Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An extended X-ray low state from Hercules X-1

Abstract

Hercules X-1 exhibits a 35-day cycle in its X-ray intensity1,2 in addition to its pulsar rotational and orbital periodicities of 1.24 s and 1.7 days respectively. The effects of X-ray heating on the companion are visible throughout the 35-day cycle3, suggesting that the observed intensity modulation is caused by periodic blocking of the line of sight to the pulsar. We report here observations made with the EXOSAT Observatory between 1983 June and August that failed to detect the expected 35-day variation in X-ray intensity, although low-level extended X-ray emission was seen. Models where the obscuring of the pulsar is caused by a processing tilted accretion disk have been proposed4–9, although the physics of the tilted disk are not clear10. Alternatively, wave-like thickenings of the accretion disk have been proposed11 to account for the observed modulation. Our EXOSAT observations suggest that a temporary change in the disk structure may have occurred such that the disk was in the line of sight throughout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tannanbaum, H. et al. Astrophys. J. 174, L143–L149 (1972).

    Article  ADS  Google Scholar 

  2. Giacconi, R. et al. Astrophys. J. 184, 227–236 (1973).

    Article  ADS  Google Scholar 

  3. Boynton, P. E., Canterna, R., Crosa, L., Deeter, J. & Gerend, D. Astrophys. J. 186, 617–624 (1973).

    Article  ADS  Google Scholar 

  4. Crosa, L. & Boynton, P. E. Astrophys. J. 235, 999–1015 (1980).

    Article  ADS  Google Scholar 

  5. Katz, J. I. Nature 246, 87–88 (1973).

    ADS  Google Scholar 

  6. Roberts, Wm. J. Astrophys. J. 187, 575–584 (1974).

    Article  ADS  Google Scholar 

  7. Petterson, J. A. Astrophys. J. 218, 783–791 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  8. Gerend, D. & Boynton, P. E. Astrophys. J. 209, 562–573 (1976).

    Article  ADS  Google Scholar 

  9. Levine, A. M. & Jernigan, J. G. Astrophys. J. 262, 294–300 (1982).

    Article  ADS  Google Scholar 

  10. Pringle, J. E. in Accreting Neutron Stars (eds Brinkman, W. & Trümper, J.) 150–155 (Max–Planck-Institut für Physik und Astrophysik, München, 1983).

    Google Scholar 

  11. Meyer, F. & Meyer-Hofmeister, E. Astr. Astrophys. 140, L35–L38 (1984).

    ADS  Google Scholar 

  12. Taylor, B. G., Andresen, R. D., Peacock, A. & Zobl, R. Space Sci. 30, 479–494 (1981).

    Article  ADS  Google Scholar 

  13. Nagase, F. et al. Am. Inst. Phys. Conf. Proc. (ed. Woosley, S.) 115, 131–133 (1983).

    ADS  Google Scholar 

  14. Pravdo, S. H. et al. Astrophys. J. 225, L53–L58 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Parmar, A. N., Sanford, P. W. & Fabian, A. C., Mon. Not. R. astr. Soc. 192, 311–318 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Jones, C. & Forman, W. Astrophys. J. 209, L131–L135 (1976).

    Article  ADS  Google Scholar 

  17. Turner, M. J. L., Smith, A. & Zimmermann, H. U. Space Sci. 30, 513–524 (1981).

    Article  ADS  Google Scholar 

  18. Trümper, et al. IAU Circ. No. 3923 (1984).

  19. Giovannelli, F., Kurt, V., Sheffer, E. & Bisnovatyj-Kogan, G. S. IAU Circ. No. 3924 (1984).

  20. De Korte, P. A. J. et al. Space Sci. 30, 495–511 (1981).

    Article  ADS  Google Scholar 

  21. Deeter, J. E., Boynton, P. E. & Pravdo, S. H. Astrophys. J. 247, 1003–1012 (1981).

    Article  ADS  Google Scholar 

  22. Davison, P. J. N. & Fabian, A. C. Mon. Not. R. astr. Soc. 178, 27p–29p (1974).

    Article  ADS  Google Scholar 

  23. McCray, R. A. et al. Astrophys. J. 262, 301–307 (1982).

    Article  ADS  CAS  Google Scholar 

  24. White, N. E. et al. Astrophys. J. 247, 994–1002 (1981).

    Article  ADS  Google Scholar 

  25. White, N. E. & Holt, S. S. Astrophys. J. 257, 318–337 (1983).

    Article  ADS  Google Scholar 

  26. McCray, R. & Hatchett, S. Astrophys. J. 199, 196–205 (1975).

    Article  ADS  Google Scholar 

  27. Begelman, M. C., McKee, C. F. & Shields, G. A. Astrophys. J. 271, 70–88 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Jones, C. A., Forman, W. & Liller, W. Astrophys. J. 182, L109–L112 (1973).

    Article  ADS  Google Scholar 

  29. Hudec, R. & Wenzel, W. Bull. astr. Insts Csl. 27, 325–335 (1976).

    ADS  Google Scholar 

  30. Delgado, A. J., Schmidt, H. U. & Thomas, H. C. Astr. Astrophys. 127, L15–L16 (1983).

    ADS  Google Scholar 

  31. Thomas, H-C., Africano, J., Delgado, A. J. & Schmidt, H. U. Astr. Astrophys. 126, 45–50 (1983).

    ADS  Google Scholar 

  32. Middleditch, J., Pennypacker, C. R. & Burns, M. S. Astrophys. J. 274, 313–326 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmar, A., Pietsch, W., McKechnie, S. et al. An extended X-ray low state from Hercules X-1. Nature 313, 119–121 (1985). https://doi.org/10.1038/313119a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/313119a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing