Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2016

An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms

  • Cristina Perinelli , Silvio Mollo EMAIL logo , Mario Gaeta , Serena Pia De Cristofaro , Danilo M. Palladino , Pietro Armienti , Piergiorgio Scarlato and Keith D. Putirka
From the journal American Mineralogist

Abstract

We have refined the clinopyroxene-based hygrometer published by Armienti et al. (2013) for a better quantitative understanding of the role of H2O in the differentiation of Etnean magmas. The original calibration data set has been significantly improved by including several experimental clinopyroxene compositions that closely reproduce those found in natural Etnean products. To verify the accuracy of the model, some randomly selected experimental clinopyroxene compositions external to the calibration data set have been used as test data. Through a statistic algorithm based on the Mallows’ CP criterion, we also check that all model parameters do not cause data overfitting, or systematic error.

The application of the refined hygrometer to the Mt. Etna 2011–2013 lava fountains indicates that most of the decreases in H2O content occur at P < 100 MPa, in agreement with melt inclusion data suggesting abundant H2O degassing at shallow crustal levels during magma ascent in the conduit and eruption to the surface.

Acknowledgments

This work is a part of the master thesis of S.P. De Cristofaro that was supported by HP-HT laboratory of Sapienza, University of Rome. We kindly thank M. Serracino for assistance during electron microprobe analysis. P. Scarlato and S. Mollo acknowledge MIUR project, Premiale NORTh (New hORizons of the Technology applied to experimental researches and geophysical and volcanological monitoring), and EPOS (European Observing System Infrastructure project). We express our gratitude to I. Swainson for his editorial guidance. We are grateful to M. Hamada and two anonymous reviewers for their helpful and constructive suggestions.

References cited

Applegarth, L.J., Tuffen, H., James, M.R., Pinkerton, H., and Cashman, K.V. (2013) Direct observations of degassing-induced crystallization in basalts. Geology, 41, 243–246.10.1130/G33641.1Search in Google Scholar

Armienti, P., Tonarini, S., D’Orazio, M., and Innocenti, F. (2004) Genesis and evolution of Mount Etna alkaline lavas: Petrological and Sr-Nd-B isotope constraints. Periodico di Mineralogia, 73, 29–52.Search in Google Scholar

Armienti, P., Tonarini, S., Innocenti, F. and D’Orazio, M. (2007)Mount Etna pyroxene as tracer of petrogenetic processes and dynamics of the feeding system. Geological Society of America Special Papers, 418, 265–276.10.1130/2007.2418(13)Search in Google Scholar

Armienti, P., Perinelli, C., and Putirka, K.D. (2013) A new model to estimate deeplevel magma ascent rates, with applications to Mt. Etna (Sicily, Italy). Journal of Petrology, 54, 795–813.10.1093/petrology/egs085Search in Google Scholar

Bozzano, F., Gaeta, M., Lenti, L., Martino, S., Paciello, A., Palladino, D.M. and Sottili, G. (2013) Modeling the effects of eruptive and seismic activities on flank instability at Mount Etna, Italy. Journal of Geophysical Research: Solid Earth, 118, 1–22, doi:10.1002/jgrb.50377.10.1002/jgrb.50377Search in Google Scholar

Collins, S.J., Pyle, D.M., and Maclennan, J. (2009) Melt inclusions track pre-eruption storage and dehydratation of magmas at Etna. Geology, 6, 571–574.10.1130/G30040A.1Search in Google Scholar

De Cristofaro, S.P. (2014) Water effect on the clinopyroxene compositions: insight from high pressure experiments on hawaiitic magma of Mt. Etna. Unpublished master thesis, Sapienza, University of Rome.Search in Google Scholar

Dolfi, D., and Trigila, R. (1983) Clinopyroxene solid solutions and water in magmas: results in the system phonolitic tephrite-H2O. Mineralogical Magazine, 47, 347–351.10.1180/minmag.1983.047.344.09Search in Google Scholar

Fabbrizio, A., and Carroll, M. (2008) Experimental constraints on the differentiation process and pre-eruptive conditions in the magmatic system of Phlegraean Fields (Naples, Italy). Journal of Volcanology and Geothermal Research, 171, 88–102, doi:10.1016/j.jvolgeores.2007.11.002.10.1016/j.jvolgeores.2007.11.002Search in Google Scholar

Ferlito, C., and Lanzafame, G. (2010) The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos, 119, 642–650.10.1016/j.lithos.2010.08.006Search in Google Scholar

Ferlito, C., Massimo, C., Lanzafame, G., and Giacomoni, P.P. (2014) The volatile flushing triggers eruptions at open conduit volcanoes: evidence from Mount Etna volcano (Italy). Lithos, 184–187, 447–455.10.1016/j.lithos.2013.10.030Search in Google Scholar

Fornaciai, A., Perinelli, C., Armienti P., and Favalli, M. (2015) Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption. Bulletin of Volcanology, 77, 1–15.10.1007/s00445-015-0953-8Search in Google Scholar

Giacomoni, P.P., Ferlito, C., Coltorti, M., Bonadiman, C., and Lanzafame, G. (2014) Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: the 2001–2006 eruptive period at Mount Etna. Earth-Sciences Reviews, 138, 371–393.10.1016/j.earscirev.2014.06.009Search in Google Scholar

Giacomoni, P.P., Coltorti, M., Bryce, J.G., Fahnestock, M.F., and Guitreau, M. (2016) Mt. Etna plumbing system revealed by combined compositional, thermobarometric and textural studies in clinopyroxene. Contributions to Mineralogy and Petrology, 171, 34.10.1007/s00410-016-1247-7Search in Google Scholar

Gonnermann, H.M., and Manga, M. (2012) Magma ascent in the volcanic conduit. In S.A. Fagents, T.K.P. Gregg, and R.C. Lopez, Eds., Modelling Volcanic Processes: The Physics and Mathematics of Volcanism, p. 55–84. Cambridge University Press.10.1017/CBO9781139021562.004Search in Google Scholar

Hair, J.F. Jr., Anderson, R.E., Tatham, R.L., and Black, W.C. (1995) Multivariate Data Analysis, 3rd ed., 742 p. Macmillan, New York.Search in Google Scholar

Lange, R.A., Frey, H.M., and Jakob, H. (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. American. Mineralogy, 94, 494–506.10.2138/am.2009.3011Search in Google Scholar

Lanzafame, G., Mollo, S., Iezzi, G., Ferlito, C., and Ventura, G. (2013) Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bulletin of Volcanology, 75, 1–16.10.1007/s00445-013-0703-8Search in Google Scholar

Masotta, M., Mollo, S., Freda, C., Gaeta, M., and Moore, G. (2013) Clinopyroxene-liquid thermometers and barometers specific to alkaline differentiated magmas, Contributions to Mineralogy and Petrology, 166, 1545–1561, doi:10.1007/ s00410-013-0927-9.10.1007/s00410-013-0927-9Search in Google Scholar

Métrich, N., and Rutherford, M.J. (1998) Low pressure crystallization paths of H2O-saturated basaltic-hawaitic melts from Mt Etna: Implications for open-system degassing of basaltic volcanoes. Geochimica et Cosmochimica Acta, 62, 1195–1205.10.1016/S0016-7037(98)00048-9Search in Google Scholar

Métrich, N., Allard, P., Spilliaert, N., Andronico, D., and Burton, M. (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth and Planetary Science Letters, 228, 1–17.10.1016/j.epsl.2004.09.036Search in Google Scholar

Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., and Scarlato, P. (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: Implications for thermobarometry. Lithos, 118, 302–312, doi:10.1016/j.lithos.2010.05.006.10.1016/j.lithos.2010.05.006Search in Google Scholar

Mollo, S., Misiti, V., Scarlato, P., and Soligo, M. (2012)The role of cooling rate in the origin of high temperature phases at the chilled margin of magmatic intrusions, Chemical Geology, 322-323, 28–46, doi:10.1016/j.chemgeo.2012.05.029.10.1016/j.chemgeo.2012.05.029Search in Google Scholar

Mollo, S., Blundy, J., Scarlato, P., Iezzi, G., and Langone, A. (2013a)The partitioning of trace elements between clinopyroxene and trachybasaltic melt during rapid cooling and crystal growth. Contributions to Mineralogy and Petrology, 166, 1633–1654, doi: 10.1007/s00410-013-0946-6.10.1007/s00410-013-0946-6Search in Google Scholar

Mollo, S., Putirka, K., Misiti, V., Soligo, M., and Scarlato, P. (2013b) A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions. Chemical Geology, 352, 92–100, doi:10.1016/j.chemgeo.2013.05.026.10.1016/j.chemgeo.2013.05.026Search in Google Scholar

Mollo, S., Giacomoni, P.P., Coltorti, M., Ferlito, C., Iezzi G., and Scarlato, P. (2015a) Reconstruction of magmatic variables governing recent Etnean eruptions: constraints from mineral chemistry and P-T-fo2-H2O modelling. Lithos, 212-215, 311–320, doi:10.1016/j.lithos.2014.11.020.10.1016/j.lithos.2014.11.020Search in Google Scholar

Mollo, S., Giacomoni, P.P., Andronico, D., and Scarlato, P. (2015b)Clinopyroxene and titanomagnetite cation redistributions at Mt. Etna volcano (Sicily, Italy): Footprints of the final solidification history of lava fountains and lava flows. Chemical Geology, 406, 45–54, doi:10.1016/j.chemgeo.2015.04.017.10.1016/j.chemgeo.2015.04.017Search in Google Scholar

Mollo, S., Masotta, M., Forni, F., Bachmann, O., De Astis, G., Moore, G., and Scarlato, P. (2015c) A K-feldspar-liquid hygrometer specific to alkaline differentiated magmas. Chemical Geology, 392, 1–8, doi:10.1016/j.chemgeo.2014.11.010.10.1016/j.chemgeo.2014.11.010Search in Google Scholar

Putirka, K. (1999) Clinopyroxene-liquid equilibrium to 100 kbar and 2450 K. Contributions to Mineralogy and Petrology, 135, 151–163.10.1007/s004100050503Search in Google Scholar

Putirka, K. (2008) Thermometers and barometers for volcanic systems. Reviews in Mineralogy and Geochemistry, 69, 61–120.10.1515/9781501508486-004Search in Google Scholar

Putirka, K., Johnson, M., Kinzler, R., and Walker, D. (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contributions to Mineralogy and Petrology, 123, 92–108.10.1007/s004100050145Search in Google Scholar

Rutherford, M.J. (2008)Magma ascent rates. Reviews in Mineralogy and Geochemistry, 69, 241–271.10.1515/9781501508486-008Search in Google Scholar

Rutherford, M. J., and Hill, P.M. (1993) Magma ascent rates from amphibole breakdown: experiments and the l980–1986 Mount St.Helens eruptions. Journal of Geophysical Research, 98, 19, 667–19, 685.Search in Google Scholar

Sisson, T.W., and Grove, T.L. (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contributions to Mineralogy and Petrology, 113, 143–166.10.1007/BF00283225Search in Google Scholar

Sisson, T.W., and Grove, T.L. (1993b) Temperatures and H2O contents of low MgO high-alumina basalts. Contributions to Mineralogy and Petrology, 113, 167–184.10.1007/BF00283226Search in Google Scholar

Spilliaert, N., Allard, P., Métrich, N., and Sobolev, A.V. (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt feeding the powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research, 111, B04203.Search in Google Scholar

Toramaru, A., Noguchi, S., Oyoshihara, S., and Tsune, A. (2008) MND (microlite number density) water exolution rate meter. Journal of Volcanology and Geothermal Research, 175, 156–167.10.1016/j.jvolgeores.2008.03.035Search in Google Scholar

Vetere, F., Mollo, S., Giacomoni, P.P., Iezzi, G., Coltorti, M., Ferlito, C., Holtz, F., Perugini, D., and Scarlato, P. (2015)Experimental constraints on the origin of pahoehoe “cicirara” lavas at Mt. Etna Volcano (Sicily, Italy). Bulletin of Volcanology, 77, 44, doi:10.1007/s00445-015-0931-1.10.1007/s00445–015–0931–1Search in Google Scholar

Viccaro, M., Calcagno, R., Garozzo, I., Giuffrida, M., and Nicotra, E. (2015) Continuous magma recharge at Mt. Etna during the 2011-2013 period controls the style of volcanic activity and compositions of erupted lavas. Mineralogy and Petrology, 109, 67–83.10.1007/s00710-014-0352-4Search in Google Scholar

Waters, L.E., and Lange, R.A. (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. American Mineralogist, 100, 2172–2184.10.2138/am-2015-5232Search in Google Scholar

Received: 2016-7-23
Accepted: 2016-8-9
Published Online: 2016-11-30
Published in Print: 2016-12-1

© 2016 by Walter de Gruyter Berlin/Boston

Downloaded on 25.5.2024 from https://www.degruyter.com/document/doi/10.2138/am-2016-5916/html
Scroll to top button