including carbapenem- and colistin-resistant strains, leads to the limitation of available effective antibiotics. Miang, known as chewing tea, is produced from Camellia sinensis var. assamica or Assam tea leaves fermentation. Previous studies [...] Read more.
The rising incidence of extensively drug-resistant (XDR) Klebsiella pneumoniae, including carbapenem- and colistin-resistant strains, leads to the limitation of available effective antibiotics. Miang, known as chewing tea, is produced from Camellia sinensis var. assamica or Assam tea leaves fermentation. Previous studies revealed that the extract of Miang contains various phenolic and flavonoid compounds with numerous biological activities including antibacterial activity. However, the antibacterial activity of Miang against XDR bacteria especially colistin-resistant strains had not been investigated. In this study, the compositions of phenolic and flavonoid compounds in fresh, steamed, and fermented Assam tea leaves were examined by HPLC, and their antibacterial activities were evaluated by the determination of the MIC and MBC. Pyrogallol was detected only in the extract from Miang and showed the highest activities with an MIC of 0.25 mg/mL and an MBC of 0.25–0.5 mg/mL against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli ATCC 25922, colistin-resistant E. coli, and colistin-resistant K. pneumoniae. The effects on morphology and proteomic changes in K. pneumoniae NH54 treated with Miang extract were characterized by SEM and label-free quantitative shotgun proteomics analysis. The results revealed that Miang extract caused the decrease in bacterial cell wall integrity and cell lysis. The up- and downregulated expression with approximately a 2 to >5-fold change in proteins involved in peptidoglycan synthesis and outer membrane, carbohydrate, and amino acid metabolism were identified. These findings suggested that Miang containing pyrogallol and other secondary metabolites from fermentation has potential as an alternative candidate with an antibacterial agent or natural active pharmaceutical ingredient against XDR bacteria including colistin-resistant bacteria. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Secondary Metabolites Produced in Nature)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop