Skip to main content
Log in

VLBI terrestrial reference frame contributions to ITRF2008

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In late 2008, the Product Center for the International Terrestrial Reference Frame (ITRF) of the International Earth Rotation and Reference Systems Service (IERS) issued a call for contributions to the next realization of the International Terrestrial Reference System, ITRF2008. The official contribution of the International VLBI Service for Geodesy and Astrometry (IVS) to ITRF2008 consists of session-wise datum-free normal equations of altogether 4,539 daily Very Long Baseline Interferometry (VLBI) sessions from 1979.7 to 2009.0 including data of 115 different VLBI sites. It is the result of a combination of individual series of session-wise datum-free normal equations provided by seven analysis centers (ACs) of the IVS. All series are completely reprocessed following homogeneous analysis options according to the IERS Conventions 2003 and IVS Analysis Conventions. Altogether, nine IVS ACs analyzed the full history of VLBI observations with four different software packages. Unfortunately, the contributions of two ACs, Institute of Applied Astronomy (IAA) and Geoscience Australia (AUS), had to be excluded from the combination process. This was mostly done because the IAA series exhibits a clear scale offset while the solution computed from normal equations contained in the AUS SINEX files yielded unreliable results. Based on the experience gathered since the combination efforts for ITRF2005, some discrepancies between the individual series were discovered and overcome. Thus, the consistency of the individual VLBI solutions has improved considerably. The agreement in terms of WRMS of the Terrestrial Reference Frame (TRF) horizontal components is 1 mm, of the height component 2 mm. Comparisons between ITRF2005 and the combined TRF solution for ITRF2008 yielded systematic height differences of up to 5 mm with a zonal signature. These differences can be related to a pole tide correction referenced to a zero mean pole used by four of five IVS ACs in the ITRF2005 contribution instead of a linear mean pole path as recommended in the IERS Conventions. Furthermore, these systematics are the reason for an offset in the scale of 0.4 ppb between the IVS’ contribution to ITRF2008 and ITRF2005. The Earth orientation parameters of seven series used as input for the IVS combined series are consistent to a huge amount with about 50 μas WRMS in polar motion and 3 μs in dUT1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107. doi:10.1029/2001JB000561

  • Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112: B9401. doi:10.1029/2007JB004949

    Article  Google Scholar 

  • Angermann D, Drewes H, Krügel M, Meisel B, Gerstl M, Kelm R, Müller H, Seemüller W, Tesmer V (2004) ITRS combination center at DGFI: a terrestrial reference frame realization 2003. Deutsche Geodätische Kommission bei der Bayerischen Akademie der Wissenschaften (München), Reihe B: Angewandte Geodäsie (ISSN 0065-5317), Heft Nr 313, p 1–141 (2004), ISBN 3-7696-8593-8

  • Angermann D, Drewes H, Gerstl M, Krügel M, Meisel B (2009) DGFI combination methodology for ITRF2005 computation. In: Drewes H (ed) Geodetic reference frames. Springer, IAG Symposia, vol 134, pp 11–16. doi:10.1007/978-3-642-00860-3_2

  • Artz T, Böckmann S, Nothnagel A, Tesmer V (2007) ERP time series with daily and sub-daily resolution determined from CONT05. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 69–74. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S31_Artz.pdf

  • Beutler G, Kouba J, Springer T (1995) Combining the orbits of the IGS Analysis Centers. B Geod 69: 200–222. doi:10.1007/BF00806733

    Article  Google Scholar 

  • Blewitt G, Bock Y, Kouba J (1994) Constraining the IGS polyhedrom by distributed processing. In: IGS analysis workshop proceedings: densification of ITRF through regional GPS networks, IGS Central Bureau, Jet Propulsion Laboratory, Pasadena, pp 21–37. Available electronically at http://igscb.jpl.nasa.gov/overview/pubs.html

  • Böckmann S, Artz T, Nothnagel A, Tesmer V (2007) Comparison and combination of consistent VLBI solution. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, pp 82–87. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S34_Boeckmann.pdf

  • Böckmann S, Nothnagel A, Artz T, Tesmer V (2009). International VLBI service for geodesy and astrometry: EOP combination methodology and quality of the combined products. J Geophys Res (in press). doi:10.1029/2009JB006465

  • Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European centre for medium-range weather forecasts operational analysis data. J Geophys Res 111: B02406. doi:10.1029/2005JB003629

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) Short note: a global model of pressure and temperature for geodetic applications. J Geod 81: 679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Mendes Cerveira P, Pany A, Schuh H (2009) Atmospheric loading corrections at the observation level in VLBI analysis. J Geod. doi:10.1007/s00190-009-0329-y

  • Collilieux X, Altamimi Z, Ray J (2005) Impact of thermal expansion of VLBI radio telescopes on the scale of the international terrestrial reference frame. AGU Fall Meeting Abstracts

  • Collilieux X, Altamimi Z, Coulot D, Ray J, Sillard P (2007) Comparison of very long baseline interferometry GPS and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J Geophys Res 112: B12,403. doi:10.1029/2007JB004933

    Article  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry-effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20: 1593–1607

    Article  Google Scholar 

  • Dow JM, Neilan RE, Rizos C (2008) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83: 191–198. doi:10.1007/s00190-008-0300-3

    Article  Google Scholar 

  • Fey AL, Ma C, Arias EF, Charlot P, Feissel-Vernier M, Gontier AM, Jacobs CS, Li J, MacMillan DS (2004) The second extension of the international celestial reference frame: ICRF-EXT.1. Astron J 127:3587–3608. doi:10.1086/420998. Available electronically at http://www.iop.org/EJ/article/1538-3881/127/6/3587/204010.html

  • Gambis D (2006) DORIS and the determination of the Earth’s polar motion. J Geod 80: 649–656. doi:10.1007/s00190-006-0043-y

    Article  Google Scholar 

  • Kouba J, Mireault Y (1996) Analysis coordinator report. In: IGS Annual Report, JPL Pasadena CA, pp 55–100. Available electronically at http://igscb.jpl.nasa.gov/overview/pubs.html

  • Kurdubov S (2007) QUASAR software in IAA EOP service: global solution and daily SINEX. In: Boehm J, Pany A, Schuh H (eds) Proceedings of the 18th European VLBI for geodesy and astrometry working meeting, 12–13 April 2007, Geowissenschaftliche Mitteilungen, Heft Nr. 79, Schriftenreihe des Studienrichtung Vermessung und Geoinformation, Technische Universität Wien, ISSN 1811-8380, 79, pp 79–81. Available electronically at http://mars.hg.tuwien.ac.at/~evga/proceedings/S33_Kurdubov.pdf

  • Letellier T (2004) Etude des ondes de marée sur les plateux continentaux. PhD thesis, Université de Toulouse III

  • Ma C, Arias EF, Eubanks TM, Fey AL, Gontier AM, Jacobs CS, Sovers OJ, Archinal BA, Charlot P (1998) The international celestial reference frame as realized by very long baseline interferometry. Astron J 116: 516–546. doi:10.1086/300408

    Article  Google Scholar 

  • MacMillan DS (1995) Atmospheric gradients from very long baseline interferometry observations. Geophys Res Lett 22(9): 1041–1044

    Article  Google Scholar 

  • MacMillan DS, Ma C (1997) Atmospheric gradients and the VLBI terrestrial and celestial reference frames. Geophys Res Lett 24: 453–456. doi:10.1029/97GL00143

    Article  Google Scholar 

  • Mathews P, Herring T, Buffett B (2002) Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the earth’s interior. J Geophys Res 107: 2068

    Article  Google Scholar 

  • McCarthy D, Petit G (2004) IERS Conventions (2003) Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main. Available electronically at http://www.iers.org/documents/publications/tn/tn32/tn32.pdf

  • Munekane H, Tobita M, Takashima K (2004) Groundwater-induced vertical movements observed in Tsukuba Japan. Geophys Res Lett 31: L12,608. doi:10.1029/2004GL020158

    Google Scholar 

  • Niell A (2006) Interaction of atmosphere modeling and VLBI analysis strategy. In: Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2006 general meeting proceedings, NASA/CP-2006-214140, pp 252–256. Available electronically at http://ivscc.gsfc.nasa.gov/publicastions/gm2006/niell

  • Nothnagel A (2009) Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric VLBI. J Geod 83(8): 787–792. doi:10.1007/s00190-008-0284-z

    Article  Google Scholar 

  • Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2): 135–143. doi:10.1016/S0273-1177(02)00277-6

    Article  Google Scholar 

  • Pearlman MR, Noll C, Dunn P, Horvath J, Husson V, Stevens P, Torrence M, Vo H, Wetzel S (2005) The international laser ranging service and its support for IGGOS. J Geodyn 40: 470–478. doi:10.1016/j.jog.2005.06.009

    Article  Google Scholar 

  • Petrov L (1998) Memo about reweighting. http://lacerta.gsfc.nasa.gov/mk5/help/upwei_02_hlp.ps.gz

  • Petrov L (2008) Mark-5 VLBI analysis software Calc/Solve. http://gemini.gsfc.nasa.gov/solve/

  • Schlüter W, Behrend D (2007) The international VLBI service for geodesy and astrometry (IVS): current capabilities and future prospects. J Geod 81: 379–387. doi:10.1007/s00190-006-0131-z

    Article  Google Scholar 

  • Tavernier G, Fagard H, Feissel-Vernier M, Bail KL, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The international DORIS service: genesis and early achievements. J Geod 80: 403–417. doi:10.1007/s00190-006-0082-4

    Article  Google Scholar 

  • Tesmer V (2003) Refinement of the stochastic VLBI model: first results. In: Schwegmann W, Thorandt V (eds) Proceedings of the 16th working meeting on European VLBI for geodesy and astrometry, Bundesamt für Kartographie und Geodäsie, Leipzig/Frankfurt am Main, pp 207–218

  • Tesmer V, Boehm J, Heinkelmann R, Schuh H (2006) Impact of analysis options on the TRF, CRF and position time series estimated from VLBI. In: Behrend D, Baver KD (eds) International VLBI service for geodesy and astrometry 2006 general meeting proceedings, NASA/CP-2006-214140, pp 243–251. Available electronically at http://ivscc.gsfc.nasa.gov/publications/gm2006/tesmer

  • Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geod 81: 409–421. doi:10.1007/s00190-006-0126-9

    Article  Google Scholar 

  • Tesmer V, Steigenberger P, Rothacher M, Boehm J, Meisel B (2009) Annual deformation signals from homogeneously reprocessed VLBI and GPS height time series. J Geod 83(10): 973–988 10.1007/s00190-009-0316-3

    Article  Google Scholar 

  • Titov O, Tesmer V, Boehm J (2004) OCCAM v.6.0 software for VLBI data analysis. In: Vandenberg NR, Baver KD (eds) IVS 2004 general meeting proceedings, pp 267–271. http://ivscc.gsfc.nasa.gov. Available electronically at http://ivscc.gsfc.nasa.gov/publications/gm2004/titov1

  • Vennebusch M, Böckmann S, Nothnagel A (2007) The contribution of very long baseline interferometry to ITRF2005. J Geod 81(6): 553–564. doi:10.1007/s00190-006-0117-x

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys U 79(47): 579

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Böckmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böckmann, S., Artz, T. & Nothnagel, A. VLBI terrestrial reference frame contributions to ITRF2008. J Geod 84, 201–219 (2010). https://doi.org/10.1007/s00190-009-0357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-009-0357-7

Keywords

Navigation