Skip to main content
Log in

Effect of the crystalline environment on the third-order nonlinear optical properties of L-arginine phosphate monohydrate: a theoretical study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A supermolecular approach combined with an iterative electrostatic scheme was employed to investigate the nonlinear optical properties of the hybrid L-arginine phosphate monohydrate crystal, the procedure being aided by DFT calculations. The supermolecular scheme basically treated the molecules surrounding the unit cell as point charges; this approximation results in rapid convergence, making it a feasible method. DFT functionals of different flavors were considered: B3LYP, B2PLYP, CAM-B3LYP, ωB97, and M06HF, utilizing the 6-311 + G(d) basis set. All functionals gave sufficiently accurate values for the dipole moment (μ) with respect to the experimental value 32(2) D. For the average linear polarizability (\( \overline{\alpha} \)) and the total first hyperpolarizability (β tot), good agreement was observed between the DFT-calculated values and MP2-derived results reported in the literature. For the second hyperpolarizability, both static and dynamic regimes were considered. The point-charge embedding approach led to an attenuation of the second hyperpolarizability γ for all frequencies considered. Excitations of γ were not observed for frequencies smaller than 0.1 a.u. For the second hyperpolarizability (both static and dynamic), computational results showed that L-arginine phosphate monohydrate exhibits a large nonlinear optical effect, which implies the occurrence of microscopic third-order NLO behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals, vol 1. Academic, London

  2. Nalwa HS, Miyata S (1996) Nonlinear optics of organic molecules and polymers. CRC, Boca Raton

  3. de Wergifosse M, Castet F, Champagne B (2015) Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics. J Chem Phys 142:194102. doi:10.1063/1.4920977

    Article  Google Scholar 

  4. de Wergifosse M, Champagne B (2011) Electron correlation effects on the first hyperpolarizability of push-pull π-conjugated systems. J Chem Phys 134:74113. doi:10.1063/1.3549814

    Article  Google Scholar 

  5. Quertinmont J, Champagne B, Castet F, Hidalgo Cardenuto M (2015) Explicit versus implicit solvation effects on the first hyperpolarizability of an organic biphotochrome. J Phys Chem A 119:5496–5503. doi:10.1021/acs.jpca.5b00631

    Article  CAS  Google Scholar 

  6. Champagne B, Botek E, Nakano M et al (2005) Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pi-conjugated systems. J Chem Phys 122:114315. doi:10.1063/1.1880992

    Article  Google Scholar 

  7. Nakano M, Nakagawa N, Kishi R et al (2007) Second hyperpolarizabilities of singlet polycyclic diphenalenyl radicals: effects of the nature of the central heterocyclic ring and substitution to diphenalenyl rings. J Phys Chem A 111:9102–9110. doi:10.1021/jp0734676

    Article  CAS  Google Scholar 

  8. Machado DFS, Lopes TO, Lima IT et al (2016) Strong solvent effects on the nonlinear optical properties of Z and E isomers from azo-enaminone derivatives. J Phys Chem C 120:17660–17669. doi:10.1021/acs.jpcc.6b01567

  9. Manivannan S, Dhanuskodi S, Kirschbaum K, Tiwari SK (2005) Design of an efficient solution grown semiorganic NLO crystal for short wavelength generation: 2-amino-5-nitropyridinium tetrafluoroborate. Cryst Growth Des 5:1463–1468. doi:10.1021/cg049562a

  10. Bi W, Louvain N, Mercier N et al (2008) A switchable NLO organic-inorganic compound based on conformationally chiral disulfide molecules and Bi(III)I5 iodobismuthate networks. Adv Mater 20:1013–1017. doi:10.1002/adma.200701753

  11. Castro AN, Almeida LR, Anjos MM et al (2016) Theoretical study on the third-order nonlinear optical properties and structural characterization of 3-acetyl-6-bromocoumarin. Chem Phys Lett 653:122–130

  12. Vaz WF, Custodio JMF, Silveira RG et al (2016) Synthesis, characterization, and third-order nonlinear optical properties of a new neolignane analogue. RSC Adv 6:79215–79227. doi:10.1039/C6RA14961H

    Article  CAS  Google Scholar 

  13. Seidler T, Champagne B (2015) Which charge definition for describing the crystal polarizing field and the χ(1) and χ(2) of organic crystals? Phys Chem Chem Phys 17:19546–19556. doi:10.1039/C5CP03248B

  14. Seidler T, Stadnicka K, Champagne B (2014) Evaluation of the linear and second-order NLO properties of molecular crystals within the local field theory: electron correlation effects, choice of XC functional, ZPVA contributions, and impact of the geometry in the case of 2-methyl-4-nitroaniline. J Chem Theory Comput 10:2214–2124

  15. Seidler T, Stadnicka K, Champagne B (2014) Second-order nonlinear optical susceptibilities and refractive indices of organic crystals from a multiscale numerical simulation approach. Adv Opt Mater 2:1000–1006. doi:10.1002/adom.201400245

    Article  CAS  Google Scholar 

  16. Seidler T, Stadnicka K, Champagne B (2013) Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory. J Chem Phys 139:114105. doi:10.1063/1.4819769

    Article  Google Scholar 

  17. Seidler T, Stadnicka K, Champagne B (2014) Linear and second-order nonlinear optical properties of ionic organic crystals. J Chem Phys 141:104109. doi:10.1063/1.4894483

    Article  Google Scholar 

  18. Santos OL, Fonseca TL, Sabino JR et al (2015) Polarization effects on the electric properties of urea and thiourea molecules in solid phase. J Chem Phys 143:234503. doi:10.1063/1.4937481

    Article  CAS  Google Scholar 

  19. Fonseca TL, Sabino JR, Castro MA, Georg HC (2010) A theoretical investigation of electric properties of L-arginine phosphate monohydrate including environment polarization effects. J Chem Phys 133:144103. doi:10.1063/1.3501237

  20. Fonseca TL, De Oliveira HCB, Amaral OAV, Castro MA (2005) MP2 static first hyperpolarizability of azo-enaminone isomers. Chem Phys Lett 413:356–361

    Article  CAS  Google Scholar 

  21. Fonseca TL, Castro MA, de Oliveira HCB, Cunha S (2007) Static and dynamic first hyperpolarizabilities of azo-enaminone isomers. Chem Phys Lett 442:259–264

    Article  CAS  Google Scholar 

  22. de Oliveira HCB, Fonseca TL, Castro MA et al (2003) Theoretical study of the static first hyperpolarizability of azo-enaminone compounds. J Chem Phys 119:8417. doi:10.1063/1.1612474

    Article  Google Scholar 

  23. Ribeiro GC, Almeida LR, Napolitano HB et al (2016) Polarization effects on the third-order nonlinear optical properties of two polymorphs of enamine derivative. Theor Chem Acc 135:244. doi:10.1007/s00214-016-1999-1

    Article  Google Scholar 

  24. Almeida L, Anjos M, Ribeiro G et al (2017) Synthesis, structural characterization and computational study of a novel amino chalcone: a potential nonlinear optical material. New J Chem 41:1744–1754. doi:10.1039/C5NJ03214H

  25. Guillaume M, Champagne B, Bégué D, Pouchan C (2009) Electrostatic interaction schemes for evaluating the polarizability of silicon clusters. J Chem Phys 130:134715. doi:10.1063/1.3104629

    Article  Google Scholar 

  26. Kanoun MB, Botek E, Champagne B (2010) Electrostatic modeling of the linear optical susceptibilities of 2-methyl-4-nitroaniline, m-nitroaniline, 3-methyl-4-nitropyridine N-oxide and 2-carboxylic acid-4-nitropyridine-1-oxide crystals. Chem Phys Lett 487:256–262. doi:10.1016/j.cplett.2010.01.021

  27. Bishop DM (1998) Molecular vibrations and nonlinear optics. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 104. Wiley, Hoboken, pp 1–40

  28. Levenson MD, Bloembergen N (1974) Dispersion of the nonlinear optical susceptibility tensor in centrosymmetric media. Phys Rev B 10:4447–4463

    Article  CAS  Google Scholar 

  29. Bishop DM, Gu FL (2000) Ab initio and semi-empirical studies of the static polarizability and the second hyperpolarizability of diamond: finite Td symmetry models from CH4 to C281H172. Chem Phys Lett 317:322–329. doi:10.1016/S0009-2614(99)01337-8

  30. Tsiaousis D, Munn RW, Smith PJ, Popelier PLA (2004) Polarizability of acetanilide and RDX in the crystal: effect of molecular geometry. Chem Phys 305:317–323. doi:10.1016/j.chemphys.2004.07.013

    Article  CAS  Google Scholar 

  31. Monaco SB, Davis LE, Velsko SP et al (1987) Synthesis and characterization of chemical analogs of L-arginine phosphate. J Cryst Growth 85:252–255. doi:10.1016/0022-0248(87)90231-4

  32. Hickey AL, Rowley CN (2014) Benchmarking quantum chemical methods for the calculation of molecular dipole moments and polarizabilities. J Phys Chem A 118:3678–3687. doi:10.1021/jp502475e

    Article  CAS  Google Scholar 

  33. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  34. Maekawa S, Moorthi K (2014) Polarizabilities from long-range corrected DFT calculations. J Chem Eng Data 59:3160–3166. doi:10.1021/je500224e

    Article  CAS  Google Scholar 

  35. Blair SA, Thakkar AJ (2013) How often is the minimum polarizability principle violated? Chem Phys Lett 556:346–349. doi:10.1016/j.cplett.2012.11.048

    Article  CAS  Google Scholar 

  36. Champagne B, Perpète EA, van Gisbergen SJA et al (1998) Assessment of conventional density functional schemes for computing the polarizabilities and hyperpolarizabilities of conjugated oligomers: an ab initio investigation of polyacetylene chains. J Chem Phys 109:10489. doi:10.1063/1.477731

    Article  CAS  Google Scholar 

  37. Garza AJ, Wazzan NA, Asiri AM, Scuseria GE (2014) Can short- and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds? J Phys Chem A 118:11787–11796. doi:10.1021/jp510062b

    Article  CAS  Google Scholar 

  38. Günter P (2000) Nonlinear optical effects and materials, 4th edn. Springer, Berlin. doi: 10.1007/978-3-540-49713-4

Download references

Acknowledgements

The authors thank the following Brazilian agencies for financial support: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), Fundação de Empreendimentos Científicos (FINATEC), Fundação de Amparo à Pesquisa do Distrito Federal (FAPDF), and Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clodoaldo Valverde or Heibbe C. B. de Oliveira.

Additional information

This paper belongs to Topical Collection VI Symposium on Electronic Structure and Molecular Dynamics—VI SeedMol

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valverde, C., Rodrigues, R.F.N., Machado, D.F.S. et al. Effect of the crystalline environment on the third-order nonlinear optical properties of L-arginine phosphate monohydrate: a theoretical study. J Mol Model 23, 122 (2017). https://doi.org/10.1007/s00894-017-3274-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-017-3274-3

Keywords

Navigation