Skip to main content
Log in

The dependence of Raman defect bands in silica glasses on densification revisited

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 30 November 2015

Abstract

This paper focuses on the densification signature measured by Raman spectroscopy in silica-based glasses. We have studied a pure silica glass and a 25GeO2–75SiO2 binary glass fabricated by plasma chemical vapor deposition (PCVD), using the fictive temperature T f as a variable parameter ranging from 950 to 1400 °C. Macroscopic density measurements highlighted two opposite behaviors: the higher the fictive temperature, the lower the density of the GeO2–SiO2 glass, in contrast to what is observed in the pure silica glass. Yet, Raman spectra of both these glasses showed similar trends: the intensities of the two defect bands, D1 and D2, increase with increasing fictive temperature. Therefore, the D1 and D2 bands cannot be used as a reliable signature of densification in binary glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Seward TP III, Smith C, Borrelli NF, Allan DC (1997) Densification of synthetic fused silica under ultraviolet irradiation. J Non-Cryst Solids 222:407–414

    Article  Google Scholar 

  2. Primak W, Kampwirth R (1968) The radiation compaction of vitreous silica. J Appl Phys 39(12):5651–5658

    Article  Google Scholar 

  3. Kubota A, Caturla MJ, Stolken JS, Feit MD (2001) Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage. Opt Express 8(11):611

    Article  Google Scholar 

  4. Spaargaren SMR, Syms Richard RA (2000) Characterization of defects in waveguides formed by electron irradiation of silica-on-silicon. J Lightwave Technol 18(4):555

    Article  Google Scholar 

  5. Barbier D, Green M, Madden SJ (1991) Waveguide fabrication for integrated optics by electron beam irradiation of silica. J Lightwave Technol 9(6):715–720

    Article  Google Scholar 

  6. Syms RRA, Tate TJ, Bellerby R (1995) Low-loss near-infrared passive optical waveguide components formed by electron beam irradiation of silica-on-silicon. J Lightwave Technol 13(8):1745–1749

    Article  Google Scholar 

  7. Imai H, Yasumori M, Hirashima H, Awazu K, Onuki H (1996) Significant densification of sol–gel derived amorphous silica films by vacuum ultraviolet irradiation. J Appl Phys 79(11):8304–8309

    Article  Google Scholar 

  8. Lancry M, Poumellec B (2012) UV laser processing and multiphoton absorption processes in optical telecommunication fibers materials. Phys Rep

  9. Garcia Blanco S, Glidle A, Davies JH, Aitchison JS, Cooper JM (2001) Electron-beam-induced densification of Ge-doped flame hydrolysis silica for waveguide fabrication. Appl Phys Lett 79(18):2889–2891

    Article  Google Scholar 

  10. Borrelli NF, Smith C, Allan DC, Seward TP (1997) Densification of fused silica under 193-nm excitation. JOSA B 14(7):1606–1615

    Article  Google Scholar 

  11. Poumellec B, Guenot P, Riant I, Sansonetti P, Niay P, Bernage P, Bayon JF (1995) UV induced densification during Bragg grating inscription in Ge: SiO2 preforms. Opt Mater 4(4):441–449

    Article  Google Scholar 

  12. Galeener FL (1982) Planar rings in vitreous silica. J Non-Cryst Solids 49(1):53–62

    Article  Google Scholar 

  13. Galeener FL (1982) Planar rings in glasses. Solid State Commun 44(7):1037–1040. doi:10.1016/0038-1098(82)90329-5

    Article  Google Scholar 

  14. Pasquarello A, Car R (1998) Identification of Raman defect lines as signatures of ring structures in vitreous silica. Phys Rev Lett 80(23):5145–5147

    Article  Google Scholar 

  15. Courtens E, Foret M, Hehlen B, Vacher R (2001) The vibrational modes of glasses. Solid State Commun 117:187–200

    Article  Google Scholar 

  16. Bellouard Y, Barthel E, Said AA, Dugan M, Bado P (2008) Scanning thermal microscopy and Raman analysis of bulk fused silica exposed to low energy femtosecond laser pulses. Opt Express 16(24):19520–19534

    Article  Google Scholar 

  17. Chan JW, Huser T, Risbud S, Krol DM (2001) Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt Lett 26(21):1726–1728

    Article  Google Scholar 

  18. Kucheyev SO, Demos SG (2003) Optical defects produced in fused silica during laser-induced breakdown. Appl Phys Lett 82(19):3230–3232

    Article  Google Scholar 

  19. Krol DM (2008) Femtosecond laser modification of glass. J Non-Cryst Solids 354(2–9):416–424. doi:10.1016/j.jnoncrysol.2007.01.098

    Article  Google Scholar 

  20. Deschamps T, Kassir-Bodon A, Sonneville C, Margueritat J, Martinet C, de Ligny D, Mermet A, Champagnon B (2013) Permanent densification of compressed silica glass: a Raman-density calibration curve. J Phys: Condens Matter 25(2):25402–25405

    Google Scholar 

  21. Le Parc R, Ranieri V, Haines J, Cambon M, Cambon O, Levelut C, Clément S (2009) In situ high pressure and high temperature Raman studies of (1 − x) SiO2xGeO2 glasses. J Phys: Condens Matter 21(37):375109

    Google Scholar 

  22. Bressel L, De Ligny D, Sonneville C, Martinez V, Mizeikis V, Buividas R, Juodkazis S (2011) Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect [Invited]. Opt Mater Express 1(4):605–613

    Article  Google Scholar 

  23. Sugiura H, Yamadaya T (1992) Raman scattering in silica glass in the permanent densification region. J Non-Cryst Solids 144:151–158. doi:10.1016/S0022-3093(05)80395-3

    Article  Google Scholar 

  24. Vandembroucq D, Deschamps T, Coussa C, Perriot A, Barthel E, Champagnon B, Martinet C (2008) Density hardening plasticity and mechanical ageing of silica glass under pressure: a Raman spectroscopic study. J Phys: Condens Matter 20(48):485221

    Google Scholar 

  25. Landau LD, Lifshitz EM (1969) Statistical physics. Pt. 1, vol 1. Course of theoretical physics-Pergamon International Library of Science, Technology, Engineering and Social Studies, Oxford: Pergamon Press, and Reading: Addison-Wesley,| c1969, 2nd rev.-enlarg. ed

  26. Lines ME (1984) Scattering losses in optic fiber materials. I. A new parametrization. J Appl Phys 55(11):4052–4057

    Article  Google Scholar 

  27. Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29(9):240–253

    Article  Google Scholar 

  28. Lancry M, Régnier E, Poumellec B (2011) Fictive temperature in silica-based glasses and its application to optical fiber manufacturing. Prog Mater Sci. doi:10.1016/j.pmatsci.2011.05.002

    Google Scholar 

  29. Gross TM, Tomozawa M (2007) Fictive temperature of GeO2 glass: its determination by IR method and its effects on density and refractive index. J Non-Cryst Solids 353(52–54):4762–4766. doi:10.1016/j.jnoncrysol.2007.06.057

    Article  Google Scholar 

  30. Bruckner R (1970) Properties and structure of vitreous silica I. J Non-cryst Solids 5(2):123–175

    Article  Google Scholar 

  31. Shelby JE (2004) Density of vitreous silica. J Non-Cryst Solids 349:331–336

    Article  Google Scholar 

  32. Senior JM, Jamro MY (2009) Optical fiber communications: principles and practice. Pearson Education

  33. Agarwal A, Davis KM, Tomozawa M (1995) A simple IR spectroscopic method for determining fictive temperature of silica glasses. J Non-Cryst Solids 185:191–198

    Article  Google Scholar 

  34. Lide DR (2001) CRC handbook of physics and chemistry. CRC Press, Boca Raton 76

    Google Scholar 

  35. Manolescu G (2004) Verres pour fibres amplificatrices Raman Université Paris Sud Orsay

  36. Bromage J, Rottwitt K, Lines ME (2002) A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles. IEEE Photonics Technol Lett 14(1):24–26

    Article  Google Scholar 

  37. Kakiuchida H, Sekiya E (2007) Refractive index and density changes in silica glass by halogen doping. J Non-Cryst Solids 353(5–7):568–572

    Article  Google Scholar 

  38. Shelby JE (2009) Fictive temperature and density of doped vitreous silica. Phys Chem Glasses-Eur J Glass Sci Technol Part B 50(1):7–14

    Google Scholar 

  39. Douglas RW, Isard JO (1951) Density changes in fused silica. J Soc Glass Technol 35:3911

    Google Scholar 

  40. Denisov VN, Mavrin BN, Podobedov VB, Sterin KhE, Varshal BG (1984) Law of conservation of momentum and rule of mutual exclusion for vibrational excitations in hyper-Raman and Raman spectra of glasses. J Non-Cryst Solids 64(1):195–210

    Article  Google Scholar 

  41. Neuville DR, De Ligny D, Henderson GS (2014) Advances in Raman spectroscopy applied to earth and material sciences. Rev Miner Geochem 78(1):509–541

    Article  Google Scholar 

  42. Le Losq C, Neuville DR, Florian P, Henderson GS, Massiot D (2014) The role of Al 3+ on rheology and structural changes in sodium silicate and aluminosilicate glasses and melts. Geochim Cosmochim Acta 126:495–517

    Article  Google Scholar 

  43. Taraskin SN, Elliott SR (1997) Nature of vibrational excitations in vitreous silica. Phys Rev B 56(14):8605–8622

    Article  Google Scholar 

  44. Geissberger AE, Galeener FL (1983) Raman studies of vitreous SiO2 versus fictive temperature. Phys Rev B 28(6):3266

    Article  Google Scholar 

  45. Shimodaira N, Saito K, Ikushima AJ (2002) Raman spectra of fluorine-doped silica glasses with various fictive temperatures. J Appl Phys 91:3522

    Article  Google Scholar 

  46. Schroeder J, Wu W, Apkarian JL, Lee M, Hwa LG, Moynihan CT (2004) Raman scattering and Boson peaks in glasses: temperature and pressure effects. J Non-Cryst Solids 349:88–97

    Article  Google Scholar 

  47. Wilson M, Madden PA, Hemmati M, Angell CA (1996) Polarization effects, network dynamics, and the infrared spectrum of amorphous SiO2. Phys Rev Lett 77(19):4023

    Article  Google Scholar 

  48. Umari P, Gonze X, Pasquarello A (2003) Concentration of small ring structures in vitreous silica from a first-principles analysis of the Raman spectrum. Phys Rev Lett 90(2):027401

    Article  Google Scholar 

  49. Hehlen B, Simon G (2012) The vibrations of vitreous silica observed in hyper-Raman scattering. J Raman Spectrosc 43(12):1941–1950

    Article  Google Scholar 

  50. Galeener FL (1980) The Raman spectra of defects in neutron bombarded and Ge-rich vitreous GeO2. J Non-Cryst Solids 40(1–3):527–533. doi:10.1016/0022-3093(80)90127-1

    Article  Google Scholar 

  51. Henderson GS, Neuville DR, Cochain B, Cormier L (2009) The structure of GeO2-SiO2 glasses and melts: a Raman spectroscopy study. J Non-Cryst Solids 355(8):468–474

    Article  Google Scholar 

  52. Martinez V, Le Parc R, Martinet C, Champagnon B (2003) Structural studies of germanium doped silica glasses: the role of the fictive temperature. Opt Mater 24(1–2):59–62

    Article  Google Scholar 

  53. Mysen BO, Finger LW, Virgo D, Seifert FA (1982) Curve-fitting of Raman spectra of silicate glasses. Am Miner 67(7–8):686–695

    Google Scholar 

  54. Heili M (2013) Influence of thermal history on optical scattering in preforms and optical fibers GeO2–SiO2: F. University Paris Sud, Orsay, http://www.theses.fr/2013PA112272, Available on request

  55. Hung PK, Vinh LT, Huy NV (2012) The bond angle distribution and local coordination for silica glass under densification. Phys Scr 85(5):055703

    Article  Google Scholar 

  56. Durben DJ, Wolf GH (1991) Raman spectroscopic study of the pressure-induced coordination change in GeO2 glass. Phys Rev B 43(3):2355–2363

    Article  Google Scholar 

  57. Trachenko K, Dove MT (2003) Compressibility, kinetics, and phase transition in pressurized amorphous silica. Phys Rev B 67(6):064107

  58. Oganov AR, Gillan MJ, Price GD (2005) Structural stability of silica at high pressures and temperatures. Phys Rev B 71(6):064104

    Article  Google Scholar 

  59. Majérus O, Cormier L, Itié JP, Galoisy L, Neuville DR, Calas G (2004) Pressure-induced Ge coordination change and polyamorphism in SiO2–GeO2 glasses. J Non-Cryst Solids 345–346:34–38. doi:10.1016/j.jnoncrysol.2004.07.039

    Article  Google Scholar 

  60. Galeener FL (1985) Raman and ESR studies of the thermal history of amorphous SiO2. J Non-Cryst Solids 71(1–3):373–386. doi:10.1016/0022-3093(85)90308-4

    Article  Google Scholar 

  61. Hehlen B, Courtens E, Vacher R, Yamanaka A, Kataoka M, Inoue K (2000) Hyper-Raman scattering observation of the boson peak in vitreous silica. Phys Rev Lett 84(23):5355–5358

    Article  Google Scholar 

  62. Papatheodorou GN, Kalampounias AG (2009) In situ measurements of the D1 and D2 Raman band intensities of vitreous and molten silica in the 77–2150 K temperature range. J Phys: Condens Matter 21(20):205101

    Google Scholar 

  63. Laberge NL, Vasilescu VV, Montrose CJ, Macedo PB (1973) Equilibrium compressibilities and density fluctuations in K2O–SiO2 Glasses. J Am Ceram Soc 56(10):506–509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Lancry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heili, M., Poumellec, B., Burov, E. et al. The dependence of Raman defect bands in silica glasses on densification revisited. J Mater Sci 51, 1659–1666 (2016). https://doi.org/10.1007/s10853-015-9489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9489-8

Keywords

Navigation