Skip to main content

Advertisement

Log in

An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Grain yield often varies within agricultural fields as a result of the variation in soil characteristics, competition from weeds, management practices and their causal interactions. To implement appropriate management decisions, yield variability needs to be explained and quantified. A new experimental design was established and tested in a field experiment to detect yield variation in relation to the variation in soil quality, the heterogeneity of weed distribution and weed control within a field. Weed seedling distribution and density, apparent soil electrical conductivity (ECa) and grain yield were recorded and mapped in a 3.5 ha winter wheat field during 2005 and 2006. A linear mixed model with an anisotropic spatial correlation structure was used to estimate the effect of soil characteristics, weed competition and herbicide treatment on crop yield. The results showed that all properties had a strong effect on grain yield. By adding herbicide costs and current grain price into the model, thresholds of weed density were derived for site-specific weed control. This experimental approach enables the variation of yield within agricultural fields to be explained, and an understanding of the effects on yield of the factors that affect it and their causal interactions to be gained. The approach can be applied to improve decision algorithms for the patch spraying of weeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov (Ed.), Proceedings of the Second International Symposium on Information Theory (pp. 267–281). Budapest: Akadémiai Kiadó.

    Google Scholar 

  • Backes, M., & Plümer, L. (2006). Untersuchungen von Boniturverfahren für die teilflächenspezifische Unkrautkontrolle mit GIS (GIS-based analysis of sampling methods for site-specific weed control). Journal of Plant Diseases and Protection, Special Issue XX, 217–225.

  • Birrell, S. J., Sudduth, K. A., & Borgelt, S. C. (1996). Comparison of sensors and techniques for crop yield mapping. Computers and Electronics in Agriculture, 14, 215–233.

    Article  Google Scholar 

  • BMVEL. (2005). Reduktionsprogramm chemischer Pflanzenschutz. Nachhaltige Landwirtschaft––Vorsorgender Verbraucherschutz––Schutz des Naturhaushaltes. Berlin, Germany: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft.

  • Brain, P., & Cousens, R. (1990). The effects of weed distribution on predictions of yield loss. Journal of Applied Ecology, 27, 735–742.

    Article  Google Scholar 

  • Cardina, J., Sparrow, D. H., & McCoy, E. L. (1995). Analysis of spatial distribution of common lambsquaters (Chenopodium album) in no-till soybean (Glycine max). Weed Science, 43, 258–268.

    CAS  Google Scholar 

  • Carroll, Z. L., & Oliver, M. A. (2005). Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma, 128, 354–374.

    Article  Google Scholar 

  • Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11–43.

    Article  Google Scholar 

  • Cousens, R. (1987). Theory and reality of weed control thresholds. Plant Protection Quarterly, 2, 13–20.

    Google Scholar 

  • Dicke, D., Fries, A., & Gerhards, R. (2004). Ermittlung von Schadschwellen für die teilschlagspezifische Unkrautbekämpfung im Braugerstenanbau (Determination of weed thresholds for site-specific weed control in malting barley). Journal of Plant Diseases and Protection, Special Issue XIX, 413–421.

  • Dicke, D., & Gebhardt, S. (2007). Testing decision rules for sowing and nitrogen fertilisation of cereals, at sites of high soil variability––a GIS approach for on-farm research. In J. V. Stafford (Ed.), Precision agriculture 07 (pp. 731–736). The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Dicke, D., Gerhards, R., Büchse, A., & Hurle, K. (2007). Modelling spatial and temporal dynamics of Chenopodium album L. under the influence of site-specific weed control. Crop Protection, 26, 206–211.

    Article  Google Scholar 

  • Dicke, D., & Kühbauch, W. (2006). Temporal dynamics of weed populations in arable fields using long-term site-specific weed control. In C. Preston, J. H. Watts, & N. D. Crossman (Eds.), Proceedings of 15th Australian Weeds Conference: Managing Weeds in a Changing Climate (pp. 375–378). Adelaide, Australia: Gillingham Printers.

  • Friedman, S. P., & Seaton, N. A. (1998). Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks. Water Resources Research, 34, 1703–1710.

    Article  Google Scholar 

  • Gerhards, R., & Christensen, S. (2003). Real-time weed detection, decision making and patch spraying in maize, sugar-beet, winter wheat and winter barley. Weed Research, 43, 385–392.

    Article  Google Scholar 

  • Gerhards, R., Dicke, D., & Oebel, H. (2005). Testing and analysing decision rules for site-specific weed control in malt barley (Hordeum vulgare L.) using a geographic information system. Journal of Plant Diseases and Protection, 112, 447–456.

    Google Scholar 

  • Gerhards, R., & Oebel, H. (2006). Practical experiences with a system for site-specific weed control in arable crops using real-time image analysis and GPS-controlled patch spraying. Weed Research, 46, 185–193.

    Article  Google Scholar 

  • Gerhards, R., Sökefeld, M., Schulze-Lohne, K., & Mortensen, D. A. (1997). Site-specific weed control in winter wheat. Journal of Agronomy and Crop Science, 4, 219–225.

    Article  Google Scholar 

  • Geonics. (1999). EM38 ground conductivity meter operating manual. (Geonics Limited, Mississauga, Canada).

  • Gotway-Crawford, C. A., Bullock, D. G., Pierce, F. J., Stroup, W. W., Hergert, G. W., & Eskridge, K. M. (1997). Experimental design issues and statistical evaluation techniques for site-specific management. In F. J. Pierce & E. J. Sadler (Eds.), The state of site specific management for agriculture (pp. 101–110). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Holst, N., Rasmussen, I. A., & Bastiaans, L. (2007). Field weed population dynamics: a review of model approaches and applications. Weed Research, 47, 1–14.

    Article  Google Scholar 

  • Johnson, G. A., Mortensen, D. A., & Martin, A. R. (1995). A simulation of herbicide use based in weed spatial distribution. Weed Research, 35, 197–205.

    Article  Google Scholar 

  • Johnson, G. A., Mortensen, D. A., & Gotway, C. A. (1996). Spatial and temporal analysis of weed seedling populations using geostatistics. Weed Science, 44, 704–710.

    CAS  Google Scholar 

  • Kackar, R. N., & Harville, D. A. (1984). Approximation for standard errors of estimators of fixed and random effects in mixed linear models. Journal of the American Statistical Association, 79, 853–862.

    Article  Google Scholar 

  • Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.

    Article  CAS  Google Scholar 

  • King, J. A., Dampney, P. M. R., Lark, M., Wheeler, H. C., Bradley, R. I., Mayr, T. R., & Russill, N. (2003). Evaluation of non-intrusive sensors for measuring soil physical properties. HGCA Project Report No. 302. London: HGCA.

  • Leithold, P., & Traphan, K. (2006). On farm research––a novel experimental design for precision farming. Journal of Plant Diseases and Protection, Special Issue XX, 157–164.

  • Lindquist, J. L., Dieleman, J. A., Mortensen, D. A., Johnson, G. A., & Wyse-Pester, D. Y. (1998). Economic importance of managing spatially heterogeneous weed populations. Weed Technology, 12, 7–13.

    Google Scholar 

  • Littell, R., Milliken, G. A., Stroup, W. W., & Wolfinger, R. (1996). Spatial Variability. In R. Littell, G. A. Milliken, W. W. Stroup, & R. Wolfinger (Eds.), SAS system for mixed models (pp. 303–330). Cary, NC, USA.

  • Luschei, E. C., Van Wychen, L. R., Maxwell, B. D., Bussan, A. J., Buschena, D., & Goodman, D. (2001). Implementing and conduction on-farm weed research with the use of GPS. Weed Science, 49, 536–542.

    Article  CAS  Google Scholar 

  • Marshall, E. J. P. (1988). Field-scale estimates of grass weed populations in arable land. Weed Research, 28, 191–198.

    Article  Google Scholar 

  • Mortensen, D. A., Johnson, G. A., & Young L. Y. (1993). Weed distribution in agricultural fields. In P. Robert & R. H. Rust (Eds.), Soil specific crop management (pp. 113–124). St. Paul, MN: American Society of Agronomy.

    Google Scholar 

  • Schabenberger, O., & Pierce, F. J. (2002). Contemporary statistical models for the plant and soil sciences. Boca Raton: CRC Press.

    Google Scholar 

  • Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G., & Wiebold, W. J. (2003). Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal, 95, 472–482.

    Article  Google Scholar 

  • Thompson, J. F., Stafford, J. V., & Miller, P. C. H. (1991). Potential of automatic weed detection and selective herbicide application. Crop Protection, 10, 254–259.

    Article  Google Scholar 

  • Thornton, P. K., Fawcett, R. H., Dent, J. B., & Perkins, T. J. (1990). Spatial weed distribution and economic thresholds for weed control. Crop Protection, 9, 337–342.

    Article  Google Scholar 

  • Wiles, L. J., Oliver, G. W., York, A. C., Gold, H. J., & Wilkerson G. G. (1992). Spatial distribution of broad leaf weeds in North Carolina soybean (Glycine max) fields. Weed Science, 40, 554–557.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Manfred Hurtz for providing the experimental field and his assistance during the field studies. They also want to thank Markus Sökefeld and Petra Pollheim for their assistance in conducting the field experiments and Gerd Beckers for site-specific herbicide application. This research was supported by the German Science Foundation (DFG), grant no. GK 722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ritter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritter, C., Dicke, D., Weis, M. et al. An on-farm approach to quantify yield variation and to derive decision rules for site-specific weed management. Precision Agric 9, 133–146 (2008). https://doi.org/10.1007/s11119-008-9061-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-008-9061-5

Keywords

Navigation