Skip to main content

Advertisement

Log in

Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Stoichiometric relations drive powerful constraints on many ecosystem processes. However, our understanding of the hierarchical responses of plant C:N:P stoichiometry at different levels of biological organization to global change factors remains limited.

Methods

we examined the plant C:N:P stoichiometric responses to N deposition and mowing (hay making) at both species- and community-level by carrying out a 4-year field experiment in the temperate steppe of northern China.

Results

Our results showed that N addition and mowing resulted in higher plant N concentrations, lower C:N, and higher N:P at both species- and community-level. Mowing had a limited negative influence on the effects of N addition. We observed divergent responses of both plant P concentrations and C:P to N addition at species-level and community-level: N addition led to higher plant P and lower C:P at species-level, but this effect was not observed at the community-level.

Conclusions

Our results indicate that stoichiometric responses at community-level to N addition and mowing diverge from more traditionally examined species-specific responses. Our results suggest that the hierarchical responses of plant stoichiometry to anthropogenic disturbance deserves more attention when we model the interactions of terrestrial ecosystem C, N, and P cycling under scenarios of increasing N availability concomitantly occurring with active land management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aerts R, Chapin III FS (1999) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In: Fitter AH, Raffaelli DG (eds) Advances in Ecological Research. Academic Press

  • Ågren GI, Weih M (2012) Plant stoichiometry at different scales: element concentration patterns reflect environment more than genotype. New Phytol 194:944–952

    Article  PubMed  Google Scholar 

  • Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004) Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature 431:181–184

    Article  CAS  PubMed  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Blanke V, Bassin S, Volk M, Fuhrer J (2012) Nitrogen deposition effects on subalpine grassland: the role of nutrient limitations and changes in mycorrhizal abundance. Acta Oecol 45:57–65

    Article  Google Scholar 

  • Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745–747

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Article  PubMed  Google Scholar 

  • Fujita Y, Robroek BJM, De Ruiter PC, Heil GW, Wassen MJ (2010) Increased N affects P uptake of eight grassland species: the role of root surface phosphatase activity. Oikos 119:1665–1673

    Article  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Giese M, Brueck H, Gao YZ, Lin S, Steffens M, Kögel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng XH, Hoffmann C, Bai YF, Han XG (2013) N balance and cycling of inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecol Monogr 83:195–219

    Article  Google Scholar 

  • Green RA, Detling JK (2000) Defoliation-induced enhancement of total aboveground nitrogen yield of grasses. Oikos 91:280–284

    Article  Google Scholar 

  • Gruner DS, Smith JE, Seabloom EW, Sandin SA, Ngai JT, Hillebrand H, Harpole WS, Elser JJ, Cleland EE, Bracken MES, Borer ET, Bolker BM (2008) A cross-system synthesis of consumer and nutrient resource control on producer biomass. Ecol Lett 11:740–755

    Article  PubMed  Google Scholar 

  • Güsewell S (2004) N: P ratios in terrestrial plants: variation and functional significance. New Phytol 164:243–266

    Article  Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402

    Article  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862

    Article  PubMed  Google Scholar 

  • Henry HAL, Cleland EE, Field CB, Vitousek PM (2005) Interactive effects of elevated CO2, N deposition and climate change on plant litter quality in a California annual grassland. Oecologia 142:465–473

    Article  PubMed  Google Scholar 

  • Hiernaux P, Turner MD (1996) The effect of clipping on growth and nutrient uptake of Sahelian annual rangelands. J Appl Ecol 33:387–399

    Article  Google Scholar 

  • Isbell F, Reich PB, Tilman D, Hobbie SE, Polasky S, Binder S (2013) Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc Natl Acad Sci U S A 110:11911–11916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson NC, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Klanderud K, Totland Ø (2005) Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology 86:2047–2054

    Article  Google Scholar 

  • Klumpp K, Tallec T, Guix N, Soussana J-F (2011) Long-term impacts of agricultural practices and climatic variability on carbon storage in a permanent pasture. Glob Chang Biol 17:3534–3545

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kozovits AR, Bustamante MMC, Garofalo CR, Bucci S, Franco AC, Goldstein G, Meinzer FC (2007) Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Funct Ecol 21:1034–1043

    Article  Google Scholar 

  • Kuo S (1996) Phosphorus. In: Bridgham JM (ed) Methods of Soil Analysis, Part 3. ASA and SSSA, Madison, pp 869–919

    Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CN, Zhang FS (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012a) Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia 168:301–310

    Article  PubMed  Google Scholar 

  • Lü XT, Lü FM, Zhou LS, Han X, Han XG (2012b) Stoichiometric response of dominant grasses to fire and mowing in a semi-arid grassland. J Arid Environ 78:154–160

    Article  Google Scholar 

  • Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013) Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob Chang Biol 19:2775–2784

    Article  PubMed  Google Scholar 

  • Ma LN, Lü XT, Liu Y, Guo JX, Zhang NY, YANG JQ, Wang RZ (2011) The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China. PLoS ONE 6:e27645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

    Article  CAS  PubMed  Google Scholar 

  • Menge DNL, Field CB (2007) Simulated global changes alter phosphorus demand in annual grassland. Glob Chang Biol 13:2582–2591

    Article  Google Scholar 

  • Mikola J, Setälä H, Virkajärvi P, Saarijärvi K, Ilmarinen K, Voigt W, Vestberg M (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79:221–244

    Article  Google Scholar 

  • Mooshammer M, Wanek W, Schnecker J, Wild B, Leitner S, Hofhansl F, Blöchl A, Hämmerle I, Frank AH, Fuchslueger L, Keiblinger KM, Zechmeister-Boltenstern S, Richter A (2011) Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93:770–782

    Article  Google Scholar 

  • Peñuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth's life system. Glob Chang Biol 18:3–6

    Article  Google Scholar 

  • Perring MP, Hedin LO, Levin SA, McGroddy M, de Mazancourt C (2008) Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems. Proc Natl Acad Sci U S A 105:1971–1976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robson TM, Lavorel S, Clement JC, Roux XL (2007) Neglect of mowing and manuring leads to slower nitrogen cycling in subalpine grasslands. Soil Biol Biochem 39:930–941

    Article  CAS  Google Scholar 

  • Rowe EC, Smart SM, Kennedy VH, Emmett BA, Evans CD (2008) Nitrogen deposition increases the acquisition of phosphorus and potassium by heather Calluna vulgaris. Environ Pollut 155:201–207

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Peñuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspect Plant Ecol Evol Syst 14:33–47

    Article  Google Scholar 

  • Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Vitousek PM (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Article  Google Scholar 

  • Turner CL, Seastedt TR, Dyer MI (1993) Maximization of aboveground grassland production: the role of defoliation frequency, intensity, and history. Ecol Appl 3:175–186

    Article  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecol Appl 20:5–15

    Article  PubMed  Google Scholar 

  • Xia JY, Wan SQ (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Li Y, Wu MY, Zhang Z, Li LH, Wan SQ (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Chang Biol 17:2936–2944

    Article  Google Scholar 

  • Ziter C, MacDougall AS (2012) Nutrients and defoliation increase soil carbon inputs in grassland. Ecology 94:106–116

    Article  Google Scholar 

Download references

Acknowledgments

We thank the staff in the Inner Mongolia Grassland Ecosystem Research Station (IMGERS) for facilitating this study. We gratefully acknowledge Xiaoliang Wang, Jianjun Chen, Yingjie Dong, Meilan Li, Yuqin Zong, Hongying Li, Minglu Rong, Baorong Cui for field and laboratory works, two anonymous reviewers for their constructive comments and suggestions. This study was supported by National Natural Science Foundation of China (41273094, 31170433, and 41173086), the State Key Laboratory of Vegetation and Environmental Change (LVEC-2012kf08), and the State Key Laboratory of Forest and Soil Ecology (LFSE2013-13), and Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010403). Authors declared no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Lü.

Additional information

Responsible Editor: Harry Olde Venterink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Sistla, S.A., Zhang, YH. et al. Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant Soil 382, 175–187 (2014). https://doi.org/10.1007/s11104-014-2154-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2154-1

Keywords

Navigation