Skip to main content

Advertisement

Log in

Green overhead and underground multiple-input multiple-output medium voltage broadband over power lines networks: energy-efficient power control

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The broadband potential of overhead and underground medium-voltage/broadband over power lines (MV/BPL) systems associated with multiple-input multiple-output (MIMO) transmission technology and energy efficient (EE) or green policies is examined analytically. The contribution of this paper is threefold. First, various overhead and underground MIMO/MV/BPL topologies have been studied with regard to appropriate transmission measures and spectral efficient (SE)/EE metrics such as channel attenuation, subchannel efficiency, EE subchannel efficiency, capacity, EE capacity, and power consumption. It is found that the above metrics depend drastically on the frequency, power constraints imposed to suppress electromagnetic interference (EMI) to other services, EE policies adopted to regulate power consumption, power grid type (either overhead or underground), MIMO scheme properties, MTL configuration, the physical properties of the cables used, and other topological characteristics. Second, further insights regarding the transmission and SE/EE capacity properties of various MIMO/MV/BPL systems reveal the similar behavior among single-input multiple-output, multiple-input single-output, and single-input single-output MV/BPL systems due to specific MIMO/MV/BPL channel characteristics. Third, using suitable SE/EE metrics, significant trade-off curves between capacity performance and power consumption described through dynamic quasiconcave curves are disclosed. The definition of proper injected power spectral density mask limits combined with the use of continuous/adaptive EE policies provide both EMI protection and EE-oriented high-bitrate MIMO/MV/BPL system design aiding towards sustainable BPL technology satisfying both Quality of Service requirements and ecological awareness (green technology initiatives).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruth S.: Green IT more than a three percent solution?. IEEE Internet Comput. 13(4), 74–78 (2009)

    Article  Google Scholar 

  2. Li Y.G., Winters J.H., Sollenberger N.R.: MIMO–OFDM for wireless communications: signal detection with enhanced channel estimation. IEEE Trans. Commun. 50(9), 1471–1477 (2002)

    Article  Google Scholar 

  3. Amanna, A., He, A., Tsou, T., Chen, X., Datla, D., Newman, T.R., Reed, J.H., Bose, T.: Green Communications: A New Paradigm for Creating Cost Effective Wireless Systems, Tech. Rep., 2009 (online). http://filebox.vt.edu/users/aamanna/web%20page/Green%20Communications-draft%20journal%20paper.pdf

  4. Ying Y.Z., Letaief K.B.: An efficient resource-allocation scheme for spatial multiuser access in MIMO/OFDM systems. IEEE Trans. Commun. 53(1), 107–116 (2005)

    Article  Google Scholar 

  5. Jayaweera S.K.: Virtual MIMO-based cooperative communication for energy-constrained wireless sensor networks. IEEE Trans. Wirel. Commun. 5(5), 984–989 (2006)

    Article  Google Scholar 

  6. Eickhoff R., Kraemer R., Santamaria I., Gonzalez L.: Developing energy-efficient MIMO radios. IEEE Veh. Tech. Mag. 4(1), 34–41 (2009)

    Article  Google Scholar 

  7. 3GPP: Telecommunication management; Study on Energy Savings Management (ESM), (Release 10), Tech. Rep. TR 32.826, Mar 2010. http://www.3gpp.org/ftp/Specs/html-info/32826.htm

  8. ITU-T Focus Group on Future Networks (FG FN), FG-FN OD-66, Draft Deliverable on Overview of Energy Saving of Networks, Oct. 2010. http://www.itu.int/dmspub/itut/oth/3A/05/T3A050000660001MSWE.doc

  9. Hasan Z., Boostanimehr H., Bhargava V.K.: Green cellular networks: a survey, some research issues and challenges. IEEE Commun. Surveys Tuts. 13(4), 524–540 (2011)

    Article  Google Scholar 

  10. Yan C., Shunqing Z., Shugong X., Li G.Y.: Fundamental trade-offs on green wireless networks. IEEE Commun. Mag. 49(6), 30–37 (2011)

    Article  Google Scholar 

  11. Abouei J., Plataniotis K.N., Pasupathy S.: Green modulations in energy-constrained wireless sensor networks. IET Commun. 5(2), 240–251 (2011)

    Article  Google Scholar 

  12. Galli S., Scaglione A., Wang Z.: For the grid and through the grid: the role of power line communications in the smart grid. Proc. IEEE 99(6), 998–1027 (2011)

    Article  Google Scholar 

  13. Gebhardt M., Weinmann F., Dostert K.: Physical and regulatory constraints for communication over the power supply grid. IEEE Commun. Mag. 41(5), 84–90 (2003)

    Article  Google Scholar 

  14. Tlich M., Zeddam A., Moulin F., Gauthier F.: Indoor power-line communications channel characterization up to 100 MHz–Part I: one parameter deterministic model. IEEE Trans. Power Del. 23(3), 1392–1401 (2008)

    Article  Google Scholar 

  15. Schneider, D., Speidel, J., Stadelmeier, L., Schill, D., Schwager, A.: Potential of MIMO for Inhome Power Line Communications. Presented at the ITGFachtagung, Dortmund (2009)

  16. Schwager, A., Schneider, D., Bäschlin, W., Dilly, A., Speidel, J.: MIMO PLC: theory, measurements and system setup. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 48–53, Udine (2011)

  17. Stadelmeier, L., Schneider, D., Schill, D., Schwager, A., Speidel, J.: MIMO for Inhome Power Line Communications. Presented at the International Conference on Source and Channel Coding, Ulm (2008)

  18. Versolatto, F., Tonello, A.M.: A MIMO PLC random channel generator and capacity analysis. In: Proceedings of the IEEE International Symposium Power Line Communications and Its Applications, pp. 66–71, Udine (2011)

  19. Lazaropoulos A.G., Cottis P.G.: Transmission characteristics of overhead medium voltage power line communication channels. IEEE Trans. Power Del. 24(3), 1164–1173 (2009)

    Article  Google Scholar 

  20. Lazaropoulos A.G., Cottis P.G.: Capacity of overhead medium voltage power line communication channels. IEEE Trans. Power Del. 25(2), 723–733 (2010)

    Article  Google Scholar 

  21. Lazaropoulos A.G., Cottis P.G.: Broadband transmission via underground medium-voltage power lines—Part I: transmission characteristics. IEEE Trans. Power Del. 25(4), 2414–2424 (2010)

    Article  Google Scholar 

  22. Lazaropoulos A.G., Cottis P.G.: Broadband transmission via underground medium-voltage power lines—Part II: capacity. IEEE Trans. Power Del. 25(4), 2425–2434 (2010)

    Article  Google Scholar 

  23. Lazaropoulos, A.G.: Broadband transmission characteristics of overhead high-voltage power line communication channels. Prog. Electromagn. Res. B 36, 373–398 (2012). Online: http://www.jpier.org/PIERB/pierb36/19.11091408.pdf

    Google Scholar 

  24. Amirshahi P., Kavehrad M.: High-frequency characteristics of overhead multiconductor power lines for broadband communications. IEEE J. Sel. Areas Commun. 24(7), 1292–1303 (2006)

    Article  Google Scholar 

  25. Sartenaer, T.: Multiuser Communications Over Frequency Selective Wired Channels and Applications to the Powerline Access Network. Ph.D. Dissertation, Univ. Catholique Louvain, Louvain-la-Neuve, Belgium, Sep. 2004. (online). http://www.tele.ucl.ac.be/~ts/PhD.php

  26. Schneider, D., Speidel, J., Stadelmeier, L., Schill, D.: Precoded spatial multiplexing MIMO for inhome power line communications. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–5, New Orleans (2008)

  27. Hashmat, R., Pagani, P., Zeddam, A., Chonavel, T.: MIMO communications for inhome PLC networks: Measurements and results up to 100 MHz. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 120–124, Rio de Janeiro (2010)

  28. Canova, A., Benvenuto, N., Bisaglia, P.: Receivers for MIMO-PLC channels: throughput comparison. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 114–119, Rio de Janeiro (2010)

  29. Schneider, D., Schwager, A., Speidel, J., Dilly, A.: Implementation and results of a MIMO PLC feasibility study. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 54–59, Udine (2011)

  30. Biagi, M.: MIMO self-interference mitigation effects on PLC relay networks. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 182–186, Udine (2011)

  31. Biagi M.: MIMO self-interference mitigation effects on power line relay networks. IEEE Commun. Lett. 15(8), 866–868 (2011)

    Article  Google Scholar 

  32. Paulraj A., Gore D., Nabar R., Bolcskei H.: An overview of MIMO communications—a key to gigabit wireless. Proc. IEEE 92(2), 198–218 (2004)

    Article  Google Scholar 

  33. Biglieri E., Proakis J., Shamai S.: Fading channels: information theoretic and communications aspects. IEEE Trans. Inform. Theory 44, 2619–2692 (1998)

    Article  Google Scholar 

  34. Gesbert D., Shafi M., Shiu D.S., Smith P., Naguib A.: From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J. Sel. Areas. Commun. 21(3), 281–302 (2003)

    Article  Google Scholar 

  35. Goldsmith A., Jafar S.A., Jindal N., Vishwanath S.: Capacity limits of MIMO channels. IEEE J. Sel. Areas. Commun. 21(5), 684–702 (2003)

    Article  Google Scholar 

  36. Calliacoudas, T., Issa, F.: Multiconductor transmission lines and cables solver, an efficient simulation tool for plc channel networks development, presented at the IEEE International Conference Power Line Communications and Its Applications, Athens (2002)

  37. Paul C.R.: Analysis of Multiconductor Transmission Lines. Wiley, New York (1994)

    Google Scholar 

  38. Faria J. A.B.: Multiconductor Transmission-Line Structures: Modal Analysis Techniques. Wiley, New York (1994)

    Google Scholar 

  39. Sartenaer T., Delogne P.: Deterministic modelling of the (shielded) outdoor powerline channel based on the multiconductor transmission line equations. IEEE J. Sel. Areas Commun. 24(7), 1277–1291 (2006)

    Article  Google Scholar 

  40. Sartenaer, T., Delogne, P.: Powerline cables modelling for broadband communications. In: Proceedings of the IEEE International Conference on Power Line Communications and Its Applications, pp. 331–337, Malmö (2001)

  41. Galli S., Banwell T.: A deterministic frequency-domain model for the indoor power line transfer function. IEEE J. Sel. Areas Commun. 24(7), 1304–1316 (2006)

    Article  Google Scholar 

  42. Pérez A., Sánchez A.M., Regué J.R., Ribó M., Aquilué R., Rodríguez-Cepeda P., Pajares F.J.: Circuital and modal characterization of the power-line network in the PLC band. IEEE Trans. Power Del. 24(3), 1182–1189 (2009)

    Article  Google Scholar 

  43. Zimmermann M., Dostert K.A.: multipath model for the powerline channel. IEEE Trans. Commun. 50(4), 553–559 (2002)

    Article  Google Scholar 

  44. Dostert K.: Powerline Communications. Upper Saddle River, Prentice-Hall (2001)

    Google Scholar 

  45. Amirshahi, P.: Broadband access and home networking through powerline networks, Ph.D. Dissertation, Pennsylvania State Univ., University Park (2006). Online: http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-205/index.html

  46. Meng H., Chen S., Guan Y.L., Law C.L., So L.P., Gunawan E., Lie T.T.: Modeling of transfer characteristics for the broadband power line communication channel. IEEE Trans. Power Del. 19(3), 1057–1064 (2004)

    Article  Google Scholar 

  47. Barmada S., Musolino A., Raugi M.: Innovative model for time-varying power line communication channel response evaluation. IEEE J. Sel. Areas Commun. 24(7), 1317–1326 (2006)

    Article  Google Scholar 

  48. D’Amore M., Sarto M.S.: A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines. IEEE Trans. Power Del. 12(1), 303–314 (1997)

    Article  Google Scholar 

  49. Hooghe K., Guenach M.: Toward green copper broadband access networks. IEEE Commun. Mag. 49(8), 87–93 (2011)

    Article  Google Scholar 

  50. Cui S., Goldsmith A.J., Bahai A.: Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE J. Sel. Areas Commun. 22(6), 1089–1098 (2004)

    Article  Google Scholar 

  51. He A., Srikanteswara S., Bae K.K., Newman T.R., Reed J.H., Tranter W.H., Sajadieh M., Verhelst M.: Power consumption minimization for MIMO systems—a cognitive radio approach. IEEE J. Sel. Areas Commun. 29(2), 469–479 (2011)

    Article  Google Scholar 

  52. Isheden, C., Fettweis, G.P.: Energy-efficient multi-carrier link adaptation with sum rate-dependent circuit power. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–6, Miami (2010)

  53. Götz M., Rapp M., Dostert K.: Power line channel characteristics and their effect on communication system design. IEEE Commun. Mag. 42(4), 78–86 (2004)

    Article  Google Scholar 

  54. DLC+VIT4IP, D1.2: Overall system architecture design DLC system architecture. FP7 Integrated Project No 247750, (June 2010). Online: http://www.dlc-vit4ip.org/wb/media/Downloads/D1.2%20system%20architecture%20design.pdf

  55. OPERA1, D44: Report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed, IST Integr. Project No 507667 (Dec. 2005)

  56. Amirshahi, P., Kavehrad, M.: Medium voltage overhead powerline broadband communications; transmission capacity and electromagnetic interference. In: Proceedings of the IEEE International Symposium Power Line Communications and Applications, pp. 2–6, Vancouver (2005)

  57. D’Amore M., Sarto M.S.: Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range—Part I: single conductor configuration. IEEE Trans. Electromagn. Compat. 38(2), 127–138 (1996)

    Article  Google Scholar 

  58. D’Amore M., Sarto M.S.: Simulation models of a dissipative transmission line above a lossy ground for a wide-frequency range—Part II: multi-conductor configuration. IEEE Trans. Electromagn. Compat. 38(2), 139–149 (1996)

    Article  Google Scholar 

  59. Anatory J., Theethayi N.: On the efficacy of using ground return in the broadband power-line communications—a transmission-line analysis. IEEE Trans. Power Del. 23(1), 132–139 (2008)

    Article  Google Scholar 

  60. Carson R.J.: Wave propagation in overhead wires with ground return. Bell Syst. Tech. J. 5, 539–554 (1926)

    Article  Google Scholar 

  61. Kikuchi H.: Wave propagation along an infinite wire above ground at high frequencies. Proc. Electrotech. J. 2, 73–78 (1956)

    Google Scholar 

  62. Kikuchi, H.: On the transition form a ground return circuit to a surface waveguide. In: Proceedings of the International Congress on Ultrahigh Frequency Circuits Antennas, pp. 39–45, Paris (1957)

  63. van der Wielen, P.C.J.M.: On-line detection and location of partial discharges in medium-voltage power cables, Ph.D. Dissertation, Tech. Univ. Eindhoven, Eindhoven, the Netherlands, Apr. 2005. Online: http://alexandria.tue.nl/extra2/200511097.pdf

  64. OPERA1, D5: Pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks. IST Integrated Project No 507667 (April 2005)

  65. van der Wielen P.C.J.M., Steennis E.F., Wouters F.P.A.A.: Fundamental aspects of excitation and propagation of on-line partial discharge signals in three-phase medium voltage cable systems. IEEE Trans. Dielectr. Electr. Insul. 10(4), 678–688 (2003)

    Article  Google Scholar 

  66. Veen, J.: On-line signal analysis of partial discharges in medium-voltage power cables, Ph.D. Dissertation, Technische Universiteit Eindhoven, Eindhoven (2005). Online: http://alexandria.tue.nl/extra2/200511099.pdf

  67. Theethayi, N.: Electromagnetic interference in distributed outdoor electrical systems, with an emphasis on lightning interaction with electrified railway network, Ph.D. dissertation, Uppsala Univ., Uppsala (Sept. 2005). Online: http://uu.diva-portal.org/smash/get/diva2:166746/FULLTEXT01

  68. Vance E.F.: Coupling to Cable Shields. Wiley, New York (1978)

    Google Scholar 

  69. Aquilué, R.: Power Line Communications for the Electrical Utility: Physical Layer Design and Channel Modeling, Ph.D. Dissertation, Universitat Ramon Llull, Enginyeria I Arquitectura La Salle, Barcelona (2008)

  70. Cataliotti A., Daidone A., Tinè G.: Power line communication in medium voltage systems: characterization of MV cables. IEEE Trans. Power Deliv. 23(4), 1896–1902 (2008)

    Article  Google Scholar 

  71. Anatory J., Theethayi N., Thottappillil R., Kissaka M. M., Mvungi N.H.: The influence of load impedance, line length, and branches on underground cable power-line communications (PLC) systems. IEEE Trans. Power Del. 23(1), 180–187 (2008)

    Article  Google Scholar 

  72. Tsiamitros D.A., Papagiannis G.K., Dokopoulos P.S.: Earth return impedances of conductor arrangements in multilayer soils—Part II: numerical results. IEEE Trans. Power Deliv. 23(4), 2401–2408 (2008)

    Article  Google Scholar 

  73. Rachidi F., Tkachenko S.V.: Electromagnetic Field Interaction with Transmission Lines: From Classical Theory to HF Radiation Effects. WIT Press, Southampton (2008)

    Book  Google Scholar 

  74. Versolatto F., Tonello A.M.: An MTL theory approach for the simulation of MIMO power-line communication channels. IEEE Trans. Power Del. 26(3), 1710–1717 (2011)

    Article  Google Scholar 

  75. Galli S., Banwell T.: A novel approach to accurate modeling of the indoor power line channel—Part II: Transfer function and channel properties. IEEE Trans. Power Del. 20(3), 1869–1878 (2005)

    Article  Google Scholar 

  76. Yarman B.S., Fettweiss A.: Computer aided double matching via parametric representation of Brune functions. IEEE Trans. Circuits Syst. 37(2), 212–222 (1990)

    Article  Google Scholar 

  77. Araneo, R., Celozzi, S., Lovat, G., Maradei, F.: Multi-port impedance matching technique for power line communications. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 96–101, Udine (2011)

  78. Versolatto, F., Tonello, A.M.: Analysis of the PLC channel statistics using a bottom-up random simulator. In: Proceedings of the IEEE International Symposium Power Line Communications and Its Applications, pp. 236–241, Rio de Janeiro (2010)

  79. Tonello A.M., Versolatto F.: Bottom-up statistical PLC channel modeling—Part II: inferring the statistics. IEEE Trans. Power Deliv. 25(4), 2356–2363 (2010)

    Article  Google Scholar 

  80. Ofcom: Amperion PLT Measurements in Crieff, Ofcom, Tech. Rep. (Sept. 2005). Online: http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/

  81. NTIA: Potential interference from broadband over power line (BPL) systems to federal government radio communications at 1.7–80 MHz Phase 1 Study Vol. 1, NTIA Rep. 04-413 (April 2004). Online: http://www.ntia.doc.gov/ntiahome/fccfilings/2004/bpl/

  82. NATO: HF Interference, Procedures and Tools (Interférences HF, procédures et outils) Final Report of NATO RTO Information Systems Technology, RTO-TR-ISTR-050 (June 2007). Online: http://ftp.rta.nato.int/public/PubFullText/RTO/TR/RTO-TR-IST-050/$TR-IST-050-ALL.pdf

  83. Ofcom: DS2 PLT Measurements in Crieff, Ofcom, Tech. Rep. 793 (Part 2) (May 2005). Online: http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/ds2.pdf

  84. Ofcom: Ascom PLT Measurements in Winchester, Ofcom, Tech. Rep. 793 (Part 1) (May 2005). Online: http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/ascom.pdf

  85. SMART 2020: Enabling the Low Carbon Economy in the Information Age, The Climate Group on Behalf of GeSI, Tech. Report (2008)

  86. EC Directorate-General JRC Joint Research Centre Inst. for Energy Renewable Energies Unit, Code of Conduct on Energy Consumption of Broadband Equipment, Tech. Report 4 (Feb. 2011)

  87. ETSI TS 102 533: Environmental Engineering (EE): Measurement Methods and Limits for Energy Consumption in Broadband Telecommunication Networks Equipment, Tech. Report 1.1.1 (June 2008)

  88. Cui, S., Goldsmith, A.J., Bahai, A.: Energy-constrained modulation optimization for coded systems. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 372–376, San Francisco (2003)

  89. Cui S., Goldsmith A.J., Bahai A.: Energy-constrained modulation optimization. IEEE Trans. Wirel. Commun. 4(5), 2349–2360 (2005)

    Article  Google Scholar 

  90. Lee T.H.: The Design of CMOS Radio-Frequency Integrated Circuits. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  91. Kuhn L.M., Berger S., Hammerström I., Wittneben A.: Power line enhanced cooperative wireless communications. IEEE J. Sel. Areas Commun. 24(7), 1401–1410 (2006)

    Article  Google Scholar 

  92. Crussière M., Baudais J.Y., Hélard J.F.: Adaptive spread spectrum multicarrier multiple-access over wirelines. IEEE J. Sel. Areas Commun. 24(7), 1377–1388 (2006)

    Article  Google Scholar 

  93. Rappaport T.S.: Wireless Communications. Upper Saddle River, Prentice-Hall (2002)

    Google Scholar 

  94. Henry P.S.: Interference characteristics of broadband power line communication systems using aerial medium voltage wires. IEEE Commun. Mag. 43(4), 92–98 (2005)

    Article  Google Scholar 

  95. Liu, S., Greenstein, L.J.: Emission characteristics and interference constraint of overhead medium-voltage broadband power line (BPL) systems. In: Proceedings of the IEEE Global Telecommunications Conference, New Orleans (Nov. 1–5 2008)

  96. Anatory J., Theethayi N., Thottappillil R., Kissaka M.M., Mvungi N.H.: The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: transmission-line analyses. IEEE Trans. Power Del. 24(2), 621–629 (2009)

    Article  Google Scholar 

  97. Anatory J., Theethayi N., Thottappillil R.: Power-line communication channel model for interconnected networks—Part II: multiconductor system. IEEE Trans. Power Del. 24(1), 124–128 (2009)

    Article  Google Scholar 

  98. Song, J., Pan, C., Wu, Q., Yang, Z., Liu, H., Zhao, B., Li, X.: Field trial of digital video transmission over medium-voltage powerline with time-domain synchronous orthogonal frequency division multiplexing technology. In: Proceedings of the 2007 IEEE International Symposium on Power Line Communications and its Applications (ISPLC’07), pp. 559–564, Pisa (2007)

  99. Aquilué R., Ribó M., Regué J.R., Pijoan J.L., Sánchez G.: Scattering parameters-based channel characterization and modeling for underground medium-voltage power-line communications. IEEE Trans. Power Deliv. 24(3), 1122–1131 (2009)

    Article  Google Scholar 

  100. Liu, H., Song, J., Zhao, B., Li, X.: Channel study for medium-voltage power network. In: IEEE Internaiotnal Symposium on Power Line Communications and Its Applications, pp. 245–250, Orlando (2006)

  101. Steyaert M., De Muer B., Leroux P., Borremans M., Mertens K.: Low-voltage low-power CMOS-RF transceiver design. IEEE Trans. Microw. Theory Tech. 50, 281–287 (2002)

    Article  Google Scholar 

  102. Sullivan P.J., Xavier B.A., Ku W.H.: Low voltage performance of a microwave CMOS Gilbert cell mixer. IEEE J. Solid-Sate Circuits 32, 1151–1155 (1997)

    Article  Google Scholar 

  103. Wouters P.A.A.F., van der Wielen P.C.J.M., Veen J., Wagenaars P., Steennis E.F.: Effect of cable load impedance on coupling schemes for MV power line communication. IEEE Trans. Power Del. 20(2,pt 1), 638–645 (2005)

    Article  Google Scholar 

  104. Antoniali, M., Tonello, A.M., Lenardon, M., Qualizza, A.: Measurements and analysis of PLC channels in a cruise ship. In: Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications, pp. 102–107, Udine (2011)

  105. Wolkerstorfer, M., Statovci, D., Nordström, T.: Dynamic spectrum management for energy-efficient transmission in DSL. In: Proceedings of the IEEE International Conference on Communications Systems, pp. 1015–1020, Singapore (2008)

  106. Prabhu, R.S., Daneshrad, B.: Energy-efficient power loading for a MIMO-SVD system and its performance in flat fading. In: Proceedings of the IEEE Global Telecommunications Conference, pp. 1–5, Miami (2010)

  107. Xiong C., Li G.Y., Zhang S., Chen Y., Xu S.: Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Trans. Wirel. Commun. 10(11), 3874–3886 (2011)

    Article  Google Scholar 

  108. Galli S., Logvinov O.: Recent developments in the standardization of power line communications within the IEEE. IEEE Commun. Mag. 46(7), 64–71 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Lazaropoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazaropoulos, A.G. Green overhead and underground multiple-input multiple-output medium voltage broadband over power lines networks: energy-efficient power control. J Glob Optim 57, 997–1024 (2013). https://doi.org/10.1007/s10898-012-9988-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9988-y

Keywords

Navigation