Skip to main content
Log in

Assembled β-Co(OH)2 Nanoparticles on Reduced Graphene Oxide for Enhanced Magnetism

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A simple and effective method has been developed to assemble the β-Co(OH)2 nanoparticles coordinated to the surface of the reduced graphene oxide sheets. The reduced graphene oxide-Co(OH)2 hybrid is characterized by transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy techniques, respectively. These morphological and structural analysis results demonstrate the successful attachment of hexagonal β-Co(OH)2 nanoparticles to the reduced graphene oxide sheets through the oxygen-containing functional groups. Compared to the paramagnetic property of hexagonal β-Co(OH)2 nanoparticles, a s-like superparamagnetic behavior can be observed at room temperature for the reduced graphene oxide-Co(OH)2 hybrid by the magnetometer PPMS-9T magnetic measurement, indicative of superparamagnetism. The interplay between the localized magnetic moment of the Co2+ ions in the hexagonal β-Co(OH)2 nanoparticles and the itinerant π carriers in reduced graphene oxide is suggested to be responsible for this superparamagnetic behavior. This enhanced magnetism indicates that the reduced graphene oxide-Co(OH)2 hybrid has a promising potential for spintronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  ADS  Google Scholar 

  2. Puttisong, Y., Buyanova, I.A., Ptak, A.J., Tu, C.W., Geelhaar, L., Riechert, H., Chen, W.M.: Room-temperature electron spin amplifier based on Ga(In)NAs alloys. Adv. Mater. 25, 738–742 (2013)

    Article  Google Scholar 

  3. Sinova, J., Žutić, I.: New moves of the spintronics tango. Nat. Mater. 11, 368–371 (2012)

    Article  ADS  Google Scholar 

  4. Zhu, H.J., Ramsteiner, M., Kostial, H., Wasserrmeier, M., Schönherr, H.-P., Ploog, K.H.: Room temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001)

    Article  ADS  Google Scholar 

  5. Osipov, V.V., Bratkovsky, A.M.: A class of spin injection-precession ultrafast nanodevices. Appl. Phys. Lett. 84, 2118–2120 (2004)

    Article  ADS  Google Scholar 

  6. Lou, X., Adelmann, C., Crooker, S.A., Garlid, E.S., Zhang, J., Reddy, S.M., Flexner, S.D., Palmstrøm, C.J., Crowell, P.A.: Electrical Detection of spin transport in lateral ferromagnet-semiconductor devices. Nat. Phys. 3, 197–202 (2007)

    Article  Google Scholar 

  7. Samarth, N.: Ferromagnetic semiconductors: Battle of the bands. Nat. Mater. 11, 360–361 (2012)

    Article  ADS  Google Scholar 

  8. Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  ADS  Google Scholar 

  9. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H.T., Van Wees, B.J.: Electronic spin transport and spin precession in single graphene layers at room temperature. Nature. 448, 571–574 (2007)

    Article  ADS  Google Scholar 

  10. Pensin, D., MacDonald, A.H.: Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012)

    Article  ADS  Google Scholar 

  11. Castro Neto, A.H.: Another spin on graphene. Science. 332, 315–316 (2011)

    Article  ADS  Google Scholar 

  12. Nair, R.R., Tsai, I-L., Sepioni, M., Lehtinen, O., Keinonen, J., Krasheninnikov, A.V., Castro Neto, A.H., Katsnelson, M.I., Geim, A.K., Grigorieva, I.V.: Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 4, 2010 (2013)

    ADS  Google Scholar 

  13. Garnica, M., Stradi, D., Barja, S., Calleja, F., Díaz, C., Alcamí, M., Martín, N., Vázquez de Parga, A.L., Martín, F., Miranda, R.: Long-range magnetic order in a purely organic 2D layer adsorbed on epitaxial graphene. Nat. Phys. 9, 368–374 (2013)

    Article  Google Scholar 

  14. Zhu, X., Zhu, Y., Murali, S., Stoller, M.D., Ruoff, R.S.: Nanostructured Reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5(4), 3333–3338 (2011)

    Article  Google Scholar 

  15. Wang, C., Feng, C., Gao, Y., Ma, X., Wu, Q., Wang, Z.: Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. Chem. Eng. J. 173(1), 92–97 (2011)

    Article  Google Scholar 

  16. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101–105 (2008)

    Article  ADS  Google Scholar 

  17. Wei, D., Liu, Y., Wang, Y., Zhang, H., Huang, L., Yu, G.: Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9(5), 1752–1758 (2009)

    Article  ADS  Google Scholar 

  18. Wang, C., Li, D., Too, C.O., Wallace, G.G.: Electrochemical properties of graphene paper electrodes used in Lithium batteries. Chem. Mater. 21, 2604–2606 (2009)

    Article  Google Scholar 

  19. Sampanthar, J.T., Zeng, H.C.: Arresting Butterfly-like intermediate nanocrystals of beta-Co(OH)2 via Ethylenediamine-Mediated synthesis. J. Am. Chem. Soc. 124(23), 6668–6675 (2002)

    Article  Google Scholar 

  20. Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J.M.D.: Graphene oxide dispersions in organic solvents. Langmuir 24, 10560–10564 (2008)

    Article  Google Scholar 

  21. Uk Lee, H., Young Yoo, H., Lkhagvasuren, T., Seok Song, Y., Park, C., Kim, J., Kim, S.W.: Enzymatic fuel cells based on electrodeposited graphite oxide/cobalt hydroxide/chitosan composite-enzyme electrode. Biosens. Bioelectron. 42, 342–348 (2013)

    Article  Google Scholar 

  22. Takada, T., Bando, Y., Kiyama, M., Miyamoto, H., Sato, T.: The magnetic property of beta-Co(OH)2. J. Phys. Soc. Jpn. 21, 2726 (1966)

    Article  ADS  Google Scholar 

  23. Wang, H., Casalongue, H.S., Liang, Y., Dai, H.: Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132(21), 7472–7477 (2010)

    Article  Google Scholar 

  24. Mauger, A.: Magnetic polaron: Theory and experiment. Phys. Rev. B 27(4), 2308–2324 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant Nos. 61006080 and 11174226) and Ph.D. Programs Foundation of Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangli Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Ye, S., Guo, H. et al. Assembled β-Co(OH)2 Nanoparticles on Reduced Graphene Oxide for Enhanced Magnetism. J Supercond Nov Magn 27, 787–791 (2014). https://doi.org/10.1007/s10948-013-2354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-013-2354-6

Keywords

Navigation