Skip to main content

Advertisement

Log in

The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration, with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are at present focusing on one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of \(\hbox {CO}_{2}\) injection at the S-3 site. In this paper, we select five flow models of the S-3 site and provide a qualitative comparison of their attributes and predictions. These models are based on five different simulators or modeling approaches: TOUGH2/EOS7C, STOMP-CO2e, MoReS, TOUGH2-MP/ECO2N, and VESA. In addition to model-to-model comparison, we perform a limited model-to-data comparison, and illustrate how model choices impact model predictions. We conclude the paper by making recommendations for model refinement that are likely to result in less uncertainty in model predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bikkina, S.: Contact angle measurements of \(\text{ CO }_{2}\)–water–quartz/calcite systems in the perspective of carbon sequestration. Int. J. Greenh. Gas Control 5, 1259–1271 (2011)

    Article  Google Scholar 

  • Carle, S.F., Fogg, G.E.: Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Math. Geol. 28, 453–476 (1997)

    Article  Google Scholar 

  • Chiquet, P., Broseta, D., Thibeau, S.: Wettability alteration of caprock minerals by carbon dioxide. Geofluids 7, 112–122 (2007)

    Article  Google Scholar 

  • Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.: A benchmark study on problems related to \(\text{ CO }_{2}\) storagein geologic formations. Comput. Geosci. 13, 409–434 (2009). doi:10.1007/s10596-009-9146-x

  • Devooght, J.: Model uncertainty and model inaccuracy. Reliab. Eng. Syst. Saf. 59, 171–185 (1998)

    Article  Google Scholar 

  • Gasda, S.E., Nordbotten, J.M., Celia, M.A.: Vertical-equilibrium with sub-scale analytical methods for geological \(\text{ CO }_{2}\) sequestration. Comput. Geosci. 13(4), 469–481 (2009)

    Article  Google Scholar 

  • Giorgis, T., Carpita, M, Battistelli, A.: 2D modeling of salt precipitation during the injection of dry CO\(_2\) in a depleted gas reservoir. Energy Convers. Manag. 48, 1816–1826 (2007). doi:10.1016/j.enconman.2007.01.012

  • Hovorka, S.D., Meckel, T.A., Trevino, R.H., Lu, J., Nicot, J.P., Choi, J.-W., Freeman, D., Cook, P., Daley, T.M., Ajo-Franklin, J.B., Freifeld, B.M., Doughty, C., Carrigan, C.R., La Brecque, D., Kharaka, Y.K., Thordsen, J.J., Phelps, T.J., Yang, C., Romanak, C.D., Zhang, T., Holt, R.M., Lindler, J.S., Butsch, R.J.: Monitoring a large volume \(\text{ CO }_{2}\) injection: year two results from SECARB project at Denbury’s Cranfield, Mississippi, USA. Energy Procedia 4, 3478–3485 (2011). doi: 10.1016/j.egypro.2011.02.274

    Article  Google Scholar 

  • Hosseini, S.A., Lashgari, H., Choi, J.W., Nicot, J.-P., Lu, J., Hovorka, S.D.: Static and dynamic reservoir modeling for geological \(\text{ CO }_{2}\) sequestration at Cranfield, Mississippi, U.S.A. Int. J. Greenh. Gas Control 18, 449–462 (2013). doi: 10.1016/j.ijggc.2012.11.009

    Article  Google Scholar 

  • Hovorka, S.D., Meckel, T.A., Treviño, R.H.: Monitoring a large-volume Injection at Cranfield, Mississippi—project design and recommendations. Int. J. Greenh. Gas Control 18, 345–360 (2013). doi:10.1016/j.ijggc.2013.03.021

    Article  Google Scholar 

  • Lu, J., Cook, P.J., Hosseini, S.A., Yang, C., Romanak, K.D., Zhang, T., Freifeld, B.M., Smyth, R.C., Zeng, H., Hovorka, S.D.: Complex fluid flow revealed by monitoring CO\(_{2}\) injection in a fluvial formation. J. Geophys. Res. 117, B03208 (2012a). doi:10.1029/2011JB008939

  • Lu, J., Kharaka, Y.K., Thordsen, J.J., Horita, J., Karamalidis, A., Griffith, C., Hakala, J.A., Ambats, G., Cole, D.R., Phelps, T.J., Manning, M.A., Cook, P.J., Hovorka, S.D.: \(\text{ CO }_{2}\)–rock–brine interactions in lower Tuscaloosa formation at Cranfield CO\(_{2}\) sequestration site, Mississippi, U.S.A. Chem. Geol. 291, 269–277 (2012b)

    Article  Google Scholar 

  • Lu, J., Kordi, M., Hovorka, S.D., Meckel, T.A., Christopher, C.A.: Reservoir characterization and complications for trapping mechanisms at Cranfield \(\text{ CO }_{2}\) injection site. Int. J. Greenh. Gas Control 18, 361–374 (2013). doi: 10.1016/j.ijggc.2012.10.007

    Article  Google Scholar 

  • MOGB: Cranfield Field, Cranfield Unit, Basal Tuscaloosa reservoir, Adams and Franklin Counties, Mississippi, pp. 42–58 (1966)

  • Mukhopadhyay, S., Birkholzer, J.T., Nicot, J.P., Hosseini, S.A.: A model comparison initiative for a \(\text{ CO }_{2}\) injection field test: an introduction to Sim-SEQ. Environ. Earth Sci. (2012). doi:10.1007/s12665-012-1668-1

  • Mukhopadhyay, S., Hou, Z., Gosink, L., Bacon, D., Doughty, C., Li, J.J., Wei, L., Gasda, S., Bacci, G., Govindan, R., Shi, J.-Q., Yamamoto, H., Ramanathan, R., Nicot, J.P., Hosseini, S.A., Birkholzer, J.T., Bonneville, A.: Model comparison and uncertainty quantification for geologic carbon storage: the Sim-SEQ initiative. Energy Procedia 37, 3867–3874 (2013). doi:10.1016/j.egypro.2013.06.284

    Article  Google Scholar 

  • Nordbotten, J.M., Flemisch, B., Gasda, S.E., Nilsen, H.M., Fan, Y., Pickup, G.E., Wiese, B., Celia, M.A., Dahle, H.K., Eigestad, G.T., Pruess, K.: Uncertainties in practical simulation of CO\(_{2}\) storage. Int. J. Greenh. Gas Control 9, 234–242 (2012). doi: 10.1016/j.ijggc.2012.03.007

    Article  Google Scholar 

  • Oldenburg, C.M., Moridis, G.J., Spycher, N., Pruess, K.: EOS7C version 1.0: TOUGH2 module for carbon dioxide or nitrogen in natural gas (methane) reservoirs, Report LBNL-56589. Lawrence Berkeley National Laboratory, Berkeley (2004)

  • Peaceman, D.W.: nterpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic permeability. SPE J. 23, 531–543 (1983)

    Article  Google Scholar 

  • Pruess, K., Spycher, N.: ECO2N—a fluid property module for the TOUGH2 code for studies of \(\text{ CO }_{2}\) storage in saline aquifers. Energy Convers. Manag. 48, 1761–1767 (2007). doi: 10.1016/j.enconman.2007.01.016

    Article  Google Scholar 

  • Pruess, K., Müller, N.: Formation dry-out from \(\text{ CO }_{2}\) injection into saline aquifers: 1. Effects of solids precipitation and their mitigation. Water Resour. Res. 45, W03402 (2009). doi: 10.1029/2008WR007101

    Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.J.: TOUGH2 users guide, Ver. 2.0, Report LBNL-43134. Lawrence Berkeley National Laboratory, Berkeley (1999)

  • Pruess, K., Garcia, J., Kovscek, T., Oldenburg, C., Rutqvist, J., Steefel, C., Xu, T.: Code comparison builds confidence in numerical simulation models for geologic disposal of CO\(_{2}\). Energy 29, 1431–1444 (2004). doi: 10.1016/j.energy.2004.03.077

    Article  Google Scholar 

  • Rutqvist, J., Barr, D., Birkholzer, J.T., Chijimatsu, M., Kolditz, O., Liu, Q., Oda, Y., Wang, W., Zhang, C.: Results from an international simulation study on coupled thermal, hydrological, and mechanical (THM) processes near geological nuclear waste repositories. J. Nucl. Technol. 163, 101–109 (2008)

    Google Scholar 

  • Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple-point to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25(6), 1509–1588 (1996)

    Article  Google Scholar 

  • Spycher, N., Pruess, K., Ennis-King, J.: \(\text{ CO }_{2}\)\(\text{ H }_{2}\text{ O }\) mixtures in geological sequestration of \(\text{ CO }_{2}\). I. Assessment and calculation of mutual solubilities from 12 to 100 \(^{\circ }\)C and up to 600 bar. Geochim Cosmoschim Acta 67(16), 3015–3031 (2003)

    Article  Google Scholar 

  • Spycher, N., Pruess, K.: A phase-partitioning model for \(\text{ CO }_{2}\)–brine mixtures at elevated temperatures and pressures: application to \(\text{ CO }_{2}\)-enhanced geothermal systems. Transp. Porous Media 82, 173–196 (2010). doi: 10.1007/s11242-009-9425-y

    Article  Google Scholar 

  • Tsang, C.-F.: Introductory editorial to the special issue on the DECOVALEX-THMC project. Environ. Geol. 57, 1217–1219 (2009). doi:10.1007/s00254-008-1626-0

    Article  Google Scholar 

  • Tsang, C.-F., Stephansson, O., Jing, L., Kautsky, F.: DECOVALEX project: from 1992–2007. Environ. Geol. 57, 1221–1237 (2009). doi:10.1007/s00254-008-1626-0

    Article  Google Scholar 

  • Wei, L.: Sequential coupling of geochemical reactions with reservoir simulations for waterflood and EOR studies. SPE J. 17, 469–484, SPE-138037-PA (2012). doi:10.2118/138037-PA

  • White, M.D., Bacon, D.H., McGrail, B.P., Watson, D.J., White, S.K., Zhang, Z.F.: STOMP subsurface transport over multiple phases: STOMP-CO2 and STOMP-CO2e guide: version 1.0, Report PNNL-21268. Pacific Northwest National Laboratory, Richland (2012)

  • Yamamoto, H., Doughty, C.A.: Investigation of gridding effects for numerical simulation of \(\text{CO}_{2}\) geologic sequestrations. Int. J. Greenh. Gas Control 5, 975–985 (2011)

    Article  Google Scholar 

  • Zhang, K., Wu, Y.-S., Pruess, K.: User’s guide for TOUGH2-MP—a massively parallel version of the TOUGH2 code, Report LBNL-315E. Lawrence Berkeley National Laboratory, Berkeley (2008)

Download references

Acknowledgments

The authors thank Curt Oldenburg (LBNL) and Dan Hawkes (LBNL) for their constructive reviews of the draft manuscript. LBNL’s (Berkeley Lab.) efforts in coordinating Sim-SEQ are supported through funds provided by the U.S. Department of Energy and managed by the National Energy Technology Laboratory. Funds were provided to Berkeley Lab. through the U.S. Department of Energy Contract No. DE-AC02-05CH11231. BEG’s efforts, headed by Susan Hovorka, were partly supported by funds provided by the Department of Energy and managed by the National Energy Technology Laboratory through the Southeast Regional Carbon Sequestration Partnership (SECARB) (managed by the Southern State Energy Board). URN’s modeling effort is supported by the MatMoRA project under Contract No. 215641, funded by the CLIMIT program of the Research Council of Norway and Statoil. The publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy or the Berkeley Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhopadhyay, S., Doughty, C., Bacon, D. et al. The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site. Transp Porous Med 108, 207–231 (2015). https://doi.org/10.1007/s11242-014-0361-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-014-0361-0

Keywords

Navigation